uvm_pdaemon.c revision 1.64 1 /* $NetBSD: uvm_pdaemon.c,v 1.64 2005/05/11 13:02:26 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.64 2005/05/11 13:02:26 yamt Exp $");
75
76 #include "opt_uvmhist.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/pool.h>
83 #include <sys/buf.h>
84 #include <sys/vnode.h>
85
86 #include <uvm/uvm.h>
87
88 /*
89 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
90 * in a pass thru the inactive list when swap is full. the value should be
91 * "small"... if it's too large we'll cycle the active pages thru the inactive
92 * queue too quickly to for them to be referenced and avoid being freed.
93 */
94
95 #define UVMPD_NUMDIRTYREACTS 16
96
97
98 /*
99 * local prototypes
100 */
101
102 void uvmpd_scan(void);
103 void uvmpd_scan_inactive(struct pglist *);
104 void uvmpd_tune(void);
105
106 /*
107 * XXX hack to avoid hangs when large processes fork.
108 */
109 int uvm_extrapages;
110
111 /*
112 * uvm_wait: wait (sleep) for the page daemon to free some pages
113 *
114 * => should be called with all locks released
115 * => should _not_ be called by the page daemon (to avoid deadlock)
116 */
117
118 void
119 uvm_wait(wmsg)
120 const char *wmsg;
121 {
122 int timo = 0;
123 int s = splbio();
124
125 /*
126 * check for page daemon going to sleep (waiting for itself)
127 */
128
129 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
130 /*
131 * now we have a problem: the pagedaemon wants to go to
132 * sleep until it frees more memory. but how can it
133 * free more memory if it is asleep? that is a deadlock.
134 * we have two options:
135 * [1] panic now
136 * [2] put a timeout on the sleep, thus causing the
137 * pagedaemon to only pause (rather than sleep forever)
138 *
139 * note that option [2] will only help us if we get lucky
140 * and some other process on the system breaks the deadlock
141 * by exiting or freeing memory (thus allowing the pagedaemon
142 * to continue). for now we panic if DEBUG is defined,
143 * otherwise we hope for the best with option [2] (better
144 * yet, this should never happen in the first place!).
145 */
146
147 printf("pagedaemon: deadlock detected!\n");
148 timo = hz >> 3; /* set timeout */
149 #if defined(DEBUG)
150 /* DEBUG: panic so we can debug it */
151 panic("pagedaemon deadlock");
152 #endif
153 }
154
155 simple_lock(&uvm.pagedaemon_lock);
156 wakeup(&uvm.pagedaemon); /* wake the daemon! */
157 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
158 timo);
159
160 splx(s);
161 }
162
163
164 /*
165 * uvmpd_tune: tune paging parameters
166 *
167 * => called when ever memory is added (or removed?) to the system
168 * => caller must call with page queues locked
169 */
170
171 void
172 uvmpd_tune(void)
173 {
174 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
175
176 uvmexp.freemin = uvmexp.npages / 20;
177
178 /* between 16k and 256k */
179 /* XXX: what are these values good for? */
180 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
181 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
182
183 /* Make sure there's always a user page free. */
184 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
185 uvmexp.freemin = uvmexp.reserve_kernel + 1;
186
187 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
188 if (uvmexp.freetarg <= uvmexp.freemin)
189 uvmexp.freetarg = uvmexp.freemin + 1;
190
191 uvmexp.freetarg += uvm_extrapages;
192 uvm_extrapages = 0;
193
194 /* uvmexp.inactarg: computed in main daemon loop */
195
196 uvmexp.wiredmax = uvmexp.npages / 3;
197 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
198 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
199 }
200
201 /*
202 * uvm_pageout: the main loop for the pagedaemon
203 */
204
205 void
206 uvm_pageout(void *arg)
207 {
208 int bufcnt, npages = 0;
209 int extrapages = 0;
210 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
211
212 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
213
214 /*
215 * ensure correct priority and set paging parameters...
216 */
217
218 uvm.pagedaemon_proc = curproc;
219 uvm_lock_pageq();
220 npages = uvmexp.npages;
221 uvmpd_tune();
222 uvm_unlock_pageq();
223
224 /*
225 * main loop
226 */
227
228 for (;;) {
229 simple_lock(&uvm.pagedaemon_lock);
230
231 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
232 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
233 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
234 uvmexp.pdwoke++;
235 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
236
237 /*
238 * now lock page queues and recompute inactive count
239 */
240
241 uvm_lock_pageq();
242 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
243 npages = uvmexp.npages;
244 extrapages = uvm_extrapages;
245 uvmpd_tune();
246 }
247
248 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
249 if (uvmexp.inactarg <= uvmexp.freetarg) {
250 uvmexp.inactarg = uvmexp.freetarg + 1;
251 }
252
253 /*
254 * Estimate a hint. Note that bufmem are returned to
255 * system only when entire pool page is empty.
256 */
257 bufcnt = uvmexp.freetarg - uvmexp.free;
258 if (bufcnt < 0)
259 bufcnt = 0;
260
261 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
262 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
263 uvmexp.inactarg);
264
265 /*
266 * scan if needed
267 */
268
269 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
270 uvmexp.inactive < uvmexp.inactarg) {
271 uvmpd_scan();
272 }
273
274 /*
275 * if there's any free memory to be had,
276 * wake up any waiters.
277 */
278
279 if (uvmexp.free > uvmexp.reserve_kernel ||
280 uvmexp.paging == 0) {
281 wakeup(&uvmexp.free);
282 }
283
284 /*
285 * scan done. unlock page queues (the only lock we are holding)
286 */
287
288 uvm_unlock_pageq();
289
290 buf_drain(bufcnt << PAGE_SHIFT);
291
292 /*
293 * drain pool resources now that we're not holding any locks
294 */
295
296 pool_drain(0);
297
298 /*
299 * free any cached u-areas we don't need
300 */
301 uvm_uarea_drain(TRUE);
302
303 }
304 /*NOTREACHED*/
305 }
306
307
308 /*
309 * uvm_aiodone_daemon: main loop for the aiodone daemon.
310 */
311
312 void
313 uvm_aiodone_daemon(void *arg)
314 {
315 int s, free;
316 struct buf *bp, *nbp;
317 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
318
319 for (;;) {
320
321 /*
322 * carefully attempt to go to sleep (without losing "wakeups"!).
323 * we need splbio because we want to make sure the aio_done list
324 * is totally empty before we go to sleep.
325 */
326
327 s = splbio();
328 simple_lock(&uvm.aiodoned_lock);
329 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
330 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
331 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
332 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
333 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
334
335 /* relock aiodoned_lock, still at splbio */
336 simple_lock(&uvm.aiodoned_lock);
337 }
338
339 /*
340 * check for done aio structures
341 */
342
343 bp = TAILQ_FIRST(&uvm.aio_done);
344 if (bp) {
345 TAILQ_INIT(&uvm.aio_done);
346 }
347
348 simple_unlock(&uvm.aiodoned_lock);
349 splx(s);
350
351 /*
352 * process each i/o that's done.
353 */
354
355 free = uvmexp.free;
356 while (bp != NULL) {
357 nbp = TAILQ_NEXT(bp, b_freelist);
358 (*bp->b_iodone)(bp);
359 bp = nbp;
360 }
361 if (free <= uvmexp.reserve_kernel) {
362 s = uvm_lock_fpageq();
363 wakeup(&uvm.pagedaemon);
364 uvm_unlock_fpageq(s);
365 } else {
366 simple_lock(&uvm.pagedaemon_lock);
367 wakeup(&uvmexp.free);
368 simple_unlock(&uvm.pagedaemon_lock);
369 }
370 }
371 }
372
373 /*
374 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
375 *
376 * => called with page queues locked
377 * => we work on meeting our free target by converting inactive pages
378 * into free pages.
379 * => we handle the building of swap-backed clusters
380 * => we return TRUE if we are exiting because we met our target
381 */
382
383 void
384 uvmpd_scan_inactive(pglst)
385 struct pglist *pglst;
386 {
387 int error;
388 struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
389 struct uvm_object *uobj;
390 struct vm_anon *anon;
391 struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
392 struct simplelock *slock;
393 int swnpages, swcpages;
394 int swslot;
395 int dirtyreacts, t, result;
396 boolean_t anonunder, fileunder, execunder;
397 boolean_t anonover, fileover, execover;
398 boolean_t anonreact, filereact, execreact;
399 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
400
401 /*
402 * swslot is non-zero if we are building a swap cluster. we want
403 * to stay in the loop while we have a page to scan or we have
404 * a swap-cluster to build.
405 */
406
407 swslot = 0;
408 swnpages = swcpages = 0;
409 dirtyreacts = 0;
410
411 /*
412 * decide which types of pages we want to reactivate instead of freeing
413 * to keep usage within the minimum and maximum usage limits.
414 */
415
416 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
417 anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
418 fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
419 execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
420 anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
421 fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
422 execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
423 anonreact = anonunder || (!anonover && (fileover || execover));
424 filereact = fileunder || (!fileover && (anonover || execover));
425 execreact = execunder || (!execover && (anonover || fileover));
426 if (filereact && execreact && (anonreact || uvm_swapisfull())) {
427 anonreact = filereact = execreact = FALSE;
428 }
429 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
430 uobj = NULL;
431 anon = NULL;
432 if (p) {
433
434 /*
435 * see if we've met the free target.
436 */
437
438 if (uvmexp.free + uvmexp.paging >=
439 uvmexp.freetarg << 2 ||
440 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
441 UVMHIST_LOG(pdhist," met free target: "
442 "exit loop", 0, 0, 0, 0);
443
444 if (swslot == 0) {
445 /* exit now if no swap-i/o pending */
446 break;
447 }
448
449 /* set p to null to signal final swap i/o */
450 p = NULL;
451 nextpg = NULL;
452 }
453 }
454 if (p) { /* if (we have a new page to consider) */
455
456 /*
457 * we are below target and have a new page to consider.
458 */
459
460 uvmexp.pdscans++;
461 nextpg = TAILQ_NEXT(p, pageq);
462
463 /*
464 * move referenced pages back to active queue and
465 * skip to next page.
466 */
467
468 if (pmap_clear_reference(p)) {
469 uvm_pageactivate(p);
470 uvmexp.pdreact++;
471 continue;
472 }
473 anon = p->uanon;
474 uobj = p->uobject;
475
476 /*
477 * enforce the minimum thresholds on different
478 * types of memory usage. if reusing the current
479 * page would reduce that type of usage below its
480 * minimum, reactivate the page instead and move
481 * on to the next page.
482 */
483
484 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
485 uvm_pageactivate(p);
486 uvmexp.pdreexec++;
487 continue;
488 }
489 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
490 !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
491 uvm_pageactivate(p);
492 uvmexp.pdrefile++;
493 continue;
494 }
495 if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
496 uvm_pageactivate(p);
497 uvmexp.pdreanon++;
498 continue;
499 }
500
501 /*
502 * first we attempt to lock the object that this page
503 * belongs to. if our attempt fails we skip on to
504 * the next page (no harm done). it is important to
505 * "try" locking the object as we are locking in the
506 * wrong order (pageq -> object) and we don't want to
507 * deadlock.
508 *
509 * the only time we expect to see an ownerless page
510 * (i.e. a page with no uobject and !PQ_ANON) is if an
511 * anon has loaned a page from a uvm_object and the
512 * uvm_object has dropped the ownership. in that
513 * case, the anon can "take over" the loaned page
514 * and make it its own.
515 */
516
517 /* does the page belong to an object? */
518 if (uobj != NULL) {
519 slock = &uobj->vmobjlock;
520 if (!simple_lock_try(slock)) {
521 continue;
522 }
523 if (p->flags & PG_BUSY) {
524 simple_unlock(slock);
525 uvmexp.pdbusy++;
526 continue;
527 }
528 uvmexp.pdobscan++;
529 } else {
530 KASSERT(anon != NULL);
531 slock = &anon->an_lock;
532 if (!simple_lock_try(slock)) {
533 continue;
534 }
535
536 /*
537 * set PQ_ANON if it isn't set already.
538 */
539
540 if ((p->pqflags & PQ_ANON) == 0) {
541 KASSERT(p->loan_count > 0);
542 p->loan_count--;
543 p->pqflags |= PQ_ANON;
544 /* anon now owns it */
545 }
546 if (p->flags & PG_BUSY) {
547 simple_unlock(slock);
548 uvmexp.pdbusy++;
549 continue;
550 }
551 uvmexp.pdanscan++;
552 }
553
554
555 /*
556 * we now have the object and the page queues locked.
557 * if the page is not swap-backed, call the object's
558 * pager to flush and free the page.
559 */
560
561 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
562 uvm_unlock_pageq();
563 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
564 p->offset + PAGE_SIZE,
565 PGO_CLEANIT|PGO_FREE);
566 uvm_lock_pageq();
567 if (nextpg &&
568 (nextpg->pqflags & PQ_INACTIVE) == 0) {
569 nextpg = TAILQ_FIRST(pglst);
570 }
571 continue;
572 }
573
574 /*
575 * the page is swap-backed. remove all the permissions
576 * from the page so we can sync the modified info
577 * without any race conditions. if the page is clean
578 * we can free it now and continue.
579 */
580
581 pmap_page_protect(p, VM_PROT_NONE);
582 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
583 p->flags &= ~(PG_CLEAN);
584 }
585 if (p->flags & PG_CLEAN) {
586 int slot;
587 int pageidx;
588
589 pageidx = p->offset >> PAGE_SHIFT;
590 uvm_pagefree(p);
591 uvmexp.pdfreed++;
592
593 /*
594 * for anons, we need to remove the page
595 * from the anon ourselves. for aobjs,
596 * pagefree did that for us.
597 */
598
599 if (anon) {
600 KASSERT(anon->an_swslot != 0);
601 anon->an_page = NULL;
602 slot = anon->an_swslot;
603 } else {
604 slot = uao_find_swslot(uobj, pageidx);
605 }
606 simple_unlock(slock);
607
608 if (slot > 0) {
609 /* this page is now only in swap. */
610 simple_lock(&uvm.swap_data_lock);
611 KASSERT(uvmexp.swpgonly <
612 uvmexp.swpginuse);
613 uvmexp.swpgonly++;
614 simple_unlock(&uvm.swap_data_lock);
615 }
616 continue;
617 }
618
619 /*
620 * this page is dirty, skip it if we'll have met our
621 * free target when all the current pageouts complete.
622 */
623
624 if (uvmexp.free + uvmexp.paging >
625 uvmexp.freetarg << 2) {
626 simple_unlock(slock);
627 continue;
628 }
629
630 /*
631 * free any swap space allocated to the page since
632 * we'll have to write it again with its new data.
633 */
634
635 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
636 uvm_swap_free(anon->an_swslot, 1);
637 anon->an_swslot = 0;
638 } else if (p->pqflags & PQ_AOBJ) {
639 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
640 }
641
642 /*
643 * if all pages in swap are only in swap,
644 * the swap space is full and we can't page out
645 * any more swap-backed pages. reactivate this page
646 * so that we eventually cycle all pages through
647 * the inactive queue.
648 */
649
650 if (uvm_swapisfull()) {
651 dirtyreacts++;
652 uvm_pageactivate(p);
653 simple_unlock(slock);
654 continue;
655 }
656
657 /*
658 * start new swap pageout cluster (if necessary).
659 */
660
661 if (swslot == 0) {
662 /* Even with strange MAXPHYS, the shift
663 implicitly rounds down to a page. */
664 swnpages = MAXPHYS >> PAGE_SHIFT;
665 swslot = uvm_swap_alloc(&swnpages, TRUE);
666 if (swslot == 0) {
667 simple_unlock(slock);
668 continue;
669 }
670 swcpages = 0;
671 }
672
673 /*
674 * at this point, we're definitely going reuse this
675 * page. mark the page busy and delayed-free.
676 * we should remove the page from the page queues
677 * so we don't ever look at it again.
678 * adjust counters and such.
679 */
680
681 p->flags |= PG_BUSY;
682 UVM_PAGE_OWN(p, "scan_inactive");
683
684 p->flags |= PG_PAGEOUT;
685 uvmexp.paging++;
686 uvm_pagedequeue(p);
687
688 uvmexp.pgswapout++;
689
690 /*
691 * add the new page to the cluster.
692 */
693
694 if (anon) {
695 anon->an_swslot = swslot + swcpages;
696 simple_unlock(slock);
697 } else {
698 result = uao_set_swslot(uobj,
699 p->offset >> PAGE_SHIFT, swslot + swcpages);
700 if (result == -1) {
701 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
702 UVM_PAGE_OWN(p, NULL);
703 uvmexp.paging--;
704 uvm_pageactivate(p);
705 simple_unlock(slock);
706 continue;
707 }
708 simple_unlock(slock);
709 }
710 swpps[swcpages] = p;
711 swcpages++;
712
713 /*
714 * if the cluster isn't full, look for more pages
715 * before starting the i/o.
716 */
717
718 if (swcpages < swnpages) {
719 continue;
720 }
721 }
722
723 /*
724 * if this is the final pageout we could have a few
725 * unused swap blocks. if so, free them now.
726 */
727
728 if (swcpages < swnpages) {
729 uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
730 }
731
732 /*
733 * now start the pageout.
734 */
735
736 uvm_unlock_pageq();
737 uvmexp.pdpageouts++;
738 error = uvm_swap_put(swslot, swpps, swcpages, 0);
739 KASSERT(error == 0);
740 uvm_lock_pageq();
741
742 /*
743 * zero swslot to indicate that we are
744 * no longer building a swap-backed cluster.
745 */
746
747 swslot = 0;
748
749 /*
750 * the pageout is in progress. bump counters and set up
751 * for the next loop.
752 */
753
754 uvmexp.pdpending++;
755 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
756 nextpg = TAILQ_FIRST(pglst);
757 }
758 }
759 }
760
761 /*
762 * uvmpd_scan: scan the page queues and attempt to meet our targets.
763 *
764 * => called with pageq's locked
765 */
766
767 void
768 uvmpd_scan(void)
769 {
770 int inactive_shortage, swap_shortage, pages_freed;
771 struct vm_page *p, *nextpg;
772 struct uvm_object *uobj;
773 struct vm_anon *anon;
774 struct simplelock *slock;
775 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
776
777 uvmexp.pdrevs++;
778 uobj = NULL;
779 anon = NULL;
780
781 #ifndef __SWAP_BROKEN
782
783 /*
784 * swap out some processes if we are below our free target.
785 * we need to unlock the page queues for this.
786 */
787
788 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
789 uvmexp.pdswout++;
790 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
791 uvmexp.free, uvmexp.freetarg, 0, 0);
792 uvm_unlock_pageq();
793 uvm_swapout_threads();
794 uvm_lock_pageq();
795
796 }
797 #endif
798
799 /*
800 * now we want to work on meeting our targets. first we work on our
801 * free target by converting inactive pages into free pages. then
802 * we work on meeting our inactive target by converting active pages
803 * to inactive ones.
804 */
805
806 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
807
808 pages_freed = uvmexp.pdfreed;
809 uvmpd_scan_inactive(&uvm.page_inactive);
810 pages_freed = uvmexp.pdfreed - pages_freed;
811
812 /*
813 * we have done the scan to get free pages. now we work on meeting
814 * our inactive target.
815 */
816
817 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
818
819 /*
820 * detect if we're not going to be able to page anything out
821 * until we free some swap resources from active pages.
822 */
823
824 swap_shortage = 0;
825 if (uvmexp.free < uvmexp.freetarg &&
826 uvmexp.swpginuse >= uvmexp.swpgavail &&
827 !uvm_swapisfull() &&
828 pages_freed == 0) {
829 swap_shortage = uvmexp.freetarg - uvmexp.free;
830 }
831
832 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
833 inactive_shortage, swap_shortage,0,0);
834 for (p = TAILQ_FIRST(&uvm.page_active);
835 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
836 p = nextpg) {
837 nextpg = TAILQ_NEXT(p, pageq);
838 if (p->flags & PG_BUSY) {
839 continue;
840 }
841
842 /*
843 * lock the page's owner.
844 */
845
846 if (p->uobject != NULL) {
847 uobj = p->uobject;
848 slock = &uobj->vmobjlock;
849 if (!simple_lock_try(slock)) {
850 continue;
851 }
852 } else {
853 anon = p->uanon;
854 KASSERT(anon != NULL);
855 slock = &anon->an_lock;
856 if (!simple_lock_try(slock)) {
857 continue;
858 }
859
860 /* take over the page? */
861 if ((p->pqflags & PQ_ANON) == 0) {
862 KASSERT(p->loan_count > 0);
863 p->loan_count--;
864 p->pqflags |= PQ_ANON;
865 }
866 }
867
868 /*
869 * skip this page if it's busy.
870 */
871
872 if ((p->flags & PG_BUSY) != 0) {
873 simple_unlock(slock);
874 continue;
875 }
876
877 /*
878 * if there's a shortage of swap, free any swap allocated
879 * to this page so that other pages can be paged out.
880 */
881
882 if (swap_shortage > 0) {
883 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
884 uvm_swap_free(anon->an_swslot, 1);
885 anon->an_swslot = 0;
886 p->flags &= ~PG_CLEAN;
887 swap_shortage--;
888 } else if (p->pqflags & PQ_AOBJ) {
889 int slot = uao_set_swslot(uobj,
890 p->offset >> PAGE_SHIFT, 0);
891 if (slot) {
892 uvm_swap_free(slot, 1);
893 p->flags &= ~PG_CLEAN;
894 swap_shortage--;
895 }
896 }
897 }
898
899 /*
900 * if there's a shortage of inactive pages, deactivate.
901 */
902
903 if (inactive_shortage > 0) {
904 /* no need to check wire_count as pg is "active" */
905 uvm_pagedeactivate(p);
906 uvmexp.pddeact++;
907 inactive_shortage--;
908 }
909
910 /*
911 * we're done with this page.
912 */
913
914 simple_unlock(slock);
915 }
916 }
917
918 /*
919 * uvm_reclaimable: decide whether to wait for pagedaemon.
920 *
921 * => return TRUE if it seems to be worth to do uvm_wait.
922 *
923 * XXX should be tunable.
924 * XXX should consider pools, etc?
925 */
926
927 boolean_t
928 uvm_reclaimable(void)
929 {
930 int filepages;
931
932 /*
933 * if swap is not full, no problem.
934 */
935
936 if (!uvm_swapisfull()) {
937 return TRUE;
938 }
939
940 /*
941 * file-backed pages can be reclaimed even when swap is full.
942 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
943 *
944 * XXX assume the worst case, ie. all wired pages are file-backed.
945 *
946 * XXX should consider about other reclaimable memory.
947 * XXX ie. pools, traditional buffer cache.
948 */
949
950 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
951 if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
952 5 * 1024 * 1024 >> PAGE_SHIFT)) {
953 return TRUE;
954 }
955
956 /*
957 * kill the process, fail allocation, etc..
958 */
959
960 return FALSE;
961 }
962