Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.76
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.76 2006/02/14 15:06:27 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.76 2006/02/14 15:06:27 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 #include <sys/vnode.h>
     86 
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     91  * in a pass thru the inactive list when swap is full.  the value should be
     92  * "small"... if it's too large we'll cycle the active pages thru the inactive
     93  * queue too quickly to for them to be referenced and avoid being freed.
     94  */
     95 
     96 #define UVMPD_NUMDIRTYREACTS 16
     97 
     98 
     99 /*
    100  * local prototypes
    101  */
    102 
    103 static void	uvmpd_scan(void);
    104 static void	uvmpd_scan_inactive(struct pglist *);
    105 static void	uvmpd_tune(void);
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 int uvm_extrapages;
    111 
    112 /*
    113  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114  *
    115  * => should be called with all locks released
    116  * => should _not_ be called by the page daemon (to avoid deadlock)
    117  */
    118 
    119 void
    120 uvm_wait(const char *wmsg)
    121 {
    122 	int timo = 0;
    123 	int s = splbio();
    124 
    125 	/*
    126 	 * check for page daemon going to sleep (waiting for itself)
    127 	 */
    128 
    129 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    130 		/*
    131 		 * now we have a problem: the pagedaemon wants to go to
    132 		 * sleep until it frees more memory.   but how can it
    133 		 * free more memory if it is asleep?  that is a deadlock.
    134 		 * we have two options:
    135 		 *  [1] panic now
    136 		 *  [2] put a timeout on the sleep, thus causing the
    137 		 *      pagedaemon to only pause (rather than sleep forever)
    138 		 *
    139 		 * note that option [2] will only help us if we get lucky
    140 		 * and some other process on the system breaks the deadlock
    141 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142 		 * to continue).  for now we panic if DEBUG is defined,
    143 		 * otherwise we hope for the best with option [2] (better
    144 		 * yet, this should never happen in the first place!).
    145 		 */
    146 
    147 		printf("pagedaemon: deadlock detected!\n");
    148 		timo = hz >> 3;		/* set timeout */
    149 #if defined(DEBUG)
    150 		/* DEBUG: panic so we can debug it */
    151 		panic("pagedaemon deadlock");
    152 #endif
    153 	}
    154 
    155 	simple_lock(&uvm.pagedaemon_lock);
    156 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    158 	    timo);
    159 
    160 	splx(s);
    161 }
    162 
    163 
    164 /*
    165  * uvmpd_tune: tune paging parameters
    166  *
    167  * => called when ever memory is added (or removed?) to the system
    168  * => caller must call with page queues locked
    169  */
    170 
    171 static void
    172 uvmpd_tune(void)
    173 {
    174 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    175 
    176 	uvmexp.freemin = uvmexp.npages / 20;
    177 
    178 	/* between 16k and 256k */
    179 	/* XXX:  what are these values good for? */
    180 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    181 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    182 
    183 	/* Make sure there's always a user page free. */
    184 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    185 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    186 
    187 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    188 	if (uvmexp.freetarg <= uvmexp.freemin)
    189 		uvmexp.freetarg = uvmexp.freemin + 1;
    190 
    191 	uvmexp.freetarg += uvm_extrapages;
    192 	uvm_extrapages = 0;
    193 
    194 	/* uvmexp.inactarg: computed in main daemon loop */
    195 
    196 	uvmexp.wiredmax = uvmexp.npages / 3;
    197 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    198 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    199 }
    200 
    201 /*
    202  * uvm_pageout: the main loop for the pagedaemon
    203  */
    204 
    205 void
    206 uvm_pageout(void *arg)
    207 {
    208 	int bufcnt, npages = 0;
    209 	int extrapages = 0;
    210 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    211 
    212 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    213 
    214 	/*
    215 	 * ensure correct priority and set paging parameters...
    216 	 */
    217 
    218 	uvm.pagedaemon_proc = curproc;
    219 	uvm_lock_pageq();
    220 	npages = uvmexp.npages;
    221 	uvmpd_tune();
    222 	uvm_unlock_pageq();
    223 
    224 	/*
    225 	 * main loop
    226 	 */
    227 
    228 	for (;;) {
    229 		simple_lock(&uvm.pagedaemon_lock);
    230 
    231 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    232 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    233 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    234 		uvmexp.pdwoke++;
    235 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    236 
    237 		/*
    238 		 * now lock page queues and recompute inactive count
    239 		 */
    240 
    241 		uvm_lock_pageq();
    242 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    243 			npages = uvmexp.npages;
    244 			extrapages = uvm_extrapages;
    245 			uvmpd_tune();
    246 		}
    247 
    248 		uvmexp.inactarg = UVM_PCTPARAM_APPLY(&uvmexp.inactivepct,
    249 		    uvmexp.active + uvmexp.inactive);
    250 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    251 			uvmexp.inactarg = uvmexp.freetarg + 1;
    252 		}
    253 
    254 		/*
    255 		 * Estimate a hint.  Note that bufmem are returned to
    256 		 * system only when entire pool page is empty.
    257 		 */
    258 		bufcnt = uvmexp.freetarg - uvmexp.free;
    259 		if (bufcnt < 0)
    260 			bufcnt = 0;
    261 
    262 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    263 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    264 		    uvmexp.inactarg);
    265 
    266 		/*
    267 		 * scan if needed
    268 		 */
    269 
    270 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    271 		    uvmexp.inactive < uvmexp.inactarg) {
    272 			uvmpd_scan();
    273 		}
    274 
    275 		/*
    276 		 * if there's any free memory to be had,
    277 		 * wake up any waiters.
    278 		 */
    279 
    280 		if (uvmexp.free > uvmexp.reserve_kernel ||
    281 		    uvmexp.paging == 0) {
    282 			wakeup(&uvmexp.free);
    283 		}
    284 
    285 		/*
    286 		 * scan done.  unlock page queues (the only lock we are holding)
    287 		 */
    288 
    289 		uvm_unlock_pageq();
    290 
    291 		buf_drain(bufcnt << PAGE_SHIFT);
    292 
    293 		/*
    294 		 * drain pool resources now that we're not holding any locks
    295 		 */
    296 
    297 		pool_drain(0);
    298 
    299 		/*
    300 		 * free any cached u-areas we don't need
    301 		 */
    302 		uvm_uarea_drain(TRUE);
    303 
    304 	}
    305 	/*NOTREACHED*/
    306 }
    307 
    308 
    309 /*
    310  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    311  */
    312 
    313 void
    314 uvm_aiodone_daemon(void *arg)
    315 {
    316 	int s, free;
    317 	struct buf *bp, *nbp;
    318 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    319 
    320 	for (;;) {
    321 
    322 		/*
    323 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    324 		 * we need splbio because we want to make sure the aio_done list
    325 		 * is totally empty before we go to sleep.
    326 		 */
    327 
    328 		s = splbio();
    329 		simple_lock(&uvm.aiodoned_lock);
    330 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    331 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    332 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    333 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    334 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    335 
    336 			/* relock aiodoned_lock, still at splbio */
    337 			simple_lock(&uvm.aiodoned_lock);
    338 		}
    339 
    340 		/*
    341 		 * check for done aio structures
    342 		 */
    343 
    344 		bp = TAILQ_FIRST(&uvm.aio_done);
    345 		if (bp) {
    346 			TAILQ_INIT(&uvm.aio_done);
    347 		}
    348 
    349 		simple_unlock(&uvm.aiodoned_lock);
    350 		splx(s);
    351 
    352 		/*
    353 		 * process each i/o that's done.
    354 		 */
    355 
    356 		free = uvmexp.free;
    357 		while (bp != NULL) {
    358 			nbp = TAILQ_NEXT(bp, b_freelist);
    359 			(*bp->b_iodone)(bp);
    360 			bp = nbp;
    361 		}
    362 		if (free <= uvmexp.reserve_kernel) {
    363 			s = uvm_lock_fpageq();
    364 			wakeup(&uvm.pagedaemon);
    365 			uvm_unlock_fpageq(s);
    366 		} else {
    367 			simple_lock(&uvm.pagedaemon_lock);
    368 			wakeup(&uvmexp.free);
    369 			simple_unlock(&uvm.pagedaemon_lock);
    370 		}
    371 	}
    372 }
    373 
    374 /*
    375  * uvmpd_trylockowner: trylock the page's owner.
    376  *
    377  * => called with pageq locked.
    378  * => resolve orphaned O->A loaned page.
    379  * => return the locked simplelock on success.  otherwise, return NULL.
    380  */
    381 
    382 static struct simplelock *
    383 uvmpd_trylockowner(struct vm_page *pg)
    384 {
    385 	struct uvm_object *uobj = pg->uobject;
    386 	struct simplelock *slock;
    387 
    388 	UVM_LOCK_ASSERT_PAGEQ();
    389 	if (uobj != NULL) {
    390 		slock = &uobj->vmobjlock;
    391 	} else {
    392 		struct vm_anon *anon = pg->uanon;
    393 
    394 		KASSERT(anon != NULL);
    395 		slock = &anon->an_lock;
    396 	}
    397 
    398 	if (!simple_lock_try(slock)) {
    399 		return NULL;
    400 	}
    401 
    402 	if (uobj == NULL) {
    403 
    404 		/*
    405 		 * set PQ_ANON if it isn't set already.
    406 		 */
    407 
    408 		if ((pg->pqflags & PQ_ANON) == 0) {
    409 			KASSERT(pg->loan_count > 0);
    410 			pg->loan_count--;
    411 			pg->pqflags |= PQ_ANON;
    412 			/* anon now owns it */
    413 		}
    414 	}
    415 
    416 	return slock;
    417 }
    418 
    419 #if defined(VMSWAP)
    420 struct swapcluster {
    421 	int swc_slot;
    422 	int swc_nallocated;
    423 	int swc_nused;
    424 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    425 };
    426 
    427 static void
    428 swapcluster_init(struct swapcluster *swc)
    429 {
    430 
    431 	swc->swc_slot = 0;
    432 }
    433 
    434 static int
    435 swapcluster_allocslots(struct swapcluster *swc)
    436 {
    437 	int slot;
    438 	int npages;
    439 
    440 	if (swc->swc_slot != 0) {
    441 		return 0;
    442 	}
    443 
    444 	/* Even with strange MAXPHYS, the shift
    445 	   implicitly rounds down to a page. */
    446 	npages = MAXPHYS >> PAGE_SHIFT;
    447 	slot = uvm_swap_alloc(&npages, TRUE);
    448 	if (slot == 0) {
    449 		return ENOMEM;
    450 	}
    451 	swc->swc_slot = slot;
    452 	swc->swc_nallocated = npages;
    453 	swc->swc_nused = 0;
    454 
    455 	return 0;
    456 }
    457 
    458 static int
    459 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    460 {
    461 	int slot;
    462 	struct uvm_object *uobj;
    463 
    464 	KASSERT(swc->swc_slot != 0);
    465 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    466 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    467 
    468 	slot = swc->swc_slot + swc->swc_nused;
    469 	uobj = pg->uobject;
    470 	if (uobj == NULL) {
    471 		LOCK_ASSERT(simple_lock_held(&pg->uanon->an_lock));
    472 		pg->uanon->an_swslot = slot;
    473 	} else {
    474 		int result;
    475 
    476 		LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
    477 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    478 		if (result == -1) {
    479 			return ENOMEM;
    480 		}
    481 	}
    482 	swc->swc_pages[swc->swc_nused] = pg;
    483 	swc->swc_nused++;
    484 
    485 	return 0;
    486 }
    487 
    488 static void
    489 swapcluster_flush(struct swapcluster *swc, boolean_t now)
    490 {
    491 	int slot;
    492 	int nused;
    493 	int nallocated;
    494 	int error;
    495 
    496 	if (swc->swc_slot == 0) {
    497 		return;
    498 	}
    499 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    500 
    501 	slot = swc->swc_slot;
    502 	nused = swc->swc_nused;
    503 	nallocated = swc->swc_nallocated;
    504 
    505 	/*
    506 	 * if this is the final pageout we could have a few
    507 	 * unused swap blocks.  if so, free them now.
    508 	 */
    509 
    510 	if (nused < nallocated) {
    511 		if (!now) {
    512 			return;
    513 		}
    514 		uvm_swap_free(slot + nused, nallocated - nused);
    515 	}
    516 
    517 	/*
    518 	 * now start the pageout.
    519 	 */
    520 
    521 	uvmexp.pdpageouts++;
    522 	error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    523 	KASSERT(error == 0);
    524 
    525 	/*
    526 	 * zero swslot to indicate that we are
    527 	 * no longer building a swap-backed cluster.
    528 	 */
    529 
    530 	swc->swc_slot = 0;
    531 }
    532 #endif /* defined(VMSWAP) */
    533 
    534 /*
    535  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    536  *
    537  * => called with page queues locked
    538  * => we work on meeting our free target by converting inactive pages
    539  *    into free pages.
    540  * => we handle the building of swap-backed clusters
    541  */
    542 
    543 static void
    544 uvmpd_scan_inactive(struct pglist *pglst)
    545 {
    546 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    547 	struct uvm_object *uobj;
    548 	struct vm_anon *anon;
    549 #if defined(VMSWAP)
    550 	struct swapcluster swc;
    551 #endif /* defined(VMSWAP) */
    552 	struct simplelock *slock;
    553 	int dirtyreacts, t;
    554 	boolean_t anonunder, fileunder, execunder;
    555 	boolean_t anonover, fileover, execover;
    556 	boolean_t anonreact, filereact, execreact;
    557 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    558 
    559 	/*
    560 	 * swslot is non-zero if we are building a swap cluster.  we want
    561 	 * to stay in the loop while we have a page to scan or we have
    562 	 * a swap-cluster to build.
    563 	 */
    564 
    565 #if defined(VMSWAP)
    566 	swapcluster_init(&swc);
    567 #endif /* defined(VMSWAP) */
    568 	dirtyreacts = 0;
    569 
    570 	/*
    571 	 * decide which types of pages we want to reactivate instead of freeing
    572 	 * to keep usage within the minimum and maximum usage limits.
    573 	 */
    574 
    575 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    576 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    577 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    578 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    579 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    580 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    581 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    582 	anonreact = anonunder || (!anonover && (fileover || execover));
    583 	filereact = fileunder || (!fileover && (anonover || execover));
    584 	execreact = execunder || (!execover && (anonover || fileover));
    585 	if (filereact && execreact && (anonreact || uvm_swapisfull())) {
    586 		anonreact = filereact = execreact = FALSE;
    587 	}
    588 #if !defined(VMSWAP)
    589 	/*
    590 	 * XXX no point to put swap-backed pages on the page queue.
    591 	 */
    592 
    593 	anonreact = TRUE;
    594 #endif /* !defined(VMSWAP) */
    595 	for (p = TAILQ_FIRST(pglst); p != NULL; p = nextpg) {
    596 		uobj = NULL;
    597 		anon = NULL;
    598 
    599 		/*
    600 		 * see if we've met the free target.
    601 		 */
    602 
    603 		if (uvmexp.free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    604 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    605 			UVMHIST_LOG(pdhist,"  met free target: "
    606 				    "exit loop", 0, 0, 0, 0);
    607 			break;
    608 		}
    609 
    610 		/*
    611 		 * we are below target and have a new page to consider.
    612 		 */
    613 
    614 		uvmexp.pdscans++;
    615 		nextpg = TAILQ_NEXT(p, pageq);
    616 
    617 		/*
    618 		 * move referenced pages back to active queue and
    619 		 * skip to next page.
    620 		 */
    621 
    622 		if (pmap_is_referenced(p)) {
    623 			uvm_pageactivate(p);
    624 			uvmexp.pdreact++;
    625 			continue;
    626 		}
    627 		anon = p->uanon;
    628 		uobj = p->uobject;
    629 
    630 		/*
    631 		 * enforce the minimum thresholds on different
    632 		 * types of memory usage.  if reusing the current
    633 		 * page would reduce that type of usage below its
    634 		 * minimum, reactivate the page instead and move
    635 		 * on to the next page.
    636 		 */
    637 
    638 		if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    639 			uvm_pageactivate(p);
    640 			uvmexp.pdreexec++;
    641 			continue;
    642 		}
    643 		if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    644 		    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    645 			uvm_pageactivate(p);
    646 			uvmexp.pdrefile++;
    647 			continue;
    648 		}
    649 		if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    650 			uvm_pageactivate(p);
    651 			uvmexp.pdreanon++;
    652 			continue;
    653 		}
    654 
    655 		/*
    656 		 * first we attempt to lock the object that this page
    657 		 * belongs to.  if our attempt fails we skip on to
    658 		 * the next page (no harm done).  it is important to
    659 		 * "try" locking the object as we are locking in the
    660 		 * wrong order (pageq -> object) and we don't want to
    661 		 * deadlock.
    662 		 *
    663 		 * the only time we expect to see an ownerless page
    664 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    665 		 * anon has loaned a page from a uvm_object and the
    666 		 * uvm_object has dropped the ownership.  in that
    667 		 * case, the anon can "take over" the loaned page
    668 		 * and make it its own.
    669 		 */
    670 
    671 		slock = uvmpd_trylockowner(p);
    672 		if (slock == NULL) {
    673 			continue;
    674 		}
    675 		if (p->flags & PG_BUSY) {
    676 			simple_unlock(slock);
    677 			uvmexp.pdbusy++;
    678 			continue;
    679 		}
    680 
    681 		/* does the page belong to an object? */
    682 		if (uobj != NULL) {
    683 			uvmexp.pdobscan++;
    684 		} else {
    685 #if defined(VMSWAP)
    686 			KASSERT(anon != NULL);
    687 			uvmexp.pdanscan++;
    688 #else /* defined(VMSWAP) */
    689 			panic("%s: anon", __func__);
    690 #endif /* defined(VMSWAP) */
    691 		}
    692 
    693 
    694 		/*
    695 		 * we now have the object and the page queues locked.
    696 		 * if the page is not swap-backed, call the object's
    697 		 * pager to flush and free the page.
    698 		 */
    699 
    700 #if defined(READAHEAD_STATS)
    701 		if ((p->flags & PG_SPECULATIVE) != 0) {
    702 			p->flags &= ~PG_SPECULATIVE;
    703 			uvm_ra_miss.ev_count++;
    704 		}
    705 #endif /* defined(READAHEAD_STATS) */
    706 
    707 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    708 			uvm_unlock_pageq();
    709 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    710 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    711 			uvm_lock_pageq();
    712 			if (nextpg &&
    713 			    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    714 				nextpg = TAILQ_FIRST(pglst);
    715 			}
    716 			continue;
    717 		}
    718 
    719 #if defined(VMSWAP)
    720 		/*
    721 		 * the page is swap-backed.  remove all the permissions
    722 		 * from the page so we can sync the modified info
    723 		 * without any race conditions.  if the page is clean
    724 		 * we can free it now and continue.
    725 		 */
    726 
    727 		pmap_page_protect(p, VM_PROT_NONE);
    728 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    729 			p->flags &= ~(PG_CLEAN);
    730 		}
    731 		if (p->flags & PG_CLEAN) {
    732 			int slot;
    733 			int pageidx;
    734 
    735 			pageidx = p->offset >> PAGE_SHIFT;
    736 			uvm_pagefree(p);
    737 			uvmexp.pdfreed++;
    738 
    739 			/*
    740 			 * for anons, we need to remove the page
    741 			 * from the anon ourselves.  for aobjs,
    742 			 * pagefree did that for us.
    743 			 */
    744 
    745 			if (anon) {
    746 				KASSERT(anon->an_swslot != 0);
    747 				anon->an_page = NULL;
    748 				slot = anon->an_swslot;
    749 			} else {
    750 				slot = uao_find_swslot(uobj, pageidx);
    751 			}
    752 			simple_unlock(slock);
    753 
    754 			if (slot > 0) {
    755 				/* this page is now only in swap. */
    756 				simple_lock(&uvm.swap_data_lock);
    757 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    758 				uvmexp.swpgonly++;
    759 				simple_unlock(&uvm.swap_data_lock);
    760 			}
    761 			continue;
    762 		}
    763 
    764 		/*
    765 		 * this page is dirty, skip it if we'll have met our
    766 		 * free target when all the current pageouts complete.
    767 		 */
    768 
    769 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    770 			simple_unlock(slock);
    771 			continue;
    772 		}
    773 
    774 		/*
    775 		 * free any swap space allocated to the page since
    776 		 * we'll have to write it again with its new data.
    777 		 */
    778 
    779 		if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    780 			uvm_swap_free(anon->an_swslot, 1);
    781 			anon->an_swslot = 0;
    782 		} else if (p->pqflags & PQ_AOBJ) {
    783 			uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    784 		}
    785 
    786 		/*
    787 		 * if all pages in swap are only in swap,
    788 		 * the swap space is full and we can't page out
    789 		 * any more swap-backed pages.  reactivate this page
    790 		 * so that we eventually cycle all pages through
    791 		 * the inactive queue.
    792 		 */
    793 
    794 		if (uvm_swapisfull()) {
    795 			dirtyreacts++;
    796 			uvm_pageactivate(p);
    797 			simple_unlock(slock);
    798 			continue;
    799 		}
    800 
    801 		/*
    802 		 * start new swap pageout cluster (if necessary).
    803 		 */
    804 
    805 		if (swapcluster_allocslots(&swc)) {
    806 			simple_unlock(slock);
    807 			continue;
    808 		}
    809 
    810 		/*
    811 		 * at this point, we're definitely going reuse this
    812 		 * page.  mark the page busy and delayed-free.
    813 		 * we should remove the page from the page queues
    814 		 * so we don't ever look at it again.
    815 		 * adjust counters and such.
    816 		 */
    817 
    818 		p->flags |= PG_BUSY;
    819 		UVM_PAGE_OWN(p, "scan_inactive");
    820 
    821 		p->flags |= PG_PAGEOUT;
    822 		uvmexp.paging++;
    823 		uvm_pagedequeue(p);
    824 
    825 		uvmexp.pgswapout++;
    826 		uvm_unlock_pageq();
    827 
    828 		/*
    829 		 * add the new page to the cluster.
    830 		 */
    831 
    832 		if (swapcluster_add(&swc, p)) {
    833 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    834 			UVM_PAGE_OWN(p, NULL);
    835 			uvm_lock_pageq();
    836 			uvmexp.paging--;
    837 			uvm_pageactivate(p);
    838 			simple_unlock(slock);
    839 			continue;
    840 		}
    841 		simple_unlock(slock);
    842 
    843 		swapcluster_flush(&swc, FALSE);
    844 		uvm_lock_pageq();
    845 
    846 #else /* defined(VMSWAP) */
    847 		panic("%s: swap-backed", __func__);
    848 #endif /* defined(VMSWAP) */
    849 
    850 		/*
    851 		 * the pageout is in progress.  bump counters and set up
    852 		 * for the next loop.
    853 		 */
    854 
    855 		uvmexp.pdpending++;
    856 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    857 			nextpg = TAILQ_FIRST(pglst);
    858 		}
    859 	}
    860 
    861 #if defined(VMSWAP)
    862 	uvm_unlock_pageq();
    863 	swapcluster_flush(&swc, TRUE);
    864 	uvm_lock_pageq();
    865 #endif /* defined(VMSWAP) */
    866 }
    867 
    868 /*
    869  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    870  *
    871  * => called with pageq's locked
    872  */
    873 
    874 static void
    875 uvmpd_scan(void)
    876 {
    877 	int inactive_shortage, swap_shortage, pages_freed;
    878 	struct vm_page *p, *nextpg;
    879 	struct simplelock *slock;
    880 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    881 
    882 	uvmexp.pdrevs++;
    883 
    884 #ifndef __SWAP_BROKEN
    885 
    886 	/*
    887 	 * swap out some processes if we are below our free target.
    888 	 * we need to unlock the page queues for this.
    889 	 */
    890 
    891 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    892 		uvmexp.pdswout++;
    893 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    894 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    895 		uvm_unlock_pageq();
    896 		uvm_swapout_threads();
    897 		uvm_lock_pageq();
    898 
    899 	}
    900 #endif
    901 
    902 	/*
    903 	 * now we want to work on meeting our targets.   first we work on our
    904 	 * free target by converting inactive pages into free pages.  then
    905 	 * we work on meeting our inactive target by converting active pages
    906 	 * to inactive ones.
    907 	 */
    908 
    909 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    910 
    911 	pages_freed = uvmexp.pdfreed;
    912 	uvmpd_scan_inactive(&uvm.page_inactive);
    913 	pages_freed = uvmexp.pdfreed - pages_freed;
    914 
    915 	/*
    916 	 * we have done the scan to get free pages.   now we work on meeting
    917 	 * our inactive target.
    918 	 */
    919 
    920 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    921 
    922 	/*
    923 	 * detect if we're not going to be able to page anything out
    924 	 * until we free some swap resources from active pages.
    925 	 */
    926 
    927 	swap_shortage = 0;
    928 	if (uvmexp.free < uvmexp.freetarg &&
    929 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    930 	    !uvm_swapisfull() &&
    931 	    pages_freed == 0) {
    932 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    933 	}
    934 
    935 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    936 		    inactive_shortage, swap_shortage,0,0);
    937 	for (p = TAILQ_FIRST(&uvm.page_active);
    938 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    939 	     p = nextpg) {
    940 		nextpg = TAILQ_NEXT(p, pageq);
    941 		if (p->flags & PG_BUSY) {
    942 			continue;
    943 		}
    944 
    945 		/*
    946 		 * lock the page's owner.
    947 		 */
    948 
    949 		slock = uvmpd_trylockowner(p);
    950 		if (slock == NULL) {
    951 			continue;
    952 		}
    953 
    954 		/*
    955 		 * skip this page if it's busy.
    956 		 */
    957 
    958 		if ((p->flags & PG_BUSY) != 0) {
    959 			simple_unlock(slock);
    960 			continue;
    961 		}
    962 
    963 #if defined(VMSWAP)
    964 		/*
    965 		 * if there's a shortage of swap, free any swap allocated
    966 		 * to this page so that other pages can be paged out.
    967 		 */
    968 
    969 		if (swap_shortage > 0) {
    970 			struct vm_anon *anon = p->uanon;
    971 
    972 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    973 				uvm_swap_free(anon->an_swslot, 1);
    974 				anon->an_swslot = 0;
    975 				p->flags &= ~PG_CLEAN;
    976 				swap_shortage--;
    977 			} else if (p->pqflags & PQ_AOBJ) {
    978 				int slot = uao_set_swslot(p->uobject,
    979 					p->offset >> PAGE_SHIFT, 0);
    980 				if (slot) {
    981 					uvm_swap_free(slot, 1);
    982 					p->flags &= ~PG_CLEAN;
    983 					swap_shortage--;
    984 				}
    985 			}
    986 		}
    987 #endif /* defined(VMSWAP) */
    988 
    989 		/*
    990 		 * if there's a shortage of inactive pages, deactivate.
    991 		 */
    992 
    993 		if (inactive_shortage > 0) {
    994 			/* no need to check wire_count as pg is "active" */
    995 			pmap_clear_reference(p);
    996 			uvm_pagedeactivate(p);
    997 			uvmexp.pddeact++;
    998 			inactive_shortage--;
    999 		}
   1000 
   1001 		/*
   1002 		 * we're done with this page.
   1003 		 */
   1004 
   1005 		simple_unlock(slock);
   1006 	}
   1007 }
   1008 
   1009 /*
   1010  * uvm_reclaimable: decide whether to wait for pagedaemon.
   1011  *
   1012  * => return TRUE if it seems to be worth to do uvm_wait.
   1013  *
   1014  * XXX should be tunable.
   1015  * XXX should consider pools, etc?
   1016  */
   1017 
   1018 boolean_t
   1019 uvm_reclaimable(void)
   1020 {
   1021 	int filepages;
   1022 
   1023 	/*
   1024 	 * if swap is not full, no problem.
   1025 	 */
   1026 
   1027 	if (!uvm_swapisfull()) {
   1028 		return TRUE;
   1029 	}
   1030 
   1031 	/*
   1032 	 * file-backed pages can be reclaimed even when swap is full.
   1033 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1034 	 *
   1035 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1036 	 *
   1037 	 * XXX should consider about other reclaimable memory.
   1038 	 * XXX ie. pools, traditional buffer cache.
   1039 	 */
   1040 
   1041 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1042 	if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
   1043 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1044 		return TRUE;
   1045 	}
   1046 
   1047 	/*
   1048 	 * kill the process, fail allocation, etc..
   1049 	 */
   1050 
   1051 	return FALSE;
   1052 }
   1053