uvm_pdaemon.c revision 1.69 1 /* $NetBSD: uvm_pdaemon.c,v 1.69 2005/11/29 15:45:28 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.69 2005/11/29 15:45:28 yamt Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/pool.h>
84 #include <sys/buf.h>
85 #include <sys/vnode.h>
86
87 #include <uvm/uvm.h>
88
89 /*
90 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
91 * in a pass thru the inactive list when swap is full. the value should be
92 * "small"... if it's too large we'll cycle the active pages thru the inactive
93 * queue too quickly to for them to be referenced and avoid being freed.
94 */
95
96 #define UVMPD_NUMDIRTYREACTS 16
97
98
99 /*
100 * local prototypes
101 */
102
103 static void uvmpd_scan(void);
104 static void uvmpd_scan_inactive(struct pglist *);
105 static void uvmpd_tune(void);
106
107 /*
108 * XXX hack to avoid hangs when large processes fork.
109 */
110 int uvm_extrapages;
111
112 /*
113 * uvm_wait: wait (sleep) for the page daemon to free some pages
114 *
115 * => should be called with all locks released
116 * => should _not_ be called by the page daemon (to avoid deadlock)
117 */
118
119 void
120 uvm_wait(const char *wmsg)
121 {
122 int timo = 0;
123 int s = splbio();
124
125 /*
126 * check for page daemon going to sleep (waiting for itself)
127 */
128
129 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
130 /*
131 * now we have a problem: the pagedaemon wants to go to
132 * sleep until it frees more memory. but how can it
133 * free more memory if it is asleep? that is a deadlock.
134 * we have two options:
135 * [1] panic now
136 * [2] put a timeout on the sleep, thus causing the
137 * pagedaemon to only pause (rather than sleep forever)
138 *
139 * note that option [2] will only help us if we get lucky
140 * and some other process on the system breaks the deadlock
141 * by exiting or freeing memory (thus allowing the pagedaemon
142 * to continue). for now we panic if DEBUG is defined,
143 * otherwise we hope for the best with option [2] (better
144 * yet, this should never happen in the first place!).
145 */
146
147 printf("pagedaemon: deadlock detected!\n");
148 timo = hz >> 3; /* set timeout */
149 #if defined(DEBUG)
150 /* DEBUG: panic so we can debug it */
151 panic("pagedaemon deadlock");
152 #endif
153 }
154
155 simple_lock(&uvm.pagedaemon_lock);
156 wakeup(&uvm.pagedaemon); /* wake the daemon! */
157 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
158 timo);
159
160 splx(s);
161 }
162
163
164 /*
165 * uvmpd_tune: tune paging parameters
166 *
167 * => called when ever memory is added (or removed?) to the system
168 * => caller must call with page queues locked
169 */
170
171 static void
172 uvmpd_tune(void)
173 {
174 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
175
176 uvmexp.freemin = uvmexp.npages / 20;
177
178 /* between 16k and 256k */
179 /* XXX: what are these values good for? */
180 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
181 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
182
183 /* Make sure there's always a user page free. */
184 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
185 uvmexp.freemin = uvmexp.reserve_kernel + 1;
186
187 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
188 if (uvmexp.freetarg <= uvmexp.freemin)
189 uvmexp.freetarg = uvmexp.freemin + 1;
190
191 uvmexp.freetarg += uvm_extrapages;
192 uvm_extrapages = 0;
193
194 /* uvmexp.inactarg: computed in main daemon loop */
195
196 uvmexp.wiredmax = uvmexp.npages / 3;
197 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
198 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
199 }
200
201 /*
202 * uvm_pageout: the main loop for the pagedaemon
203 */
204
205 void
206 uvm_pageout(void *arg)
207 {
208 int bufcnt, npages = 0;
209 int extrapages = 0;
210 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
211
212 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
213
214 /*
215 * ensure correct priority and set paging parameters...
216 */
217
218 uvm.pagedaemon_proc = curproc;
219 uvm_lock_pageq();
220 npages = uvmexp.npages;
221 uvmpd_tune();
222 uvm_unlock_pageq();
223
224 /*
225 * main loop
226 */
227
228 for (;;) {
229 simple_lock(&uvm.pagedaemon_lock);
230
231 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
232 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
233 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
234 uvmexp.pdwoke++;
235 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
236
237 /*
238 * now lock page queues and recompute inactive count
239 */
240
241 uvm_lock_pageq();
242 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
243 npages = uvmexp.npages;
244 extrapages = uvm_extrapages;
245 uvmpd_tune();
246 }
247
248 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
249 if (uvmexp.inactarg <= uvmexp.freetarg) {
250 uvmexp.inactarg = uvmexp.freetarg + 1;
251 }
252
253 /*
254 * Estimate a hint. Note that bufmem are returned to
255 * system only when entire pool page is empty.
256 */
257 bufcnt = uvmexp.freetarg - uvmexp.free;
258 if (bufcnt < 0)
259 bufcnt = 0;
260
261 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
262 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
263 uvmexp.inactarg);
264
265 /*
266 * scan if needed
267 */
268
269 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
270 uvmexp.inactive < uvmexp.inactarg) {
271 uvmpd_scan();
272 }
273
274 /*
275 * if there's any free memory to be had,
276 * wake up any waiters.
277 */
278
279 if (uvmexp.free > uvmexp.reserve_kernel ||
280 uvmexp.paging == 0) {
281 wakeup(&uvmexp.free);
282 }
283
284 /*
285 * scan done. unlock page queues (the only lock we are holding)
286 */
287
288 uvm_unlock_pageq();
289
290 buf_drain(bufcnt << PAGE_SHIFT);
291
292 /*
293 * drain pool resources now that we're not holding any locks
294 */
295
296 pool_drain(0);
297
298 /*
299 * free any cached u-areas we don't need
300 */
301 uvm_uarea_drain(TRUE);
302
303 }
304 /*NOTREACHED*/
305 }
306
307
308 /*
309 * uvm_aiodone_daemon: main loop for the aiodone daemon.
310 */
311
312 void
313 uvm_aiodone_daemon(void *arg)
314 {
315 int s, free;
316 struct buf *bp, *nbp;
317 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
318
319 for (;;) {
320
321 /*
322 * carefully attempt to go to sleep (without losing "wakeups"!).
323 * we need splbio because we want to make sure the aio_done list
324 * is totally empty before we go to sleep.
325 */
326
327 s = splbio();
328 simple_lock(&uvm.aiodoned_lock);
329 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
330 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
331 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
332 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
333 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
334
335 /* relock aiodoned_lock, still at splbio */
336 simple_lock(&uvm.aiodoned_lock);
337 }
338
339 /*
340 * check for done aio structures
341 */
342
343 bp = TAILQ_FIRST(&uvm.aio_done);
344 if (bp) {
345 TAILQ_INIT(&uvm.aio_done);
346 }
347
348 simple_unlock(&uvm.aiodoned_lock);
349 splx(s);
350
351 /*
352 * process each i/o that's done.
353 */
354
355 free = uvmexp.free;
356 while (bp != NULL) {
357 nbp = TAILQ_NEXT(bp, b_freelist);
358 (*bp->b_iodone)(bp);
359 bp = nbp;
360 }
361 if (free <= uvmexp.reserve_kernel) {
362 s = uvm_lock_fpageq();
363 wakeup(&uvm.pagedaemon);
364 uvm_unlock_fpageq(s);
365 } else {
366 simple_lock(&uvm.pagedaemon_lock);
367 wakeup(&uvmexp.free);
368 simple_unlock(&uvm.pagedaemon_lock);
369 }
370 }
371 }
372
373 /*
374 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
375 *
376 * => called with page queues locked
377 * => we work on meeting our free target by converting inactive pages
378 * into free pages.
379 * => we handle the building of swap-backed clusters
380 * => we return TRUE if we are exiting because we met our target
381 */
382
383 static void
384 uvmpd_scan_inactive(struct pglist *pglst)
385 {
386 struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
387 struct uvm_object *uobj;
388 struct vm_anon *anon;
389 #if defined(VMSWAP)
390 struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
391 int error;
392 int result;
393 #endif /* defined(VMSWAP) */
394 struct simplelock *slock;
395 int swnpages, swcpages;
396 int swslot;
397 int dirtyreacts, t;
398 boolean_t anonunder, fileunder, execunder;
399 boolean_t anonover, fileover, execover;
400 boolean_t anonreact, filereact, execreact;
401 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
402
403 /*
404 * swslot is non-zero if we are building a swap cluster. we want
405 * to stay in the loop while we have a page to scan or we have
406 * a swap-cluster to build.
407 */
408
409 swslot = 0;
410 swnpages = swcpages = 0;
411 dirtyreacts = 0;
412
413 /*
414 * decide which types of pages we want to reactivate instead of freeing
415 * to keep usage within the minimum and maximum usage limits.
416 */
417
418 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
419 anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
420 fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
421 execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
422 anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
423 fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
424 execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
425 anonreact = anonunder || (!anonover && (fileover || execover));
426 filereact = fileunder || (!fileover && (anonover || execover));
427 execreact = execunder || (!execover && (anonover || fileover));
428 if (filereact && execreact && (anonreact || uvm_swapisfull())) {
429 anonreact = filereact = execreact = FALSE;
430 }
431 #if !defined(VMSWAP)
432 /*
433 * XXX no point to put swap-backed pages on the page queue.
434 */
435
436 anonreact = TRUE;
437 #endif /* !defined(VMSWAP) */
438 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
439 uobj = NULL;
440 anon = NULL;
441 if (p) {
442
443 /*
444 * see if we've met the free target.
445 */
446
447 if (uvmexp.free + uvmexp.paging >=
448 uvmexp.freetarg << 2 ||
449 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
450 UVMHIST_LOG(pdhist," met free target: "
451 "exit loop", 0, 0, 0, 0);
452
453 if (swslot == 0) {
454 /* exit now if no swap-i/o pending */
455 break;
456 }
457
458 /* set p to null to signal final swap i/o */
459 p = NULL;
460 nextpg = NULL;
461 }
462 }
463 if (p) { /* if (we have a new page to consider) */
464
465 /*
466 * we are below target and have a new page to consider.
467 */
468
469 uvmexp.pdscans++;
470 nextpg = TAILQ_NEXT(p, pageq);
471
472 /*
473 * move referenced pages back to active queue and
474 * skip to next page.
475 */
476
477 if (pmap_clear_reference(p)) {
478 uvm_pageactivate(p);
479 uvmexp.pdreact++;
480 continue;
481 }
482 anon = p->uanon;
483 uobj = p->uobject;
484
485 /*
486 * enforce the minimum thresholds on different
487 * types of memory usage. if reusing the current
488 * page would reduce that type of usage below its
489 * minimum, reactivate the page instead and move
490 * on to the next page.
491 */
492
493 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
494 uvm_pageactivate(p);
495 uvmexp.pdreexec++;
496 continue;
497 }
498 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
499 !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
500 uvm_pageactivate(p);
501 uvmexp.pdrefile++;
502 continue;
503 }
504 if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
505 uvm_pageactivate(p);
506 uvmexp.pdreanon++;
507 continue;
508 }
509
510 /*
511 * first we attempt to lock the object that this page
512 * belongs to. if our attempt fails we skip on to
513 * the next page (no harm done). it is important to
514 * "try" locking the object as we are locking in the
515 * wrong order (pageq -> object) and we don't want to
516 * deadlock.
517 *
518 * the only time we expect to see an ownerless page
519 * (i.e. a page with no uobject and !PQ_ANON) is if an
520 * anon has loaned a page from a uvm_object and the
521 * uvm_object has dropped the ownership. in that
522 * case, the anon can "take over" the loaned page
523 * and make it its own.
524 */
525
526 /* does the page belong to an object? */
527 if (uobj != NULL) {
528 slock = &uobj->vmobjlock;
529 if (!simple_lock_try(slock)) {
530 continue;
531 }
532 if (p->flags & PG_BUSY) {
533 simple_unlock(slock);
534 uvmexp.pdbusy++;
535 continue;
536 }
537 uvmexp.pdobscan++;
538 } else {
539 #if defined(VMSWAP)
540 KASSERT(anon != NULL);
541 slock = &anon->an_lock;
542 if (!simple_lock_try(slock)) {
543 continue;
544 }
545
546 /*
547 * set PQ_ANON if it isn't set already.
548 */
549
550 if ((p->pqflags & PQ_ANON) == 0) {
551 KASSERT(p->loan_count > 0);
552 p->loan_count--;
553 p->pqflags |= PQ_ANON;
554 /* anon now owns it */
555 }
556 if (p->flags & PG_BUSY) {
557 simple_unlock(slock);
558 uvmexp.pdbusy++;
559 continue;
560 }
561 uvmexp.pdanscan++;
562 #else /* defined(VMSWAP) */
563 panic("%s: anon", __func__);
564 #endif /* defined(VMSWAP) */
565 }
566
567
568 /*
569 * we now have the object and the page queues locked.
570 * if the page is not swap-backed, call the object's
571 * pager to flush and free the page.
572 */
573
574 #if defined(READAHEAD_STATS)
575 if ((p->flags & PG_SPECULATIVE) != 0) {
576 p->flags &= ~PG_SPECULATIVE;
577 uvm_ra_miss.ev_count++;
578 }
579 #endif /* defined(READAHEAD_STATS) */
580
581 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
582 uvm_unlock_pageq();
583 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
584 p->offset + PAGE_SIZE,
585 PGO_CLEANIT|PGO_FREE);
586 uvm_lock_pageq();
587 if (nextpg &&
588 (nextpg->pqflags & PQ_INACTIVE) == 0) {
589 nextpg = TAILQ_FIRST(pglst);
590 }
591 continue;
592 }
593
594 #if defined(VMSWAP)
595 /*
596 * the page is swap-backed. remove all the permissions
597 * from the page so we can sync the modified info
598 * without any race conditions. if the page is clean
599 * we can free it now and continue.
600 */
601
602 pmap_page_protect(p, VM_PROT_NONE);
603 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
604 p->flags &= ~(PG_CLEAN);
605 }
606 if (p->flags & PG_CLEAN) {
607 int slot;
608 int pageidx;
609
610 pageidx = p->offset >> PAGE_SHIFT;
611 uvm_pagefree(p);
612 uvmexp.pdfreed++;
613
614 /*
615 * for anons, we need to remove the page
616 * from the anon ourselves. for aobjs,
617 * pagefree did that for us.
618 */
619
620 if (anon) {
621 KASSERT(anon->an_swslot != 0);
622 anon->an_page = NULL;
623 slot = anon->an_swslot;
624 } else {
625 slot = uao_find_swslot(uobj, pageidx);
626 }
627 simple_unlock(slock);
628
629 if (slot > 0) {
630 /* this page is now only in swap. */
631 simple_lock(&uvm.swap_data_lock);
632 KASSERT(uvmexp.swpgonly <
633 uvmexp.swpginuse);
634 uvmexp.swpgonly++;
635 simple_unlock(&uvm.swap_data_lock);
636 }
637 continue;
638 }
639
640 /*
641 * this page is dirty, skip it if we'll have met our
642 * free target when all the current pageouts complete.
643 */
644
645 if (uvmexp.free + uvmexp.paging >
646 uvmexp.freetarg << 2) {
647 simple_unlock(slock);
648 continue;
649 }
650
651 /*
652 * free any swap space allocated to the page since
653 * we'll have to write it again with its new data.
654 */
655
656 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
657 uvm_swap_free(anon->an_swslot, 1);
658 anon->an_swslot = 0;
659 } else if (p->pqflags & PQ_AOBJ) {
660 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
661 }
662
663 /*
664 * if all pages in swap are only in swap,
665 * the swap space is full and we can't page out
666 * any more swap-backed pages. reactivate this page
667 * so that we eventually cycle all pages through
668 * the inactive queue.
669 */
670
671 if (uvm_swapisfull()) {
672 dirtyreacts++;
673 uvm_pageactivate(p);
674 simple_unlock(slock);
675 continue;
676 }
677
678 /*
679 * start new swap pageout cluster (if necessary).
680 */
681
682 if (swslot == 0) {
683 /* Even with strange MAXPHYS, the shift
684 implicitly rounds down to a page. */
685 swnpages = MAXPHYS >> PAGE_SHIFT;
686 swslot = uvm_swap_alloc(&swnpages, TRUE);
687 if (swslot == 0) {
688 simple_unlock(slock);
689 continue;
690 }
691 swcpages = 0;
692 }
693
694 /*
695 * at this point, we're definitely going reuse this
696 * page. mark the page busy and delayed-free.
697 * we should remove the page from the page queues
698 * so we don't ever look at it again.
699 * adjust counters and such.
700 */
701
702 p->flags |= PG_BUSY;
703 UVM_PAGE_OWN(p, "scan_inactive");
704
705 p->flags |= PG_PAGEOUT;
706 uvmexp.paging++;
707 uvm_pagedequeue(p);
708
709 uvmexp.pgswapout++;
710
711 /*
712 * add the new page to the cluster.
713 */
714
715 if (anon) {
716 anon->an_swslot = swslot + swcpages;
717 simple_unlock(slock);
718 } else {
719 result = uao_set_swslot(uobj,
720 p->offset >> PAGE_SHIFT, swslot + swcpages);
721 if (result == -1) {
722 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
723 UVM_PAGE_OWN(p, NULL);
724 uvmexp.paging--;
725 uvm_pageactivate(p);
726 simple_unlock(slock);
727 continue;
728 }
729 simple_unlock(slock);
730 }
731 swpps[swcpages] = p;
732 swcpages++;
733
734 /*
735 * if the cluster isn't full, look for more pages
736 * before starting the i/o.
737 */
738
739 if (swcpages < swnpages) {
740 continue;
741 }
742 #else /* defined(VMSWAP) */
743 panic("%s: swap-backed", __func__);
744 #endif /* defined(VMSWAP) */
745
746 }
747
748 #if defined(VMSWAP)
749 /*
750 * if this is the final pageout we could have a few
751 * unused swap blocks. if so, free them now.
752 */
753
754 if (swcpages < swnpages) {
755 uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
756 }
757
758 /*
759 * now start the pageout.
760 */
761
762 uvm_unlock_pageq();
763 uvmexp.pdpageouts++;
764 error = uvm_swap_put(swslot, swpps, swcpages, 0);
765 KASSERT(error == 0);
766 uvm_lock_pageq();
767
768 /*
769 * zero swslot to indicate that we are
770 * no longer building a swap-backed cluster.
771 */
772
773 swslot = 0;
774
775 /*
776 * the pageout is in progress. bump counters and set up
777 * for the next loop.
778 */
779
780 uvmexp.pdpending++;
781 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
782 nextpg = TAILQ_FIRST(pglst);
783 }
784 #endif /* defined(VMSWAP) */
785 }
786 }
787
788 /*
789 * uvmpd_scan: scan the page queues and attempt to meet our targets.
790 *
791 * => called with pageq's locked
792 */
793
794 static void
795 uvmpd_scan(void)
796 {
797 int inactive_shortage, swap_shortage, pages_freed;
798 struct vm_page *p, *nextpg;
799 struct uvm_object *uobj;
800 struct vm_anon *anon;
801 struct simplelock *slock;
802 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
803
804 uvmexp.pdrevs++;
805 uobj = NULL;
806 anon = NULL;
807
808 #ifndef __SWAP_BROKEN
809
810 /*
811 * swap out some processes if we are below our free target.
812 * we need to unlock the page queues for this.
813 */
814
815 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
816 uvmexp.pdswout++;
817 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
818 uvmexp.free, uvmexp.freetarg, 0, 0);
819 uvm_unlock_pageq();
820 uvm_swapout_threads();
821 uvm_lock_pageq();
822
823 }
824 #endif
825
826 /*
827 * now we want to work on meeting our targets. first we work on our
828 * free target by converting inactive pages into free pages. then
829 * we work on meeting our inactive target by converting active pages
830 * to inactive ones.
831 */
832
833 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
834
835 pages_freed = uvmexp.pdfreed;
836 uvmpd_scan_inactive(&uvm.page_inactive);
837 pages_freed = uvmexp.pdfreed - pages_freed;
838
839 /*
840 * we have done the scan to get free pages. now we work on meeting
841 * our inactive target.
842 */
843
844 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
845
846 /*
847 * detect if we're not going to be able to page anything out
848 * until we free some swap resources from active pages.
849 */
850
851 swap_shortage = 0;
852 if (uvmexp.free < uvmexp.freetarg &&
853 uvmexp.swpginuse >= uvmexp.swpgavail &&
854 !uvm_swapisfull() &&
855 pages_freed == 0) {
856 swap_shortage = uvmexp.freetarg - uvmexp.free;
857 }
858
859 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
860 inactive_shortage, swap_shortage,0,0);
861 for (p = TAILQ_FIRST(&uvm.page_active);
862 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
863 p = nextpg) {
864 nextpg = TAILQ_NEXT(p, pageq);
865 if (p->flags & PG_BUSY) {
866 continue;
867 }
868
869 /*
870 * lock the page's owner.
871 */
872
873 if (p->uobject != NULL) {
874 uobj = p->uobject;
875 slock = &uobj->vmobjlock;
876 if (!simple_lock_try(slock)) {
877 continue;
878 }
879 } else {
880 anon = p->uanon;
881 KASSERT(anon != NULL);
882 slock = &anon->an_lock;
883 if (!simple_lock_try(slock)) {
884 continue;
885 }
886
887 /* take over the page? */
888 if ((p->pqflags & PQ_ANON) == 0) {
889 KASSERT(p->loan_count > 0);
890 p->loan_count--;
891 p->pqflags |= PQ_ANON;
892 }
893 }
894
895 /*
896 * skip this page if it's busy.
897 */
898
899 if ((p->flags & PG_BUSY) != 0) {
900 simple_unlock(slock);
901 continue;
902 }
903
904 #if defined(VMSWAP)
905 /*
906 * if there's a shortage of swap, free any swap allocated
907 * to this page so that other pages can be paged out.
908 */
909
910 if (swap_shortage > 0) {
911 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
912 uvm_swap_free(anon->an_swslot, 1);
913 anon->an_swslot = 0;
914 p->flags &= ~PG_CLEAN;
915 swap_shortage--;
916 } else if (p->pqflags & PQ_AOBJ) {
917 int slot = uao_set_swslot(uobj,
918 p->offset >> PAGE_SHIFT, 0);
919 if (slot) {
920 uvm_swap_free(slot, 1);
921 p->flags &= ~PG_CLEAN;
922 swap_shortage--;
923 }
924 }
925 }
926 #endif /* defined(VMSWAP) */
927
928 /*
929 * if there's a shortage of inactive pages, deactivate.
930 */
931
932 if (inactive_shortage > 0) {
933 /* no need to check wire_count as pg is "active" */
934 uvm_pagedeactivate(p);
935 uvmexp.pddeact++;
936 inactive_shortage--;
937 }
938
939 /*
940 * we're done with this page.
941 */
942
943 simple_unlock(slock);
944 }
945 }
946
947 /*
948 * uvm_reclaimable: decide whether to wait for pagedaemon.
949 *
950 * => return TRUE if it seems to be worth to do uvm_wait.
951 *
952 * XXX should be tunable.
953 * XXX should consider pools, etc?
954 */
955
956 boolean_t
957 uvm_reclaimable(void)
958 {
959 int filepages;
960
961 /*
962 * if swap is not full, no problem.
963 */
964
965 if (!uvm_swapisfull()) {
966 return TRUE;
967 }
968
969 /*
970 * file-backed pages can be reclaimed even when swap is full.
971 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
972 *
973 * XXX assume the worst case, ie. all wired pages are file-backed.
974 *
975 * XXX should consider about other reclaimable memory.
976 * XXX ie. pools, traditional buffer cache.
977 */
978
979 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
980 if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
981 5 * 1024 * 1024 >> PAGE_SHIFT)) {
982 return TRUE;
983 }
984
985 /*
986 * kill the process, fail allocation, etc..
987 */
988
989 return FALSE;
990 }
991