uvm_pdaemon.c revision 1.71 1 /* $NetBSD: uvm_pdaemon.c,v 1.71 2005/12/21 12:24:47 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.71 2005/12/21 12:24:47 yamt Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/pool.h>
84 #include <sys/buf.h>
85 #include <sys/vnode.h>
86
87 #include <uvm/uvm.h>
88
89 /*
90 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
91 * in a pass thru the inactive list when swap is full. the value should be
92 * "small"... if it's too large we'll cycle the active pages thru the inactive
93 * queue too quickly to for them to be referenced and avoid being freed.
94 */
95
96 #define UVMPD_NUMDIRTYREACTS 16
97
98
99 /*
100 * local prototypes
101 */
102
103 static void uvmpd_scan(void);
104 static void uvmpd_scan_inactive(struct pglist *);
105 static void uvmpd_tune(void);
106
107 /*
108 * XXX hack to avoid hangs when large processes fork.
109 */
110 int uvm_extrapages;
111
112 /*
113 * uvm_wait: wait (sleep) for the page daemon to free some pages
114 *
115 * => should be called with all locks released
116 * => should _not_ be called by the page daemon (to avoid deadlock)
117 */
118
119 void
120 uvm_wait(const char *wmsg)
121 {
122 int timo = 0;
123 int s = splbio();
124
125 /*
126 * check for page daemon going to sleep (waiting for itself)
127 */
128
129 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
130 /*
131 * now we have a problem: the pagedaemon wants to go to
132 * sleep until it frees more memory. but how can it
133 * free more memory if it is asleep? that is a deadlock.
134 * we have two options:
135 * [1] panic now
136 * [2] put a timeout on the sleep, thus causing the
137 * pagedaemon to only pause (rather than sleep forever)
138 *
139 * note that option [2] will only help us if we get lucky
140 * and some other process on the system breaks the deadlock
141 * by exiting or freeing memory (thus allowing the pagedaemon
142 * to continue). for now we panic if DEBUG is defined,
143 * otherwise we hope for the best with option [2] (better
144 * yet, this should never happen in the first place!).
145 */
146
147 printf("pagedaemon: deadlock detected!\n");
148 timo = hz >> 3; /* set timeout */
149 #if defined(DEBUG)
150 /* DEBUG: panic so we can debug it */
151 panic("pagedaemon deadlock");
152 #endif
153 }
154
155 simple_lock(&uvm.pagedaemon_lock);
156 wakeup(&uvm.pagedaemon); /* wake the daemon! */
157 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
158 timo);
159
160 splx(s);
161 }
162
163
164 /*
165 * uvmpd_tune: tune paging parameters
166 *
167 * => called when ever memory is added (or removed?) to the system
168 * => caller must call with page queues locked
169 */
170
171 static void
172 uvmpd_tune(void)
173 {
174 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
175
176 uvmexp.freemin = uvmexp.npages / 20;
177
178 /* between 16k and 256k */
179 /* XXX: what are these values good for? */
180 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
181 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
182
183 /* Make sure there's always a user page free. */
184 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
185 uvmexp.freemin = uvmexp.reserve_kernel + 1;
186
187 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
188 if (uvmexp.freetarg <= uvmexp.freemin)
189 uvmexp.freetarg = uvmexp.freemin + 1;
190
191 uvmexp.freetarg += uvm_extrapages;
192 uvm_extrapages = 0;
193
194 /* uvmexp.inactarg: computed in main daemon loop */
195
196 uvmexp.wiredmax = uvmexp.npages / 3;
197 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
198 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
199 }
200
201 /*
202 * uvm_pageout: the main loop for the pagedaemon
203 */
204
205 void
206 uvm_pageout(void *arg)
207 {
208 int bufcnt, npages = 0;
209 int extrapages = 0;
210 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
211
212 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
213
214 /*
215 * ensure correct priority and set paging parameters...
216 */
217
218 uvm.pagedaemon_proc = curproc;
219 uvm_lock_pageq();
220 npages = uvmexp.npages;
221 uvmpd_tune();
222 uvm_unlock_pageq();
223
224 /*
225 * main loop
226 */
227
228 for (;;) {
229 simple_lock(&uvm.pagedaemon_lock);
230
231 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
232 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
233 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
234 uvmexp.pdwoke++;
235 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
236
237 /*
238 * now lock page queues and recompute inactive count
239 */
240
241 uvm_lock_pageq();
242 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
243 npages = uvmexp.npages;
244 extrapages = uvm_extrapages;
245 uvmpd_tune();
246 }
247
248 uvmexp.inactarg = UVM_PCTPARAM_APPLY(&uvmexp.inactivepct,
249 uvmexp.active + uvmexp.inactive);
250 if (uvmexp.inactarg <= uvmexp.freetarg) {
251 uvmexp.inactarg = uvmexp.freetarg + 1;
252 }
253
254 /*
255 * Estimate a hint. Note that bufmem are returned to
256 * system only when entire pool page is empty.
257 */
258 bufcnt = uvmexp.freetarg - uvmexp.free;
259 if (bufcnt < 0)
260 bufcnt = 0;
261
262 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
263 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
264 uvmexp.inactarg);
265
266 /*
267 * scan if needed
268 */
269
270 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
271 uvmexp.inactive < uvmexp.inactarg) {
272 uvmpd_scan();
273 }
274
275 /*
276 * if there's any free memory to be had,
277 * wake up any waiters.
278 */
279
280 if (uvmexp.free > uvmexp.reserve_kernel ||
281 uvmexp.paging == 0) {
282 wakeup(&uvmexp.free);
283 }
284
285 /*
286 * scan done. unlock page queues (the only lock we are holding)
287 */
288
289 uvm_unlock_pageq();
290
291 buf_drain(bufcnt << PAGE_SHIFT);
292
293 /*
294 * drain pool resources now that we're not holding any locks
295 */
296
297 pool_drain(0);
298
299 /*
300 * free any cached u-areas we don't need
301 */
302 uvm_uarea_drain(TRUE);
303
304 }
305 /*NOTREACHED*/
306 }
307
308
309 /*
310 * uvm_aiodone_daemon: main loop for the aiodone daemon.
311 */
312
313 void
314 uvm_aiodone_daemon(void *arg)
315 {
316 int s, free;
317 struct buf *bp, *nbp;
318 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
319
320 for (;;) {
321
322 /*
323 * carefully attempt to go to sleep (without losing "wakeups"!).
324 * we need splbio because we want to make sure the aio_done list
325 * is totally empty before we go to sleep.
326 */
327
328 s = splbio();
329 simple_lock(&uvm.aiodoned_lock);
330 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
331 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
332 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
333 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
334 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
335
336 /* relock aiodoned_lock, still at splbio */
337 simple_lock(&uvm.aiodoned_lock);
338 }
339
340 /*
341 * check for done aio structures
342 */
343
344 bp = TAILQ_FIRST(&uvm.aio_done);
345 if (bp) {
346 TAILQ_INIT(&uvm.aio_done);
347 }
348
349 simple_unlock(&uvm.aiodoned_lock);
350 splx(s);
351
352 /*
353 * process each i/o that's done.
354 */
355
356 free = uvmexp.free;
357 while (bp != NULL) {
358 nbp = TAILQ_NEXT(bp, b_freelist);
359 (*bp->b_iodone)(bp);
360 bp = nbp;
361 }
362 if (free <= uvmexp.reserve_kernel) {
363 s = uvm_lock_fpageq();
364 wakeup(&uvm.pagedaemon);
365 uvm_unlock_fpageq(s);
366 } else {
367 simple_lock(&uvm.pagedaemon_lock);
368 wakeup(&uvmexp.free);
369 simple_unlock(&uvm.pagedaemon_lock);
370 }
371 }
372 }
373
374 /*
375 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
376 *
377 * => called with page queues locked
378 * => we work on meeting our free target by converting inactive pages
379 * into free pages.
380 * => we handle the building of swap-backed clusters
381 * => we return TRUE if we are exiting because we met our target
382 */
383
384 static void
385 uvmpd_scan_inactive(struct pglist *pglst)
386 {
387 struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
388 struct uvm_object *uobj;
389 struct vm_anon *anon;
390 #if defined(VMSWAP)
391 struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
392 int error;
393 int result;
394 #endif /* defined(VMSWAP) */
395 struct simplelock *slock;
396 int swnpages, swcpages;
397 int swslot;
398 int dirtyreacts, t;
399 boolean_t anonunder, fileunder, execunder;
400 boolean_t anonover, fileover, execover;
401 boolean_t anonreact, filereact, execreact;
402 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
403
404 /*
405 * swslot is non-zero if we are building a swap cluster. we want
406 * to stay in the loop while we have a page to scan or we have
407 * a swap-cluster to build.
408 */
409
410 swslot = 0;
411 swnpages = swcpages = 0;
412 dirtyreacts = 0;
413
414 /*
415 * decide which types of pages we want to reactivate instead of freeing
416 * to keep usage within the minimum and maximum usage limits.
417 */
418
419 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
420 anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
421 fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
422 execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
423 anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
424 fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
425 execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
426 anonreact = anonunder || (!anonover && (fileover || execover));
427 filereact = fileunder || (!fileover && (anonover || execover));
428 execreact = execunder || (!execover && (anonover || fileover));
429 if (filereact && execreact && (anonreact || uvm_swapisfull())) {
430 anonreact = filereact = execreact = FALSE;
431 }
432 #if !defined(VMSWAP)
433 /*
434 * XXX no point to put swap-backed pages on the page queue.
435 */
436
437 anonreact = TRUE;
438 #endif /* !defined(VMSWAP) */
439 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
440 uobj = NULL;
441 anon = NULL;
442 if (p) {
443
444 /*
445 * see if we've met the free target.
446 */
447
448 if (uvmexp.free + uvmexp.paging >=
449 uvmexp.freetarg << 2 ||
450 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
451 UVMHIST_LOG(pdhist," met free target: "
452 "exit loop", 0, 0, 0, 0);
453
454 if (swslot == 0) {
455 /* exit now if no swap-i/o pending */
456 break;
457 }
458
459 /* set p to null to signal final swap i/o */
460 p = NULL;
461 nextpg = NULL;
462 }
463 }
464 if (p) { /* if (we have a new page to consider) */
465
466 /*
467 * we are below target and have a new page to consider.
468 */
469
470 uvmexp.pdscans++;
471 nextpg = TAILQ_NEXT(p, pageq);
472
473 /*
474 * move referenced pages back to active queue and
475 * skip to next page.
476 */
477
478 if (pmap_clear_reference(p)) {
479 uvm_pageactivate(p);
480 uvmexp.pdreact++;
481 continue;
482 }
483 anon = p->uanon;
484 uobj = p->uobject;
485
486 /*
487 * enforce the minimum thresholds on different
488 * types of memory usage. if reusing the current
489 * page would reduce that type of usage below its
490 * minimum, reactivate the page instead and move
491 * on to the next page.
492 */
493
494 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
495 uvm_pageactivate(p);
496 uvmexp.pdreexec++;
497 continue;
498 }
499 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
500 !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
501 uvm_pageactivate(p);
502 uvmexp.pdrefile++;
503 continue;
504 }
505 if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
506 uvm_pageactivate(p);
507 uvmexp.pdreanon++;
508 continue;
509 }
510
511 /*
512 * first we attempt to lock the object that this page
513 * belongs to. if our attempt fails we skip on to
514 * the next page (no harm done). it is important to
515 * "try" locking the object as we are locking in the
516 * wrong order (pageq -> object) and we don't want to
517 * deadlock.
518 *
519 * the only time we expect to see an ownerless page
520 * (i.e. a page with no uobject and !PQ_ANON) is if an
521 * anon has loaned a page from a uvm_object and the
522 * uvm_object has dropped the ownership. in that
523 * case, the anon can "take over" the loaned page
524 * and make it its own.
525 */
526
527 /* does the page belong to an object? */
528 if (uobj != NULL) {
529 slock = &uobj->vmobjlock;
530 if (!simple_lock_try(slock)) {
531 continue;
532 }
533 if (p->flags & PG_BUSY) {
534 simple_unlock(slock);
535 uvmexp.pdbusy++;
536 continue;
537 }
538 uvmexp.pdobscan++;
539 } else {
540 #if defined(VMSWAP)
541 KASSERT(anon != NULL);
542 slock = &anon->an_lock;
543 if (!simple_lock_try(slock)) {
544 continue;
545 }
546
547 /*
548 * set PQ_ANON if it isn't set already.
549 */
550
551 if ((p->pqflags & PQ_ANON) == 0) {
552 KASSERT(p->loan_count > 0);
553 p->loan_count--;
554 p->pqflags |= PQ_ANON;
555 /* anon now owns it */
556 }
557 if (p->flags & PG_BUSY) {
558 simple_unlock(slock);
559 uvmexp.pdbusy++;
560 continue;
561 }
562 uvmexp.pdanscan++;
563 #else /* defined(VMSWAP) */
564 panic("%s: anon", __func__);
565 #endif /* defined(VMSWAP) */
566 }
567
568
569 /*
570 * we now have the object and the page queues locked.
571 * if the page is not swap-backed, call the object's
572 * pager to flush and free the page.
573 */
574
575 #if defined(READAHEAD_STATS)
576 if ((p->flags & PG_SPECULATIVE) != 0) {
577 p->flags &= ~PG_SPECULATIVE;
578 uvm_ra_miss.ev_count++;
579 }
580 #endif /* defined(READAHEAD_STATS) */
581
582 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
583 uvm_unlock_pageq();
584 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
585 p->offset + PAGE_SIZE,
586 PGO_CLEANIT|PGO_FREE);
587 uvm_lock_pageq();
588 if (nextpg &&
589 (nextpg->pqflags & PQ_INACTIVE) == 0) {
590 nextpg = TAILQ_FIRST(pglst);
591 }
592 continue;
593 }
594
595 #if defined(VMSWAP)
596 /*
597 * the page is swap-backed. remove all the permissions
598 * from the page so we can sync the modified info
599 * without any race conditions. if the page is clean
600 * we can free it now and continue.
601 */
602
603 pmap_page_protect(p, VM_PROT_NONE);
604 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
605 p->flags &= ~(PG_CLEAN);
606 }
607 if (p->flags & PG_CLEAN) {
608 int slot;
609 int pageidx;
610
611 pageidx = p->offset >> PAGE_SHIFT;
612 uvm_pagefree(p);
613 uvmexp.pdfreed++;
614
615 /*
616 * for anons, we need to remove the page
617 * from the anon ourselves. for aobjs,
618 * pagefree did that for us.
619 */
620
621 if (anon) {
622 KASSERT(anon->an_swslot != 0);
623 anon->an_page = NULL;
624 slot = anon->an_swslot;
625 } else {
626 slot = uao_find_swslot(uobj, pageidx);
627 }
628 simple_unlock(slock);
629
630 if (slot > 0) {
631 /* this page is now only in swap. */
632 simple_lock(&uvm.swap_data_lock);
633 KASSERT(uvmexp.swpgonly <
634 uvmexp.swpginuse);
635 uvmexp.swpgonly++;
636 simple_unlock(&uvm.swap_data_lock);
637 }
638 continue;
639 }
640
641 /*
642 * this page is dirty, skip it if we'll have met our
643 * free target when all the current pageouts complete.
644 */
645
646 if (uvmexp.free + uvmexp.paging >
647 uvmexp.freetarg << 2) {
648 simple_unlock(slock);
649 continue;
650 }
651
652 /*
653 * free any swap space allocated to the page since
654 * we'll have to write it again with its new data.
655 */
656
657 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
658 uvm_swap_free(anon->an_swslot, 1);
659 anon->an_swslot = 0;
660 } else if (p->pqflags & PQ_AOBJ) {
661 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
662 }
663
664 /*
665 * if all pages in swap are only in swap,
666 * the swap space is full and we can't page out
667 * any more swap-backed pages. reactivate this page
668 * so that we eventually cycle all pages through
669 * the inactive queue.
670 */
671
672 if (uvm_swapisfull()) {
673 dirtyreacts++;
674 uvm_pageactivate(p);
675 simple_unlock(slock);
676 continue;
677 }
678
679 /*
680 * start new swap pageout cluster (if necessary).
681 */
682
683 if (swslot == 0) {
684 /* Even with strange MAXPHYS, the shift
685 implicitly rounds down to a page. */
686 swnpages = MAXPHYS >> PAGE_SHIFT;
687 swslot = uvm_swap_alloc(&swnpages, TRUE);
688 if (swslot == 0) {
689 simple_unlock(slock);
690 continue;
691 }
692 swcpages = 0;
693 }
694
695 /*
696 * at this point, we're definitely going reuse this
697 * page. mark the page busy and delayed-free.
698 * we should remove the page from the page queues
699 * so we don't ever look at it again.
700 * adjust counters and such.
701 */
702
703 p->flags |= PG_BUSY;
704 UVM_PAGE_OWN(p, "scan_inactive");
705
706 p->flags |= PG_PAGEOUT;
707 uvmexp.paging++;
708 uvm_pagedequeue(p);
709
710 uvmexp.pgswapout++;
711
712 /*
713 * add the new page to the cluster.
714 */
715
716 if (anon) {
717 anon->an_swslot = swslot + swcpages;
718 simple_unlock(slock);
719 } else {
720 result = uao_set_swslot(uobj,
721 p->offset >> PAGE_SHIFT, swslot + swcpages);
722 if (result == -1) {
723 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
724 UVM_PAGE_OWN(p, NULL);
725 uvmexp.paging--;
726 uvm_pageactivate(p);
727 simple_unlock(slock);
728 continue;
729 }
730 simple_unlock(slock);
731 }
732 swpps[swcpages] = p;
733 swcpages++;
734
735 /*
736 * if the cluster isn't full, look for more pages
737 * before starting the i/o.
738 */
739
740 if (swcpages < swnpages) {
741 continue;
742 }
743 #else /* defined(VMSWAP) */
744 panic("%s: swap-backed", __func__);
745 #endif /* defined(VMSWAP) */
746
747 }
748
749 #if defined(VMSWAP)
750 /*
751 * if this is the final pageout we could have a few
752 * unused swap blocks. if so, free them now.
753 */
754
755 if (swcpages < swnpages) {
756 uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
757 }
758
759 /*
760 * now start the pageout.
761 */
762
763 uvm_unlock_pageq();
764 uvmexp.pdpageouts++;
765 error = uvm_swap_put(swslot, swpps, swcpages, 0);
766 KASSERT(error == 0);
767 uvm_lock_pageq();
768
769 /*
770 * zero swslot to indicate that we are
771 * no longer building a swap-backed cluster.
772 */
773
774 swslot = 0;
775
776 /*
777 * the pageout is in progress. bump counters and set up
778 * for the next loop.
779 */
780
781 uvmexp.pdpending++;
782 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
783 nextpg = TAILQ_FIRST(pglst);
784 }
785 #endif /* defined(VMSWAP) */
786 }
787 }
788
789 /*
790 * uvmpd_scan: scan the page queues and attempt to meet our targets.
791 *
792 * => called with pageq's locked
793 */
794
795 static void
796 uvmpd_scan(void)
797 {
798 int inactive_shortage, swap_shortage, pages_freed;
799 struct vm_page *p, *nextpg;
800 struct uvm_object *uobj;
801 struct vm_anon *anon;
802 struct simplelock *slock;
803 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
804
805 uvmexp.pdrevs++;
806 uobj = NULL;
807 anon = NULL;
808
809 #ifndef __SWAP_BROKEN
810
811 /*
812 * swap out some processes if we are below our free target.
813 * we need to unlock the page queues for this.
814 */
815
816 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
817 uvmexp.pdswout++;
818 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
819 uvmexp.free, uvmexp.freetarg, 0, 0);
820 uvm_unlock_pageq();
821 uvm_swapout_threads();
822 uvm_lock_pageq();
823
824 }
825 #endif
826
827 /*
828 * now we want to work on meeting our targets. first we work on our
829 * free target by converting inactive pages into free pages. then
830 * we work on meeting our inactive target by converting active pages
831 * to inactive ones.
832 */
833
834 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
835
836 pages_freed = uvmexp.pdfreed;
837 uvmpd_scan_inactive(&uvm.page_inactive);
838 pages_freed = uvmexp.pdfreed - pages_freed;
839
840 /*
841 * we have done the scan to get free pages. now we work on meeting
842 * our inactive target.
843 */
844
845 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
846
847 /*
848 * detect if we're not going to be able to page anything out
849 * until we free some swap resources from active pages.
850 */
851
852 swap_shortage = 0;
853 if (uvmexp.free < uvmexp.freetarg &&
854 uvmexp.swpginuse >= uvmexp.swpgavail &&
855 !uvm_swapisfull() &&
856 pages_freed == 0) {
857 swap_shortage = uvmexp.freetarg - uvmexp.free;
858 }
859
860 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
861 inactive_shortage, swap_shortage,0,0);
862 for (p = TAILQ_FIRST(&uvm.page_active);
863 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
864 p = nextpg) {
865 nextpg = TAILQ_NEXT(p, pageq);
866 if (p->flags & PG_BUSY) {
867 continue;
868 }
869
870 /*
871 * lock the page's owner.
872 */
873
874 if (p->uobject != NULL) {
875 uobj = p->uobject;
876 slock = &uobj->vmobjlock;
877 if (!simple_lock_try(slock)) {
878 continue;
879 }
880 } else {
881 anon = p->uanon;
882 KASSERT(anon != NULL);
883 slock = &anon->an_lock;
884 if (!simple_lock_try(slock)) {
885 continue;
886 }
887
888 /* take over the page? */
889 if ((p->pqflags & PQ_ANON) == 0) {
890 KASSERT(p->loan_count > 0);
891 p->loan_count--;
892 p->pqflags |= PQ_ANON;
893 }
894 }
895
896 /*
897 * skip this page if it's busy.
898 */
899
900 if ((p->flags & PG_BUSY) != 0) {
901 simple_unlock(slock);
902 continue;
903 }
904
905 #if defined(VMSWAP)
906 /*
907 * if there's a shortage of swap, free any swap allocated
908 * to this page so that other pages can be paged out.
909 */
910
911 if (swap_shortage > 0) {
912 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
913 uvm_swap_free(anon->an_swslot, 1);
914 anon->an_swslot = 0;
915 p->flags &= ~PG_CLEAN;
916 swap_shortage--;
917 } else if (p->pqflags & PQ_AOBJ) {
918 int slot = uao_set_swslot(uobj,
919 p->offset >> PAGE_SHIFT, 0);
920 if (slot) {
921 uvm_swap_free(slot, 1);
922 p->flags &= ~PG_CLEAN;
923 swap_shortage--;
924 }
925 }
926 }
927 #endif /* defined(VMSWAP) */
928
929 /*
930 * if there's a shortage of inactive pages, deactivate.
931 */
932
933 if (inactive_shortage > 0) {
934 /* no need to check wire_count as pg is "active" */
935 pmap_clear_reference(p);
936 uvm_pagedeactivate(p);
937 uvmexp.pddeact++;
938 inactive_shortage--;
939 }
940
941 /*
942 * we're done with this page.
943 */
944
945 simple_unlock(slock);
946 }
947 }
948
949 /*
950 * uvm_reclaimable: decide whether to wait for pagedaemon.
951 *
952 * => return TRUE if it seems to be worth to do uvm_wait.
953 *
954 * XXX should be tunable.
955 * XXX should consider pools, etc?
956 */
957
958 boolean_t
959 uvm_reclaimable(void)
960 {
961 int filepages;
962
963 /*
964 * if swap is not full, no problem.
965 */
966
967 if (!uvm_swapisfull()) {
968 return TRUE;
969 }
970
971 /*
972 * file-backed pages can be reclaimed even when swap is full.
973 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
974 *
975 * XXX assume the worst case, ie. all wired pages are file-backed.
976 *
977 * XXX should consider about other reclaimable memory.
978 * XXX ie. pools, traditional buffer cache.
979 */
980
981 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
982 if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
983 5 * 1024 * 1024 >> PAGE_SHIFT)) {
984 return TRUE;
985 }
986
987 /*
988 * kill the process, fail allocation, etc..
989 */
990
991 return FALSE;
992 }
993