Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.69
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.69 2005/11/29 15:45:28 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.69 2005/11/29 15:45:28 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 #include <sys/vnode.h>
     86 
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     91  * in a pass thru the inactive list when swap is full.  the value should be
     92  * "small"... if it's too large we'll cycle the active pages thru the inactive
     93  * queue too quickly to for them to be referenced and avoid being freed.
     94  */
     95 
     96 #define UVMPD_NUMDIRTYREACTS 16
     97 
     98 
     99 /*
    100  * local prototypes
    101  */
    102 
    103 static void	uvmpd_scan(void);
    104 static void	uvmpd_scan_inactive(struct pglist *);
    105 static void	uvmpd_tune(void);
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 int uvm_extrapages;
    111 
    112 /*
    113  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114  *
    115  * => should be called with all locks released
    116  * => should _not_ be called by the page daemon (to avoid deadlock)
    117  */
    118 
    119 void
    120 uvm_wait(const char *wmsg)
    121 {
    122 	int timo = 0;
    123 	int s = splbio();
    124 
    125 	/*
    126 	 * check for page daemon going to sleep (waiting for itself)
    127 	 */
    128 
    129 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    130 		/*
    131 		 * now we have a problem: the pagedaemon wants to go to
    132 		 * sleep until it frees more memory.   but how can it
    133 		 * free more memory if it is asleep?  that is a deadlock.
    134 		 * we have two options:
    135 		 *  [1] panic now
    136 		 *  [2] put a timeout on the sleep, thus causing the
    137 		 *      pagedaemon to only pause (rather than sleep forever)
    138 		 *
    139 		 * note that option [2] will only help us if we get lucky
    140 		 * and some other process on the system breaks the deadlock
    141 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142 		 * to continue).  for now we panic if DEBUG is defined,
    143 		 * otherwise we hope for the best with option [2] (better
    144 		 * yet, this should never happen in the first place!).
    145 		 */
    146 
    147 		printf("pagedaemon: deadlock detected!\n");
    148 		timo = hz >> 3;		/* set timeout */
    149 #if defined(DEBUG)
    150 		/* DEBUG: panic so we can debug it */
    151 		panic("pagedaemon deadlock");
    152 #endif
    153 	}
    154 
    155 	simple_lock(&uvm.pagedaemon_lock);
    156 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    158 	    timo);
    159 
    160 	splx(s);
    161 }
    162 
    163 
    164 /*
    165  * uvmpd_tune: tune paging parameters
    166  *
    167  * => called when ever memory is added (or removed?) to the system
    168  * => caller must call with page queues locked
    169  */
    170 
    171 static void
    172 uvmpd_tune(void)
    173 {
    174 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    175 
    176 	uvmexp.freemin = uvmexp.npages / 20;
    177 
    178 	/* between 16k and 256k */
    179 	/* XXX:  what are these values good for? */
    180 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    181 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    182 
    183 	/* Make sure there's always a user page free. */
    184 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    185 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    186 
    187 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    188 	if (uvmexp.freetarg <= uvmexp.freemin)
    189 		uvmexp.freetarg = uvmexp.freemin + 1;
    190 
    191 	uvmexp.freetarg += uvm_extrapages;
    192 	uvm_extrapages = 0;
    193 
    194 	/* uvmexp.inactarg: computed in main daemon loop */
    195 
    196 	uvmexp.wiredmax = uvmexp.npages / 3;
    197 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    198 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    199 }
    200 
    201 /*
    202  * uvm_pageout: the main loop for the pagedaemon
    203  */
    204 
    205 void
    206 uvm_pageout(void *arg)
    207 {
    208 	int bufcnt, npages = 0;
    209 	int extrapages = 0;
    210 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    211 
    212 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    213 
    214 	/*
    215 	 * ensure correct priority and set paging parameters...
    216 	 */
    217 
    218 	uvm.pagedaemon_proc = curproc;
    219 	uvm_lock_pageq();
    220 	npages = uvmexp.npages;
    221 	uvmpd_tune();
    222 	uvm_unlock_pageq();
    223 
    224 	/*
    225 	 * main loop
    226 	 */
    227 
    228 	for (;;) {
    229 		simple_lock(&uvm.pagedaemon_lock);
    230 
    231 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    232 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    233 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    234 		uvmexp.pdwoke++;
    235 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    236 
    237 		/*
    238 		 * now lock page queues and recompute inactive count
    239 		 */
    240 
    241 		uvm_lock_pageq();
    242 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    243 			npages = uvmexp.npages;
    244 			extrapages = uvm_extrapages;
    245 			uvmpd_tune();
    246 		}
    247 
    248 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    249 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    250 			uvmexp.inactarg = uvmexp.freetarg + 1;
    251 		}
    252 
    253 		/*
    254 		 * Estimate a hint.  Note that bufmem are returned to
    255 		 * system only when entire pool page is empty.
    256 		 */
    257 		bufcnt = uvmexp.freetarg - uvmexp.free;
    258 		if (bufcnt < 0)
    259 			bufcnt = 0;
    260 
    261 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    262 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    263 		    uvmexp.inactarg);
    264 
    265 		/*
    266 		 * scan if needed
    267 		 */
    268 
    269 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    270 		    uvmexp.inactive < uvmexp.inactarg) {
    271 			uvmpd_scan();
    272 		}
    273 
    274 		/*
    275 		 * if there's any free memory to be had,
    276 		 * wake up any waiters.
    277 		 */
    278 
    279 		if (uvmexp.free > uvmexp.reserve_kernel ||
    280 		    uvmexp.paging == 0) {
    281 			wakeup(&uvmexp.free);
    282 		}
    283 
    284 		/*
    285 		 * scan done.  unlock page queues (the only lock we are holding)
    286 		 */
    287 
    288 		uvm_unlock_pageq();
    289 
    290 		buf_drain(bufcnt << PAGE_SHIFT);
    291 
    292 		/*
    293 		 * drain pool resources now that we're not holding any locks
    294 		 */
    295 
    296 		pool_drain(0);
    297 
    298 		/*
    299 		 * free any cached u-areas we don't need
    300 		 */
    301 		uvm_uarea_drain(TRUE);
    302 
    303 	}
    304 	/*NOTREACHED*/
    305 }
    306 
    307 
    308 /*
    309  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    310  */
    311 
    312 void
    313 uvm_aiodone_daemon(void *arg)
    314 {
    315 	int s, free;
    316 	struct buf *bp, *nbp;
    317 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    318 
    319 	for (;;) {
    320 
    321 		/*
    322 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    323 		 * we need splbio because we want to make sure the aio_done list
    324 		 * is totally empty before we go to sleep.
    325 		 */
    326 
    327 		s = splbio();
    328 		simple_lock(&uvm.aiodoned_lock);
    329 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    330 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    331 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    332 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    333 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    334 
    335 			/* relock aiodoned_lock, still at splbio */
    336 			simple_lock(&uvm.aiodoned_lock);
    337 		}
    338 
    339 		/*
    340 		 * check for done aio structures
    341 		 */
    342 
    343 		bp = TAILQ_FIRST(&uvm.aio_done);
    344 		if (bp) {
    345 			TAILQ_INIT(&uvm.aio_done);
    346 		}
    347 
    348 		simple_unlock(&uvm.aiodoned_lock);
    349 		splx(s);
    350 
    351 		/*
    352 		 * process each i/o that's done.
    353 		 */
    354 
    355 		free = uvmexp.free;
    356 		while (bp != NULL) {
    357 			nbp = TAILQ_NEXT(bp, b_freelist);
    358 			(*bp->b_iodone)(bp);
    359 			bp = nbp;
    360 		}
    361 		if (free <= uvmexp.reserve_kernel) {
    362 			s = uvm_lock_fpageq();
    363 			wakeup(&uvm.pagedaemon);
    364 			uvm_unlock_fpageq(s);
    365 		} else {
    366 			simple_lock(&uvm.pagedaemon_lock);
    367 			wakeup(&uvmexp.free);
    368 			simple_unlock(&uvm.pagedaemon_lock);
    369 		}
    370 	}
    371 }
    372 
    373 /*
    374  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    375  *
    376  * => called with page queues locked
    377  * => we work on meeting our free target by converting inactive pages
    378  *    into free pages.
    379  * => we handle the building of swap-backed clusters
    380  * => we return TRUE if we are exiting because we met our target
    381  */
    382 
    383 static void
    384 uvmpd_scan_inactive(struct pglist *pglst)
    385 {
    386 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    387 	struct uvm_object *uobj;
    388 	struct vm_anon *anon;
    389 #if defined(VMSWAP)
    390 	struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
    391 	int error;
    392 	int result;
    393 #endif /* defined(VMSWAP) */
    394 	struct simplelock *slock;
    395 	int swnpages, swcpages;
    396 	int swslot;
    397 	int dirtyreacts, t;
    398 	boolean_t anonunder, fileunder, execunder;
    399 	boolean_t anonover, fileover, execover;
    400 	boolean_t anonreact, filereact, execreact;
    401 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    402 
    403 	/*
    404 	 * swslot is non-zero if we are building a swap cluster.  we want
    405 	 * to stay in the loop while we have a page to scan or we have
    406 	 * a swap-cluster to build.
    407 	 */
    408 
    409 	swslot = 0;
    410 	swnpages = swcpages = 0;
    411 	dirtyreacts = 0;
    412 
    413 	/*
    414 	 * decide which types of pages we want to reactivate instead of freeing
    415 	 * to keep usage within the minimum and maximum usage limits.
    416 	 */
    417 
    418 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    419 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    420 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    421 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    422 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    423 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    424 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    425 	anonreact = anonunder || (!anonover && (fileover || execover));
    426 	filereact = fileunder || (!fileover && (anonover || execover));
    427 	execreact = execunder || (!execover && (anonover || fileover));
    428 	if (filereact && execreact && (anonreact || uvm_swapisfull())) {
    429 		anonreact = filereact = execreact = FALSE;
    430 	}
    431 #if !defined(VMSWAP)
    432 	/*
    433 	 * XXX no point to put swap-backed pages on the page queue.
    434 	 */
    435 
    436 	anonreact = TRUE;
    437 #endif /* !defined(VMSWAP) */
    438 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    439 		uobj = NULL;
    440 		anon = NULL;
    441 		if (p) {
    442 
    443 			/*
    444 			 * see if we've met the free target.
    445 			 */
    446 
    447 			if (uvmexp.free + uvmexp.paging >=
    448 			    uvmexp.freetarg << 2 ||
    449 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    450 				UVMHIST_LOG(pdhist,"  met free target: "
    451 					    "exit loop", 0, 0, 0, 0);
    452 
    453 				if (swslot == 0) {
    454 					/* exit now if no swap-i/o pending */
    455 					break;
    456 				}
    457 
    458 				/* set p to null to signal final swap i/o */
    459 				p = NULL;
    460 				nextpg = NULL;
    461 			}
    462 		}
    463 		if (p) {	/* if (we have a new page to consider) */
    464 
    465 			/*
    466 			 * we are below target and have a new page to consider.
    467 			 */
    468 
    469 			uvmexp.pdscans++;
    470 			nextpg = TAILQ_NEXT(p, pageq);
    471 
    472 			/*
    473 			 * move referenced pages back to active queue and
    474 			 * skip to next page.
    475 			 */
    476 
    477 			if (pmap_clear_reference(p)) {
    478 				uvm_pageactivate(p);
    479 				uvmexp.pdreact++;
    480 				continue;
    481 			}
    482 			anon = p->uanon;
    483 			uobj = p->uobject;
    484 
    485 			/*
    486 			 * enforce the minimum thresholds on different
    487 			 * types of memory usage.  if reusing the current
    488 			 * page would reduce that type of usage below its
    489 			 * minimum, reactivate the page instead and move
    490 			 * on to the next page.
    491 			 */
    492 
    493 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    494 				uvm_pageactivate(p);
    495 				uvmexp.pdreexec++;
    496 				continue;
    497 			}
    498 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    499 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    500 				uvm_pageactivate(p);
    501 				uvmexp.pdrefile++;
    502 				continue;
    503 			}
    504 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    505 				uvm_pageactivate(p);
    506 				uvmexp.pdreanon++;
    507 				continue;
    508 			}
    509 
    510 			/*
    511 			 * first we attempt to lock the object that this page
    512 			 * belongs to.  if our attempt fails we skip on to
    513 			 * the next page (no harm done).  it is important to
    514 			 * "try" locking the object as we are locking in the
    515 			 * wrong order (pageq -> object) and we don't want to
    516 			 * deadlock.
    517 			 *
    518 			 * the only time we expect to see an ownerless page
    519 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    520 			 * anon has loaned a page from a uvm_object and the
    521 			 * uvm_object has dropped the ownership.  in that
    522 			 * case, the anon can "take over" the loaned page
    523 			 * and make it its own.
    524 			 */
    525 
    526 			/* does the page belong to an object? */
    527 			if (uobj != NULL) {
    528 				slock = &uobj->vmobjlock;
    529 				if (!simple_lock_try(slock)) {
    530 					continue;
    531 				}
    532 				if (p->flags & PG_BUSY) {
    533 					simple_unlock(slock);
    534 					uvmexp.pdbusy++;
    535 					continue;
    536 				}
    537 				uvmexp.pdobscan++;
    538 			} else {
    539 #if defined(VMSWAP)
    540 				KASSERT(anon != NULL);
    541 				slock = &anon->an_lock;
    542 				if (!simple_lock_try(slock)) {
    543 					continue;
    544 				}
    545 
    546 				/*
    547 				 * set PQ_ANON if it isn't set already.
    548 				 */
    549 
    550 				if ((p->pqflags & PQ_ANON) == 0) {
    551 					KASSERT(p->loan_count > 0);
    552 					p->loan_count--;
    553 					p->pqflags |= PQ_ANON;
    554 					/* anon now owns it */
    555 				}
    556 				if (p->flags & PG_BUSY) {
    557 					simple_unlock(slock);
    558 					uvmexp.pdbusy++;
    559 					continue;
    560 				}
    561 				uvmexp.pdanscan++;
    562 #else /* defined(VMSWAP) */
    563 				panic("%s: anon", __func__);
    564 #endif /* defined(VMSWAP) */
    565 			}
    566 
    567 
    568 			/*
    569 			 * we now have the object and the page queues locked.
    570 			 * if the page is not swap-backed, call the object's
    571 			 * pager to flush and free the page.
    572 			 */
    573 
    574 #if defined(READAHEAD_STATS)
    575 			if ((p->flags & PG_SPECULATIVE) != 0) {
    576 				p->flags &= ~PG_SPECULATIVE;
    577 				uvm_ra_miss.ev_count++;
    578 			}
    579 #endif /* defined(READAHEAD_STATS) */
    580 
    581 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    582 				uvm_unlock_pageq();
    583 				(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    584 				    p->offset + PAGE_SIZE,
    585 				    PGO_CLEANIT|PGO_FREE);
    586 				uvm_lock_pageq();
    587 				if (nextpg &&
    588 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    589 					nextpg = TAILQ_FIRST(pglst);
    590 				}
    591 				continue;
    592 			}
    593 
    594 #if defined(VMSWAP)
    595 			/*
    596 			 * the page is swap-backed.  remove all the permissions
    597 			 * from the page so we can sync the modified info
    598 			 * without any race conditions.  if the page is clean
    599 			 * we can free it now and continue.
    600 			 */
    601 
    602 			pmap_page_protect(p, VM_PROT_NONE);
    603 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    604 				p->flags &= ~(PG_CLEAN);
    605 			}
    606 			if (p->flags & PG_CLEAN) {
    607 				int slot;
    608 				int pageidx;
    609 
    610 				pageidx = p->offset >> PAGE_SHIFT;
    611 				uvm_pagefree(p);
    612 				uvmexp.pdfreed++;
    613 
    614 				/*
    615 				 * for anons, we need to remove the page
    616 				 * from the anon ourselves.  for aobjs,
    617 				 * pagefree did that for us.
    618 				 */
    619 
    620 				if (anon) {
    621 					KASSERT(anon->an_swslot != 0);
    622 					anon->an_page = NULL;
    623 					slot = anon->an_swslot;
    624 				} else {
    625 					slot = uao_find_swslot(uobj, pageidx);
    626 				}
    627 				simple_unlock(slock);
    628 
    629 				if (slot > 0) {
    630 					/* this page is now only in swap. */
    631 					simple_lock(&uvm.swap_data_lock);
    632 					KASSERT(uvmexp.swpgonly <
    633 						uvmexp.swpginuse);
    634 					uvmexp.swpgonly++;
    635 					simple_unlock(&uvm.swap_data_lock);
    636 				}
    637 				continue;
    638 			}
    639 
    640 			/*
    641 			 * this page is dirty, skip it if we'll have met our
    642 			 * free target when all the current pageouts complete.
    643 			 */
    644 
    645 			if (uvmexp.free + uvmexp.paging >
    646 			    uvmexp.freetarg << 2) {
    647 				simple_unlock(slock);
    648 				continue;
    649 			}
    650 
    651 			/*
    652 			 * free any swap space allocated to the page since
    653 			 * we'll have to write it again with its new data.
    654 			 */
    655 
    656 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    657 				uvm_swap_free(anon->an_swslot, 1);
    658 				anon->an_swslot = 0;
    659 			} else if (p->pqflags & PQ_AOBJ) {
    660 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    661 			}
    662 
    663 			/*
    664 			 * if all pages in swap are only in swap,
    665 			 * the swap space is full and we can't page out
    666 			 * any more swap-backed pages.  reactivate this page
    667 			 * so that we eventually cycle all pages through
    668 			 * the inactive queue.
    669 			 */
    670 
    671 			if (uvm_swapisfull()) {
    672 				dirtyreacts++;
    673 				uvm_pageactivate(p);
    674 				simple_unlock(slock);
    675 				continue;
    676 			}
    677 
    678 			/*
    679 			 * start new swap pageout cluster (if necessary).
    680 			 */
    681 
    682 			if (swslot == 0) {
    683 				/* Even with strange MAXPHYS, the shift
    684 				   implicitly rounds down to a page. */
    685 				swnpages = MAXPHYS >> PAGE_SHIFT;
    686 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    687 				if (swslot == 0) {
    688 					simple_unlock(slock);
    689 					continue;
    690 				}
    691 				swcpages = 0;
    692 			}
    693 
    694 			/*
    695 			 * at this point, we're definitely going reuse this
    696 			 * page.  mark the page busy and delayed-free.
    697 			 * we should remove the page from the page queues
    698 			 * so we don't ever look at it again.
    699 			 * adjust counters and such.
    700 			 */
    701 
    702 			p->flags |= PG_BUSY;
    703 			UVM_PAGE_OWN(p, "scan_inactive");
    704 
    705 			p->flags |= PG_PAGEOUT;
    706 			uvmexp.paging++;
    707 			uvm_pagedequeue(p);
    708 
    709 			uvmexp.pgswapout++;
    710 
    711 			/*
    712 			 * add the new page to the cluster.
    713 			 */
    714 
    715 			if (anon) {
    716 				anon->an_swslot = swslot + swcpages;
    717 				simple_unlock(slock);
    718 			} else {
    719 				result = uao_set_swslot(uobj,
    720 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    721 				if (result == -1) {
    722 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    723 					UVM_PAGE_OWN(p, NULL);
    724 					uvmexp.paging--;
    725 					uvm_pageactivate(p);
    726 					simple_unlock(slock);
    727 					continue;
    728 				}
    729 				simple_unlock(slock);
    730 			}
    731 			swpps[swcpages] = p;
    732 			swcpages++;
    733 
    734 			/*
    735 			 * if the cluster isn't full, look for more pages
    736 			 * before starting the i/o.
    737 			 */
    738 
    739 			if (swcpages < swnpages) {
    740 				continue;
    741 			}
    742 #else /* defined(VMSWAP) */
    743 			panic("%s: swap-backed", __func__);
    744 #endif /* defined(VMSWAP) */
    745 
    746 		}
    747 
    748 #if defined(VMSWAP)
    749 		/*
    750 		 * if this is the final pageout we could have a few
    751 		 * unused swap blocks.  if so, free them now.
    752 		 */
    753 
    754 		if (swcpages < swnpages) {
    755 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    756 		}
    757 
    758 		/*
    759 		 * now start the pageout.
    760 		 */
    761 
    762 		uvm_unlock_pageq();
    763 		uvmexp.pdpageouts++;
    764 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    765 		KASSERT(error == 0);
    766 		uvm_lock_pageq();
    767 
    768 		/*
    769 		 * zero swslot to indicate that we are
    770 		 * no longer building a swap-backed cluster.
    771 		 */
    772 
    773 		swslot = 0;
    774 
    775 		/*
    776 		 * the pageout is in progress.  bump counters and set up
    777 		 * for the next loop.
    778 		 */
    779 
    780 		uvmexp.pdpending++;
    781 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    782 			nextpg = TAILQ_FIRST(pglst);
    783 		}
    784 #endif /* defined(VMSWAP) */
    785 	}
    786 }
    787 
    788 /*
    789  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    790  *
    791  * => called with pageq's locked
    792  */
    793 
    794 static void
    795 uvmpd_scan(void)
    796 {
    797 	int inactive_shortage, swap_shortage, pages_freed;
    798 	struct vm_page *p, *nextpg;
    799 	struct uvm_object *uobj;
    800 	struct vm_anon *anon;
    801 	struct simplelock *slock;
    802 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    803 
    804 	uvmexp.pdrevs++;
    805 	uobj = NULL;
    806 	anon = NULL;
    807 
    808 #ifndef __SWAP_BROKEN
    809 
    810 	/*
    811 	 * swap out some processes if we are below our free target.
    812 	 * we need to unlock the page queues for this.
    813 	 */
    814 
    815 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    816 		uvmexp.pdswout++;
    817 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    818 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    819 		uvm_unlock_pageq();
    820 		uvm_swapout_threads();
    821 		uvm_lock_pageq();
    822 
    823 	}
    824 #endif
    825 
    826 	/*
    827 	 * now we want to work on meeting our targets.   first we work on our
    828 	 * free target by converting inactive pages into free pages.  then
    829 	 * we work on meeting our inactive target by converting active pages
    830 	 * to inactive ones.
    831 	 */
    832 
    833 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    834 
    835 	pages_freed = uvmexp.pdfreed;
    836 	uvmpd_scan_inactive(&uvm.page_inactive);
    837 	pages_freed = uvmexp.pdfreed - pages_freed;
    838 
    839 	/*
    840 	 * we have done the scan to get free pages.   now we work on meeting
    841 	 * our inactive target.
    842 	 */
    843 
    844 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    845 
    846 	/*
    847 	 * detect if we're not going to be able to page anything out
    848 	 * until we free some swap resources from active pages.
    849 	 */
    850 
    851 	swap_shortage = 0;
    852 	if (uvmexp.free < uvmexp.freetarg &&
    853 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    854 	    !uvm_swapisfull() &&
    855 	    pages_freed == 0) {
    856 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    857 	}
    858 
    859 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    860 		    inactive_shortage, swap_shortage,0,0);
    861 	for (p = TAILQ_FIRST(&uvm.page_active);
    862 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    863 	     p = nextpg) {
    864 		nextpg = TAILQ_NEXT(p, pageq);
    865 		if (p->flags & PG_BUSY) {
    866 			continue;
    867 		}
    868 
    869 		/*
    870 		 * lock the page's owner.
    871 		 */
    872 
    873 		if (p->uobject != NULL) {
    874 			uobj = p->uobject;
    875 			slock = &uobj->vmobjlock;
    876 			if (!simple_lock_try(slock)) {
    877 				continue;
    878 			}
    879 		} else {
    880 			anon = p->uanon;
    881 			KASSERT(anon != NULL);
    882 			slock = &anon->an_lock;
    883 			if (!simple_lock_try(slock)) {
    884 				continue;
    885 			}
    886 
    887 			/* take over the page? */
    888 			if ((p->pqflags & PQ_ANON) == 0) {
    889 				KASSERT(p->loan_count > 0);
    890 				p->loan_count--;
    891 				p->pqflags |= PQ_ANON;
    892 			}
    893 		}
    894 
    895 		/*
    896 		 * skip this page if it's busy.
    897 		 */
    898 
    899 		if ((p->flags & PG_BUSY) != 0) {
    900 			simple_unlock(slock);
    901 			continue;
    902 		}
    903 
    904 #if defined(VMSWAP)
    905 		/*
    906 		 * if there's a shortage of swap, free any swap allocated
    907 		 * to this page so that other pages can be paged out.
    908 		 */
    909 
    910 		if (swap_shortage > 0) {
    911 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    912 				uvm_swap_free(anon->an_swslot, 1);
    913 				anon->an_swslot = 0;
    914 				p->flags &= ~PG_CLEAN;
    915 				swap_shortage--;
    916 			} else if (p->pqflags & PQ_AOBJ) {
    917 				int slot = uao_set_swslot(uobj,
    918 					p->offset >> PAGE_SHIFT, 0);
    919 				if (slot) {
    920 					uvm_swap_free(slot, 1);
    921 					p->flags &= ~PG_CLEAN;
    922 					swap_shortage--;
    923 				}
    924 			}
    925 		}
    926 #endif /* defined(VMSWAP) */
    927 
    928 		/*
    929 		 * if there's a shortage of inactive pages, deactivate.
    930 		 */
    931 
    932 		if (inactive_shortage > 0) {
    933 			/* no need to check wire_count as pg is "active" */
    934 			uvm_pagedeactivate(p);
    935 			uvmexp.pddeact++;
    936 			inactive_shortage--;
    937 		}
    938 
    939 		/*
    940 		 * we're done with this page.
    941 		 */
    942 
    943 		simple_unlock(slock);
    944 	}
    945 }
    946 
    947 /*
    948  * uvm_reclaimable: decide whether to wait for pagedaemon.
    949  *
    950  * => return TRUE if it seems to be worth to do uvm_wait.
    951  *
    952  * XXX should be tunable.
    953  * XXX should consider pools, etc?
    954  */
    955 
    956 boolean_t
    957 uvm_reclaimable(void)
    958 {
    959 	int filepages;
    960 
    961 	/*
    962 	 * if swap is not full, no problem.
    963 	 */
    964 
    965 	if (!uvm_swapisfull()) {
    966 		return TRUE;
    967 	}
    968 
    969 	/*
    970 	 * file-backed pages can be reclaimed even when swap is full.
    971 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    972 	 *
    973 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    974 	 *
    975 	 * XXX should consider about other reclaimable memory.
    976 	 * XXX ie. pools, traditional buffer cache.
    977 	 */
    978 
    979 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    980 	if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
    981 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    982 		return TRUE;
    983 	}
    984 
    985 	/*
    986 	 * kill the process, fail allocation, etc..
    987 	 */
    988 
    989 	return FALSE;
    990 }
    991