uvm_pdaemon.c revision 1.68 1 /* $NetBSD: uvm_pdaemon.c,v 1.68 2005/09/13 22:00:05 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.68 2005/09/13 22:00:05 yamt Exp $");
75
76 #include "opt_uvmhist.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/pool.h>
83 #include <sys/buf.h>
84 #include <sys/vnode.h>
85
86 #include <uvm/uvm.h>
87
88 /*
89 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
90 * in a pass thru the inactive list when swap is full. the value should be
91 * "small"... if it's too large we'll cycle the active pages thru the inactive
92 * queue too quickly to for them to be referenced and avoid being freed.
93 */
94
95 #define UVMPD_NUMDIRTYREACTS 16
96
97
98 /*
99 * local prototypes
100 */
101
102 static void uvmpd_scan(void);
103 static void uvmpd_scan_inactive(struct pglist *);
104 static void uvmpd_tune(void);
105
106 /*
107 * XXX hack to avoid hangs when large processes fork.
108 */
109 int uvm_extrapages;
110
111 /*
112 * uvm_wait: wait (sleep) for the page daemon to free some pages
113 *
114 * => should be called with all locks released
115 * => should _not_ be called by the page daemon (to avoid deadlock)
116 */
117
118 void
119 uvm_wait(const char *wmsg)
120 {
121 int timo = 0;
122 int s = splbio();
123
124 /*
125 * check for page daemon going to sleep (waiting for itself)
126 */
127
128 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
129 /*
130 * now we have a problem: the pagedaemon wants to go to
131 * sleep until it frees more memory. but how can it
132 * free more memory if it is asleep? that is a deadlock.
133 * we have two options:
134 * [1] panic now
135 * [2] put a timeout on the sleep, thus causing the
136 * pagedaemon to only pause (rather than sleep forever)
137 *
138 * note that option [2] will only help us if we get lucky
139 * and some other process on the system breaks the deadlock
140 * by exiting or freeing memory (thus allowing the pagedaemon
141 * to continue). for now we panic if DEBUG is defined,
142 * otherwise we hope for the best with option [2] (better
143 * yet, this should never happen in the first place!).
144 */
145
146 printf("pagedaemon: deadlock detected!\n");
147 timo = hz >> 3; /* set timeout */
148 #if defined(DEBUG)
149 /* DEBUG: panic so we can debug it */
150 panic("pagedaemon deadlock");
151 #endif
152 }
153
154 simple_lock(&uvm.pagedaemon_lock);
155 wakeup(&uvm.pagedaemon); /* wake the daemon! */
156 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
157 timo);
158
159 splx(s);
160 }
161
162
163 /*
164 * uvmpd_tune: tune paging parameters
165 *
166 * => called when ever memory is added (or removed?) to the system
167 * => caller must call with page queues locked
168 */
169
170 static void
171 uvmpd_tune(void)
172 {
173 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
174
175 uvmexp.freemin = uvmexp.npages / 20;
176
177 /* between 16k and 256k */
178 /* XXX: what are these values good for? */
179 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
180 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
181
182 /* Make sure there's always a user page free. */
183 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
184 uvmexp.freemin = uvmexp.reserve_kernel + 1;
185
186 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
187 if (uvmexp.freetarg <= uvmexp.freemin)
188 uvmexp.freetarg = uvmexp.freemin + 1;
189
190 uvmexp.freetarg += uvm_extrapages;
191 uvm_extrapages = 0;
192
193 /* uvmexp.inactarg: computed in main daemon loop */
194
195 uvmexp.wiredmax = uvmexp.npages / 3;
196 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
197 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
198 }
199
200 /*
201 * uvm_pageout: the main loop for the pagedaemon
202 */
203
204 void
205 uvm_pageout(void *arg)
206 {
207 int bufcnt, npages = 0;
208 int extrapages = 0;
209 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
210
211 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
212
213 /*
214 * ensure correct priority and set paging parameters...
215 */
216
217 uvm.pagedaemon_proc = curproc;
218 uvm_lock_pageq();
219 npages = uvmexp.npages;
220 uvmpd_tune();
221 uvm_unlock_pageq();
222
223 /*
224 * main loop
225 */
226
227 for (;;) {
228 simple_lock(&uvm.pagedaemon_lock);
229
230 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
231 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
232 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
233 uvmexp.pdwoke++;
234 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
235
236 /*
237 * now lock page queues and recompute inactive count
238 */
239
240 uvm_lock_pageq();
241 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
242 npages = uvmexp.npages;
243 extrapages = uvm_extrapages;
244 uvmpd_tune();
245 }
246
247 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
248 if (uvmexp.inactarg <= uvmexp.freetarg) {
249 uvmexp.inactarg = uvmexp.freetarg + 1;
250 }
251
252 /*
253 * Estimate a hint. Note that bufmem are returned to
254 * system only when entire pool page is empty.
255 */
256 bufcnt = uvmexp.freetarg - uvmexp.free;
257 if (bufcnt < 0)
258 bufcnt = 0;
259
260 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
261 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
262 uvmexp.inactarg);
263
264 /*
265 * scan if needed
266 */
267
268 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
269 uvmexp.inactive < uvmexp.inactarg) {
270 uvmpd_scan();
271 }
272
273 /*
274 * if there's any free memory to be had,
275 * wake up any waiters.
276 */
277
278 if (uvmexp.free > uvmexp.reserve_kernel ||
279 uvmexp.paging == 0) {
280 wakeup(&uvmexp.free);
281 }
282
283 /*
284 * scan done. unlock page queues (the only lock we are holding)
285 */
286
287 uvm_unlock_pageq();
288
289 buf_drain(bufcnt << PAGE_SHIFT);
290
291 /*
292 * drain pool resources now that we're not holding any locks
293 */
294
295 pool_drain(0);
296
297 /*
298 * free any cached u-areas we don't need
299 */
300 uvm_uarea_drain(TRUE);
301
302 }
303 /*NOTREACHED*/
304 }
305
306
307 /*
308 * uvm_aiodone_daemon: main loop for the aiodone daemon.
309 */
310
311 void
312 uvm_aiodone_daemon(void *arg)
313 {
314 int s, free;
315 struct buf *bp, *nbp;
316 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
317
318 for (;;) {
319
320 /*
321 * carefully attempt to go to sleep (without losing "wakeups"!).
322 * we need splbio because we want to make sure the aio_done list
323 * is totally empty before we go to sleep.
324 */
325
326 s = splbio();
327 simple_lock(&uvm.aiodoned_lock);
328 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
329 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
330 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
331 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
332 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
333
334 /* relock aiodoned_lock, still at splbio */
335 simple_lock(&uvm.aiodoned_lock);
336 }
337
338 /*
339 * check for done aio structures
340 */
341
342 bp = TAILQ_FIRST(&uvm.aio_done);
343 if (bp) {
344 TAILQ_INIT(&uvm.aio_done);
345 }
346
347 simple_unlock(&uvm.aiodoned_lock);
348 splx(s);
349
350 /*
351 * process each i/o that's done.
352 */
353
354 free = uvmexp.free;
355 while (bp != NULL) {
356 nbp = TAILQ_NEXT(bp, b_freelist);
357 (*bp->b_iodone)(bp);
358 bp = nbp;
359 }
360 if (free <= uvmexp.reserve_kernel) {
361 s = uvm_lock_fpageq();
362 wakeup(&uvm.pagedaemon);
363 uvm_unlock_fpageq(s);
364 } else {
365 simple_lock(&uvm.pagedaemon_lock);
366 wakeup(&uvmexp.free);
367 simple_unlock(&uvm.pagedaemon_lock);
368 }
369 }
370 }
371
372 /*
373 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
374 *
375 * => called with page queues locked
376 * => we work on meeting our free target by converting inactive pages
377 * into free pages.
378 * => we handle the building of swap-backed clusters
379 * => we return TRUE if we are exiting because we met our target
380 */
381
382 static void
383 uvmpd_scan_inactive(struct pglist *pglst)
384 {
385 struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
386 struct uvm_object *uobj;
387 struct vm_anon *anon;
388 #if defined(VMSWAP)
389 struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
390 int error;
391 int result;
392 #endif /* defined(VMSWAP) */
393 struct simplelock *slock;
394 int swnpages, swcpages;
395 int swslot;
396 int dirtyreacts, t;
397 boolean_t anonunder, fileunder, execunder;
398 boolean_t anonover, fileover, execover;
399 boolean_t anonreact, filereact, execreact;
400 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
401
402 /*
403 * swslot is non-zero if we are building a swap cluster. we want
404 * to stay in the loop while we have a page to scan or we have
405 * a swap-cluster to build.
406 */
407
408 swslot = 0;
409 swnpages = swcpages = 0;
410 dirtyreacts = 0;
411
412 /*
413 * decide which types of pages we want to reactivate instead of freeing
414 * to keep usage within the minimum and maximum usage limits.
415 */
416
417 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
418 anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
419 fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
420 execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
421 anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
422 fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
423 execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
424 anonreact = anonunder || (!anonover && (fileover || execover));
425 filereact = fileunder || (!fileover && (anonover || execover));
426 execreact = execunder || (!execover && (anonover || fileover));
427 if (filereact && execreact && (anonreact || uvm_swapisfull())) {
428 anonreact = filereact = execreact = FALSE;
429 }
430 #if !defined(VMSWAP)
431 /*
432 * XXX no point to put swap-backed pages on the page queue.
433 */
434
435 anonreact = TRUE;
436 #endif /* !defined(VMSWAP) */
437 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
438 uobj = NULL;
439 anon = NULL;
440 if (p) {
441
442 /*
443 * see if we've met the free target.
444 */
445
446 if (uvmexp.free + uvmexp.paging >=
447 uvmexp.freetarg << 2 ||
448 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
449 UVMHIST_LOG(pdhist," met free target: "
450 "exit loop", 0, 0, 0, 0);
451
452 if (swslot == 0) {
453 /* exit now if no swap-i/o pending */
454 break;
455 }
456
457 /* set p to null to signal final swap i/o */
458 p = NULL;
459 nextpg = NULL;
460 }
461 }
462 if (p) { /* if (we have a new page to consider) */
463
464 /*
465 * we are below target and have a new page to consider.
466 */
467
468 uvmexp.pdscans++;
469 nextpg = TAILQ_NEXT(p, pageq);
470
471 /*
472 * move referenced pages back to active queue and
473 * skip to next page.
474 */
475
476 if (pmap_clear_reference(p)) {
477 uvm_pageactivate(p);
478 uvmexp.pdreact++;
479 continue;
480 }
481 anon = p->uanon;
482 uobj = p->uobject;
483
484 /*
485 * enforce the minimum thresholds on different
486 * types of memory usage. if reusing the current
487 * page would reduce that type of usage below its
488 * minimum, reactivate the page instead and move
489 * on to the next page.
490 */
491
492 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
493 uvm_pageactivate(p);
494 uvmexp.pdreexec++;
495 continue;
496 }
497 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
498 !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
499 uvm_pageactivate(p);
500 uvmexp.pdrefile++;
501 continue;
502 }
503 if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
504 uvm_pageactivate(p);
505 uvmexp.pdreanon++;
506 continue;
507 }
508
509 /*
510 * first we attempt to lock the object that this page
511 * belongs to. if our attempt fails we skip on to
512 * the next page (no harm done). it is important to
513 * "try" locking the object as we are locking in the
514 * wrong order (pageq -> object) and we don't want to
515 * deadlock.
516 *
517 * the only time we expect to see an ownerless page
518 * (i.e. a page with no uobject and !PQ_ANON) is if an
519 * anon has loaned a page from a uvm_object and the
520 * uvm_object has dropped the ownership. in that
521 * case, the anon can "take over" the loaned page
522 * and make it its own.
523 */
524
525 /* does the page belong to an object? */
526 if (uobj != NULL) {
527 slock = &uobj->vmobjlock;
528 if (!simple_lock_try(slock)) {
529 continue;
530 }
531 if (p->flags & PG_BUSY) {
532 simple_unlock(slock);
533 uvmexp.pdbusy++;
534 continue;
535 }
536 uvmexp.pdobscan++;
537 } else {
538 #if defined(VMSWAP)
539 KASSERT(anon != NULL);
540 slock = &anon->an_lock;
541 if (!simple_lock_try(slock)) {
542 continue;
543 }
544
545 /*
546 * set PQ_ANON if it isn't set already.
547 */
548
549 if ((p->pqflags & PQ_ANON) == 0) {
550 KASSERT(p->loan_count > 0);
551 p->loan_count--;
552 p->pqflags |= PQ_ANON;
553 /* anon now owns it */
554 }
555 if (p->flags & PG_BUSY) {
556 simple_unlock(slock);
557 uvmexp.pdbusy++;
558 continue;
559 }
560 uvmexp.pdanscan++;
561 #else /* defined(VMSWAP) */
562 panic("%s: anon", __func__);
563 #endif /* defined(VMSWAP) */
564 }
565
566
567 /*
568 * we now have the object and the page queues locked.
569 * if the page is not swap-backed, call the object's
570 * pager to flush and free the page.
571 */
572
573 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
574 uvm_unlock_pageq();
575 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
576 p->offset + PAGE_SIZE,
577 PGO_CLEANIT|PGO_FREE);
578 uvm_lock_pageq();
579 if (nextpg &&
580 (nextpg->pqflags & PQ_INACTIVE) == 0) {
581 nextpg = TAILQ_FIRST(pglst);
582 }
583 continue;
584 }
585
586 #if defined(VMSWAP)
587 /*
588 * the page is swap-backed. remove all the permissions
589 * from the page so we can sync the modified info
590 * without any race conditions. if the page is clean
591 * we can free it now and continue.
592 */
593
594 pmap_page_protect(p, VM_PROT_NONE);
595 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
596 p->flags &= ~(PG_CLEAN);
597 }
598 if (p->flags & PG_CLEAN) {
599 int slot;
600 int pageidx;
601
602 pageidx = p->offset >> PAGE_SHIFT;
603 uvm_pagefree(p);
604 uvmexp.pdfreed++;
605
606 /*
607 * for anons, we need to remove the page
608 * from the anon ourselves. for aobjs,
609 * pagefree did that for us.
610 */
611
612 if (anon) {
613 KASSERT(anon->an_swslot != 0);
614 anon->an_page = NULL;
615 slot = anon->an_swslot;
616 } else {
617 slot = uao_find_swslot(uobj, pageidx);
618 }
619 simple_unlock(slock);
620
621 if (slot > 0) {
622 /* this page is now only in swap. */
623 simple_lock(&uvm.swap_data_lock);
624 KASSERT(uvmexp.swpgonly <
625 uvmexp.swpginuse);
626 uvmexp.swpgonly++;
627 simple_unlock(&uvm.swap_data_lock);
628 }
629 continue;
630 }
631
632 /*
633 * this page is dirty, skip it if we'll have met our
634 * free target when all the current pageouts complete.
635 */
636
637 if (uvmexp.free + uvmexp.paging >
638 uvmexp.freetarg << 2) {
639 simple_unlock(slock);
640 continue;
641 }
642
643 /*
644 * free any swap space allocated to the page since
645 * we'll have to write it again with its new data.
646 */
647
648 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
649 uvm_swap_free(anon->an_swslot, 1);
650 anon->an_swslot = 0;
651 } else if (p->pqflags & PQ_AOBJ) {
652 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
653 }
654
655 /*
656 * if all pages in swap are only in swap,
657 * the swap space is full and we can't page out
658 * any more swap-backed pages. reactivate this page
659 * so that we eventually cycle all pages through
660 * the inactive queue.
661 */
662
663 if (uvm_swapisfull()) {
664 dirtyreacts++;
665 uvm_pageactivate(p);
666 simple_unlock(slock);
667 continue;
668 }
669
670 /*
671 * start new swap pageout cluster (if necessary).
672 */
673
674 if (swslot == 0) {
675 /* Even with strange MAXPHYS, the shift
676 implicitly rounds down to a page. */
677 swnpages = MAXPHYS >> PAGE_SHIFT;
678 swslot = uvm_swap_alloc(&swnpages, TRUE);
679 if (swslot == 0) {
680 simple_unlock(slock);
681 continue;
682 }
683 swcpages = 0;
684 }
685
686 /*
687 * at this point, we're definitely going reuse this
688 * page. mark the page busy and delayed-free.
689 * we should remove the page from the page queues
690 * so we don't ever look at it again.
691 * adjust counters and such.
692 */
693
694 p->flags |= PG_BUSY;
695 UVM_PAGE_OWN(p, "scan_inactive");
696
697 p->flags |= PG_PAGEOUT;
698 uvmexp.paging++;
699 uvm_pagedequeue(p);
700
701 uvmexp.pgswapout++;
702
703 /*
704 * add the new page to the cluster.
705 */
706
707 if (anon) {
708 anon->an_swslot = swslot + swcpages;
709 simple_unlock(slock);
710 } else {
711 result = uao_set_swslot(uobj,
712 p->offset >> PAGE_SHIFT, swslot + swcpages);
713 if (result == -1) {
714 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
715 UVM_PAGE_OWN(p, NULL);
716 uvmexp.paging--;
717 uvm_pageactivate(p);
718 simple_unlock(slock);
719 continue;
720 }
721 simple_unlock(slock);
722 }
723 swpps[swcpages] = p;
724 swcpages++;
725
726 /*
727 * if the cluster isn't full, look for more pages
728 * before starting the i/o.
729 */
730
731 if (swcpages < swnpages) {
732 continue;
733 }
734 #else /* defined(VMSWAP) */
735 panic("%s: swap-backed", __func__);
736 #endif /* defined(VMSWAP) */
737
738 }
739
740 #if defined(VMSWAP)
741 /*
742 * if this is the final pageout we could have a few
743 * unused swap blocks. if so, free them now.
744 */
745
746 if (swcpages < swnpages) {
747 uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
748 }
749
750 /*
751 * now start the pageout.
752 */
753
754 uvm_unlock_pageq();
755 uvmexp.pdpageouts++;
756 error = uvm_swap_put(swslot, swpps, swcpages, 0);
757 KASSERT(error == 0);
758 uvm_lock_pageq();
759
760 /*
761 * zero swslot to indicate that we are
762 * no longer building a swap-backed cluster.
763 */
764
765 swslot = 0;
766
767 /*
768 * the pageout is in progress. bump counters and set up
769 * for the next loop.
770 */
771
772 uvmexp.pdpending++;
773 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
774 nextpg = TAILQ_FIRST(pglst);
775 }
776 #endif /* defined(VMSWAP) */
777 }
778 }
779
780 /*
781 * uvmpd_scan: scan the page queues and attempt to meet our targets.
782 *
783 * => called with pageq's locked
784 */
785
786 static void
787 uvmpd_scan(void)
788 {
789 int inactive_shortage, swap_shortage, pages_freed;
790 struct vm_page *p, *nextpg;
791 struct uvm_object *uobj;
792 struct vm_anon *anon;
793 struct simplelock *slock;
794 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
795
796 uvmexp.pdrevs++;
797 uobj = NULL;
798 anon = NULL;
799
800 #ifndef __SWAP_BROKEN
801
802 /*
803 * swap out some processes if we are below our free target.
804 * we need to unlock the page queues for this.
805 */
806
807 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
808 uvmexp.pdswout++;
809 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
810 uvmexp.free, uvmexp.freetarg, 0, 0);
811 uvm_unlock_pageq();
812 uvm_swapout_threads();
813 uvm_lock_pageq();
814
815 }
816 #endif
817
818 /*
819 * now we want to work on meeting our targets. first we work on our
820 * free target by converting inactive pages into free pages. then
821 * we work on meeting our inactive target by converting active pages
822 * to inactive ones.
823 */
824
825 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
826
827 pages_freed = uvmexp.pdfreed;
828 uvmpd_scan_inactive(&uvm.page_inactive);
829 pages_freed = uvmexp.pdfreed - pages_freed;
830
831 /*
832 * we have done the scan to get free pages. now we work on meeting
833 * our inactive target.
834 */
835
836 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
837
838 /*
839 * detect if we're not going to be able to page anything out
840 * until we free some swap resources from active pages.
841 */
842
843 swap_shortage = 0;
844 if (uvmexp.free < uvmexp.freetarg &&
845 uvmexp.swpginuse >= uvmexp.swpgavail &&
846 !uvm_swapisfull() &&
847 pages_freed == 0) {
848 swap_shortage = uvmexp.freetarg - uvmexp.free;
849 }
850
851 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
852 inactive_shortage, swap_shortage,0,0);
853 for (p = TAILQ_FIRST(&uvm.page_active);
854 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
855 p = nextpg) {
856 nextpg = TAILQ_NEXT(p, pageq);
857 if (p->flags & PG_BUSY) {
858 continue;
859 }
860
861 /*
862 * lock the page's owner.
863 */
864
865 if (p->uobject != NULL) {
866 uobj = p->uobject;
867 slock = &uobj->vmobjlock;
868 if (!simple_lock_try(slock)) {
869 continue;
870 }
871 } else {
872 anon = p->uanon;
873 KASSERT(anon != NULL);
874 slock = &anon->an_lock;
875 if (!simple_lock_try(slock)) {
876 continue;
877 }
878
879 /* take over the page? */
880 if ((p->pqflags & PQ_ANON) == 0) {
881 KASSERT(p->loan_count > 0);
882 p->loan_count--;
883 p->pqflags |= PQ_ANON;
884 }
885 }
886
887 /*
888 * skip this page if it's busy.
889 */
890
891 if ((p->flags & PG_BUSY) != 0) {
892 simple_unlock(slock);
893 continue;
894 }
895
896 #if defined(VMSWAP)
897 /*
898 * if there's a shortage of swap, free any swap allocated
899 * to this page so that other pages can be paged out.
900 */
901
902 if (swap_shortage > 0) {
903 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
904 uvm_swap_free(anon->an_swslot, 1);
905 anon->an_swslot = 0;
906 p->flags &= ~PG_CLEAN;
907 swap_shortage--;
908 } else if (p->pqflags & PQ_AOBJ) {
909 int slot = uao_set_swslot(uobj,
910 p->offset >> PAGE_SHIFT, 0);
911 if (slot) {
912 uvm_swap_free(slot, 1);
913 p->flags &= ~PG_CLEAN;
914 swap_shortage--;
915 }
916 }
917 }
918 #endif /* defined(VMSWAP) */
919
920 /*
921 * if there's a shortage of inactive pages, deactivate.
922 */
923
924 if (inactive_shortage > 0) {
925 /* no need to check wire_count as pg is "active" */
926 uvm_pagedeactivate(p);
927 uvmexp.pddeact++;
928 inactive_shortage--;
929 }
930
931 /*
932 * we're done with this page.
933 */
934
935 simple_unlock(slock);
936 }
937 }
938
939 /*
940 * uvm_reclaimable: decide whether to wait for pagedaemon.
941 *
942 * => return TRUE if it seems to be worth to do uvm_wait.
943 *
944 * XXX should be tunable.
945 * XXX should consider pools, etc?
946 */
947
948 boolean_t
949 uvm_reclaimable(void)
950 {
951 int filepages;
952
953 /*
954 * if swap is not full, no problem.
955 */
956
957 if (!uvm_swapisfull()) {
958 return TRUE;
959 }
960
961 /*
962 * file-backed pages can be reclaimed even when swap is full.
963 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
964 *
965 * XXX assume the worst case, ie. all wired pages are file-backed.
966 *
967 * XXX should consider about other reclaimable memory.
968 * XXX ie. pools, traditional buffer cache.
969 */
970
971 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
972 if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
973 5 * 1024 * 1024 >> PAGE_SHIFT)) {
974 return TRUE;
975 }
976
977 /*
978 * kill the process, fail allocation, etc..
979 */
980
981 return FALSE;
982 }
983