Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.75
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.75 2006/02/14 02:28:21 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.75 2006/02/14 02:28:21 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 #include <sys/vnode.h>
     86 
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     91  * in a pass thru the inactive list when swap is full.  the value should be
     92  * "small"... if it's too large we'll cycle the active pages thru the inactive
     93  * queue too quickly to for them to be referenced and avoid being freed.
     94  */
     95 
     96 #define UVMPD_NUMDIRTYREACTS 16
     97 
     98 
     99 /*
    100  * local prototypes
    101  */
    102 
    103 static void	uvmpd_scan(void);
    104 static void	uvmpd_scan_inactive(struct pglist *);
    105 static void	uvmpd_tune(void);
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 int uvm_extrapages;
    111 
    112 /*
    113  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114  *
    115  * => should be called with all locks released
    116  * => should _not_ be called by the page daemon (to avoid deadlock)
    117  */
    118 
    119 void
    120 uvm_wait(const char *wmsg)
    121 {
    122 	int timo = 0;
    123 	int s = splbio();
    124 
    125 	/*
    126 	 * check for page daemon going to sleep (waiting for itself)
    127 	 */
    128 
    129 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    130 		/*
    131 		 * now we have a problem: the pagedaemon wants to go to
    132 		 * sleep until it frees more memory.   but how can it
    133 		 * free more memory if it is asleep?  that is a deadlock.
    134 		 * we have two options:
    135 		 *  [1] panic now
    136 		 *  [2] put a timeout on the sleep, thus causing the
    137 		 *      pagedaemon to only pause (rather than sleep forever)
    138 		 *
    139 		 * note that option [2] will only help us if we get lucky
    140 		 * and some other process on the system breaks the deadlock
    141 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142 		 * to continue).  for now we panic if DEBUG is defined,
    143 		 * otherwise we hope for the best with option [2] (better
    144 		 * yet, this should never happen in the first place!).
    145 		 */
    146 
    147 		printf("pagedaemon: deadlock detected!\n");
    148 		timo = hz >> 3;		/* set timeout */
    149 #if defined(DEBUG)
    150 		/* DEBUG: panic so we can debug it */
    151 		panic("pagedaemon deadlock");
    152 #endif
    153 	}
    154 
    155 	simple_lock(&uvm.pagedaemon_lock);
    156 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    158 	    timo);
    159 
    160 	splx(s);
    161 }
    162 
    163 
    164 /*
    165  * uvmpd_tune: tune paging parameters
    166  *
    167  * => called when ever memory is added (or removed?) to the system
    168  * => caller must call with page queues locked
    169  */
    170 
    171 static void
    172 uvmpd_tune(void)
    173 {
    174 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    175 
    176 	uvmexp.freemin = uvmexp.npages / 20;
    177 
    178 	/* between 16k and 256k */
    179 	/* XXX:  what are these values good for? */
    180 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    181 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    182 
    183 	/* Make sure there's always a user page free. */
    184 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    185 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    186 
    187 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    188 	if (uvmexp.freetarg <= uvmexp.freemin)
    189 		uvmexp.freetarg = uvmexp.freemin + 1;
    190 
    191 	uvmexp.freetarg += uvm_extrapages;
    192 	uvm_extrapages = 0;
    193 
    194 	/* uvmexp.inactarg: computed in main daemon loop */
    195 
    196 	uvmexp.wiredmax = uvmexp.npages / 3;
    197 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    198 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    199 }
    200 
    201 /*
    202  * uvm_pageout: the main loop for the pagedaemon
    203  */
    204 
    205 void
    206 uvm_pageout(void *arg)
    207 {
    208 	int bufcnt, npages = 0;
    209 	int extrapages = 0;
    210 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    211 
    212 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    213 
    214 	/*
    215 	 * ensure correct priority and set paging parameters...
    216 	 */
    217 
    218 	uvm.pagedaemon_proc = curproc;
    219 	uvm_lock_pageq();
    220 	npages = uvmexp.npages;
    221 	uvmpd_tune();
    222 	uvm_unlock_pageq();
    223 
    224 	/*
    225 	 * main loop
    226 	 */
    227 
    228 	for (;;) {
    229 		simple_lock(&uvm.pagedaemon_lock);
    230 
    231 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    232 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    233 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    234 		uvmexp.pdwoke++;
    235 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    236 
    237 		/*
    238 		 * now lock page queues and recompute inactive count
    239 		 */
    240 
    241 		uvm_lock_pageq();
    242 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    243 			npages = uvmexp.npages;
    244 			extrapages = uvm_extrapages;
    245 			uvmpd_tune();
    246 		}
    247 
    248 		uvmexp.inactarg = UVM_PCTPARAM_APPLY(&uvmexp.inactivepct,
    249 		    uvmexp.active + uvmexp.inactive);
    250 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    251 			uvmexp.inactarg = uvmexp.freetarg + 1;
    252 		}
    253 
    254 		/*
    255 		 * Estimate a hint.  Note that bufmem are returned to
    256 		 * system only when entire pool page is empty.
    257 		 */
    258 		bufcnt = uvmexp.freetarg - uvmexp.free;
    259 		if (bufcnt < 0)
    260 			bufcnt = 0;
    261 
    262 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    263 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    264 		    uvmexp.inactarg);
    265 
    266 		/*
    267 		 * scan if needed
    268 		 */
    269 
    270 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    271 		    uvmexp.inactive < uvmexp.inactarg) {
    272 			uvmpd_scan();
    273 		}
    274 
    275 		/*
    276 		 * if there's any free memory to be had,
    277 		 * wake up any waiters.
    278 		 */
    279 
    280 		if (uvmexp.free > uvmexp.reserve_kernel ||
    281 		    uvmexp.paging == 0) {
    282 			wakeup(&uvmexp.free);
    283 		}
    284 
    285 		/*
    286 		 * scan done.  unlock page queues (the only lock we are holding)
    287 		 */
    288 
    289 		uvm_unlock_pageq();
    290 
    291 		buf_drain(bufcnt << PAGE_SHIFT);
    292 
    293 		/*
    294 		 * drain pool resources now that we're not holding any locks
    295 		 */
    296 
    297 		pool_drain(0);
    298 
    299 		/*
    300 		 * free any cached u-areas we don't need
    301 		 */
    302 		uvm_uarea_drain(TRUE);
    303 
    304 	}
    305 	/*NOTREACHED*/
    306 }
    307 
    308 
    309 /*
    310  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    311  */
    312 
    313 void
    314 uvm_aiodone_daemon(void *arg)
    315 {
    316 	int s, free;
    317 	struct buf *bp, *nbp;
    318 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    319 
    320 	for (;;) {
    321 
    322 		/*
    323 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    324 		 * we need splbio because we want to make sure the aio_done list
    325 		 * is totally empty before we go to sleep.
    326 		 */
    327 
    328 		s = splbio();
    329 		simple_lock(&uvm.aiodoned_lock);
    330 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    331 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    332 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    333 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    334 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    335 
    336 			/* relock aiodoned_lock, still at splbio */
    337 			simple_lock(&uvm.aiodoned_lock);
    338 		}
    339 
    340 		/*
    341 		 * check for done aio structures
    342 		 */
    343 
    344 		bp = TAILQ_FIRST(&uvm.aio_done);
    345 		if (bp) {
    346 			TAILQ_INIT(&uvm.aio_done);
    347 		}
    348 
    349 		simple_unlock(&uvm.aiodoned_lock);
    350 		splx(s);
    351 
    352 		/*
    353 		 * process each i/o that's done.
    354 		 */
    355 
    356 		free = uvmexp.free;
    357 		while (bp != NULL) {
    358 			nbp = TAILQ_NEXT(bp, b_freelist);
    359 			(*bp->b_iodone)(bp);
    360 			bp = nbp;
    361 		}
    362 		if (free <= uvmexp.reserve_kernel) {
    363 			s = uvm_lock_fpageq();
    364 			wakeup(&uvm.pagedaemon);
    365 			uvm_unlock_fpageq(s);
    366 		} else {
    367 			simple_lock(&uvm.pagedaemon_lock);
    368 			wakeup(&uvmexp.free);
    369 			simple_unlock(&uvm.pagedaemon_lock);
    370 		}
    371 	}
    372 }
    373 
    374 #if defined(VMSWAP)
    375 struct swapcluster {
    376 	int swc_slot;
    377 	int swc_nallocated;
    378 	int swc_nused;
    379 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    380 };
    381 
    382 static void
    383 swapcluster_init(struct swapcluster *swc)
    384 {
    385 
    386 	swc->swc_slot = 0;
    387 }
    388 
    389 static int
    390 swapcluster_allocslots(struct swapcluster *swc)
    391 {
    392 	int slot;
    393 	int npages;
    394 
    395 	if (swc->swc_slot != 0) {
    396 		return 0;
    397 	}
    398 
    399 	/* Even with strange MAXPHYS, the shift
    400 	   implicitly rounds down to a page. */
    401 	npages = MAXPHYS >> PAGE_SHIFT;
    402 	slot = uvm_swap_alloc(&npages, TRUE);
    403 	if (slot == 0) {
    404 		return ENOMEM;
    405 	}
    406 	swc->swc_slot = slot;
    407 	swc->swc_nallocated = npages;
    408 	swc->swc_nused = 0;
    409 
    410 	return 0;
    411 }
    412 
    413 static int
    414 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    415 {
    416 	int slot;
    417 	struct uvm_object *uobj;
    418 
    419 	KASSERT(swc->swc_slot != 0);
    420 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    421 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    422 
    423 	slot = swc->swc_slot + swc->swc_nused;
    424 	uobj = pg->uobject;
    425 	if (uobj == NULL) {
    426 		LOCK_ASSERT(simple_lock_held(&pg->uanon->an_lock));
    427 		pg->uanon->an_swslot = slot;
    428 	} else {
    429 		int result;
    430 
    431 		LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
    432 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    433 		if (result == -1) {
    434 			return ENOMEM;
    435 		}
    436 	}
    437 	swc->swc_pages[swc->swc_nused] = pg;
    438 	swc->swc_nused++;
    439 
    440 	return 0;
    441 }
    442 
    443 static void
    444 swapcluster_flush(struct swapcluster *swc, boolean_t now)
    445 {
    446 	int slot;
    447 	int nused;
    448 	int nallocated;
    449 	int error;
    450 
    451 	if (swc->swc_slot == 0) {
    452 		return;
    453 	}
    454 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    455 
    456 	slot = swc->swc_slot;
    457 	nused = swc->swc_nused;
    458 	nallocated = swc->swc_nallocated;
    459 
    460 	/*
    461 	 * if this is the final pageout we could have a few
    462 	 * unused swap blocks.  if so, free them now.
    463 	 */
    464 
    465 	if (nused < nallocated) {
    466 		if (!now) {
    467 			return;
    468 		}
    469 		uvm_swap_free(slot + nused, nallocated - nused);
    470 	}
    471 
    472 	/*
    473 	 * now start the pageout.
    474 	 */
    475 
    476 	uvmexp.pdpageouts++;
    477 	error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    478 	KASSERT(error == 0);
    479 
    480 	/*
    481 	 * zero swslot to indicate that we are
    482 	 * no longer building a swap-backed cluster.
    483 	 */
    484 
    485 	swc->swc_slot = 0;
    486 }
    487 #endif /* defined(VMSWAP) */
    488 
    489 /*
    490  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    491  *
    492  * => called with page queues locked
    493  * => we work on meeting our free target by converting inactive pages
    494  *    into free pages.
    495  * => we handle the building of swap-backed clusters
    496  */
    497 
    498 static void
    499 uvmpd_scan_inactive(struct pglist *pglst)
    500 {
    501 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    502 	struct uvm_object *uobj;
    503 	struct vm_anon *anon;
    504 #if defined(VMSWAP)
    505 	struct swapcluster swc;
    506 #endif /* defined(VMSWAP) */
    507 	struct simplelock *slock;
    508 	int dirtyreacts, t;
    509 	boolean_t anonunder, fileunder, execunder;
    510 	boolean_t anonover, fileover, execover;
    511 	boolean_t anonreact, filereact, execreact;
    512 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    513 
    514 	/*
    515 	 * swslot is non-zero if we are building a swap cluster.  we want
    516 	 * to stay in the loop while we have a page to scan or we have
    517 	 * a swap-cluster to build.
    518 	 */
    519 
    520 #if defined(VMSWAP)
    521 	swapcluster_init(&swc);
    522 #endif /* defined(VMSWAP) */
    523 	dirtyreacts = 0;
    524 
    525 	/*
    526 	 * decide which types of pages we want to reactivate instead of freeing
    527 	 * to keep usage within the minimum and maximum usage limits.
    528 	 */
    529 
    530 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    531 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    532 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    533 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    534 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    535 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    536 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    537 	anonreact = anonunder || (!anonover && (fileover || execover));
    538 	filereact = fileunder || (!fileover && (anonover || execover));
    539 	execreact = execunder || (!execover && (anonover || fileover));
    540 	if (filereact && execreact && (anonreact || uvm_swapisfull())) {
    541 		anonreact = filereact = execreact = FALSE;
    542 	}
    543 #if !defined(VMSWAP)
    544 	/*
    545 	 * XXX no point to put swap-backed pages on the page queue.
    546 	 */
    547 
    548 	anonreact = TRUE;
    549 #endif /* !defined(VMSWAP) */
    550 	for (p = TAILQ_FIRST(pglst); p != NULL; p = nextpg) {
    551 		uobj = NULL;
    552 		anon = NULL;
    553 
    554 		/*
    555 		 * see if we've met the free target.
    556 		 */
    557 
    558 		if (uvmexp.free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    559 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    560 			UVMHIST_LOG(pdhist,"  met free target: "
    561 				    "exit loop", 0, 0, 0, 0);
    562 			break;
    563 		}
    564 
    565 		/*
    566 		 * we are below target and have a new page to consider.
    567 		 */
    568 
    569 		uvmexp.pdscans++;
    570 		nextpg = TAILQ_NEXT(p, pageq);
    571 
    572 		/*
    573 		 * move referenced pages back to active queue and
    574 		 * skip to next page.
    575 		 */
    576 
    577 		if (pmap_is_referenced(p)) {
    578 			uvm_pageactivate(p);
    579 			uvmexp.pdreact++;
    580 			continue;
    581 		}
    582 		anon = p->uanon;
    583 		uobj = p->uobject;
    584 
    585 		/*
    586 		 * enforce the minimum thresholds on different
    587 		 * types of memory usage.  if reusing the current
    588 		 * page would reduce that type of usage below its
    589 		 * minimum, reactivate the page instead and move
    590 		 * on to the next page.
    591 		 */
    592 
    593 		if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    594 			uvm_pageactivate(p);
    595 			uvmexp.pdreexec++;
    596 			continue;
    597 		}
    598 		if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    599 		    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    600 			uvm_pageactivate(p);
    601 			uvmexp.pdrefile++;
    602 			continue;
    603 		}
    604 		if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    605 			uvm_pageactivate(p);
    606 			uvmexp.pdreanon++;
    607 			continue;
    608 		}
    609 
    610 		/*
    611 		 * first we attempt to lock the object that this page
    612 		 * belongs to.  if our attempt fails we skip on to
    613 		 * the next page (no harm done).  it is important to
    614 		 * "try" locking the object as we are locking in the
    615 		 * wrong order (pageq -> object) and we don't want to
    616 		 * deadlock.
    617 		 *
    618 		 * the only time we expect to see an ownerless page
    619 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    620 		 * anon has loaned a page from a uvm_object and the
    621 		 * uvm_object has dropped the ownership.  in that
    622 		 * case, the anon can "take over" the loaned page
    623 		 * and make it its own.
    624 		 */
    625 
    626 		/* does the page belong to an object? */
    627 		if (uobj != NULL) {
    628 			slock = &uobj->vmobjlock;
    629 			if (!simple_lock_try(slock)) {
    630 				continue;
    631 			}
    632 			if (p->flags & PG_BUSY) {
    633 				simple_unlock(slock);
    634 				uvmexp.pdbusy++;
    635 				continue;
    636 			}
    637 			uvmexp.pdobscan++;
    638 		} else {
    639 #if defined(VMSWAP)
    640 			KASSERT(anon != NULL);
    641 			slock = &anon->an_lock;
    642 			if (!simple_lock_try(slock)) {
    643 				continue;
    644 			}
    645 
    646 			/*
    647 			 * set PQ_ANON if it isn't set already.
    648 			 */
    649 
    650 			if ((p->pqflags & PQ_ANON) == 0) {
    651 				KASSERT(p->loan_count > 0);
    652 				p->loan_count--;
    653 				p->pqflags |= PQ_ANON;
    654 				/* anon now owns it */
    655 			}
    656 			if (p->flags & PG_BUSY) {
    657 				simple_unlock(slock);
    658 				uvmexp.pdbusy++;
    659 				continue;
    660 			}
    661 			uvmexp.pdanscan++;
    662 #else /* defined(VMSWAP) */
    663 			panic("%s: anon", __func__);
    664 #endif /* defined(VMSWAP) */
    665 		}
    666 
    667 
    668 		/*
    669 		 * we now have the object and the page queues locked.
    670 		 * if the page is not swap-backed, call the object's
    671 		 * pager to flush and free the page.
    672 		 */
    673 
    674 #if defined(READAHEAD_STATS)
    675 		if ((p->flags & PG_SPECULATIVE) != 0) {
    676 			p->flags &= ~PG_SPECULATIVE;
    677 			uvm_ra_miss.ev_count++;
    678 		}
    679 #endif /* defined(READAHEAD_STATS) */
    680 
    681 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    682 			uvm_unlock_pageq();
    683 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    684 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    685 			uvm_lock_pageq();
    686 			if (nextpg &&
    687 			    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    688 				nextpg = TAILQ_FIRST(pglst);
    689 			}
    690 			continue;
    691 		}
    692 
    693 #if defined(VMSWAP)
    694 		/*
    695 		 * the page is swap-backed.  remove all the permissions
    696 		 * from the page so we can sync the modified info
    697 		 * without any race conditions.  if the page is clean
    698 		 * we can free it now and continue.
    699 		 */
    700 
    701 		pmap_page_protect(p, VM_PROT_NONE);
    702 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    703 			p->flags &= ~(PG_CLEAN);
    704 		}
    705 		if (p->flags & PG_CLEAN) {
    706 			int slot;
    707 			int pageidx;
    708 
    709 			pageidx = p->offset >> PAGE_SHIFT;
    710 			uvm_pagefree(p);
    711 			uvmexp.pdfreed++;
    712 
    713 			/*
    714 			 * for anons, we need to remove the page
    715 			 * from the anon ourselves.  for aobjs,
    716 			 * pagefree did that for us.
    717 			 */
    718 
    719 			if (anon) {
    720 				KASSERT(anon->an_swslot != 0);
    721 				anon->an_page = NULL;
    722 				slot = anon->an_swslot;
    723 			} else {
    724 				slot = uao_find_swslot(uobj, pageidx);
    725 			}
    726 			simple_unlock(slock);
    727 
    728 			if (slot > 0) {
    729 				/* this page is now only in swap. */
    730 				simple_lock(&uvm.swap_data_lock);
    731 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    732 				uvmexp.swpgonly++;
    733 				simple_unlock(&uvm.swap_data_lock);
    734 			}
    735 			continue;
    736 		}
    737 
    738 		/*
    739 		 * this page is dirty, skip it if we'll have met our
    740 		 * free target when all the current pageouts complete.
    741 		 */
    742 
    743 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    744 			simple_unlock(slock);
    745 			continue;
    746 		}
    747 
    748 		/*
    749 		 * free any swap space allocated to the page since
    750 		 * we'll have to write it again with its new data.
    751 		 */
    752 
    753 		if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    754 			uvm_swap_free(anon->an_swslot, 1);
    755 			anon->an_swslot = 0;
    756 		} else if (p->pqflags & PQ_AOBJ) {
    757 			uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    758 		}
    759 
    760 		/*
    761 		 * if all pages in swap are only in swap,
    762 		 * the swap space is full and we can't page out
    763 		 * any more swap-backed pages.  reactivate this page
    764 		 * so that we eventually cycle all pages through
    765 		 * the inactive queue.
    766 		 */
    767 
    768 		if (uvm_swapisfull()) {
    769 			dirtyreacts++;
    770 			uvm_pageactivate(p);
    771 			simple_unlock(slock);
    772 			continue;
    773 		}
    774 
    775 		/*
    776 		 * start new swap pageout cluster (if necessary).
    777 		 */
    778 
    779 		if (swapcluster_allocslots(&swc)) {
    780 			simple_unlock(slock);
    781 			continue;
    782 		}
    783 
    784 		/*
    785 		 * at this point, we're definitely going reuse this
    786 		 * page.  mark the page busy and delayed-free.
    787 		 * we should remove the page from the page queues
    788 		 * so we don't ever look at it again.
    789 		 * adjust counters and such.
    790 		 */
    791 
    792 		p->flags |= PG_BUSY;
    793 		UVM_PAGE_OWN(p, "scan_inactive");
    794 
    795 		p->flags |= PG_PAGEOUT;
    796 		uvmexp.paging++;
    797 		uvm_pagedequeue(p);
    798 
    799 		uvmexp.pgswapout++;
    800 		uvm_unlock_pageq();
    801 
    802 		/*
    803 		 * add the new page to the cluster.
    804 		 */
    805 
    806 		if (swapcluster_add(&swc, p)) {
    807 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    808 			UVM_PAGE_OWN(p, NULL);
    809 			uvm_lock_pageq();
    810 			uvmexp.paging--;
    811 			uvm_pageactivate(p);
    812 			simple_unlock(slock);
    813 			continue;
    814 		}
    815 		simple_unlock(slock);
    816 
    817 		swapcluster_flush(&swc, FALSE);
    818 		uvm_lock_pageq();
    819 
    820 #else /* defined(VMSWAP) */
    821 		panic("%s: swap-backed", __func__);
    822 #endif /* defined(VMSWAP) */
    823 
    824 		/*
    825 		 * the pageout is in progress.  bump counters and set up
    826 		 * for the next loop.
    827 		 */
    828 
    829 		uvmexp.pdpending++;
    830 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    831 			nextpg = TAILQ_FIRST(pglst);
    832 		}
    833 	}
    834 
    835 #if defined(VMSWAP)
    836 	uvm_unlock_pageq();
    837 	swapcluster_flush(&swc, TRUE);
    838 	uvm_lock_pageq();
    839 #endif /* defined(VMSWAP) */
    840 }
    841 
    842 /*
    843  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    844  *
    845  * => called with pageq's locked
    846  */
    847 
    848 static void
    849 uvmpd_scan(void)
    850 {
    851 	int inactive_shortage, swap_shortage, pages_freed;
    852 	struct vm_page *p, *nextpg;
    853 	struct uvm_object *uobj;
    854 	struct vm_anon *anon;
    855 	struct simplelock *slock;
    856 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    857 
    858 	uvmexp.pdrevs++;
    859 	uobj = NULL;
    860 	anon = NULL;
    861 
    862 #ifndef __SWAP_BROKEN
    863 
    864 	/*
    865 	 * swap out some processes if we are below our free target.
    866 	 * we need to unlock the page queues for this.
    867 	 */
    868 
    869 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    870 		uvmexp.pdswout++;
    871 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    872 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    873 		uvm_unlock_pageq();
    874 		uvm_swapout_threads();
    875 		uvm_lock_pageq();
    876 
    877 	}
    878 #endif
    879 
    880 	/*
    881 	 * now we want to work on meeting our targets.   first we work on our
    882 	 * free target by converting inactive pages into free pages.  then
    883 	 * we work on meeting our inactive target by converting active pages
    884 	 * to inactive ones.
    885 	 */
    886 
    887 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    888 
    889 	pages_freed = uvmexp.pdfreed;
    890 	uvmpd_scan_inactive(&uvm.page_inactive);
    891 	pages_freed = uvmexp.pdfreed - pages_freed;
    892 
    893 	/*
    894 	 * we have done the scan to get free pages.   now we work on meeting
    895 	 * our inactive target.
    896 	 */
    897 
    898 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    899 
    900 	/*
    901 	 * detect if we're not going to be able to page anything out
    902 	 * until we free some swap resources from active pages.
    903 	 */
    904 
    905 	swap_shortage = 0;
    906 	if (uvmexp.free < uvmexp.freetarg &&
    907 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    908 	    !uvm_swapisfull() &&
    909 	    pages_freed == 0) {
    910 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    911 	}
    912 
    913 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    914 		    inactive_shortage, swap_shortage,0,0);
    915 	for (p = TAILQ_FIRST(&uvm.page_active);
    916 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    917 	     p = nextpg) {
    918 		nextpg = TAILQ_NEXT(p, pageq);
    919 		if (p->flags & PG_BUSY) {
    920 			continue;
    921 		}
    922 
    923 		/*
    924 		 * lock the page's owner.
    925 		 */
    926 
    927 		if (p->uobject != NULL) {
    928 			uobj = p->uobject;
    929 			slock = &uobj->vmobjlock;
    930 			if (!simple_lock_try(slock)) {
    931 				continue;
    932 			}
    933 		} else {
    934 			anon = p->uanon;
    935 			KASSERT(anon != NULL);
    936 			slock = &anon->an_lock;
    937 			if (!simple_lock_try(slock)) {
    938 				continue;
    939 			}
    940 
    941 			/* take over the page? */
    942 			if ((p->pqflags & PQ_ANON) == 0) {
    943 				KASSERT(p->loan_count > 0);
    944 				p->loan_count--;
    945 				p->pqflags |= PQ_ANON;
    946 			}
    947 		}
    948 
    949 		/*
    950 		 * skip this page if it's busy.
    951 		 */
    952 
    953 		if ((p->flags & PG_BUSY) != 0) {
    954 			simple_unlock(slock);
    955 			continue;
    956 		}
    957 
    958 #if defined(VMSWAP)
    959 		/*
    960 		 * if there's a shortage of swap, free any swap allocated
    961 		 * to this page so that other pages can be paged out.
    962 		 */
    963 
    964 		if (swap_shortage > 0) {
    965 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    966 				uvm_swap_free(anon->an_swslot, 1);
    967 				anon->an_swslot = 0;
    968 				p->flags &= ~PG_CLEAN;
    969 				swap_shortage--;
    970 			} else if (p->pqflags & PQ_AOBJ) {
    971 				int slot = uao_set_swslot(uobj,
    972 					p->offset >> PAGE_SHIFT, 0);
    973 				if (slot) {
    974 					uvm_swap_free(slot, 1);
    975 					p->flags &= ~PG_CLEAN;
    976 					swap_shortage--;
    977 				}
    978 			}
    979 		}
    980 #endif /* defined(VMSWAP) */
    981 
    982 		/*
    983 		 * if there's a shortage of inactive pages, deactivate.
    984 		 */
    985 
    986 		if (inactive_shortage > 0) {
    987 			/* no need to check wire_count as pg is "active" */
    988 			pmap_clear_reference(p);
    989 			uvm_pagedeactivate(p);
    990 			uvmexp.pddeact++;
    991 			inactive_shortage--;
    992 		}
    993 
    994 		/*
    995 		 * we're done with this page.
    996 		 */
    997 
    998 		simple_unlock(slock);
    999 	}
   1000 }
   1001 
   1002 /*
   1003  * uvm_reclaimable: decide whether to wait for pagedaemon.
   1004  *
   1005  * => return TRUE if it seems to be worth to do uvm_wait.
   1006  *
   1007  * XXX should be tunable.
   1008  * XXX should consider pools, etc?
   1009  */
   1010 
   1011 boolean_t
   1012 uvm_reclaimable(void)
   1013 {
   1014 	int filepages;
   1015 
   1016 	/*
   1017 	 * if swap is not full, no problem.
   1018 	 */
   1019 
   1020 	if (!uvm_swapisfull()) {
   1021 		return TRUE;
   1022 	}
   1023 
   1024 	/*
   1025 	 * file-backed pages can be reclaimed even when swap is full.
   1026 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1027 	 *
   1028 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1029 	 *
   1030 	 * XXX should consider about other reclaimable memory.
   1031 	 * XXX ie. pools, traditional buffer cache.
   1032 	 */
   1033 
   1034 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1035 	if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
   1036 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1037 		return TRUE;
   1038 	}
   1039 
   1040 	/*
   1041 	 * kill the process, fail allocation, etc..
   1042 	 */
   1043 
   1044 	return FALSE;
   1045 }
   1046