uvm_pdaemon.c revision 1.60 1 /* $NetBSD: uvm_pdaemon.c,v 1.60 2004/10/03 08:47:48 enami Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.60 2004/10/03 08:47:48 enami Exp $");
75
76 #include "opt_uvmhist.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/pool.h>
83 #include <sys/buf.h>
84 #include <sys/vnode.h>
85
86 #include <uvm/uvm.h>
87
88 /*
89 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
90 * in a pass thru the inactive list when swap is full. the value should be
91 * "small"... if it's too large we'll cycle the active pages thru the inactive
92 * queue too quickly to for them to be referenced and avoid being freed.
93 */
94
95 #define UVMPD_NUMDIRTYREACTS 16
96
97
98 /*
99 * local prototypes
100 */
101
102 void uvmpd_scan(void);
103 void uvmpd_scan_inactive(struct pglist *);
104 void uvmpd_tune(void);
105
106 /*
107 * uvm_wait: wait (sleep) for the page daemon to free some pages
108 *
109 * => should be called with all locks released
110 * => should _not_ be called by the page daemon (to avoid deadlock)
111 */
112
113 void
114 uvm_wait(wmsg)
115 const char *wmsg;
116 {
117 int timo = 0;
118 int s = splbio();
119
120 /*
121 * check for page daemon going to sleep (waiting for itself)
122 */
123
124 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
125 /*
126 * now we have a problem: the pagedaemon wants to go to
127 * sleep until it frees more memory. but how can it
128 * free more memory if it is asleep? that is a deadlock.
129 * we have two options:
130 * [1] panic now
131 * [2] put a timeout on the sleep, thus causing the
132 * pagedaemon to only pause (rather than sleep forever)
133 *
134 * note that option [2] will only help us if we get lucky
135 * and some other process on the system breaks the deadlock
136 * by exiting or freeing memory (thus allowing the pagedaemon
137 * to continue). for now we panic if DEBUG is defined,
138 * otherwise we hope for the best with option [2] (better
139 * yet, this should never happen in the first place!).
140 */
141
142 printf("pagedaemon: deadlock detected!\n");
143 timo = hz >> 3; /* set timeout */
144 #if defined(DEBUG)
145 /* DEBUG: panic so we can debug it */
146 panic("pagedaemon deadlock");
147 #endif
148 }
149
150 simple_lock(&uvm.pagedaemon_lock);
151 wakeup(&uvm.pagedaemon); /* wake the daemon! */
152 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
153 timo);
154
155 splx(s);
156 }
157
158
159 /*
160 * uvmpd_tune: tune paging parameters
161 *
162 * => called when ever memory is added (or removed?) to the system
163 * => caller must call with page queues locked
164 */
165
166 void
167 uvmpd_tune(void)
168 {
169 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
170
171 uvmexp.freemin = uvmexp.npages / 20;
172
173 /* between 16k and 256k */
174 /* XXX: what are these values good for? */
175 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
176 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
177
178 /* Make sure there's always a user page free. */
179 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
180 uvmexp.freemin = uvmexp.reserve_kernel + 1;
181
182 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
183 if (uvmexp.freetarg <= uvmexp.freemin)
184 uvmexp.freetarg = uvmexp.freemin + 1;
185
186 /* uvmexp.inactarg: computed in main daemon loop */
187
188 uvmexp.wiredmax = uvmexp.npages / 3;
189 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
190 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
191 }
192
193 /*
194 * uvm_pageout: the main loop for the pagedaemon
195 */
196
197 void
198 uvm_pageout(void *arg)
199 {
200 int bufcnt, npages = 0;
201 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
202
203 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
204
205 /*
206 * ensure correct priority and set paging parameters...
207 */
208
209 uvm.pagedaemon_proc = curproc;
210 uvm_lock_pageq();
211 npages = uvmexp.npages;
212 uvmpd_tune();
213 uvm_unlock_pageq();
214
215 /*
216 * main loop
217 */
218
219 for (;;) {
220 simple_lock(&uvm.pagedaemon_lock);
221
222 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
223 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
224 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
225 uvmexp.pdwoke++;
226 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
227
228 /*
229 * now lock page queues and recompute inactive count
230 */
231
232 uvm_lock_pageq();
233 if (npages != uvmexp.npages) { /* check for new pages? */
234 npages = uvmexp.npages;
235 uvmpd_tune();
236 }
237
238 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
239 if (uvmexp.inactarg <= uvmexp.freetarg) {
240 uvmexp.inactarg = uvmexp.freetarg + 1;
241 }
242
243 /*
244 * Estimate a hint. Note that bufmem are returned to
245 * system only when entire pool page is empty.
246 */
247 bufcnt = uvmexp.freetarg - uvmexp.free;
248 if (bufcnt < 0)
249 bufcnt = 0;
250
251 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
252 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
253 uvmexp.inactarg);
254
255 /*
256 * scan if needed
257 */
258
259 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
260 uvmexp.inactive < uvmexp.inactarg) {
261 uvmpd_scan();
262 }
263
264 /*
265 * if there's any free memory to be had,
266 * wake up any waiters.
267 */
268
269 if (uvmexp.free > uvmexp.reserve_kernel ||
270 uvmexp.paging == 0) {
271 wakeup(&uvmexp.free);
272 }
273
274 /*
275 * scan done. unlock page queues (the only lock we are holding)
276 */
277
278 uvm_unlock_pageq();
279
280 buf_drain(bufcnt << PAGE_SHIFT);
281
282 /*
283 * drain pool resources now that we're not holding any locks
284 */
285
286 pool_drain(0);
287
288 /*
289 * free any cached u-areas we don't need
290 */
291 uvm_uarea_drain(TRUE);
292
293 }
294 /*NOTREACHED*/
295 }
296
297
298 /*
299 * uvm_aiodone_daemon: main loop for the aiodone daemon.
300 */
301
302 void
303 uvm_aiodone_daemon(void *arg)
304 {
305 int s, free;
306 struct buf *bp, *nbp;
307 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
308
309 for (;;) {
310
311 /*
312 * carefully attempt to go to sleep (without losing "wakeups"!).
313 * we need splbio because we want to make sure the aio_done list
314 * is totally empty before we go to sleep.
315 */
316
317 s = splbio();
318 simple_lock(&uvm.aiodoned_lock);
319 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
320 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
321 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
322 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
323 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
324
325 /* relock aiodoned_lock, still at splbio */
326 simple_lock(&uvm.aiodoned_lock);
327 }
328
329 /*
330 * check for done aio structures
331 */
332
333 bp = TAILQ_FIRST(&uvm.aio_done);
334 if (bp) {
335 TAILQ_INIT(&uvm.aio_done);
336 }
337
338 simple_unlock(&uvm.aiodoned_lock);
339 splx(s);
340
341 /*
342 * process each i/o that's done.
343 */
344
345 free = uvmexp.free;
346 while (bp != NULL) {
347 nbp = TAILQ_NEXT(bp, b_freelist);
348 (*bp->b_iodone)(bp);
349 bp = nbp;
350 }
351 if (free <= uvmexp.reserve_kernel) {
352 s = uvm_lock_fpageq();
353 wakeup(&uvm.pagedaemon);
354 uvm_unlock_fpageq(s);
355 } else {
356 simple_lock(&uvm.pagedaemon_lock);
357 wakeup(&uvmexp.free);
358 simple_unlock(&uvm.pagedaemon_lock);
359 }
360 }
361 }
362
363 /*
364 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
365 *
366 * => called with page queues locked
367 * => we work on meeting our free target by converting inactive pages
368 * into free pages.
369 * => we handle the building of swap-backed clusters
370 * => we return TRUE if we are exiting because we met our target
371 */
372
373 void
374 uvmpd_scan_inactive(pglst)
375 struct pglist *pglst;
376 {
377 int error;
378 struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
379 struct uvm_object *uobj;
380 struct vm_anon *anon;
381 struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
382 struct simplelock *slock;
383 int swnpages, swcpages;
384 int swslot;
385 int dirtyreacts, t, result;
386 boolean_t anonunder, fileunder, execunder;
387 boolean_t anonover, fileover, execover;
388 boolean_t anonreact, filereact, execreact;
389 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
390
391 /*
392 * swslot is non-zero if we are building a swap cluster. we want
393 * to stay in the loop while we have a page to scan or we have
394 * a swap-cluster to build.
395 */
396
397 swslot = 0;
398 swnpages = swcpages = 0;
399 dirtyreacts = 0;
400
401 /*
402 * decide which types of pages we want to reactivate instead of freeing
403 * to keep usage within the minimum and maximum usage limits.
404 */
405
406 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
407 anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
408 fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
409 execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
410 anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
411 fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
412 execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
413 anonreact = anonunder || (!anonover && (fileover || execover));
414 filereact = fileunder || (!fileover && (anonover || execover));
415 execreact = execunder || (!execover && (anonover || fileover));
416 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
417 uobj = NULL;
418 anon = NULL;
419 if (p) {
420
421 /*
422 * see if we've met the free target.
423 */
424
425 if (uvmexp.free + uvmexp.paging >=
426 uvmexp.freetarg << 2 ||
427 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
428 UVMHIST_LOG(pdhist," met free target: "
429 "exit loop", 0, 0, 0, 0);
430
431 if (swslot == 0) {
432 /* exit now if no swap-i/o pending */
433 break;
434 }
435
436 /* set p to null to signal final swap i/o */
437 p = NULL;
438 nextpg = NULL;
439 }
440 }
441 if (p) { /* if (we have a new page to consider) */
442
443 /*
444 * we are below target and have a new page to consider.
445 */
446
447 uvmexp.pdscans++;
448 nextpg = TAILQ_NEXT(p, pageq);
449
450 /*
451 * move referenced pages back to active queue and
452 * skip to next page.
453 */
454
455 if (pmap_clear_reference(p)) {
456 uvm_pageactivate(p);
457 uvmexp.pdreact++;
458 continue;
459 }
460 anon = p->uanon;
461 uobj = p->uobject;
462
463 /*
464 * enforce the minimum thresholds on different
465 * types of memory usage. if reusing the current
466 * page would reduce that type of usage below its
467 * minimum, reactivate the page instead and move
468 * on to the next page.
469 */
470
471 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
472 uvm_pageactivate(p);
473 uvmexp.pdreexec++;
474 continue;
475 }
476 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
477 !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
478 uvm_pageactivate(p);
479 uvmexp.pdrefile++;
480 continue;
481 }
482 if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
483 uvm_pageactivate(p);
484 uvmexp.pdreanon++;
485 continue;
486 }
487
488 /*
489 * first we attempt to lock the object that this page
490 * belongs to. if our attempt fails we skip on to
491 * the next page (no harm done). it is important to
492 * "try" locking the object as we are locking in the
493 * wrong order (pageq -> object) and we don't want to
494 * deadlock.
495 *
496 * the only time we expect to see an ownerless page
497 * (i.e. a page with no uobject and !PQ_ANON) is if an
498 * anon has loaned a page from a uvm_object and the
499 * uvm_object has dropped the ownership. in that
500 * case, the anon can "take over" the loaned page
501 * and make it its own.
502 */
503
504 /* does the page belong to an object? */
505 if (uobj != NULL) {
506 slock = &uobj->vmobjlock;
507 if (!simple_lock_try(slock)) {
508 continue;
509 }
510 if (p->flags & PG_BUSY) {
511 simple_unlock(slock);
512 uvmexp.pdbusy++;
513 continue;
514 }
515 uvmexp.pdobscan++;
516 } else {
517 KASSERT(anon != NULL);
518 slock = &anon->an_lock;
519 if (!simple_lock_try(slock)) {
520 continue;
521 }
522
523 /*
524 * set PQ_ANON if it isn't set already.
525 */
526
527 if ((p->pqflags & PQ_ANON) == 0) {
528 KASSERT(p->loan_count > 0);
529 p->loan_count--;
530 p->pqflags |= PQ_ANON;
531 /* anon now owns it */
532 }
533 if (p->flags & PG_BUSY) {
534 simple_unlock(slock);
535 uvmexp.pdbusy++;
536 continue;
537 }
538 uvmexp.pdanscan++;
539 }
540
541
542 /*
543 * we now have the object and the page queues locked.
544 * if the page is not swap-backed, call the object's
545 * pager to flush and free the page.
546 */
547
548 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
549 uvm_unlock_pageq();
550 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
551 p->offset + PAGE_SIZE,
552 PGO_CLEANIT|PGO_FREE);
553 uvm_lock_pageq();
554 if (nextpg &&
555 (nextpg->pqflags & PQ_INACTIVE) == 0) {
556 nextpg = TAILQ_FIRST(pglst);
557 }
558 continue;
559 }
560
561 /*
562 * the page is swap-backed. remove all the permissions
563 * from the page so we can sync the modified info
564 * without any race conditions. if the page is clean
565 * we can free it now and continue.
566 */
567
568 pmap_page_protect(p, VM_PROT_NONE);
569 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
570 p->flags &= ~(PG_CLEAN);
571 }
572 if (p->flags & PG_CLEAN) {
573 int slot;
574 int pageidx;
575
576 pageidx = p->offset >> PAGE_SHIFT;
577 uvm_pagefree(p);
578 uvmexp.pdfreed++;
579
580 /*
581 * for anons, we need to remove the page
582 * from the anon ourselves. for aobjs,
583 * pagefree did that for us.
584 */
585
586 if (anon) {
587 KASSERT(anon->an_swslot != 0);
588 anon->u.an_page = NULL;
589 slot = anon->an_swslot;
590 } else {
591 slot = uao_find_swslot(uobj, pageidx);
592 }
593 simple_unlock(slock);
594
595 if (slot > 0) {
596 /* this page is now only in swap. */
597 simple_lock(&uvm.swap_data_lock);
598 KASSERT(uvmexp.swpgonly <
599 uvmexp.swpginuse);
600 uvmexp.swpgonly++;
601 simple_unlock(&uvm.swap_data_lock);
602 }
603 continue;
604 }
605
606 /*
607 * this page is dirty, skip it if we'll have met our
608 * free target when all the current pageouts complete.
609 */
610
611 if (uvmexp.free + uvmexp.paging >
612 uvmexp.freetarg << 2) {
613 simple_unlock(slock);
614 continue;
615 }
616
617 /*
618 * free any swap space allocated to the page since
619 * we'll have to write it again with its new data.
620 */
621
622 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
623 uvm_swap_free(anon->an_swslot, 1);
624 anon->an_swslot = 0;
625 } else if (p->pqflags & PQ_AOBJ) {
626 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
627 }
628
629 /*
630 * if all pages in swap are only in swap,
631 * the swap space is full and we can't page out
632 * any more swap-backed pages. reactivate this page
633 * so that we eventually cycle all pages through
634 * the inactive queue.
635 */
636
637 if (uvm_swapisfull()) {
638 dirtyreacts++;
639 uvm_pageactivate(p);
640 simple_unlock(slock);
641 continue;
642 }
643
644 /*
645 * start new swap pageout cluster (if necessary).
646 */
647
648 if (swslot == 0) {
649 /* Even with strange MAXPHYS, the shift
650 implicitly rounds down to a page. */
651 swnpages = MAXPHYS >> PAGE_SHIFT;
652 swslot = uvm_swap_alloc(&swnpages, TRUE);
653 if (swslot == 0) {
654 simple_unlock(slock);
655 continue;
656 }
657 swcpages = 0;
658 }
659
660 /*
661 * at this point, we're definitely going reuse this
662 * page. mark the page busy and delayed-free.
663 * we should remove the page from the page queues
664 * so we don't ever look at it again.
665 * adjust counters and such.
666 */
667
668 p->flags |= PG_BUSY;
669 UVM_PAGE_OWN(p, "scan_inactive");
670
671 p->flags |= PG_PAGEOUT;
672 uvmexp.paging++;
673 uvm_pagedequeue(p);
674
675 uvmexp.pgswapout++;
676
677 /*
678 * add the new page to the cluster.
679 */
680
681 if (anon) {
682 anon->an_swslot = swslot + swcpages;
683 simple_unlock(slock);
684 } else {
685 result = uao_set_swslot(uobj,
686 p->offset >> PAGE_SHIFT, swslot + swcpages);
687 if (result == -1) {
688 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
689 UVM_PAGE_OWN(p, NULL);
690 uvmexp.paging--;
691 uvm_pageactivate(p);
692 simple_unlock(slock);
693 continue;
694 }
695 simple_unlock(slock);
696 }
697 swpps[swcpages] = p;
698 swcpages++;
699
700 /*
701 * if the cluster isn't full, look for more pages
702 * before starting the i/o.
703 */
704
705 if (swcpages < swnpages) {
706 continue;
707 }
708 }
709
710 /*
711 * if this is the final pageout we could have a few
712 * unused swap blocks. if so, free them now.
713 */
714
715 if (swcpages < swnpages) {
716 uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
717 }
718
719 /*
720 * now start the pageout.
721 */
722
723 uvm_unlock_pageq();
724 uvmexp.pdpageouts++;
725 error = uvm_swap_put(swslot, swpps, swcpages, 0);
726 KASSERT(error == 0);
727 uvm_lock_pageq();
728
729 /*
730 * zero swslot to indicate that we are
731 * no longer building a swap-backed cluster.
732 */
733
734 swslot = 0;
735
736 /*
737 * the pageout is in progress. bump counters and set up
738 * for the next loop.
739 */
740
741 uvmexp.pdpending++;
742 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
743 nextpg = TAILQ_FIRST(pglst);
744 }
745 }
746 }
747
748 /*
749 * uvmpd_scan: scan the page queues and attempt to meet our targets.
750 *
751 * => called with pageq's locked
752 */
753
754 void
755 uvmpd_scan(void)
756 {
757 int inactive_shortage, swap_shortage, pages_freed;
758 struct vm_page *p, *nextpg;
759 struct uvm_object *uobj;
760 struct vm_anon *anon;
761 struct simplelock *slock;
762 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
763
764 uvmexp.pdrevs++;
765 uobj = NULL;
766 anon = NULL;
767
768 #ifndef __SWAP_BROKEN
769
770 /*
771 * swap out some processes if we are below our free target.
772 * we need to unlock the page queues for this.
773 */
774
775 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
776 uvmexp.pdswout++;
777 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
778 uvmexp.free, uvmexp.freetarg, 0, 0);
779 uvm_unlock_pageq();
780 uvm_swapout_threads();
781 uvm_lock_pageq();
782
783 }
784 #endif
785
786 /*
787 * now we want to work on meeting our targets. first we work on our
788 * free target by converting inactive pages into free pages. then
789 * we work on meeting our inactive target by converting active pages
790 * to inactive ones.
791 */
792
793 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
794
795 pages_freed = uvmexp.pdfreed;
796 uvmpd_scan_inactive(&uvm.page_inactive);
797 pages_freed = uvmexp.pdfreed - pages_freed;
798
799 /*
800 * we have done the scan to get free pages. now we work on meeting
801 * our inactive target.
802 */
803
804 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
805
806 /*
807 * detect if we're not going to be able to page anything out
808 * until we free some swap resources from active pages.
809 */
810
811 swap_shortage = 0;
812 if (uvmexp.free < uvmexp.freetarg &&
813 uvmexp.swpginuse >= uvmexp.swpgavail &&
814 !uvm_swapisfull() &&
815 pages_freed == 0) {
816 swap_shortage = uvmexp.freetarg - uvmexp.free;
817 }
818
819 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
820 inactive_shortage, swap_shortage,0,0);
821 for (p = TAILQ_FIRST(&uvm.page_active);
822 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
823 p = nextpg) {
824 nextpg = TAILQ_NEXT(p, pageq);
825 if (p->flags & PG_BUSY) {
826 continue;
827 }
828
829 /*
830 * lock the page's owner.
831 */
832
833 if (p->uobject != NULL) {
834 uobj = p->uobject;
835 slock = &uobj->vmobjlock;
836 if (!simple_lock_try(slock)) {
837 continue;
838 }
839 } else {
840 anon = p->uanon;
841 KASSERT(anon != NULL);
842 slock = &anon->an_lock;
843 if (!simple_lock_try(slock)) {
844 continue;
845 }
846
847 /* take over the page? */
848 if ((p->pqflags & PQ_ANON) == 0) {
849 KASSERT(p->loan_count > 0);
850 p->loan_count--;
851 p->pqflags |= PQ_ANON;
852 }
853 }
854
855 /*
856 * skip this page if it's busy.
857 */
858
859 if ((p->flags & PG_BUSY) != 0) {
860 simple_unlock(slock);
861 continue;
862 }
863
864 /*
865 * if there's a shortage of swap, free any swap allocated
866 * to this page so that other pages can be paged out.
867 */
868
869 if (swap_shortage > 0) {
870 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
871 uvm_swap_free(anon->an_swslot, 1);
872 anon->an_swslot = 0;
873 p->flags &= ~PG_CLEAN;
874 swap_shortage--;
875 } else if (p->pqflags & PQ_AOBJ) {
876 int slot = uao_set_swslot(uobj,
877 p->offset >> PAGE_SHIFT, 0);
878 if (slot) {
879 uvm_swap_free(slot, 1);
880 p->flags &= ~PG_CLEAN;
881 swap_shortage--;
882 }
883 }
884 }
885
886 /*
887 * if there's a shortage of inactive pages, deactivate.
888 */
889
890 if (inactive_shortage > 0) {
891 /* no need to check wire_count as pg is "active" */
892 uvm_pagedeactivate(p);
893 uvmexp.pddeact++;
894 inactive_shortage--;
895 }
896
897 /*
898 * we're done with this page.
899 */
900
901 simple_unlock(slock);
902 }
903 }
904