uvm_pdaemon.c revision 1.57 1 /* $NetBSD: uvm_pdaemon.c,v 1.57 2004/01/04 11:33:32 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.57 2004/01/04 11:33:32 jdolecek Exp $");
75
76 #include "opt_uvmhist.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/pool.h>
83 #include <sys/buf.h>
84 #include <sys/vnode.h>
85
86 #include <uvm/uvm.h>
87
88 /*
89 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
90 * in a pass thru the inactive list when swap is full. the value should be
91 * "small"... if it's too large we'll cycle the active pages thru the inactive
92 * queue too quickly to for them to be referenced and avoid being freed.
93 */
94
95 #define UVMPD_NUMDIRTYREACTS 16
96
97
98 /*
99 * local prototypes
100 */
101
102 void uvmpd_scan __P((void));
103 void uvmpd_scan_inactive __P((struct pglist *));
104 void uvmpd_tune __P((void));
105
106 /*
107 * uvm_wait: wait (sleep) for the page daemon to free some pages
108 *
109 * => should be called with all locks released
110 * => should _not_ be called by the page daemon (to avoid deadlock)
111 */
112
113 void
114 uvm_wait(wmsg)
115 const char *wmsg;
116 {
117 int timo = 0;
118 int s = splbio();
119
120 /*
121 * check for page daemon going to sleep (waiting for itself)
122 */
123
124 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
125 /*
126 * now we have a problem: the pagedaemon wants to go to
127 * sleep until it frees more memory. but how can it
128 * free more memory if it is asleep? that is a deadlock.
129 * we have two options:
130 * [1] panic now
131 * [2] put a timeout on the sleep, thus causing the
132 * pagedaemon to only pause (rather than sleep forever)
133 *
134 * note that option [2] will only help us if we get lucky
135 * and some other process on the system breaks the deadlock
136 * by exiting or freeing memory (thus allowing the pagedaemon
137 * to continue). for now we panic if DEBUG is defined,
138 * otherwise we hope for the best with option [2] (better
139 * yet, this should never happen in the first place!).
140 */
141
142 printf("pagedaemon: deadlock detected!\n");
143 timo = hz >> 3; /* set timeout */
144 #if defined(DEBUG)
145 /* DEBUG: panic so we can debug it */
146 panic("pagedaemon deadlock");
147 #endif
148 }
149
150 simple_lock(&uvm.pagedaemon_lock);
151 wakeup(&uvm.pagedaemon); /* wake the daemon! */
152 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
153 timo);
154
155 splx(s);
156 }
157
158
159 /*
160 * uvmpd_tune: tune paging parameters
161 *
162 * => called when ever memory is added (or removed?) to the system
163 * => caller must call with page queues locked
164 */
165
166 void
167 uvmpd_tune(void)
168 {
169 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
170
171 uvmexp.freemin = uvmexp.npages / 20;
172
173 /* between 16k and 256k */
174 /* XXX: what are these values good for? */
175 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
176 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
177
178 /* Make sure there's always a user page free. */
179 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
180 uvmexp.freemin = uvmexp.reserve_kernel + 1;
181
182 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
183 if (uvmexp.freetarg <= uvmexp.freemin)
184 uvmexp.freetarg = uvmexp.freemin + 1;
185
186 /* uvmexp.inactarg: computed in main daemon loop */
187
188 uvmexp.wiredmax = uvmexp.npages / 3;
189 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
190 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
191 }
192
193 /*
194 * uvm_pageout: the main loop for the pagedaemon
195 */
196
197 void
198 uvm_pageout(void *arg)
199 {
200 int npages = 0;
201 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
202
203 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
204
205 /*
206 * ensure correct priority and set paging parameters...
207 */
208
209 uvm.pagedaemon_proc = curproc;
210 uvm_lock_pageq();
211 npages = uvmexp.npages;
212 uvmpd_tune();
213 uvm_unlock_pageq();
214
215 /*
216 * main loop
217 */
218
219 for (;;) {
220 simple_lock(&uvm.pagedaemon_lock);
221
222 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
223 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
224 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
225 uvmexp.pdwoke++;
226 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
227
228 /*
229 * now lock page queues and recompute inactive count
230 */
231
232 uvm_lock_pageq();
233 if (npages != uvmexp.npages) { /* check for new pages? */
234 npages = uvmexp.npages;
235 uvmpd_tune();
236 }
237
238 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
239 if (uvmexp.inactarg <= uvmexp.freetarg) {
240 uvmexp.inactarg = uvmexp.freetarg + 1;
241 }
242
243 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
244 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
245 uvmexp.inactarg);
246
247 /*
248 * scan if needed
249 */
250
251 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
252 uvmexp.inactive < uvmexp.inactarg) {
253 uvmpd_scan();
254 }
255
256 /*
257 * if there's any free memory to be had,
258 * wake up any waiters.
259 */
260
261 if (uvmexp.free > uvmexp.reserve_kernel ||
262 uvmexp.paging == 0) {
263 wakeup(&uvmexp.free);
264 }
265
266 /*
267 * scan done. unlock page queues (the only lock we are holding)
268 */
269
270 uvm_unlock_pageq();
271
272 /*
273 * drain pool resources now that we're not holding any locks
274 */
275
276 buf_drain(0);
277 pool_drain(0);
278
279 /*
280 * free any cached u-areas we don't need
281 */
282 uvm_uarea_drain(TRUE);
283
284 }
285 /*NOTREACHED*/
286 }
287
288
289 /*
290 * uvm_aiodone_daemon: main loop for the aiodone daemon.
291 */
292
293 void
294 uvm_aiodone_daemon(void *arg)
295 {
296 int s, free;
297 struct buf *bp, *nbp;
298 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
299
300 for (;;) {
301
302 /*
303 * carefully attempt to go to sleep (without losing "wakeups"!).
304 * we need splbio because we want to make sure the aio_done list
305 * is totally empty before we go to sleep.
306 */
307
308 s = splbio();
309 simple_lock(&uvm.aiodoned_lock);
310 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
311 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
312 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
313 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
314 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
315
316 /* relock aiodoned_lock, still at splbio */
317 simple_lock(&uvm.aiodoned_lock);
318 }
319
320 /*
321 * check for done aio structures
322 */
323
324 bp = TAILQ_FIRST(&uvm.aio_done);
325 if (bp) {
326 TAILQ_INIT(&uvm.aio_done);
327 }
328
329 simple_unlock(&uvm.aiodoned_lock);
330 splx(s);
331
332 /*
333 * process each i/o that's done.
334 */
335
336 free = uvmexp.free;
337 while (bp != NULL) {
338 nbp = TAILQ_NEXT(bp, b_freelist);
339 (*bp->b_iodone)(bp);
340 bp = nbp;
341 }
342 if (free <= uvmexp.reserve_kernel) {
343 s = uvm_lock_fpageq();
344 wakeup(&uvm.pagedaemon);
345 uvm_unlock_fpageq(s);
346 } else {
347 simple_lock(&uvm.pagedaemon_lock);
348 wakeup(&uvmexp.free);
349 simple_unlock(&uvm.pagedaemon_lock);
350 }
351 }
352 }
353
354 /*
355 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
356 *
357 * => called with page queues locked
358 * => we work on meeting our free target by converting inactive pages
359 * into free pages.
360 * => we handle the building of swap-backed clusters
361 * => we return TRUE if we are exiting because we met our target
362 */
363
364 void
365 uvmpd_scan_inactive(pglst)
366 struct pglist *pglst;
367 {
368 int error;
369 struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
370 struct uvm_object *uobj;
371 struct vm_anon *anon;
372 struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
373 struct simplelock *slock;
374 int swnpages, swcpages;
375 int swslot;
376 int dirtyreacts, t, result;
377 boolean_t anonunder, fileunder, execunder;
378 boolean_t anonover, fileover, execover;
379 boolean_t anonreact, filereact, execreact;
380 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
381
382 /*
383 * swslot is non-zero if we are building a swap cluster. we want
384 * to stay in the loop while we have a page to scan or we have
385 * a swap-cluster to build.
386 */
387
388 swslot = 0;
389 swnpages = swcpages = 0;
390 dirtyreacts = 0;
391
392 /*
393 * decide which types of pages we want to reactivate instead of freeing
394 * to keep usage within the minimum and maximum usage limits.
395 */
396
397 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
398 anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
399 fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
400 execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
401 anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
402 fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
403 execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
404 anonreact = anonunder || (!anonover && (fileover || execover));
405 filereact = fileunder || (!fileover && (anonover || execover));
406 execreact = execunder || (!execover && (anonover || fileover));
407 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
408 uobj = NULL;
409 anon = NULL;
410 if (p) {
411
412 /*
413 * see if we've met the free target.
414 */
415
416 if (uvmexp.free + uvmexp.paging >=
417 uvmexp.freetarg << 2 ||
418 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
419 UVMHIST_LOG(pdhist," met free target: "
420 "exit loop", 0, 0, 0, 0);
421
422 if (swslot == 0) {
423 /* exit now if no swap-i/o pending */
424 break;
425 }
426
427 /* set p to null to signal final swap i/o */
428 p = NULL;
429 nextpg = NULL;
430 }
431 }
432 if (p) { /* if (we have a new page to consider) */
433
434 /*
435 * we are below target and have a new page to consider.
436 */
437
438 uvmexp.pdscans++;
439 nextpg = TAILQ_NEXT(p, pageq);
440
441 /*
442 * move referenced pages back to active queue and
443 * skip to next page.
444 */
445
446 if (pmap_clear_reference(p)) {
447 uvm_pageactivate(p);
448 uvmexp.pdreact++;
449 continue;
450 }
451 anon = p->uanon;
452 uobj = p->uobject;
453
454 /*
455 * enforce the minimum thresholds on different
456 * types of memory usage. if reusing the current
457 * page would reduce that type of usage below its
458 * minimum, reactivate the page instead and move
459 * on to the next page.
460 */
461
462 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
463 uvm_pageactivate(p);
464 uvmexp.pdreexec++;
465 continue;
466 }
467 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
468 !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
469 uvm_pageactivate(p);
470 uvmexp.pdrefile++;
471 continue;
472 }
473 if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
474 uvm_pageactivate(p);
475 uvmexp.pdreanon++;
476 continue;
477 }
478
479 /*
480 * first we attempt to lock the object that this page
481 * belongs to. if our attempt fails we skip on to
482 * the next page (no harm done). it is important to
483 * "try" locking the object as we are locking in the
484 * wrong order (pageq -> object) and we don't want to
485 * deadlock.
486 *
487 * the only time we expect to see an ownerless page
488 * (i.e. a page with no uobject and !PQ_ANON) is if an
489 * anon has loaned a page from a uvm_object and the
490 * uvm_object has dropped the ownership. in that
491 * case, the anon can "take over" the loaned page
492 * and make it its own.
493 */
494
495 /* does the page belong to an object? */
496 if (uobj != NULL) {
497 slock = &uobj->vmobjlock;
498 if (!simple_lock_try(slock)) {
499 continue;
500 }
501 if (p->flags & PG_BUSY) {
502 simple_unlock(slock);
503 uvmexp.pdbusy++;
504 continue;
505 }
506 uvmexp.pdobscan++;
507 } else {
508 KASSERT(anon != NULL);
509 slock = &anon->an_lock;
510 if (!simple_lock_try(slock)) {
511 continue;
512 }
513
514 /*
515 * set PQ_ANON if it isn't set already.
516 */
517
518 if ((p->pqflags & PQ_ANON) == 0) {
519 KASSERT(p->loan_count > 0);
520 p->loan_count--;
521 p->pqflags |= PQ_ANON;
522 /* anon now owns it */
523 }
524 if (p->flags & PG_BUSY) {
525 simple_unlock(slock);
526 uvmexp.pdbusy++;
527 continue;
528 }
529 uvmexp.pdanscan++;
530 }
531
532
533 /*
534 * we now have the object and the page queues locked.
535 * if the page is not swap-backed, call the object's
536 * pager to flush and free the page.
537 */
538
539 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
540 uvm_unlock_pageq();
541 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
542 p->offset + PAGE_SIZE,
543 PGO_CLEANIT|PGO_FREE);
544 uvm_lock_pageq();
545 if (nextpg &&
546 (nextpg->pqflags & PQ_INACTIVE) == 0) {
547 nextpg = TAILQ_FIRST(pglst);
548 }
549 continue;
550 }
551
552 /*
553 * the page is swap-backed. remove all the permissions
554 * from the page so we can sync the modified info
555 * without any race conditions. if the page is clean
556 * we can free it now and continue.
557 */
558
559 pmap_page_protect(p, VM_PROT_NONE);
560 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
561 p->flags &= ~(PG_CLEAN);
562 }
563 if (p->flags & PG_CLEAN) {
564 int slot;
565 int pageidx;
566
567 pageidx = p->offset >> PAGE_SHIFT;
568 uvm_pagefree(p);
569 uvmexp.pdfreed++;
570
571 /*
572 * for anons, we need to remove the page
573 * from the anon ourselves. for aobjs,
574 * pagefree did that for us.
575 */
576
577 if (anon) {
578 KASSERT(anon->an_swslot != 0);
579 anon->u.an_page = NULL;
580 slot = anon->an_swslot;
581 } else {
582 slot = uao_find_swslot(uobj, pageidx);
583 }
584 simple_unlock(slock);
585
586 if (slot > 0) {
587 /* this page is now only in swap. */
588 simple_lock(&uvm.swap_data_lock);
589 KASSERT(uvmexp.swpgonly <
590 uvmexp.swpginuse);
591 uvmexp.swpgonly++;
592 simple_unlock(&uvm.swap_data_lock);
593 }
594 continue;
595 }
596
597 /*
598 * this page is dirty, skip it if we'll have met our
599 * free target when all the current pageouts complete.
600 */
601
602 if (uvmexp.free + uvmexp.paging >
603 uvmexp.freetarg << 2) {
604 simple_unlock(slock);
605 continue;
606 }
607
608 /*
609 * free any swap space allocated to the page since
610 * we'll have to write it again with its new data.
611 */
612
613 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
614 uvm_swap_free(anon->an_swslot, 1);
615 anon->an_swslot = 0;
616 } else if (p->pqflags & PQ_AOBJ) {
617 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
618 }
619
620 /*
621 * if all pages in swap are only in swap,
622 * the swap space is full and we can't page out
623 * any more swap-backed pages. reactivate this page
624 * so that we eventually cycle all pages through
625 * the inactive queue.
626 */
627
628 if (uvm_swapisfull()) {
629 dirtyreacts++;
630 uvm_pageactivate(p);
631 simple_unlock(slock);
632 continue;
633 }
634
635 /*
636 * start new swap pageout cluster (if necessary).
637 */
638
639 if (swslot == 0) {
640 /* Even with strange MAXPHYS, the shift
641 implicitly rounds down to a page. */
642 swnpages = MAXPHYS >> PAGE_SHIFT;
643 swslot = uvm_swap_alloc(&swnpages, TRUE);
644 if (swslot == 0) {
645 simple_unlock(slock);
646 continue;
647 }
648 swcpages = 0;
649 }
650
651 /*
652 * at this point, we're definitely going reuse this
653 * page. mark the page busy and delayed-free.
654 * we should remove the page from the page queues
655 * so we don't ever look at it again.
656 * adjust counters and such.
657 */
658
659 p->flags |= PG_BUSY;
660 UVM_PAGE_OWN(p, "scan_inactive");
661
662 p->flags |= PG_PAGEOUT;
663 uvmexp.paging++;
664 uvm_pagedequeue(p);
665
666 uvmexp.pgswapout++;
667
668 /*
669 * add the new page to the cluster.
670 */
671
672 if (anon) {
673 anon->an_swslot = swslot + swcpages;
674 simple_unlock(slock);
675 } else {
676 result = uao_set_swslot(uobj,
677 p->offset >> PAGE_SHIFT, swslot + swcpages);
678 if (result == -1) {
679 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
680 UVM_PAGE_OWN(p, NULL);
681 uvmexp.paging--;
682 uvm_pageactivate(p);
683 simple_unlock(slock);
684 continue;
685 }
686 simple_unlock(slock);
687 }
688 swpps[swcpages] = p;
689 swcpages++;
690
691 /*
692 * if the cluster isn't full, look for more pages
693 * before starting the i/o.
694 */
695
696 if (swcpages < swnpages) {
697 continue;
698 }
699 }
700
701 /*
702 * if this is the final pageout we could have a few
703 * unused swap blocks. if so, free them now.
704 */
705
706 if (swcpages < swnpages) {
707 uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
708 }
709
710 /*
711 * now start the pageout.
712 */
713
714 uvm_unlock_pageq();
715 uvmexp.pdpageouts++;
716 error = uvm_swap_put(swslot, swpps, swcpages, 0);
717 KASSERT(error == 0);
718 uvm_lock_pageq();
719
720 /*
721 * zero swslot to indicate that we are
722 * no longer building a swap-backed cluster.
723 */
724
725 swslot = 0;
726
727 /*
728 * the pageout is in progress. bump counters and set up
729 * for the next loop.
730 */
731
732 uvmexp.pdpending++;
733 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
734 nextpg = TAILQ_FIRST(pglst);
735 }
736 }
737 }
738
739 /*
740 * uvmpd_scan: scan the page queues and attempt to meet our targets.
741 *
742 * => called with pageq's locked
743 */
744
745 void
746 uvmpd_scan(void)
747 {
748 int inactive_shortage, swap_shortage, pages_freed;
749 struct vm_page *p, *nextpg;
750 struct uvm_object *uobj;
751 struct vm_anon *anon;
752 struct simplelock *slock;
753 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
754
755 uvmexp.pdrevs++;
756 uobj = NULL;
757 anon = NULL;
758
759 #ifndef __SWAP_BROKEN
760
761 /*
762 * swap out some processes if we are below our free target.
763 * we need to unlock the page queues for this.
764 */
765
766 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
767 uvmexp.pdswout++;
768 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
769 uvmexp.free, uvmexp.freetarg, 0, 0);
770 uvm_unlock_pageq();
771 uvm_swapout_threads();
772 uvm_lock_pageq();
773
774 }
775 #endif
776
777 /*
778 * now we want to work on meeting our targets. first we work on our
779 * free target by converting inactive pages into free pages. then
780 * we work on meeting our inactive target by converting active pages
781 * to inactive ones.
782 */
783
784 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
785
786 pages_freed = uvmexp.pdfreed;
787 uvmpd_scan_inactive(&uvm.page_inactive);
788 pages_freed = uvmexp.pdfreed - pages_freed;
789
790 /*
791 * we have done the scan to get free pages. now we work on meeting
792 * our inactive target.
793 */
794
795 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
796
797 /*
798 * detect if we're not going to be able to page anything out
799 * until we free some swap resources from active pages.
800 */
801
802 swap_shortage = 0;
803 if (uvmexp.free < uvmexp.freetarg &&
804 uvmexp.swpginuse >= uvmexp.swpgavail &&
805 !uvm_swapisfull() &&
806 pages_freed == 0) {
807 swap_shortage = uvmexp.freetarg - uvmexp.free;
808 }
809
810 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
811 inactive_shortage, swap_shortage,0,0);
812 for (p = TAILQ_FIRST(&uvm.page_active);
813 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
814 p = nextpg) {
815 nextpg = TAILQ_NEXT(p, pageq);
816 if (p->flags & PG_BUSY) {
817 continue;
818 }
819
820 /*
821 * lock the page's owner.
822 */
823
824 if (p->uobject != NULL) {
825 uobj = p->uobject;
826 slock = &uobj->vmobjlock;
827 if (!simple_lock_try(slock)) {
828 continue;
829 }
830 } else {
831 anon = p->uanon;
832 KASSERT(anon != NULL);
833 slock = &anon->an_lock;
834 if (!simple_lock_try(slock)) {
835 continue;
836 }
837
838 /* take over the page? */
839 if ((p->pqflags & PQ_ANON) == 0) {
840 KASSERT(p->loan_count > 0);
841 p->loan_count--;
842 p->pqflags |= PQ_ANON;
843 }
844 }
845
846 /*
847 * skip this page if it's busy.
848 */
849
850 if ((p->flags & PG_BUSY) != 0) {
851 simple_unlock(slock);
852 continue;
853 }
854
855 /*
856 * if there's a shortage of swap, free any swap allocated
857 * to this page so that other pages can be paged out.
858 */
859
860 if (swap_shortage > 0) {
861 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
862 uvm_swap_free(anon->an_swslot, 1);
863 anon->an_swslot = 0;
864 p->flags &= ~PG_CLEAN;
865 swap_shortage--;
866 } else if (p->pqflags & PQ_AOBJ) {
867 int slot = uao_set_swslot(uobj,
868 p->offset >> PAGE_SHIFT, 0);
869 if (slot) {
870 uvm_swap_free(slot, 1);
871 p->flags &= ~PG_CLEAN;
872 swap_shortage--;
873 }
874 }
875 }
876
877 /*
878 * if there's a shortage of inactive pages, deactivate.
879 */
880
881 if (inactive_shortage > 0) {
882 /* no need to check wire_count as pg is "active" */
883 uvm_pagedeactivate(p);
884 uvmexp.pddeact++;
885 inactive_shortage--;
886 }
887
888 /*
889 * we're done with this page.
890 */
891
892 simple_unlock(slock);
893 }
894 }
895