uvm_pdaemon.c revision 1.76 1 /* $NetBSD: uvm_pdaemon.c,v 1.76 2006/02/14 15:06:27 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.76 2006/02/14 15:06:27 yamt Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/pool.h>
84 #include <sys/buf.h>
85 #include <sys/vnode.h>
86
87 #include <uvm/uvm.h>
88
89 /*
90 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
91 * in a pass thru the inactive list when swap is full. the value should be
92 * "small"... if it's too large we'll cycle the active pages thru the inactive
93 * queue too quickly to for them to be referenced and avoid being freed.
94 */
95
96 #define UVMPD_NUMDIRTYREACTS 16
97
98
99 /*
100 * local prototypes
101 */
102
103 static void uvmpd_scan(void);
104 static void uvmpd_scan_inactive(struct pglist *);
105 static void uvmpd_tune(void);
106
107 /*
108 * XXX hack to avoid hangs when large processes fork.
109 */
110 int uvm_extrapages;
111
112 /*
113 * uvm_wait: wait (sleep) for the page daemon to free some pages
114 *
115 * => should be called with all locks released
116 * => should _not_ be called by the page daemon (to avoid deadlock)
117 */
118
119 void
120 uvm_wait(const char *wmsg)
121 {
122 int timo = 0;
123 int s = splbio();
124
125 /*
126 * check for page daemon going to sleep (waiting for itself)
127 */
128
129 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
130 /*
131 * now we have a problem: the pagedaemon wants to go to
132 * sleep until it frees more memory. but how can it
133 * free more memory if it is asleep? that is a deadlock.
134 * we have two options:
135 * [1] panic now
136 * [2] put a timeout on the sleep, thus causing the
137 * pagedaemon to only pause (rather than sleep forever)
138 *
139 * note that option [2] will only help us if we get lucky
140 * and some other process on the system breaks the deadlock
141 * by exiting or freeing memory (thus allowing the pagedaemon
142 * to continue). for now we panic if DEBUG is defined,
143 * otherwise we hope for the best with option [2] (better
144 * yet, this should never happen in the first place!).
145 */
146
147 printf("pagedaemon: deadlock detected!\n");
148 timo = hz >> 3; /* set timeout */
149 #if defined(DEBUG)
150 /* DEBUG: panic so we can debug it */
151 panic("pagedaemon deadlock");
152 #endif
153 }
154
155 simple_lock(&uvm.pagedaemon_lock);
156 wakeup(&uvm.pagedaemon); /* wake the daemon! */
157 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
158 timo);
159
160 splx(s);
161 }
162
163
164 /*
165 * uvmpd_tune: tune paging parameters
166 *
167 * => called when ever memory is added (or removed?) to the system
168 * => caller must call with page queues locked
169 */
170
171 static void
172 uvmpd_tune(void)
173 {
174 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
175
176 uvmexp.freemin = uvmexp.npages / 20;
177
178 /* between 16k and 256k */
179 /* XXX: what are these values good for? */
180 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
181 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
182
183 /* Make sure there's always a user page free. */
184 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
185 uvmexp.freemin = uvmexp.reserve_kernel + 1;
186
187 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
188 if (uvmexp.freetarg <= uvmexp.freemin)
189 uvmexp.freetarg = uvmexp.freemin + 1;
190
191 uvmexp.freetarg += uvm_extrapages;
192 uvm_extrapages = 0;
193
194 /* uvmexp.inactarg: computed in main daemon loop */
195
196 uvmexp.wiredmax = uvmexp.npages / 3;
197 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
198 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
199 }
200
201 /*
202 * uvm_pageout: the main loop for the pagedaemon
203 */
204
205 void
206 uvm_pageout(void *arg)
207 {
208 int bufcnt, npages = 0;
209 int extrapages = 0;
210 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
211
212 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
213
214 /*
215 * ensure correct priority and set paging parameters...
216 */
217
218 uvm.pagedaemon_proc = curproc;
219 uvm_lock_pageq();
220 npages = uvmexp.npages;
221 uvmpd_tune();
222 uvm_unlock_pageq();
223
224 /*
225 * main loop
226 */
227
228 for (;;) {
229 simple_lock(&uvm.pagedaemon_lock);
230
231 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
232 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
233 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
234 uvmexp.pdwoke++;
235 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
236
237 /*
238 * now lock page queues and recompute inactive count
239 */
240
241 uvm_lock_pageq();
242 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
243 npages = uvmexp.npages;
244 extrapages = uvm_extrapages;
245 uvmpd_tune();
246 }
247
248 uvmexp.inactarg = UVM_PCTPARAM_APPLY(&uvmexp.inactivepct,
249 uvmexp.active + uvmexp.inactive);
250 if (uvmexp.inactarg <= uvmexp.freetarg) {
251 uvmexp.inactarg = uvmexp.freetarg + 1;
252 }
253
254 /*
255 * Estimate a hint. Note that bufmem are returned to
256 * system only when entire pool page is empty.
257 */
258 bufcnt = uvmexp.freetarg - uvmexp.free;
259 if (bufcnt < 0)
260 bufcnt = 0;
261
262 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
263 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
264 uvmexp.inactarg);
265
266 /*
267 * scan if needed
268 */
269
270 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
271 uvmexp.inactive < uvmexp.inactarg) {
272 uvmpd_scan();
273 }
274
275 /*
276 * if there's any free memory to be had,
277 * wake up any waiters.
278 */
279
280 if (uvmexp.free > uvmexp.reserve_kernel ||
281 uvmexp.paging == 0) {
282 wakeup(&uvmexp.free);
283 }
284
285 /*
286 * scan done. unlock page queues (the only lock we are holding)
287 */
288
289 uvm_unlock_pageq();
290
291 buf_drain(bufcnt << PAGE_SHIFT);
292
293 /*
294 * drain pool resources now that we're not holding any locks
295 */
296
297 pool_drain(0);
298
299 /*
300 * free any cached u-areas we don't need
301 */
302 uvm_uarea_drain(TRUE);
303
304 }
305 /*NOTREACHED*/
306 }
307
308
309 /*
310 * uvm_aiodone_daemon: main loop for the aiodone daemon.
311 */
312
313 void
314 uvm_aiodone_daemon(void *arg)
315 {
316 int s, free;
317 struct buf *bp, *nbp;
318 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
319
320 for (;;) {
321
322 /*
323 * carefully attempt to go to sleep (without losing "wakeups"!).
324 * we need splbio because we want to make sure the aio_done list
325 * is totally empty before we go to sleep.
326 */
327
328 s = splbio();
329 simple_lock(&uvm.aiodoned_lock);
330 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
331 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
332 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
333 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
334 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
335
336 /* relock aiodoned_lock, still at splbio */
337 simple_lock(&uvm.aiodoned_lock);
338 }
339
340 /*
341 * check for done aio structures
342 */
343
344 bp = TAILQ_FIRST(&uvm.aio_done);
345 if (bp) {
346 TAILQ_INIT(&uvm.aio_done);
347 }
348
349 simple_unlock(&uvm.aiodoned_lock);
350 splx(s);
351
352 /*
353 * process each i/o that's done.
354 */
355
356 free = uvmexp.free;
357 while (bp != NULL) {
358 nbp = TAILQ_NEXT(bp, b_freelist);
359 (*bp->b_iodone)(bp);
360 bp = nbp;
361 }
362 if (free <= uvmexp.reserve_kernel) {
363 s = uvm_lock_fpageq();
364 wakeup(&uvm.pagedaemon);
365 uvm_unlock_fpageq(s);
366 } else {
367 simple_lock(&uvm.pagedaemon_lock);
368 wakeup(&uvmexp.free);
369 simple_unlock(&uvm.pagedaemon_lock);
370 }
371 }
372 }
373
374 /*
375 * uvmpd_trylockowner: trylock the page's owner.
376 *
377 * => called with pageq locked.
378 * => resolve orphaned O->A loaned page.
379 * => return the locked simplelock on success. otherwise, return NULL.
380 */
381
382 static struct simplelock *
383 uvmpd_trylockowner(struct vm_page *pg)
384 {
385 struct uvm_object *uobj = pg->uobject;
386 struct simplelock *slock;
387
388 UVM_LOCK_ASSERT_PAGEQ();
389 if (uobj != NULL) {
390 slock = &uobj->vmobjlock;
391 } else {
392 struct vm_anon *anon = pg->uanon;
393
394 KASSERT(anon != NULL);
395 slock = &anon->an_lock;
396 }
397
398 if (!simple_lock_try(slock)) {
399 return NULL;
400 }
401
402 if (uobj == NULL) {
403
404 /*
405 * set PQ_ANON if it isn't set already.
406 */
407
408 if ((pg->pqflags & PQ_ANON) == 0) {
409 KASSERT(pg->loan_count > 0);
410 pg->loan_count--;
411 pg->pqflags |= PQ_ANON;
412 /* anon now owns it */
413 }
414 }
415
416 return slock;
417 }
418
419 #if defined(VMSWAP)
420 struct swapcluster {
421 int swc_slot;
422 int swc_nallocated;
423 int swc_nused;
424 struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
425 };
426
427 static void
428 swapcluster_init(struct swapcluster *swc)
429 {
430
431 swc->swc_slot = 0;
432 }
433
434 static int
435 swapcluster_allocslots(struct swapcluster *swc)
436 {
437 int slot;
438 int npages;
439
440 if (swc->swc_slot != 0) {
441 return 0;
442 }
443
444 /* Even with strange MAXPHYS, the shift
445 implicitly rounds down to a page. */
446 npages = MAXPHYS >> PAGE_SHIFT;
447 slot = uvm_swap_alloc(&npages, TRUE);
448 if (slot == 0) {
449 return ENOMEM;
450 }
451 swc->swc_slot = slot;
452 swc->swc_nallocated = npages;
453 swc->swc_nused = 0;
454
455 return 0;
456 }
457
458 static int
459 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
460 {
461 int slot;
462 struct uvm_object *uobj;
463
464 KASSERT(swc->swc_slot != 0);
465 KASSERT(swc->swc_nused < swc->swc_nallocated);
466 KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
467
468 slot = swc->swc_slot + swc->swc_nused;
469 uobj = pg->uobject;
470 if (uobj == NULL) {
471 LOCK_ASSERT(simple_lock_held(&pg->uanon->an_lock));
472 pg->uanon->an_swslot = slot;
473 } else {
474 int result;
475
476 LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
477 result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
478 if (result == -1) {
479 return ENOMEM;
480 }
481 }
482 swc->swc_pages[swc->swc_nused] = pg;
483 swc->swc_nused++;
484
485 return 0;
486 }
487
488 static void
489 swapcluster_flush(struct swapcluster *swc, boolean_t now)
490 {
491 int slot;
492 int nused;
493 int nallocated;
494 int error;
495
496 if (swc->swc_slot == 0) {
497 return;
498 }
499 KASSERT(swc->swc_nused <= swc->swc_nallocated);
500
501 slot = swc->swc_slot;
502 nused = swc->swc_nused;
503 nallocated = swc->swc_nallocated;
504
505 /*
506 * if this is the final pageout we could have a few
507 * unused swap blocks. if so, free them now.
508 */
509
510 if (nused < nallocated) {
511 if (!now) {
512 return;
513 }
514 uvm_swap_free(slot + nused, nallocated - nused);
515 }
516
517 /*
518 * now start the pageout.
519 */
520
521 uvmexp.pdpageouts++;
522 error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
523 KASSERT(error == 0);
524
525 /*
526 * zero swslot to indicate that we are
527 * no longer building a swap-backed cluster.
528 */
529
530 swc->swc_slot = 0;
531 }
532 #endif /* defined(VMSWAP) */
533
534 /*
535 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
536 *
537 * => called with page queues locked
538 * => we work on meeting our free target by converting inactive pages
539 * into free pages.
540 * => we handle the building of swap-backed clusters
541 */
542
543 static void
544 uvmpd_scan_inactive(struct pglist *pglst)
545 {
546 struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
547 struct uvm_object *uobj;
548 struct vm_anon *anon;
549 #if defined(VMSWAP)
550 struct swapcluster swc;
551 #endif /* defined(VMSWAP) */
552 struct simplelock *slock;
553 int dirtyreacts, t;
554 boolean_t anonunder, fileunder, execunder;
555 boolean_t anonover, fileover, execover;
556 boolean_t anonreact, filereact, execreact;
557 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
558
559 /*
560 * swslot is non-zero if we are building a swap cluster. we want
561 * to stay in the loop while we have a page to scan or we have
562 * a swap-cluster to build.
563 */
564
565 #if defined(VMSWAP)
566 swapcluster_init(&swc);
567 #endif /* defined(VMSWAP) */
568 dirtyreacts = 0;
569
570 /*
571 * decide which types of pages we want to reactivate instead of freeing
572 * to keep usage within the minimum and maximum usage limits.
573 */
574
575 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
576 anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
577 fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
578 execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
579 anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
580 fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
581 execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
582 anonreact = anonunder || (!anonover && (fileover || execover));
583 filereact = fileunder || (!fileover && (anonover || execover));
584 execreact = execunder || (!execover && (anonover || fileover));
585 if (filereact && execreact && (anonreact || uvm_swapisfull())) {
586 anonreact = filereact = execreact = FALSE;
587 }
588 #if !defined(VMSWAP)
589 /*
590 * XXX no point to put swap-backed pages on the page queue.
591 */
592
593 anonreact = TRUE;
594 #endif /* !defined(VMSWAP) */
595 for (p = TAILQ_FIRST(pglst); p != NULL; p = nextpg) {
596 uobj = NULL;
597 anon = NULL;
598
599 /*
600 * see if we've met the free target.
601 */
602
603 if (uvmexp.free + uvmexp.paging >= uvmexp.freetarg << 2 ||
604 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
605 UVMHIST_LOG(pdhist," met free target: "
606 "exit loop", 0, 0, 0, 0);
607 break;
608 }
609
610 /*
611 * we are below target and have a new page to consider.
612 */
613
614 uvmexp.pdscans++;
615 nextpg = TAILQ_NEXT(p, pageq);
616
617 /*
618 * move referenced pages back to active queue and
619 * skip to next page.
620 */
621
622 if (pmap_is_referenced(p)) {
623 uvm_pageactivate(p);
624 uvmexp.pdreact++;
625 continue;
626 }
627 anon = p->uanon;
628 uobj = p->uobject;
629
630 /*
631 * enforce the minimum thresholds on different
632 * types of memory usage. if reusing the current
633 * page would reduce that type of usage below its
634 * minimum, reactivate the page instead and move
635 * on to the next page.
636 */
637
638 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
639 uvm_pageactivate(p);
640 uvmexp.pdreexec++;
641 continue;
642 }
643 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
644 !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
645 uvm_pageactivate(p);
646 uvmexp.pdrefile++;
647 continue;
648 }
649 if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
650 uvm_pageactivate(p);
651 uvmexp.pdreanon++;
652 continue;
653 }
654
655 /*
656 * first we attempt to lock the object that this page
657 * belongs to. if our attempt fails we skip on to
658 * the next page (no harm done). it is important to
659 * "try" locking the object as we are locking in the
660 * wrong order (pageq -> object) and we don't want to
661 * deadlock.
662 *
663 * the only time we expect to see an ownerless page
664 * (i.e. a page with no uobject and !PQ_ANON) is if an
665 * anon has loaned a page from a uvm_object and the
666 * uvm_object has dropped the ownership. in that
667 * case, the anon can "take over" the loaned page
668 * and make it its own.
669 */
670
671 slock = uvmpd_trylockowner(p);
672 if (slock == NULL) {
673 continue;
674 }
675 if (p->flags & PG_BUSY) {
676 simple_unlock(slock);
677 uvmexp.pdbusy++;
678 continue;
679 }
680
681 /* does the page belong to an object? */
682 if (uobj != NULL) {
683 uvmexp.pdobscan++;
684 } else {
685 #if defined(VMSWAP)
686 KASSERT(anon != NULL);
687 uvmexp.pdanscan++;
688 #else /* defined(VMSWAP) */
689 panic("%s: anon", __func__);
690 #endif /* defined(VMSWAP) */
691 }
692
693
694 /*
695 * we now have the object and the page queues locked.
696 * if the page is not swap-backed, call the object's
697 * pager to flush and free the page.
698 */
699
700 #if defined(READAHEAD_STATS)
701 if ((p->flags & PG_SPECULATIVE) != 0) {
702 p->flags &= ~PG_SPECULATIVE;
703 uvm_ra_miss.ev_count++;
704 }
705 #endif /* defined(READAHEAD_STATS) */
706
707 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
708 uvm_unlock_pageq();
709 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
710 p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
711 uvm_lock_pageq();
712 if (nextpg &&
713 (nextpg->pqflags & PQ_INACTIVE) == 0) {
714 nextpg = TAILQ_FIRST(pglst);
715 }
716 continue;
717 }
718
719 #if defined(VMSWAP)
720 /*
721 * the page is swap-backed. remove all the permissions
722 * from the page so we can sync the modified info
723 * without any race conditions. if the page is clean
724 * we can free it now and continue.
725 */
726
727 pmap_page_protect(p, VM_PROT_NONE);
728 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
729 p->flags &= ~(PG_CLEAN);
730 }
731 if (p->flags & PG_CLEAN) {
732 int slot;
733 int pageidx;
734
735 pageidx = p->offset >> PAGE_SHIFT;
736 uvm_pagefree(p);
737 uvmexp.pdfreed++;
738
739 /*
740 * for anons, we need to remove the page
741 * from the anon ourselves. for aobjs,
742 * pagefree did that for us.
743 */
744
745 if (anon) {
746 KASSERT(anon->an_swslot != 0);
747 anon->an_page = NULL;
748 slot = anon->an_swslot;
749 } else {
750 slot = uao_find_swslot(uobj, pageidx);
751 }
752 simple_unlock(slock);
753
754 if (slot > 0) {
755 /* this page is now only in swap. */
756 simple_lock(&uvm.swap_data_lock);
757 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
758 uvmexp.swpgonly++;
759 simple_unlock(&uvm.swap_data_lock);
760 }
761 continue;
762 }
763
764 /*
765 * this page is dirty, skip it if we'll have met our
766 * free target when all the current pageouts complete.
767 */
768
769 if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
770 simple_unlock(slock);
771 continue;
772 }
773
774 /*
775 * free any swap space allocated to the page since
776 * we'll have to write it again with its new data.
777 */
778
779 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
780 uvm_swap_free(anon->an_swslot, 1);
781 anon->an_swslot = 0;
782 } else if (p->pqflags & PQ_AOBJ) {
783 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
784 }
785
786 /*
787 * if all pages in swap are only in swap,
788 * the swap space is full and we can't page out
789 * any more swap-backed pages. reactivate this page
790 * so that we eventually cycle all pages through
791 * the inactive queue.
792 */
793
794 if (uvm_swapisfull()) {
795 dirtyreacts++;
796 uvm_pageactivate(p);
797 simple_unlock(slock);
798 continue;
799 }
800
801 /*
802 * start new swap pageout cluster (if necessary).
803 */
804
805 if (swapcluster_allocslots(&swc)) {
806 simple_unlock(slock);
807 continue;
808 }
809
810 /*
811 * at this point, we're definitely going reuse this
812 * page. mark the page busy and delayed-free.
813 * we should remove the page from the page queues
814 * so we don't ever look at it again.
815 * adjust counters and such.
816 */
817
818 p->flags |= PG_BUSY;
819 UVM_PAGE_OWN(p, "scan_inactive");
820
821 p->flags |= PG_PAGEOUT;
822 uvmexp.paging++;
823 uvm_pagedequeue(p);
824
825 uvmexp.pgswapout++;
826 uvm_unlock_pageq();
827
828 /*
829 * add the new page to the cluster.
830 */
831
832 if (swapcluster_add(&swc, p)) {
833 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
834 UVM_PAGE_OWN(p, NULL);
835 uvm_lock_pageq();
836 uvmexp.paging--;
837 uvm_pageactivate(p);
838 simple_unlock(slock);
839 continue;
840 }
841 simple_unlock(slock);
842
843 swapcluster_flush(&swc, FALSE);
844 uvm_lock_pageq();
845
846 #else /* defined(VMSWAP) */
847 panic("%s: swap-backed", __func__);
848 #endif /* defined(VMSWAP) */
849
850 /*
851 * the pageout is in progress. bump counters and set up
852 * for the next loop.
853 */
854
855 uvmexp.pdpending++;
856 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
857 nextpg = TAILQ_FIRST(pglst);
858 }
859 }
860
861 #if defined(VMSWAP)
862 uvm_unlock_pageq();
863 swapcluster_flush(&swc, TRUE);
864 uvm_lock_pageq();
865 #endif /* defined(VMSWAP) */
866 }
867
868 /*
869 * uvmpd_scan: scan the page queues and attempt to meet our targets.
870 *
871 * => called with pageq's locked
872 */
873
874 static void
875 uvmpd_scan(void)
876 {
877 int inactive_shortage, swap_shortage, pages_freed;
878 struct vm_page *p, *nextpg;
879 struct simplelock *slock;
880 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
881
882 uvmexp.pdrevs++;
883
884 #ifndef __SWAP_BROKEN
885
886 /*
887 * swap out some processes if we are below our free target.
888 * we need to unlock the page queues for this.
889 */
890
891 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
892 uvmexp.pdswout++;
893 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
894 uvmexp.free, uvmexp.freetarg, 0, 0);
895 uvm_unlock_pageq();
896 uvm_swapout_threads();
897 uvm_lock_pageq();
898
899 }
900 #endif
901
902 /*
903 * now we want to work on meeting our targets. first we work on our
904 * free target by converting inactive pages into free pages. then
905 * we work on meeting our inactive target by converting active pages
906 * to inactive ones.
907 */
908
909 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
910
911 pages_freed = uvmexp.pdfreed;
912 uvmpd_scan_inactive(&uvm.page_inactive);
913 pages_freed = uvmexp.pdfreed - pages_freed;
914
915 /*
916 * we have done the scan to get free pages. now we work on meeting
917 * our inactive target.
918 */
919
920 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
921
922 /*
923 * detect if we're not going to be able to page anything out
924 * until we free some swap resources from active pages.
925 */
926
927 swap_shortage = 0;
928 if (uvmexp.free < uvmexp.freetarg &&
929 uvmexp.swpginuse >= uvmexp.swpgavail &&
930 !uvm_swapisfull() &&
931 pages_freed == 0) {
932 swap_shortage = uvmexp.freetarg - uvmexp.free;
933 }
934
935 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
936 inactive_shortage, swap_shortage,0,0);
937 for (p = TAILQ_FIRST(&uvm.page_active);
938 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
939 p = nextpg) {
940 nextpg = TAILQ_NEXT(p, pageq);
941 if (p->flags & PG_BUSY) {
942 continue;
943 }
944
945 /*
946 * lock the page's owner.
947 */
948
949 slock = uvmpd_trylockowner(p);
950 if (slock == NULL) {
951 continue;
952 }
953
954 /*
955 * skip this page if it's busy.
956 */
957
958 if ((p->flags & PG_BUSY) != 0) {
959 simple_unlock(slock);
960 continue;
961 }
962
963 #if defined(VMSWAP)
964 /*
965 * if there's a shortage of swap, free any swap allocated
966 * to this page so that other pages can be paged out.
967 */
968
969 if (swap_shortage > 0) {
970 struct vm_anon *anon = p->uanon;
971
972 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
973 uvm_swap_free(anon->an_swslot, 1);
974 anon->an_swslot = 0;
975 p->flags &= ~PG_CLEAN;
976 swap_shortage--;
977 } else if (p->pqflags & PQ_AOBJ) {
978 int slot = uao_set_swslot(p->uobject,
979 p->offset >> PAGE_SHIFT, 0);
980 if (slot) {
981 uvm_swap_free(slot, 1);
982 p->flags &= ~PG_CLEAN;
983 swap_shortage--;
984 }
985 }
986 }
987 #endif /* defined(VMSWAP) */
988
989 /*
990 * if there's a shortage of inactive pages, deactivate.
991 */
992
993 if (inactive_shortage > 0) {
994 /* no need to check wire_count as pg is "active" */
995 pmap_clear_reference(p);
996 uvm_pagedeactivate(p);
997 uvmexp.pddeact++;
998 inactive_shortage--;
999 }
1000
1001 /*
1002 * we're done with this page.
1003 */
1004
1005 simple_unlock(slock);
1006 }
1007 }
1008
1009 /*
1010 * uvm_reclaimable: decide whether to wait for pagedaemon.
1011 *
1012 * => return TRUE if it seems to be worth to do uvm_wait.
1013 *
1014 * XXX should be tunable.
1015 * XXX should consider pools, etc?
1016 */
1017
1018 boolean_t
1019 uvm_reclaimable(void)
1020 {
1021 int filepages;
1022
1023 /*
1024 * if swap is not full, no problem.
1025 */
1026
1027 if (!uvm_swapisfull()) {
1028 return TRUE;
1029 }
1030
1031 /*
1032 * file-backed pages can be reclaimed even when swap is full.
1033 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1034 *
1035 * XXX assume the worst case, ie. all wired pages are file-backed.
1036 *
1037 * XXX should consider about other reclaimable memory.
1038 * XXX ie. pools, traditional buffer cache.
1039 */
1040
1041 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1042 if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
1043 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1044 return TRUE;
1045 }
1046
1047 /*
1048 * kill the process, fail allocation, etc..
1049 */
1050
1051 return FALSE;
1052 }
1053