uvm_pdaemon.c revision 1.59 1 /* $NetBSD: uvm_pdaemon.c,v 1.59 2004/03/24 07:55:01 junyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.59 2004/03/24 07:55:01 junyoung Exp $");
75
76 #include "opt_uvmhist.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/pool.h>
83 #include <sys/buf.h>
84 #include <sys/vnode.h>
85
86 #include <uvm/uvm.h>
87
88 /*
89 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
90 * in a pass thru the inactive list when swap is full. the value should be
91 * "small"... if it's too large we'll cycle the active pages thru the inactive
92 * queue too quickly to for them to be referenced and avoid being freed.
93 */
94
95 #define UVMPD_NUMDIRTYREACTS 16
96
97
98 /*
99 * local prototypes
100 */
101
102 void uvmpd_scan(void);
103 void uvmpd_scan_inactive(struct pglist *);
104 void uvmpd_tune(void);
105
106 /*
107 * uvm_wait: wait (sleep) for the page daemon to free some pages
108 *
109 * => should be called with all locks released
110 * => should _not_ be called by the page daemon (to avoid deadlock)
111 */
112
113 void
114 uvm_wait(wmsg)
115 const char *wmsg;
116 {
117 int timo = 0;
118 int s = splbio();
119
120 /*
121 * check for page daemon going to sleep (waiting for itself)
122 */
123
124 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
125 /*
126 * now we have a problem: the pagedaemon wants to go to
127 * sleep until it frees more memory. but how can it
128 * free more memory if it is asleep? that is a deadlock.
129 * we have two options:
130 * [1] panic now
131 * [2] put a timeout on the sleep, thus causing the
132 * pagedaemon to only pause (rather than sleep forever)
133 *
134 * note that option [2] will only help us if we get lucky
135 * and some other process on the system breaks the deadlock
136 * by exiting or freeing memory (thus allowing the pagedaemon
137 * to continue). for now we panic if DEBUG is defined,
138 * otherwise we hope for the best with option [2] (better
139 * yet, this should never happen in the first place!).
140 */
141
142 printf("pagedaemon: deadlock detected!\n");
143 timo = hz >> 3; /* set timeout */
144 #if defined(DEBUG)
145 /* DEBUG: panic so we can debug it */
146 panic("pagedaemon deadlock");
147 #endif
148 }
149
150 simple_lock(&uvm.pagedaemon_lock);
151 wakeup(&uvm.pagedaemon); /* wake the daemon! */
152 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
153 timo);
154
155 splx(s);
156 }
157
158
159 /*
160 * uvmpd_tune: tune paging parameters
161 *
162 * => called when ever memory is added (or removed?) to the system
163 * => caller must call with page queues locked
164 */
165
166 void
167 uvmpd_tune(void)
168 {
169 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
170
171 uvmexp.freemin = uvmexp.npages / 20;
172
173 /* between 16k and 256k */
174 /* XXX: what are these values good for? */
175 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
176 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
177
178 /* Make sure there's always a user page free. */
179 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
180 uvmexp.freemin = uvmexp.reserve_kernel + 1;
181
182 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
183 if (uvmexp.freetarg <= uvmexp.freemin)
184 uvmexp.freetarg = uvmexp.freemin + 1;
185
186 /* uvmexp.inactarg: computed in main daemon loop */
187
188 uvmexp.wiredmax = uvmexp.npages / 3;
189 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
190 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
191 }
192
193 /*
194 * uvm_pageout: the main loop for the pagedaemon
195 */
196
197 void
198 uvm_pageout(void *arg)
199 {
200 int npages = 0;
201 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
202
203 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
204
205 /*
206 * ensure correct priority and set paging parameters...
207 */
208
209 uvm.pagedaemon_proc = curproc;
210 uvm_lock_pageq();
211 npages = uvmexp.npages;
212 uvmpd_tune();
213 uvm_unlock_pageq();
214
215 /*
216 * main loop
217 */
218
219 for (;;) {
220 simple_lock(&uvm.pagedaemon_lock);
221
222 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
223 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
224 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
225 uvmexp.pdwoke++;
226 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
227
228 /*
229 * The metadata cache drainer knows about uvmexp.free
230 * and uvmexp.freetarg. We call it _before_ scanning
231 * so that it sees the amount we really want.
232 */
233 buf_drain(0);
234
235 /*
236 * now lock page queues and recompute inactive count
237 */
238
239 uvm_lock_pageq();
240 if (npages != uvmexp.npages) { /* check for new pages? */
241 npages = uvmexp.npages;
242 uvmpd_tune();
243 }
244
245 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
246 if (uvmexp.inactarg <= uvmexp.freetarg) {
247 uvmexp.inactarg = uvmexp.freetarg + 1;
248 }
249
250 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
251 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
252 uvmexp.inactarg);
253
254 /*
255 * scan if needed
256 */
257
258 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
259 uvmexp.inactive < uvmexp.inactarg) {
260 uvmpd_scan();
261 }
262
263 /*
264 * if there's any free memory to be had,
265 * wake up any waiters.
266 */
267
268 if (uvmexp.free > uvmexp.reserve_kernel ||
269 uvmexp.paging == 0) {
270 wakeup(&uvmexp.free);
271 }
272
273 /*
274 * scan done. unlock page queues (the only lock we are holding)
275 */
276
277 uvm_unlock_pageq();
278
279 /*
280 * drain pool resources now that we're not holding any locks
281 */
282
283 pool_drain(0);
284
285 /*
286 * free any cached u-areas we don't need
287 */
288 uvm_uarea_drain(TRUE);
289
290 }
291 /*NOTREACHED*/
292 }
293
294
295 /*
296 * uvm_aiodone_daemon: main loop for the aiodone daemon.
297 */
298
299 void
300 uvm_aiodone_daemon(void *arg)
301 {
302 int s, free;
303 struct buf *bp, *nbp;
304 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
305
306 for (;;) {
307
308 /*
309 * carefully attempt to go to sleep (without losing "wakeups"!).
310 * we need splbio because we want to make sure the aio_done list
311 * is totally empty before we go to sleep.
312 */
313
314 s = splbio();
315 simple_lock(&uvm.aiodoned_lock);
316 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
317 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
318 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
319 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
320 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
321
322 /* relock aiodoned_lock, still at splbio */
323 simple_lock(&uvm.aiodoned_lock);
324 }
325
326 /*
327 * check for done aio structures
328 */
329
330 bp = TAILQ_FIRST(&uvm.aio_done);
331 if (bp) {
332 TAILQ_INIT(&uvm.aio_done);
333 }
334
335 simple_unlock(&uvm.aiodoned_lock);
336 splx(s);
337
338 /*
339 * process each i/o that's done.
340 */
341
342 free = uvmexp.free;
343 while (bp != NULL) {
344 nbp = TAILQ_NEXT(bp, b_freelist);
345 (*bp->b_iodone)(bp);
346 bp = nbp;
347 }
348 if (free <= uvmexp.reserve_kernel) {
349 s = uvm_lock_fpageq();
350 wakeup(&uvm.pagedaemon);
351 uvm_unlock_fpageq(s);
352 } else {
353 simple_lock(&uvm.pagedaemon_lock);
354 wakeup(&uvmexp.free);
355 simple_unlock(&uvm.pagedaemon_lock);
356 }
357 }
358 }
359
360 /*
361 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
362 *
363 * => called with page queues locked
364 * => we work on meeting our free target by converting inactive pages
365 * into free pages.
366 * => we handle the building of swap-backed clusters
367 * => we return TRUE if we are exiting because we met our target
368 */
369
370 void
371 uvmpd_scan_inactive(pglst)
372 struct pglist *pglst;
373 {
374 int error;
375 struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
376 struct uvm_object *uobj;
377 struct vm_anon *anon;
378 struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
379 struct simplelock *slock;
380 int swnpages, swcpages;
381 int swslot;
382 int dirtyreacts, t, result;
383 boolean_t anonunder, fileunder, execunder;
384 boolean_t anonover, fileover, execover;
385 boolean_t anonreact, filereact, execreact;
386 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
387
388 /*
389 * swslot is non-zero if we are building a swap cluster. we want
390 * to stay in the loop while we have a page to scan or we have
391 * a swap-cluster to build.
392 */
393
394 swslot = 0;
395 swnpages = swcpages = 0;
396 dirtyreacts = 0;
397
398 /*
399 * decide which types of pages we want to reactivate instead of freeing
400 * to keep usage within the minimum and maximum usage limits.
401 */
402
403 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
404 anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
405 fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
406 execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
407 anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
408 fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
409 execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
410 anonreact = anonunder || (!anonover && (fileover || execover));
411 filereact = fileunder || (!fileover && (anonover || execover));
412 execreact = execunder || (!execover && (anonover || fileover));
413 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
414 uobj = NULL;
415 anon = NULL;
416 if (p) {
417
418 /*
419 * see if we've met the free target.
420 */
421
422 if (uvmexp.free + uvmexp.paging >=
423 uvmexp.freetarg << 2 ||
424 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
425 UVMHIST_LOG(pdhist," met free target: "
426 "exit loop", 0, 0, 0, 0);
427
428 if (swslot == 0) {
429 /* exit now if no swap-i/o pending */
430 break;
431 }
432
433 /* set p to null to signal final swap i/o */
434 p = NULL;
435 nextpg = NULL;
436 }
437 }
438 if (p) { /* if (we have a new page to consider) */
439
440 /*
441 * we are below target and have a new page to consider.
442 */
443
444 uvmexp.pdscans++;
445 nextpg = TAILQ_NEXT(p, pageq);
446
447 /*
448 * move referenced pages back to active queue and
449 * skip to next page.
450 */
451
452 if (pmap_clear_reference(p)) {
453 uvm_pageactivate(p);
454 uvmexp.pdreact++;
455 continue;
456 }
457 anon = p->uanon;
458 uobj = p->uobject;
459
460 /*
461 * enforce the minimum thresholds on different
462 * types of memory usage. if reusing the current
463 * page would reduce that type of usage below its
464 * minimum, reactivate the page instead and move
465 * on to the next page.
466 */
467
468 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
469 uvm_pageactivate(p);
470 uvmexp.pdreexec++;
471 continue;
472 }
473 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
474 !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
475 uvm_pageactivate(p);
476 uvmexp.pdrefile++;
477 continue;
478 }
479 if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
480 uvm_pageactivate(p);
481 uvmexp.pdreanon++;
482 continue;
483 }
484
485 /*
486 * first we attempt to lock the object that this page
487 * belongs to. if our attempt fails we skip on to
488 * the next page (no harm done). it is important to
489 * "try" locking the object as we are locking in the
490 * wrong order (pageq -> object) and we don't want to
491 * deadlock.
492 *
493 * the only time we expect to see an ownerless page
494 * (i.e. a page with no uobject and !PQ_ANON) is if an
495 * anon has loaned a page from a uvm_object and the
496 * uvm_object has dropped the ownership. in that
497 * case, the anon can "take over" the loaned page
498 * and make it its own.
499 */
500
501 /* does the page belong to an object? */
502 if (uobj != NULL) {
503 slock = &uobj->vmobjlock;
504 if (!simple_lock_try(slock)) {
505 continue;
506 }
507 if (p->flags & PG_BUSY) {
508 simple_unlock(slock);
509 uvmexp.pdbusy++;
510 continue;
511 }
512 uvmexp.pdobscan++;
513 } else {
514 KASSERT(anon != NULL);
515 slock = &anon->an_lock;
516 if (!simple_lock_try(slock)) {
517 continue;
518 }
519
520 /*
521 * set PQ_ANON if it isn't set already.
522 */
523
524 if ((p->pqflags & PQ_ANON) == 0) {
525 KASSERT(p->loan_count > 0);
526 p->loan_count--;
527 p->pqflags |= PQ_ANON;
528 /* anon now owns it */
529 }
530 if (p->flags & PG_BUSY) {
531 simple_unlock(slock);
532 uvmexp.pdbusy++;
533 continue;
534 }
535 uvmexp.pdanscan++;
536 }
537
538
539 /*
540 * we now have the object and the page queues locked.
541 * if the page is not swap-backed, call the object's
542 * pager to flush and free the page.
543 */
544
545 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
546 uvm_unlock_pageq();
547 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
548 p->offset + PAGE_SIZE,
549 PGO_CLEANIT|PGO_FREE);
550 uvm_lock_pageq();
551 if (nextpg &&
552 (nextpg->pqflags & PQ_INACTIVE) == 0) {
553 nextpg = TAILQ_FIRST(pglst);
554 }
555 continue;
556 }
557
558 /*
559 * the page is swap-backed. remove all the permissions
560 * from the page so we can sync the modified info
561 * without any race conditions. if the page is clean
562 * we can free it now and continue.
563 */
564
565 pmap_page_protect(p, VM_PROT_NONE);
566 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
567 p->flags &= ~(PG_CLEAN);
568 }
569 if (p->flags & PG_CLEAN) {
570 int slot;
571 int pageidx;
572
573 pageidx = p->offset >> PAGE_SHIFT;
574 uvm_pagefree(p);
575 uvmexp.pdfreed++;
576
577 /*
578 * for anons, we need to remove the page
579 * from the anon ourselves. for aobjs,
580 * pagefree did that for us.
581 */
582
583 if (anon) {
584 KASSERT(anon->an_swslot != 0);
585 anon->u.an_page = NULL;
586 slot = anon->an_swslot;
587 } else {
588 slot = uao_find_swslot(uobj, pageidx);
589 }
590 simple_unlock(slock);
591
592 if (slot > 0) {
593 /* this page is now only in swap. */
594 simple_lock(&uvm.swap_data_lock);
595 KASSERT(uvmexp.swpgonly <
596 uvmexp.swpginuse);
597 uvmexp.swpgonly++;
598 simple_unlock(&uvm.swap_data_lock);
599 }
600 continue;
601 }
602
603 /*
604 * this page is dirty, skip it if we'll have met our
605 * free target when all the current pageouts complete.
606 */
607
608 if (uvmexp.free + uvmexp.paging >
609 uvmexp.freetarg << 2) {
610 simple_unlock(slock);
611 continue;
612 }
613
614 /*
615 * free any swap space allocated to the page since
616 * we'll have to write it again with its new data.
617 */
618
619 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
620 uvm_swap_free(anon->an_swslot, 1);
621 anon->an_swslot = 0;
622 } else if (p->pqflags & PQ_AOBJ) {
623 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
624 }
625
626 /*
627 * if all pages in swap are only in swap,
628 * the swap space is full and we can't page out
629 * any more swap-backed pages. reactivate this page
630 * so that we eventually cycle all pages through
631 * the inactive queue.
632 */
633
634 if (uvm_swapisfull()) {
635 dirtyreacts++;
636 uvm_pageactivate(p);
637 simple_unlock(slock);
638 continue;
639 }
640
641 /*
642 * start new swap pageout cluster (if necessary).
643 */
644
645 if (swslot == 0) {
646 /* Even with strange MAXPHYS, the shift
647 implicitly rounds down to a page. */
648 swnpages = MAXPHYS >> PAGE_SHIFT;
649 swslot = uvm_swap_alloc(&swnpages, TRUE);
650 if (swslot == 0) {
651 simple_unlock(slock);
652 continue;
653 }
654 swcpages = 0;
655 }
656
657 /*
658 * at this point, we're definitely going reuse this
659 * page. mark the page busy and delayed-free.
660 * we should remove the page from the page queues
661 * so we don't ever look at it again.
662 * adjust counters and such.
663 */
664
665 p->flags |= PG_BUSY;
666 UVM_PAGE_OWN(p, "scan_inactive");
667
668 p->flags |= PG_PAGEOUT;
669 uvmexp.paging++;
670 uvm_pagedequeue(p);
671
672 uvmexp.pgswapout++;
673
674 /*
675 * add the new page to the cluster.
676 */
677
678 if (anon) {
679 anon->an_swslot = swslot + swcpages;
680 simple_unlock(slock);
681 } else {
682 result = uao_set_swslot(uobj,
683 p->offset >> PAGE_SHIFT, swslot + swcpages);
684 if (result == -1) {
685 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
686 UVM_PAGE_OWN(p, NULL);
687 uvmexp.paging--;
688 uvm_pageactivate(p);
689 simple_unlock(slock);
690 continue;
691 }
692 simple_unlock(slock);
693 }
694 swpps[swcpages] = p;
695 swcpages++;
696
697 /*
698 * if the cluster isn't full, look for more pages
699 * before starting the i/o.
700 */
701
702 if (swcpages < swnpages) {
703 continue;
704 }
705 }
706
707 /*
708 * if this is the final pageout we could have a few
709 * unused swap blocks. if so, free them now.
710 */
711
712 if (swcpages < swnpages) {
713 uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
714 }
715
716 /*
717 * now start the pageout.
718 */
719
720 uvm_unlock_pageq();
721 uvmexp.pdpageouts++;
722 error = uvm_swap_put(swslot, swpps, swcpages, 0);
723 KASSERT(error == 0);
724 uvm_lock_pageq();
725
726 /*
727 * zero swslot to indicate that we are
728 * no longer building a swap-backed cluster.
729 */
730
731 swslot = 0;
732
733 /*
734 * the pageout is in progress. bump counters and set up
735 * for the next loop.
736 */
737
738 uvmexp.pdpending++;
739 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
740 nextpg = TAILQ_FIRST(pglst);
741 }
742 }
743 }
744
745 /*
746 * uvmpd_scan: scan the page queues and attempt to meet our targets.
747 *
748 * => called with pageq's locked
749 */
750
751 void
752 uvmpd_scan(void)
753 {
754 int inactive_shortage, swap_shortage, pages_freed;
755 struct vm_page *p, *nextpg;
756 struct uvm_object *uobj;
757 struct vm_anon *anon;
758 struct simplelock *slock;
759 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
760
761 uvmexp.pdrevs++;
762 uobj = NULL;
763 anon = NULL;
764
765 #ifndef __SWAP_BROKEN
766
767 /*
768 * swap out some processes if we are below our free target.
769 * we need to unlock the page queues for this.
770 */
771
772 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
773 uvmexp.pdswout++;
774 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
775 uvmexp.free, uvmexp.freetarg, 0, 0);
776 uvm_unlock_pageq();
777 uvm_swapout_threads();
778 uvm_lock_pageq();
779
780 }
781 #endif
782
783 /*
784 * now we want to work on meeting our targets. first we work on our
785 * free target by converting inactive pages into free pages. then
786 * we work on meeting our inactive target by converting active pages
787 * to inactive ones.
788 */
789
790 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
791
792 pages_freed = uvmexp.pdfreed;
793 uvmpd_scan_inactive(&uvm.page_inactive);
794 pages_freed = uvmexp.pdfreed - pages_freed;
795
796 /*
797 * we have done the scan to get free pages. now we work on meeting
798 * our inactive target.
799 */
800
801 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
802
803 /*
804 * detect if we're not going to be able to page anything out
805 * until we free some swap resources from active pages.
806 */
807
808 swap_shortage = 0;
809 if (uvmexp.free < uvmexp.freetarg &&
810 uvmexp.swpginuse >= uvmexp.swpgavail &&
811 !uvm_swapisfull() &&
812 pages_freed == 0) {
813 swap_shortage = uvmexp.freetarg - uvmexp.free;
814 }
815
816 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
817 inactive_shortage, swap_shortage,0,0);
818 for (p = TAILQ_FIRST(&uvm.page_active);
819 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
820 p = nextpg) {
821 nextpg = TAILQ_NEXT(p, pageq);
822 if (p->flags & PG_BUSY) {
823 continue;
824 }
825
826 /*
827 * lock the page's owner.
828 */
829
830 if (p->uobject != NULL) {
831 uobj = p->uobject;
832 slock = &uobj->vmobjlock;
833 if (!simple_lock_try(slock)) {
834 continue;
835 }
836 } else {
837 anon = p->uanon;
838 KASSERT(anon != NULL);
839 slock = &anon->an_lock;
840 if (!simple_lock_try(slock)) {
841 continue;
842 }
843
844 /* take over the page? */
845 if ((p->pqflags & PQ_ANON) == 0) {
846 KASSERT(p->loan_count > 0);
847 p->loan_count--;
848 p->pqflags |= PQ_ANON;
849 }
850 }
851
852 /*
853 * skip this page if it's busy.
854 */
855
856 if ((p->flags & PG_BUSY) != 0) {
857 simple_unlock(slock);
858 continue;
859 }
860
861 /*
862 * if there's a shortage of swap, free any swap allocated
863 * to this page so that other pages can be paged out.
864 */
865
866 if (swap_shortage > 0) {
867 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
868 uvm_swap_free(anon->an_swslot, 1);
869 anon->an_swslot = 0;
870 p->flags &= ~PG_CLEAN;
871 swap_shortage--;
872 } else if (p->pqflags & PQ_AOBJ) {
873 int slot = uao_set_swslot(uobj,
874 p->offset >> PAGE_SHIFT, 0);
875 if (slot) {
876 uvm_swap_free(slot, 1);
877 p->flags &= ~PG_CLEAN;
878 swap_shortage--;
879 }
880 }
881 }
882
883 /*
884 * if there's a shortage of inactive pages, deactivate.
885 */
886
887 if (inactive_shortage > 0) {
888 /* no need to check wire_count as pg is "active" */
889 uvm_pagedeactivate(p);
890 uvmexp.pddeact++;
891 inactive_shortage--;
892 }
893
894 /*
895 * we're done with this page.
896 */
897
898 simple_unlock(slock);
899 }
900 }
901