Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.64
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.64 2005/05/11 13:02:26 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.64 2005/05/11 13:02:26 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/pool.h>
     83 #include <sys/buf.h>
     84 #include <sys/vnode.h>
     85 
     86 #include <uvm/uvm.h>
     87 
     88 /*
     89  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     90  * in a pass thru the inactive list when swap is full.  the value should be
     91  * "small"... if it's too large we'll cycle the active pages thru the inactive
     92  * queue too quickly to for them to be referenced and avoid being freed.
     93  */
     94 
     95 #define UVMPD_NUMDIRTYREACTS 16
     96 
     97 
     98 /*
     99  * local prototypes
    100  */
    101 
    102 void		uvmpd_scan(void);
    103 void		uvmpd_scan_inactive(struct pglist *);
    104 void		uvmpd_tune(void);
    105 
    106 /*
    107  * XXX hack to avoid hangs when large processes fork.
    108  */
    109 int uvm_extrapages;
    110 
    111 /*
    112  * uvm_wait: wait (sleep) for the page daemon to free some pages
    113  *
    114  * => should be called with all locks released
    115  * => should _not_ be called by the page daemon (to avoid deadlock)
    116  */
    117 
    118 void
    119 uvm_wait(wmsg)
    120 	const char *wmsg;
    121 {
    122 	int timo = 0;
    123 	int s = splbio();
    124 
    125 	/*
    126 	 * check for page daemon going to sleep (waiting for itself)
    127 	 */
    128 
    129 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    130 		/*
    131 		 * now we have a problem: the pagedaemon wants to go to
    132 		 * sleep until it frees more memory.   but how can it
    133 		 * free more memory if it is asleep?  that is a deadlock.
    134 		 * we have two options:
    135 		 *  [1] panic now
    136 		 *  [2] put a timeout on the sleep, thus causing the
    137 		 *      pagedaemon to only pause (rather than sleep forever)
    138 		 *
    139 		 * note that option [2] will only help us if we get lucky
    140 		 * and some other process on the system breaks the deadlock
    141 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142 		 * to continue).  for now we panic if DEBUG is defined,
    143 		 * otherwise we hope for the best with option [2] (better
    144 		 * yet, this should never happen in the first place!).
    145 		 */
    146 
    147 		printf("pagedaemon: deadlock detected!\n");
    148 		timo = hz >> 3;		/* set timeout */
    149 #if defined(DEBUG)
    150 		/* DEBUG: panic so we can debug it */
    151 		panic("pagedaemon deadlock");
    152 #endif
    153 	}
    154 
    155 	simple_lock(&uvm.pagedaemon_lock);
    156 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    158 	    timo);
    159 
    160 	splx(s);
    161 }
    162 
    163 
    164 /*
    165  * uvmpd_tune: tune paging parameters
    166  *
    167  * => called when ever memory is added (or removed?) to the system
    168  * => caller must call with page queues locked
    169  */
    170 
    171 void
    172 uvmpd_tune(void)
    173 {
    174 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    175 
    176 	uvmexp.freemin = uvmexp.npages / 20;
    177 
    178 	/* between 16k and 256k */
    179 	/* XXX:  what are these values good for? */
    180 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    181 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    182 
    183 	/* Make sure there's always a user page free. */
    184 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    185 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    186 
    187 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    188 	if (uvmexp.freetarg <= uvmexp.freemin)
    189 		uvmexp.freetarg = uvmexp.freemin + 1;
    190 
    191 	uvmexp.freetarg += uvm_extrapages;
    192 	uvm_extrapages = 0;
    193 
    194 	/* uvmexp.inactarg: computed in main daemon loop */
    195 
    196 	uvmexp.wiredmax = uvmexp.npages / 3;
    197 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    198 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    199 }
    200 
    201 /*
    202  * uvm_pageout: the main loop for the pagedaemon
    203  */
    204 
    205 void
    206 uvm_pageout(void *arg)
    207 {
    208 	int bufcnt, npages = 0;
    209 	int extrapages = 0;
    210 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    211 
    212 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    213 
    214 	/*
    215 	 * ensure correct priority and set paging parameters...
    216 	 */
    217 
    218 	uvm.pagedaemon_proc = curproc;
    219 	uvm_lock_pageq();
    220 	npages = uvmexp.npages;
    221 	uvmpd_tune();
    222 	uvm_unlock_pageq();
    223 
    224 	/*
    225 	 * main loop
    226 	 */
    227 
    228 	for (;;) {
    229 		simple_lock(&uvm.pagedaemon_lock);
    230 
    231 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    232 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    233 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    234 		uvmexp.pdwoke++;
    235 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    236 
    237 		/*
    238 		 * now lock page queues and recompute inactive count
    239 		 */
    240 
    241 		uvm_lock_pageq();
    242 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    243 			npages = uvmexp.npages;
    244 			extrapages = uvm_extrapages;
    245 			uvmpd_tune();
    246 		}
    247 
    248 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    249 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    250 			uvmexp.inactarg = uvmexp.freetarg + 1;
    251 		}
    252 
    253 		/*
    254 		 * Estimate a hint.  Note that bufmem are returned to
    255 		 * system only when entire pool page is empty.
    256 		 */
    257 		bufcnt = uvmexp.freetarg - uvmexp.free;
    258 		if (bufcnt < 0)
    259 			bufcnt = 0;
    260 
    261 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    262 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    263 		    uvmexp.inactarg);
    264 
    265 		/*
    266 		 * scan if needed
    267 		 */
    268 
    269 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    270 		    uvmexp.inactive < uvmexp.inactarg) {
    271 			uvmpd_scan();
    272 		}
    273 
    274 		/*
    275 		 * if there's any free memory to be had,
    276 		 * wake up any waiters.
    277 		 */
    278 
    279 		if (uvmexp.free > uvmexp.reserve_kernel ||
    280 		    uvmexp.paging == 0) {
    281 			wakeup(&uvmexp.free);
    282 		}
    283 
    284 		/*
    285 		 * scan done.  unlock page queues (the only lock we are holding)
    286 		 */
    287 
    288 		uvm_unlock_pageq();
    289 
    290 		buf_drain(bufcnt << PAGE_SHIFT);
    291 
    292 		/*
    293 		 * drain pool resources now that we're not holding any locks
    294 		 */
    295 
    296 		pool_drain(0);
    297 
    298 		/*
    299 		 * free any cached u-areas we don't need
    300 		 */
    301 		uvm_uarea_drain(TRUE);
    302 
    303 	}
    304 	/*NOTREACHED*/
    305 }
    306 
    307 
    308 /*
    309  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    310  */
    311 
    312 void
    313 uvm_aiodone_daemon(void *arg)
    314 {
    315 	int s, free;
    316 	struct buf *bp, *nbp;
    317 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    318 
    319 	for (;;) {
    320 
    321 		/*
    322 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    323 		 * we need splbio because we want to make sure the aio_done list
    324 		 * is totally empty before we go to sleep.
    325 		 */
    326 
    327 		s = splbio();
    328 		simple_lock(&uvm.aiodoned_lock);
    329 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    330 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    331 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    332 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    333 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    334 
    335 			/* relock aiodoned_lock, still at splbio */
    336 			simple_lock(&uvm.aiodoned_lock);
    337 		}
    338 
    339 		/*
    340 		 * check for done aio structures
    341 		 */
    342 
    343 		bp = TAILQ_FIRST(&uvm.aio_done);
    344 		if (bp) {
    345 			TAILQ_INIT(&uvm.aio_done);
    346 		}
    347 
    348 		simple_unlock(&uvm.aiodoned_lock);
    349 		splx(s);
    350 
    351 		/*
    352 		 * process each i/o that's done.
    353 		 */
    354 
    355 		free = uvmexp.free;
    356 		while (bp != NULL) {
    357 			nbp = TAILQ_NEXT(bp, b_freelist);
    358 			(*bp->b_iodone)(bp);
    359 			bp = nbp;
    360 		}
    361 		if (free <= uvmexp.reserve_kernel) {
    362 			s = uvm_lock_fpageq();
    363 			wakeup(&uvm.pagedaemon);
    364 			uvm_unlock_fpageq(s);
    365 		} else {
    366 			simple_lock(&uvm.pagedaemon_lock);
    367 			wakeup(&uvmexp.free);
    368 			simple_unlock(&uvm.pagedaemon_lock);
    369 		}
    370 	}
    371 }
    372 
    373 /*
    374  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    375  *
    376  * => called with page queues locked
    377  * => we work on meeting our free target by converting inactive pages
    378  *    into free pages.
    379  * => we handle the building of swap-backed clusters
    380  * => we return TRUE if we are exiting because we met our target
    381  */
    382 
    383 void
    384 uvmpd_scan_inactive(pglst)
    385 	struct pglist *pglst;
    386 {
    387 	int error;
    388 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    389 	struct uvm_object *uobj;
    390 	struct vm_anon *anon;
    391 	struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
    392 	struct simplelock *slock;
    393 	int swnpages, swcpages;
    394 	int swslot;
    395 	int dirtyreacts, t, result;
    396 	boolean_t anonunder, fileunder, execunder;
    397 	boolean_t anonover, fileover, execover;
    398 	boolean_t anonreact, filereact, execreact;
    399 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    400 
    401 	/*
    402 	 * swslot is non-zero if we are building a swap cluster.  we want
    403 	 * to stay in the loop while we have a page to scan or we have
    404 	 * a swap-cluster to build.
    405 	 */
    406 
    407 	swslot = 0;
    408 	swnpages = swcpages = 0;
    409 	dirtyreacts = 0;
    410 
    411 	/*
    412 	 * decide which types of pages we want to reactivate instead of freeing
    413 	 * to keep usage within the minimum and maximum usage limits.
    414 	 */
    415 
    416 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    417 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    418 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    419 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    420 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    421 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    422 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    423 	anonreact = anonunder || (!anonover && (fileover || execover));
    424 	filereact = fileunder || (!fileover && (anonover || execover));
    425 	execreact = execunder || (!execover && (anonover || fileover));
    426 	if (filereact && execreact && (anonreact || uvm_swapisfull())) {
    427 		anonreact = filereact = execreact = FALSE;
    428 	}
    429 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    430 		uobj = NULL;
    431 		anon = NULL;
    432 		if (p) {
    433 
    434 			/*
    435 			 * see if we've met the free target.
    436 			 */
    437 
    438 			if (uvmexp.free + uvmexp.paging >=
    439 			    uvmexp.freetarg << 2 ||
    440 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    441 				UVMHIST_LOG(pdhist,"  met free target: "
    442 					    "exit loop", 0, 0, 0, 0);
    443 
    444 				if (swslot == 0) {
    445 					/* exit now if no swap-i/o pending */
    446 					break;
    447 				}
    448 
    449 				/* set p to null to signal final swap i/o */
    450 				p = NULL;
    451 				nextpg = NULL;
    452 			}
    453 		}
    454 		if (p) {	/* if (we have a new page to consider) */
    455 
    456 			/*
    457 			 * we are below target and have a new page to consider.
    458 			 */
    459 
    460 			uvmexp.pdscans++;
    461 			nextpg = TAILQ_NEXT(p, pageq);
    462 
    463 			/*
    464 			 * move referenced pages back to active queue and
    465 			 * skip to next page.
    466 			 */
    467 
    468 			if (pmap_clear_reference(p)) {
    469 				uvm_pageactivate(p);
    470 				uvmexp.pdreact++;
    471 				continue;
    472 			}
    473 			anon = p->uanon;
    474 			uobj = p->uobject;
    475 
    476 			/*
    477 			 * enforce the minimum thresholds on different
    478 			 * types of memory usage.  if reusing the current
    479 			 * page would reduce that type of usage below its
    480 			 * minimum, reactivate the page instead and move
    481 			 * on to the next page.
    482 			 */
    483 
    484 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    485 				uvm_pageactivate(p);
    486 				uvmexp.pdreexec++;
    487 				continue;
    488 			}
    489 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    490 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    491 				uvm_pageactivate(p);
    492 				uvmexp.pdrefile++;
    493 				continue;
    494 			}
    495 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    496 				uvm_pageactivate(p);
    497 				uvmexp.pdreanon++;
    498 				continue;
    499 			}
    500 
    501 			/*
    502 			 * first we attempt to lock the object that this page
    503 			 * belongs to.  if our attempt fails we skip on to
    504 			 * the next page (no harm done).  it is important to
    505 			 * "try" locking the object as we are locking in the
    506 			 * wrong order (pageq -> object) and we don't want to
    507 			 * deadlock.
    508 			 *
    509 			 * the only time we expect to see an ownerless page
    510 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    511 			 * anon has loaned a page from a uvm_object and the
    512 			 * uvm_object has dropped the ownership.  in that
    513 			 * case, the anon can "take over" the loaned page
    514 			 * and make it its own.
    515 			 */
    516 
    517 			/* does the page belong to an object? */
    518 			if (uobj != NULL) {
    519 				slock = &uobj->vmobjlock;
    520 				if (!simple_lock_try(slock)) {
    521 					continue;
    522 				}
    523 				if (p->flags & PG_BUSY) {
    524 					simple_unlock(slock);
    525 					uvmexp.pdbusy++;
    526 					continue;
    527 				}
    528 				uvmexp.pdobscan++;
    529 			} else {
    530 				KASSERT(anon != NULL);
    531 				slock = &anon->an_lock;
    532 				if (!simple_lock_try(slock)) {
    533 					continue;
    534 				}
    535 
    536 				/*
    537 				 * set PQ_ANON if it isn't set already.
    538 				 */
    539 
    540 				if ((p->pqflags & PQ_ANON) == 0) {
    541 					KASSERT(p->loan_count > 0);
    542 					p->loan_count--;
    543 					p->pqflags |= PQ_ANON;
    544 					/* anon now owns it */
    545 				}
    546 				if (p->flags & PG_BUSY) {
    547 					simple_unlock(slock);
    548 					uvmexp.pdbusy++;
    549 					continue;
    550 				}
    551 				uvmexp.pdanscan++;
    552 			}
    553 
    554 
    555 			/*
    556 			 * we now have the object and the page queues locked.
    557 			 * if the page is not swap-backed, call the object's
    558 			 * pager to flush and free the page.
    559 			 */
    560 
    561 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    562 				uvm_unlock_pageq();
    563 				(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    564 				    p->offset + PAGE_SIZE,
    565 				    PGO_CLEANIT|PGO_FREE);
    566 				uvm_lock_pageq();
    567 				if (nextpg &&
    568 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    569 					nextpg = TAILQ_FIRST(pglst);
    570 				}
    571 				continue;
    572 			}
    573 
    574 			/*
    575 			 * the page is swap-backed.  remove all the permissions
    576 			 * from the page so we can sync the modified info
    577 			 * without any race conditions.  if the page is clean
    578 			 * we can free it now and continue.
    579 			 */
    580 
    581 			pmap_page_protect(p, VM_PROT_NONE);
    582 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    583 				p->flags &= ~(PG_CLEAN);
    584 			}
    585 			if (p->flags & PG_CLEAN) {
    586 				int slot;
    587 				int pageidx;
    588 
    589 				pageidx = p->offset >> PAGE_SHIFT;
    590 				uvm_pagefree(p);
    591 				uvmexp.pdfreed++;
    592 
    593 				/*
    594 				 * for anons, we need to remove the page
    595 				 * from the anon ourselves.  for aobjs,
    596 				 * pagefree did that for us.
    597 				 */
    598 
    599 				if (anon) {
    600 					KASSERT(anon->an_swslot != 0);
    601 					anon->an_page = NULL;
    602 					slot = anon->an_swslot;
    603 				} else {
    604 					slot = uao_find_swslot(uobj, pageidx);
    605 				}
    606 				simple_unlock(slock);
    607 
    608 				if (slot > 0) {
    609 					/* this page is now only in swap. */
    610 					simple_lock(&uvm.swap_data_lock);
    611 					KASSERT(uvmexp.swpgonly <
    612 						uvmexp.swpginuse);
    613 					uvmexp.swpgonly++;
    614 					simple_unlock(&uvm.swap_data_lock);
    615 				}
    616 				continue;
    617 			}
    618 
    619 			/*
    620 			 * this page is dirty, skip it if we'll have met our
    621 			 * free target when all the current pageouts complete.
    622 			 */
    623 
    624 			if (uvmexp.free + uvmexp.paging >
    625 			    uvmexp.freetarg << 2) {
    626 				simple_unlock(slock);
    627 				continue;
    628 			}
    629 
    630 			/*
    631 			 * free any swap space allocated to the page since
    632 			 * we'll have to write it again with its new data.
    633 			 */
    634 
    635 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    636 				uvm_swap_free(anon->an_swslot, 1);
    637 				anon->an_swslot = 0;
    638 			} else if (p->pqflags & PQ_AOBJ) {
    639 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    640 			}
    641 
    642 			/*
    643 			 * if all pages in swap are only in swap,
    644 			 * the swap space is full and we can't page out
    645 			 * any more swap-backed pages.  reactivate this page
    646 			 * so that we eventually cycle all pages through
    647 			 * the inactive queue.
    648 			 */
    649 
    650 			if (uvm_swapisfull()) {
    651 				dirtyreacts++;
    652 				uvm_pageactivate(p);
    653 				simple_unlock(slock);
    654 				continue;
    655 			}
    656 
    657 			/*
    658 			 * start new swap pageout cluster (if necessary).
    659 			 */
    660 
    661 			if (swslot == 0) {
    662 				/* Even with strange MAXPHYS, the shift
    663 				   implicitly rounds down to a page. */
    664 				swnpages = MAXPHYS >> PAGE_SHIFT;
    665 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    666 				if (swslot == 0) {
    667 					simple_unlock(slock);
    668 					continue;
    669 				}
    670 				swcpages = 0;
    671 			}
    672 
    673 			/*
    674 			 * at this point, we're definitely going reuse this
    675 			 * page.  mark the page busy and delayed-free.
    676 			 * we should remove the page from the page queues
    677 			 * so we don't ever look at it again.
    678 			 * adjust counters and such.
    679 			 */
    680 
    681 			p->flags |= PG_BUSY;
    682 			UVM_PAGE_OWN(p, "scan_inactive");
    683 
    684 			p->flags |= PG_PAGEOUT;
    685 			uvmexp.paging++;
    686 			uvm_pagedequeue(p);
    687 
    688 			uvmexp.pgswapout++;
    689 
    690 			/*
    691 			 * add the new page to the cluster.
    692 			 */
    693 
    694 			if (anon) {
    695 				anon->an_swslot = swslot + swcpages;
    696 				simple_unlock(slock);
    697 			} else {
    698 				result = uao_set_swslot(uobj,
    699 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    700 				if (result == -1) {
    701 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    702 					UVM_PAGE_OWN(p, NULL);
    703 					uvmexp.paging--;
    704 					uvm_pageactivate(p);
    705 					simple_unlock(slock);
    706 					continue;
    707 				}
    708 				simple_unlock(slock);
    709 			}
    710 			swpps[swcpages] = p;
    711 			swcpages++;
    712 
    713 			/*
    714 			 * if the cluster isn't full, look for more pages
    715 			 * before starting the i/o.
    716 			 */
    717 
    718 			if (swcpages < swnpages) {
    719 				continue;
    720 			}
    721 		}
    722 
    723 		/*
    724 		 * if this is the final pageout we could have a few
    725 		 * unused swap blocks.  if so, free them now.
    726 		 */
    727 
    728 		if (swcpages < swnpages) {
    729 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    730 		}
    731 
    732 		/*
    733 		 * now start the pageout.
    734 		 */
    735 
    736 		uvm_unlock_pageq();
    737 		uvmexp.pdpageouts++;
    738 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    739 		KASSERT(error == 0);
    740 		uvm_lock_pageq();
    741 
    742 		/*
    743 		 * zero swslot to indicate that we are
    744 		 * no longer building a swap-backed cluster.
    745 		 */
    746 
    747 		swslot = 0;
    748 
    749 		/*
    750 		 * the pageout is in progress.  bump counters and set up
    751 		 * for the next loop.
    752 		 */
    753 
    754 		uvmexp.pdpending++;
    755 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    756 			nextpg = TAILQ_FIRST(pglst);
    757 		}
    758 	}
    759 }
    760 
    761 /*
    762  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    763  *
    764  * => called with pageq's locked
    765  */
    766 
    767 void
    768 uvmpd_scan(void)
    769 {
    770 	int inactive_shortage, swap_shortage, pages_freed;
    771 	struct vm_page *p, *nextpg;
    772 	struct uvm_object *uobj;
    773 	struct vm_anon *anon;
    774 	struct simplelock *slock;
    775 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    776 
    777 	uvmexp.pdrevs++;
    778 	uobj = NULL;
    779 	anon = NULL;
    780 
    781 #ifndef __SWAP_BROKEN
    782 
    783 	/*
    784 	 * swap out some processes if we are below our free target.
    785 	 * we need to unlock the page queues for this.
    786 	 */
    787 
    788 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    789 		uvmexp.pdswout++;
    790 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    791 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    792 		uvm_unlock_pageq();
    793 		uvm_swapout_threads();
    794 		uvm_lock_pageq();
    795 
    796 	}
    797 #endif
    798 
    799 	/*
    800 	 * now we want to work on meeting our targets.   first we work on our
    801 	 * free target by converting inactive pages into free pages.  then
    802 	 * we work on meeting our inactive target by converting active pages
    803 	 * to inactive ones.
    804 	 */
    805 
    806 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    807 
    808 	pages_freed = uvmexp.pdfreed;
    809 	uvmpd_scan_inactive(&uvm.page_inactive);
    810 	pages_freed = uvmexp.pdfreed - pages_freed;
    811 
    812 	/*
    813 	 * we have done the scan to get free pages.   now we work on meeting
    814 	 * our inactive target.
    815 	 */
    816 
    817 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    818 
    819 	/*
    820 	 * detect if we're not going to be able to page anything out
    821 	 * until we free some swap resources from active pages.
    822 	 */
    823 
    824 	swap_shortage = 0;
    825 	if (uvmexp.free < uvmexp.freetarg &&
    826 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    827 	    !uvm_swapisfull() &&
    828 	    pages_freed == 0) {
    829 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    830 	}
    831 
    832 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    833 		    inactive_shortage, swap_shortage,0,0);
    834 	for (p = TAILQ_FIRST(&uvm.page_active);
    835 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    836 	     p = nextpg) {
    837 		nextpg = TAILQ_NEXT(p, pageq);
    838 		if (p->flags & PG_BUSY) {
    839 			continue;
    840 		}
    841 
    842 		/*
    843 		 * lock the page's owner.
    844 		 */
    845 
    846 		if (p->uobject != NULL) {
    847 			uobj = p->uobject;
    848 			slock = &uobj->vmobjlock;
    849 			if (!simple_lock_try(slock)) {
    850 				continue;
    851 			}
    852 		} else {
    853 			anon = p->uanon;
    854 			KASSERT(anon != NULL);
    855 			slock = &anon->an_lock;
    856 			if (!simple_lock_try(slock)) {
    857 				continue;
    858 			}
    859 
    860 			/* take over the page? */
    861 			if ((p->pqflags & PQ_ANON) == 0) {
    862 				KASSERT(p->loan_count > 0);
    863 				p->loan_count--;
    864 				p->pqflags |= PQ_ANON;
    865 			}
    866 		}
    867 
    868 		/*
    869 		 * skip this page if it's busy.
    870 		 */
    871 
    872 		if ((p->flags & PG_BUSY) != 0) {
    873 			simple_unlock(slock);
    874 			continue;
    875 		}
    876 
    877 		/*
    878 		 * if there's a shortage of swap, free any swap allocated
    879 		 * to this page so that other pages can be paged out.
    880 		 */
    881 
    882 		if (swap_shortage > 0) {
    883 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    884 				uvm_swap_free(anon->an_swslot, 1);
    885 				anon->an_swslot = 0;
    886 				p->flags &= ~PG_CLEAN;
    887 				swap_shortage--;
    888 			} else if (p->pqflags & PQ_AOBJ) {
    889 				int slot = uao_set_swslot(uobj,
    890 					p->offset >> PAGE_SHIFT, 0);
    891 				if (slot) {
    892 					uvm_swap_free(slot, 1);
    893 					p->flags &= ~PG_CLEAN;
    894 					swap_shortage--;
    895 				}
    896 			}
    897 		}
    898 
    899 		/*
    900 		 * if there's a shortage of inactive pages, deactivate.
    901 		 */
    902 
    903 		if (inactive_shortage > 0) {
    904 			/* no need to check wire_count as pg is "active" */
    905 			uvm_pagedeactivate(p);
    906 			uvmexp.pddeact++;
    907 			inactive_shortage--;
    908 		}
    909 
    910 		/*
    911 		 * we're done with this page.
    912 		 */
    913 
    914 		simple_unlock(slock);
    915 	}
    916 }
    917 
    918 /*
    919  * uvm_reclaimable: decide whether to wait for pagedaemon.
    920  *
    921  * => return TRUE if it seems to be worth to do uvm_wait.
    922  *
    923  * XXX should be tunable.
    924  * XXX should consider pools, etc?
    925  */
    926 
    927 boolean_t
    928 uvm_reclaimable(void)
    929 {
    930 	int filepages;
    931 
    932 	/*
    933 	 * if swap is not full, no problem.
    934 	 */
    935 
    936 	if (!uvm_swapisfull()) {
    937 		return TRUE;
    938 	}
    939 
    940 	/*
    941 	 * file-backed pages can be reclaimed even when swap is full.
    942 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    943 	 *
    944 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    945 	 *
    946 	 * XXX should consider about other reclaimable memory.
    947 	 * XXX ie. pools, traditional buffer cache.
    948 	 */
    949 
    950 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    951 	if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
    952 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    953 		return TRUE;
    954 	}
    955 
    956 	/*
    957 	 * kill the process, fail allocation, etc..
    958 	 */
    959 
    960 	return FALSE;
    961 }
    962