uvm_pdaemon.c revision 1.43 1 /* $NetBSD: uvm_pdaemon.c,v 1.43 2001/12/09 03:07:19 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.43 2001/12/09 03:07:19 chs Exp $");
75
76 #include "opt_uvmhist.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/pool.h>
83 #include <sys/buf.h>
84 #include <sys/vnode.h>
85
86 #include <uvm/uvm.h>
87
88 /*
89 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
90 * in a pass thru the inactive list when swap is full. the value should be
91 * "small"... if it's too large we'll cycle the active pages thru the inactive
92 * queue too quickly to for them to be referenced and avoid being freed.
93 */
94
95 #define UVMPD_NUMDIRTYREACTS 16
96
97
98 /*
99 * local prototypes
100 */
101
102 void uvmpd_scan __P((void));
103 boolean_t uvmpd_scan_inactive __P((struct pglist *));
104 void uvmpd_tune __P((void));
105
106 /*
107 * uvm_wait: wait (sleep) for the page daemon to free some pages
108 *
109 * => should be called with all locks released
110 * => should _not_ be called by the page daemon (to avoid deadlock)
111 */
112
113 void
114 uvm_wait(wmsg)
115 const char *wmsg;
116 {
117 int timo = 0;
118 int s = splbio();
119
120 /*
121 * check for page daemon going to sleep (waiting for itself)
122 */
123
124 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
125 /*
126 * now we have a problem: the pagedaemon wants to go to
127 * sleep until it frees more memory. but how can it
128 * free more memory if it is asleep? that is a deadlock.
129 * we have two options:
130 * [1] panic now
131 * [2] put a timeout on the sleep, thus causing the
132 * pagedaemon to only pause (rather than sleep forever)
133 *
134 * note that option [2] will only help us if we get lucky
135 * and some other process on the system breaks the deadlock
136 * by exiting or freeing memory (thus allowing the pagedaemon
137 * to continue). for now we panic if DEBUG is defined,
138 * otherwise we hope for the best with option [2] (better
139 * yet, this should never happen in the first place!).
140 */
141
142 printf("pagedaemon: deadlock detected!\n");
143 timo = hz >> 3; /* set timeout */
144 #if defined(DEBUG)
145 /* DEBUG: panic so we can debug it */
146 panic("pagedaemon deadlock");
147 #endif
148 }
149
150 simple_lock(&uvm.pagedaemon_lock);
151 wakeup(&uvm.pagedaemon); /* wake the daemon! */
152 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
153 timo);
154
155 splx(s);
156 }
157
158
159 /*
160 * uvmpd_tune: tune paging parameters
161 *
162 * => called when ever memory is added (or removed?) to the system
163 * => caller must call with page queues locked
164 */
165
166 void
167 uvmpd_tune(void)
168 {
169 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
170
171 uvmexp.freemin = uvmexp.npages / 20;
172
173 /* between 16k and 256k */
174 /* XXX: what are these values good for? */
175 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
176 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
177
178 /* Make sure there's always a user page free. */
179 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
180 uvmexp.freemin = uvmexp.reserve_kernel + 1;
181
182 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
183 if (uvmexp.freetarg <= uvmexp.freemin)
184 uvmexp.freetarg = uvmexp.freemin + 1;
185
186 /* uvmexp.inactarg: computed in main daemon loop */
187
188 uvmexp.wiredmax = uvmexp.npages / 3;
189 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
190 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
191 }
192
193 /*
194 * uvm_pageout: the main loop for the pagedaemon
195 */
196
197 void
198 uvm_pageout(void *arg)
199 {
200 int npages = 0;
201 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
202
203 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
204
205 /*
206 * ensure correct priority and set paging parameters...
207 */
208
209 uvm.pagedaemon_proc = curproc;
210 uvm_lock_pageq();
211 npages = uvmexp.npages;
212 uvmpd_tune();
213 uvm_unlock_pageq();
214
215 /*
216 * main loop
217 */
218
219 for (;;) {
220 simple_lock(&uvm.pagedaemon_lock);
221
222 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
223 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
224 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
225 uvmexp.pdwoke++;
226 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
227
228 /*
229 * now lock page queues and recompute inactive count
230 */
231
232 uvm_lock_pageq();
233 if (npages != uvmexp.npages) { /* check for new pages? */
234 npages = uvmexp.npages;
235 uvmpd_tune();
236 }
237
238 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
239 if (uvmexp.inactarg <= uvmexp.freetarg) {
240 uvmexp.inactarg = uvmexp.freetarg + 1;
241 }
242
243 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
244 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
245 uvmexp.inactarg);
246
247 /*
248 * scan if needed
249 */
250
251 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
252 uvmexp.inactive < uvmexp.inactarg) {
253 uvmpd_scan();
254 }
255
256 /*
257 * if there's any free memory to be had,
258 * wake up any waiters.
259 */
260
261 if (uvmexp.free > uvmexp.reserve_kernel ||
262 uvmexp.paging == 0) {
263 wakeup(&uvmexp.free);
264 }
265
266 /*
267 * scan done. unlock page queues (the only lock we are holding)
268 */
269
270 uvm_unlock_pageq();
271
272 /*
273 * drain pool resources now that we're not holding any locks
274 */
275
276 pool_drain(0);
277 }
278 /*NOTREACHED*/
279 }
280
281
282 /*
283 * uvm_aiodone_daemon: main loop for the aiodone daemon.
284 */
285
286 void
287 uvm_aiodone_daemon(void *arg)
288 {
289 int s, free;
290 struct buf *bp, *nbp;
291 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
292
293 for (;;) {
294
295 /*
296 * carefully attempt to go to sleep (without losing "wakeups"!).
297 * we need splbio because we want to make sure the aio_done list
298 * is totally empty before we go to sleep.
299 */
300
301 s = splbio();
302 simple_lock(&uvm.aiodoned_lock);
303 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
304 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
305 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
306 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
307 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
308
309 /* relock aiodoned_lock, still at splbio */
310 simple_lock(&uvm.aiodoned_lock);
311 }
312
313 /*
314 * check for done aio structures
315 */
316
317 bp = TAILQ_FIRST(&uvm.aio_done);
318 if (bp) {
319 TAILQ_INIT(&uvm.aio_done);
320 }
321
322 simple_unlock(&uvm.aiodoned_lock);
323 splx(s);
324
325 /*
326 * process each i/o that's done.
327 */
328
329 free = uvmexp.free;
330 while (bp != NULL) {
331 nbp = TAILQ_NEXT(bp, b_freelist);
332 (*bp->b_iodone)(bp);
333 bp = nbp;
334 }
335 if (free <= uvmexp.reserve_kernel) {
336 s = uvm_lock_fpageq();
337 wakeup(&uvm.pagedaemon);
338 uvm_unlock_fpageq(s);
339 } else {
340 simple_lock(&uvm.pagedaemon_lock);
341 wakeup(&uvmexp.free);
342 simple_unlock(&uvm.pagedaemon_lock);
343 }
344 }
345 }
346
347 /*
348 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
349 *
350 * => called with page queues locked
351 * => we work on meeting our free target by converting inactive pages
352 * into free pages.
353 * => we handle the building of swap-backed clusters
354 * => we return TRUE if we are exiting because we met our target
355 */
356
357 boolean_t
358 uvmpd_scan_inactive(pglst)
359 struct pglist *pglst;
360 {
361 int error;
362 struct vm_page *p, *nextpg;
363 struct uvm_object *uobj;
364 struct vm_anon *anon;
365 struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT];
366 struct simplelock *slock;
367 int swnpages, swcpages;
368 int swslot;
369 int dirtyreacts, t, result;
370 boolean_t anonunder, fileunder, execunder;
371 boolean_t anonover, fileover, execover;
372 boolean_t anonreact, filereact, execreact;
373 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
374
375 /*
376 * swslot is non-zero if we are building a swap cluster. we want
377 * to stay in the loop while we have a page to scan or we have
378 * a swap-cluster to build.
379 */
380
381 swslot = 0;
382 swnpages = swcpages = 0;
383 dirtyreacts = 0;
384
385 /*
386 * decide which types of pages we want to reactivate instead of freeing
387 * to keep usage within the minimum and maximum usage limits.
388 */
389
390 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
391 anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
392 fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
393 execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
394 anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
395 fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
396 execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
397 anonreact = anonunder || (!anonover && (fileover || execover));
398 filereact = fileunder || (!fileover && (anonover || execover));
399 execreact = execunder || (!execover && (anonover || fileover));
400 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
401 uobj = NULL;
402 anon = NULL;
403 if (p) {
404
405 /*
406 * see if we've met the free target.
407 */
408
409 if (uvmexp.free + uvmexp.paging >=
410 uvmexp.freetarg << 2 ||
411 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
412 UVMHIST_LOG(pdhist," met free target: "
413 "exit loop", 0, 0, 0, 0);
414
415 if (swslot == 0) {
416 /* exit now if no swap-i/o pending */
417 break;
418 }
419
420 /* set p to null to signal final swap i/o */
421 p = NULL;
422 nextpg = NULL;
423 }
424 }
425 if (p) { /* if (we have a new page to consider) */
426
427 /*
428 * we are below target and have a new page to consider.
429 */
430
431 uvmexp.pdscans++;
432 nextpg = TAILQ_NEXT(p, pageq);
433
434 /*
435 * move referenced pages back to active queue and
436 * skip to next page.
437 */
438
439 if (pmap_clear_reference(p)) {
440 uvm_pageactivate(p);
441 uvmexp.pdreact++;
442 continue;
443 }
444 anon = p->uanon;
445 uobj = p->uobject;
446
447 /*
448 * enforce the minimum thresholds on different
449 * types of memory usage. if reusing the current
450 * page would reduce that type of usage below its
451 * minimum, reactivate the page instead and move
452 * on to the next page.
453 */
454
455 if (anon && anonreact) {
456 uvm_pageactivate(p);
457 uvmexp.pdreanon++;
458 continue;
459 }
460 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
461 uvm_pageactivate(p);
462 uvmexp.pdreexec++;
463 continue;
464 }
465 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
466 !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
467 uvm_pageactivate(p);
468 uvmexp.pdrefile++;
469 continue;
470 }
471
472 /*
473 * first we attempt to lock the object that this page
474 * belongs to. if our attempt fails we skip on to
475 * the next page (no harm done). it is important to
476 * "try" locking the object as we are locking in the
477 * wrong order (pageq -> object) and we don't want to
478 * deadlock.
479 *
480 * the only time we expect to see an ownerless page
481 * (i.e. a page with no uobject and !PQ_ANON) is if an
482 * anon has loaned a page from a uvm_object and the
483 * uvm_object has dropped the ownership. in that
484 * case, the anon can "take over" the loaned page
485 * and make it its own.
486 */
487
488 /* is page part of an anon or ownerless ? */
489 if ((p->pqflags & PQ_ANON) || uobj == NULL) {
490 KASSERT(anon != NULL);
491 slock = &anon->an_lock;
492 if (!simple_lock_try(slock)) {
493 /* lock failed, skip this page */
494 continue;
495 }
496
497 /*
498 * if the page is ownerless, claim it in the
499 * name of "anon"!
500 */
501
502 if ((p->pqflags & PQ_ANON) == 0) {
503 KASSERT(p->loan_count > 0);
504 p->loan_count--;
505 p->pqflags |= PQ_ANON;
506 /* anon now owns it */
507 }
508 if (p->flags & PG_BUSY) {
509 simple_unlock(slock);
510 uvmexp.pdbusy++;
511 continue;
512 }
513 uvmexp.pdanscan++;
514 } else {
515 KASSERT(uobj != NULL);
516 slock = &uobj->vmobjlock;
517 if (!simple_lock_try(slock)) {
518 continue;
519 }
520 if (p->flags & PG_BUSY) {
521 simple_unlock(slock);
522 uvmexp.pdbusy++;
523 continue;
524 }
525 uvmexp.pdobscan++;
526 }
527
528
529 /*
530 * we now have the object and the page queues locked.
531 * if the page is not swap-backed, call the object's
532 * pager to flush and free the page.
533 */
534
535 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
536 uvm_unlock_pageq();
537 error = (uobj->pgops->pgo_put)(uobj, p->offset,
538 p->offset + PAGE_SIZE,
539 PGO_CLEANIT|PGO_FREE);
540 uvm_lock_pageq();
541 if (nextpg &&
542 (nextpg->flags & PQ_INACTIVE) == 0) {
543 nextpg = TAILQ_FIRST(pglst);
544 }
545 continue;
546 }
547
548 /*
549 * the page is swap-backed. remove all the permissions
550 * from the page so we can sync the modified info
551 * without any race conditions. if the page is clean
552 * we can free it now and continue.
553 */
554
555 pmap_page_protect(p, VM_PROT_NONE);
556 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
557 p->flags &= ~(PG_CLEAN);
558 }
559 if (p->flags & PG_CLEAN) {
560 uvm_pagefree(p);
561 uvmexp.pdfreed++;
562
563 /*
564 * for anons, we need to remove the page
565 * from the anon ourselves. for aobjs,
566 * pagefree did that for us.
567 */
568
569 if (anon) {
570 KASSERT(anon->an_swslot != 0);
571 anon->u.an_page = NULL;
572 }
573 simple_unlock(slock);
574
575 /* this page is now only in swap. */
576 simple_lock(&uvm.swap_data_lock);
577 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
578 uvmexp.swpgonly++;
579 simple_unlock(&uvm.swap_data_lock);
580 continue;
581 }
582
583 /*
584 * this page is dirty, skip it if we'll have met our
585 * free target when all the current pageouts complete.
586 */
587
588 if (uvmexp.free + uvmexp.paging >
589 uvmexp.freetarg << 2) {
590 simple_unlock(slock);
591 continue;
592 }
593
594 /*
595 * free any swap space allocated to the page since
596 * we'll have to write it again with its new data.
597 */
598
599 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
600 uvm_swap_free(anon->an_swslot, 1);
601 anon->an_swslot = 0;
602 } else if (p->pqflags & PQ_AOBJ) {
603 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
604 }
605
606 /*
607 * if all pages in swap are only in swap,
608 * the swap space is full and we can't page out
609 * any more swap-backed pages. reactivate this page
610 * so that we eventually cycle all pages through
611 * the inactive queue.
612 */
613
614 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
615 if (uvmexp.swpgonly == uvmexp.swpages) {
616 dirtyreacts++;
617 uvm_pageactivate(p);
618 simple_unlock(slock);
619 continue;
620 }
621
622 /*
623 * start new swap pageout cluster (if necessary).
624 */
625
626 if (swslot == 0) {
627 swnpages = MAXBSIZE >> PAGE_SHIFT;
628 swslot = uvm_swap_alloc(&swnpages, TRUE);
629 if (swslot == 0) {
630 simple_unlock(slock);
631 continue;
632 }
633 swcpages = 0;
634 }
635
636 /*
637 * at this point, we're definitely going reuse this
638 * page. mark the page busy and delayed-free.
639 * we should remove the page from the page queues
640 * so we don't ever look at it again.
641 * adjust counters and such.
642 */
643
644 p->flags |= PG_BUSY;
645 UVM_PAGE_OWN(p, "scan_inactive");
646
647 p->flags |= PG_PAGEOUT;
648 uvmexp.paging++;
649 uvm_pagedequeue(p);
650
651 uvmexp.pgswapout++;
652
653 /*
654 * add the new page to the cluster.
655 */
656
657 if (anon) {
658 anon->an_swslot = swslot + swcpages;
659 simple_unlock(slock);
660 } else {
661 result = uao_set_swslot(uobj,
662 p->offset >> PAGE_SHIFT, swslot + swcpages);
663 if (result == -1) {
664 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
665 UVM_PAGE_OWN(p, NULL);
666 uvmexp.paging--;
667 uvm_pageactivate(p);
668 simple_unlock(slock);
669 continue;
670 }
671 simple_unlock(slock);
672 }
673 swpps[swcpages] = p;
674 swcpages++;
675
676 /*
677 * if the cluster isn't full, look for more pages
678 * before starting the i/o.
679 */
680
681 if (swcpages < swnpages) {
682 continue;
683 }
684 }
685
686 /*
687 * if this is the final pageout we could have a few
688 * unused swap blocks. if so, free them now.
689 */
690
691 if (swcpages < swnpages) {
692 uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
693 }
694
695 /*
696 * now start the pageout.
697 */
698
699 uvm_unlock_pageq();
700 uvmexp.pdpageouts++;
701 error = uvm_swap_put(swslot, swpps, swcpages, 0);
702 KASSERT(error == 0);
703 uvm_lock_pageq();
704
705 /*
706 * zero swslot to indicate that we are
707 * no longer building a swap-backed cluster.
708 */
709
710 swslot = 0;
711
712 /*
713 * the pageout is in progress. bump counters and set up
714 * for the next loop.
715 */
716
717 uvmexp.pdpending++;
718 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
719 nextpg = TAILQ_FIRST(pglst);
720 }
721 }
722 return (error);
723 }
724
725 /*
726 * uvmpd_scan: scan the page queues and attempt to meet our targets.
727 *
728 * => called with pageq's locked
729 */
730
731 void
732 uvmpd_scan(void)
733 {
734 int inactive_shortage, swap_shortage, pages_freed;
735 struct vm_page *p, *nextpg;
736 struct uvm_object *uobj;
737 struct vm_anon *anon;
738 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
739
740 uvmexp.pdrevs++;
741 uobj = NULL;
742 anon = NULL;
743
744 #ifndef __SWAP_BROKEN
745
746 /*
747 * swap out some processes if we are below our free target.
748 * we need to unlock the page queues for this.
749 */
750
751 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
752 uvmexp.pdswout++;
753 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
754 uvmexp.free, uvmexp.freetarg, 0, 0);
755 uvm_unlock_pageq();
756 uvm_swapout_threads();
757 uvm_lock_pageq();
758
759 }
760 #endif
761
762 /*
763 * now we want to work on meeting our targets. first we work on our
764 * free target by converting inactive pages into free pages. then
765 * we work on meeting our inactive target by converting active pages
766 * to inactive ones.
767 */
768
769 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
770
771 /*
772 * alternate starting queue between swap and object based on the
773 * low bit of uvmexp.pdrevs (which we bump by one each call).
774 */
775
776 pages_freed = uvmexp.pdfreed;
777 (void) uvmpd_scan_inactive(&uvm.page_inactive);
778 pages_freed = uvmexp.pdfreed - pages_freed;
779
780 /*
781 * we have done the scan to get free pages. now we work on meeting
782 * our inactive target.
783 */
784
785 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
786
787 /*
788 * detect if we're not going to be able to page anything out
789 * until we free some swap resources from active pages.
790 */
791
792 swap_shortage = 0;
793 if (uvmexp.free < uvmexp.freetarg &&
794 uvmexp.swpginuse == uvmexp.swpages &&
795 uvmexp.swpgonly < uvmexp.swpages &&
796 pages_freed == 0) {
797 swap_shortage = uvmexp.freetarg - uvmexp.free;
798 }
799
800 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
801 inactive_shortage, swap_shortage,0,0);
802 for (p = TAILQ_FIRST(&uvm.page_active);
803 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
804 p = nextpg) {
805 nextpg = TAILQ_NEXT(p, pageq);
806 if (p->flags & PG_BUSY) {
807 continue;
808 }
809
810 /*
811 * lock the page's owner.
812 */
813 /* is page anon owned or ownerless? */
814 if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
815 anon = p->uanon;
816 KASSERT(anon != NULL);
817 if (!simple_lock_try(&anon->an_lock)) {
818 continue;
819 }
820
821 /* take over the page? */
822 if ((p->pqflags & PQ_ANON) == 0) {
823 KASSERT(p->loan_count > 0);
824 p->loan_count--;
825 p->pqflags |= PQ_ANON;
826 }
827 } else {
828 uobj = p->uobject;
829 if (!simple_lock_try(&uobj->vmobjlock)) {
830 continue;
831 }
832 }
833
834 /*
835 * skip this page if it's busy.
836 */
837
838 if ((p->flags & PG_BUSY) != 0) {
839 if (p->pqflags & PQ_ANON)
840 simple_unlock(&anon->an_lock);
841 else
842 simple_unlock(&uobj->vmobjlock);
843 continue;
844 }
845
846 /*
847 * if there's a shortage of swap, free any swap allocated
848 * to this page so that other pages can be paged out.
849 */
850
851 if (swap_shortage > 0) {
852 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
853 uvm_swap_free(anon->an_swslot, 1);
854 anon->an_swslot = 0;
855 p->flags &= ~PG_CLEAN;
856 swap_shortage--;
857 } else if (p->pqflags & PQ_AOBJ) {
858 int slot = uao_set_swslot(uobj,
859 p->offset >> PAGE_SHIFT, 0);
860 if (slot) {
861 uvm_swap_free(slot, 1);
862 p->flags &= ~PG_CLEAN;
863 swap_shortage--;
864 }
865 }
866 }
867
868 /*
869 * if there's a shortage of inactive pages, deactivate.
870 */
871
872 if (inactive_shortage > 0) {
873 /* no need to check wire_count as pg is "active" */
874 uvm_pagedeactivate(p);
875 uvmexp.pddeact++;
876 inactive_shortage--;
877 }
878
879 /*
880 * we're done with this page.
881 */
882
883 if (p->pqflags & PQ_ANON)
884 simple_unlock(&anon->an_lock);
885 else
886 simple_unlock(&uobj->vmobjlock);
887 }
888 }
889