Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.76.2.1
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.76.2.1 2006/03/05 12:51:09 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.76.2.1 2006/03/05 12:51:09 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 #include <sys/vnode.h>
     86 
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     91  * in a pass thru the inactive list when swap is full.  the value should be
     92  * "small"... if it's too large we'll cycle the active pages thru the inactive
     93  * queue too quickly to for them to be referenced and avoid being freed.
     94  */
     95 
     96 #define UVMPD_NUMDIRTYREACTS 16
     97 
     98 
     99 /*
    100  * local prototypes
    101  */
    102 
    103 static void	uvmpd_scan(void);
    104 static void	uvmpd_scan_queue(void);
    105 static void	uvmpd_tune(void);
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 int uvm_extrapages;
    111 
    112 /*
    113  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114  *
    115  * => should be called with all locks released
    116  * => should _not_ be called by the page daemon (to avoid deadlock)
    117  */
    118 
    119 void
    120 uvm_wait(const char *wmsg)
    121 {
    122 	int timo = 0;
    123 	int s = splbio();
    124 
    125 	/*
    126 	 * check for page daemon going to sleep (waiting for itself)
    127 	 */
    128 
    129 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    130 		/*
    131 		 * now we have a problem: the pagedaemon wants to go to
    132 		 * sleep until it frees more memory.   but how can it
    133 		 * free more memory if it is asleep?  that is a deadlock.
    134 		 * we have two options:
    135 		 *  [1] panic now
    136 		 *  [2] put a timeout on the sleep, thus causing the
    137 		 *      pagedaemon to only pause (rather than sleep forever)
    138 		 *
    139 		 * note that option [2] will only help us if we get lucky
    140 		 * and some other process on the system breaks the deadlock
    141 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142 		 * to continue).  for now we panic if DEBUG is defined,
    143 		 * otherwise we hope for the best with option [2] (better
    144 		 * yet, this should never happen in the first place!).
    145 		 */
    146 
    147 		printf("pagedaemon: deadlock detected!\n");
    148 		timo = hz >> 3;		/* set timeout */
    149 #if defined(DEBUG)
    150 		/* DEBUG: panic so we can debug it */
    151 		panic("pagedaemon deadlock");
    152 #endif
    153 	}
    154 
    155 	simple_lock(&uvm.pagedaemon_lock);
    156 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    158 	    timo);
    159 
    160 	splx(s);
    161 }
    162 
    163 
    164 /*
    165  * uvmpd_tune: tune paging parameters
    166  *
    167  * => called when ever memory is added (or removed?) to the system
    168  * => caller must call with page queues locked
    169  */
    170 
    171 static void
    172 uvmpd_tune(void)
    173 {
    174 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    175 
    176 	uvmexp.freemin = uvmexp.npages / 20;
    177 
    178 	/* between 16k and 256k */
    179 	/* XXX:  what are these values good for? */
    180 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    181 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    182 
    183 	/* Make sure there's always a user page free. */
    184 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    185 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    186 
    187 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    188 	if (uvmexp.freetarg <= uvmexp.freemin)
    189 		uvmexp.freetarg = uvmexp.freemin + 1;
    190 
    191 	uvmexp.freetarg += uvm_extrapages;
    192 	uvm_extrapages = 0;
    193 
    194 	uvmexp.wiredmax = uvmexp.npages / 3;
    195 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    196 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    197 }
    198 
    199 /*
    200  * uvm_pageout: the main loop for the pagedaemon
    201  */
    202 
    203 void
    204 uvm_pageout(void *arg)
    205 {
    206 	int bufcnt, npages = 0;
    207 	int extrapages = 0;
    208 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    209 
    210 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    211 
    212 	/*
    213 	 * ensure correct priority and set paging parameters...
    214 	 */
    215 
    216 	uvm.pagedaemon_proc = curproc;
    217 	uvm_lock_pageq();
    218 	npages = uvmexp.npages;
    219 	uvmpd_tune();
    220 	uvm_unlock_pageq();
    221 
    222 	/*
    223 	 * main loop
    224 	 */
    225 
    226 	for (;;) {
    227 		simple_lock(&uvm.pagedaemon_lock);
    228 
    229 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    230 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    231 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    232 		uvmexp.pdwoke++;
    233 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    234 
    235 		/*
    236 		 * now lock page queues and recompute inactive count
    237 		 */
    238 
    239 		uvm_lock_pageq();
    240 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    241 			npages = uvmexp.npages;
    242 			extrapages = uvm_extrapages;
    243 			uvmpd_tune();
    244 		}
    245 
    246 		uvmpdpol_tune();
    247 
    248 		/*
    249 		 * Estimate a hint.  Note that bufmem are returned to
    250 		 * system only when entire pool page is empty.
    251 		 */
    252 		bufcnt = uvmexp.freetarg - uvmexp.free;
    253 		if (bufcnt < 0)
    254 			bufcnt = 0;
    255 
    256 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    257 		    uvmexp.free, uvmexp.freetarg, 0,0);
    258 
    259 		/*
    260 		 * scan if needed
    261 		 */
    262 
    263 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    264 		    uvmpdpol_needsscan_p()) {
    265 			uvmpd_scan();
    266 		}
    267 
    268 		/*
    269 		 * if there's any free memory to be had,
    270 		 * wake up any waiters.
    271 		 */
    272 
    273 		if (uvmexp.free > uvmexp.reserve_kernel ||
    274 		    uvmexp.paging == 0) {
    275 			wakeup(&uvmexp.free);
    276 		}
    277 
    278 		/*
    279 		 * scan done.  unlock page queues (the only lock we are holding)
    280 		 */
    281 
    282 		uvm_unlock_pageq();
    283 
    284 		buf_drain(bufcnt << PAGE_SHIFT);
    285 
    286 		/*
    287 		 * drain pool resources now that we're not holding any locks
    288 		 */
    289 
    290 		pool_drain(0);
    291 
    292 		/*
    293 		 * free any cached u-areas we don't need
    294 		 */
    295 		uvm_uarea_drain(TRUE);
    296 
    297 	}
    298 	/*NOTREACHED*/
    299 }
    300 
    301 
    302 /*
    303  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    304  */
    305 
    306 void
    307 uvm_aiodone_daemon(void *arg)
    308 {
    309 	int s, free;
    310 	struct buf *bp, *nbp;
    311 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    312 
    313 	for (;;) {
    314 
    315 		/*
    316 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    317 		 * we need splbio because we want to make sure the aio_done list
    318 		 * is totally empty before we go to sleep.
    319 		 */
    320 
    321 		s = splbio();
    322 		simple_lock(&uvm.aiodoned_lock);
    323 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    324 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    325 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    326 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    327 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    328 
    329 			/* relock aiodoned_lock, still at splbio */
    330 			simple_lock(&uvm.aiodoned_lock);
    331 		}
    332 
    333 		/*
    334 		 * check for done aio structures
    335 		 */
    336 
    337 		bp = TAILQ_FIRST(&uvm.aio_done);
    338 		if (bp) {
    339 			TAILQ_INIT(&uvm.aio_done);
    340 		}
    341 
    342 		simple_unlock(&uvm.aiodoned_lock);
    343 		splx(s);
    344 
    345 		/*
    346 		 * process each i/o that's done.
    347 		 */
    348 
    349 		free = uvmexp.free;
    350 		while (bp != NULL) {
    351 			nbp = TAILQ_NEXT(bp, b_freelist);
    352 			(*bp->b_iodone)(bp);
    353 			bp = nbp;
    354 		}
    355 		if (free <= uvmexp.reserve_kernel) {
    356 			s = uvm_lock_fpageq();
    357 			wakeup(&uvm.pagedaemon);
    358 			uvm_unlock_fpageq(s);
    359 		} else {
    360 			simple_lock(&uvm.pagedaemon_lock);
    361 			wakeup(&uvmexp.free);
    362 			simple_unlock(&uvm.pagedaemon_lock);
    363 		}
    364 	}
    365 }
    366 
    367 /*
    368  * uvmpd_trylockowner: trylock the page's owner.
    369  *
    370  * => called with pageq locked.
    371  * => resolve orphaned O->A loaned page.
    372  * => return the locked simplelock on success.  otherwise, return NULL.
    373  */
    374 
    375 struct simplelock *
    376 uvmpd_trylockowner(struct vm_page *pg)
    377 {
    378 	struct uvm_object *uobj = pg->uobject;
    379 	struct simplelock *slock;
    380 
    381 	UVM_LOCK_ASSERT_PAGEQ();
    382 	if (uobj != NULL) {
    383 		slock = &uobj->vmobjlock;
    384 	} else {
    385 		struct vm_anon *anon = pg->uanon;
    386 
    387 		KASSERT(anon != NULL);
    388 		slock = &anon->an_lock;
    389 	}
    390 
    391 	if (!simple_lock_try(slock)) {
    392 		return NULL;
    393 	}
    394 
    395 	if (uobj == NULL) {
    396 
    397 		/*
    398 		 * set PQ_ANON if it isn't set already.
    399 		 */
    400 
    401 		if ((pg->pqflags & PQ_ANON) == 0) {
    402 			KASSERT(pg->loan_count > 0);
    403 			pg->loan_count--;
    404 			pg->pqflags |= PQ_ANON;
    405 			/* anon now owns it */
    406 		}
    407 	}
    408 
    409 	return slock;
    410 }
    411 
    412 #if defined(VMSWAP)
    413 struct swapcluster {
    414 	int swc_slot;
    415 	int swc_nallocated;
    416 	int swc_nused;
    417 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    418 };
    419 
    420 static void
    421 swapcluster_init(struct swapcluster *swc)
    422 {
    423 
    424 	swc->swc_slot = 0;
    425 }
    426 
    427 static int
    428 swapcluster_allocslots(struct swapcluster *swc)
    429 {
    430 	int slot;
    431 	int npages;
    432 
    433 	if (swc->swc_slot != 0) {
    434 		return 0;
    435 	}
    436 
    437 	/* Even with strange MAXPHYS, the shift
    438 	   implicitly rounds down to a page. */
    439 	npages = MAXPHYS >> PAGE_SHIFT;
    440 	slot = uvm_swap_alloc(&npages, TRUE);
    441 	if (slot == 0) {
    442 		return ENOMEM;
    443 	}
    444 	swc->swc_slot = slot;
    445 	swc->swc_nallocated = npages;
    446 	swc->swc_nused = 0;
    447 
    448 	return 0;
    449 }
    450 
    451 static int
    452 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    453 {
    454 	int slot;
    455 	struct uvm_object *uobj;
    456 
    457 	KASSERT(swc->swc_slot != 0);
    458 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    459 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    460 
    461 	slot = swc->swc_slot + swc->swc_nused;
    462 	uobj = pg->uobject;
    463 	if (uobj == NULL) {
    464 		LOCK_ASSERT(simple_lock_held(&pg->uanon->an_lock));
    465 		pg->uanon->an_swslot = slot;
    466 	} else {
    467 		int result;
    468 
    469 		LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
    470 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    471 		if (result == -1) {
    472 			return ENOMEM;
    473 		}
    474 	}
    475 	swc->swc_pages[swc->swc_nused] = pg;
    476 	swc->swc_nused++;
    477 
    478 	return 0;
    479 }
    480 
    481 static void
    482 swapcluster_flush(struct swapcluster *swc, boolean_t now)
    483 {
    484 	int slot;
    485 	int nused;
    486 	int nallocated;
    487 	int error;
    488 
    489 	if (swc->swc_slot == 0) {
    490 		return;
    491 	}
    492 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    493 
    494 	slot = swc->swc_slot;
    495 	nused = swc->swc_nused;
    496 	nallocated = swc->swc_nallocated;
    497 
    498 	/*
    499 	 * if this is the final pageout we could have a few
    500 	 * unused swap blocks.  if so, free them now.
    501 	 */
    502 
    503 	if (nused < nallocated) {
    504 		if (!now) {
    505 			return;
    506 		}
    507 		uvm_swap_free(slot + nused, nallocated - nused);
    508 	}
    509 
    510 	/*
    511 	 * now start the pageout.
    512 	 */
    513 
    514 	uvmexp.pdpageouts++;
    515 	error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    516 	KASSERT(error == 0);
    517 
    518 	/*
    519 	 * zero swslot to indicate that we are
    520 	 * no longer building a swap-backed cluster.
    521 	 */
    522 
    523 	swc->swc_slot = 0;
    524 }
    525 
    526 /*
    527  * uvmpd_dropswap: free any swap allocated to this page.
    528  *
    529  * => called with owner locked.
    530  * => return TRUE if a page had an associated slot.
    531  */
    532 
    533 static boolean_t
    534 uvmpd_dropswap(struct vm_page *pg)
    535 {
    536 	boolean_t result = FALSE;
    537 	struct vm_anon *anon = pg->uanon;
    538 
    539 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    540 		uvm_swap_free(anon->an_swslot, 1);
    541 		anon->an_swslot = 0;
    542 		pg->flags &= ~PG_CLEAN;
    543 		result = TRUE;
    544 	} else if (pg->pqflags & PQ_AOBJ) {
    545 		int slot = uao_set_swslot(pg->uobject,
    546 		    pg->offset >> PAGE_SHIFT, 0);
    547 		if (slot) {
    548 			uvm_swap_free(slot, 1);
    549 			pg->flags &= ~PG_CLEAN;
    550 			result = TRUE;
    551 		}
    552 	}
    553 
    554 	return result;
    555 }
    556 
    557 /*
    558  * uvmpd_trydropswap: try to free any swap allocated to this page.
    559  *
    560  * => return TRUE if a slot is successfully freed.
    561  */
    562 
    563 boolean_t
    564 uvmpd_trydropswap(struct vm_page *pg)
    565 {
    566 	struct simplelock *slock;
    567 	boolean_t result;
    568 
    569 	if ((pg->flags & PG_BUSY) != 0) {
    570 		return FALSE;
    571 	}
    572 
    573 	/*
    574 	 * lock the page's owner.
    575 	 */
    576 
    577 	slock = uvmpd_trylockowner(pg);
    578 	if (slock == NULL) {
    579 		return FALSE;
    580 	}
    581 
    582 	/*
    583 	 * skip this page if it's busy.
    584 	 */
    585 
    586 	if ((pg->flags & PG_BUSY) != 0) {
    587 		simple_unlock(slock);
    588 		return FALSE;
    589 	}
    590 
    591 	result = uvmpd_dropswap(pg);
    592 
    593 	simple_unlock(slock);
    594 
    595 	return result;
    596 }
    597 
    598 #endif /* defined(VMSWAP) */
    599 
    600 /*
    601  * uvmpd_scan_queue: scan an replace candidate list for pages
    602  * to clean or free.
    603  *
    604  * => called with page queues locked
    605  * => we work on meeting our free target by converting inactive pages
    606  *    into free pages.
    607  * => we handle the building of swap-backed clusters
    608  */
    609 
    610 static void
    611 uvmpd_scan_queue(void)
    612 {
    613 	struct vm_page *p;
    614 	struct uvm_object *uobj;
    615 	struct vm_anon *anon;
    616 #if defined(VMSWAP)
    617 	struct swapcluster swc;
    618 #endif /* defined(VMSWAP) */
    619 	int dirtyreacts;
    620 	struct simplelock *slock;
    621 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    622 
    623 	/*
    624 	 * swslot is non-zero if we are building a swap cluster.  we want
    625 	 * to stay in the loop while we have a page to scan or we have
    626 	 * a swap-cluster to build.
    627 	 */
    628 
    629 #if defined(VMSWAP)
    630 	swapcluster_init(&swc);
    631 #endif /* defined(VMSWAP) */
    632 
    633 	dirtyreacts = 0;
    634 	uvmpdpol_scaninit();
    635 
    636 	while (/* CONSTCOND */ 1) {
    637 
    638 		/*
    639 		 * see if we've met the free target.
    640 		 */
    641 
    642 		if (uvmexp.free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    643 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    644 			UVMHIST_LOG(pdhist,"  met free target: "
    645 				    "exit loop", 0, 0, 0, 0);
    646 			break;
    647 		}
    648 
    649 		p = uvmpdpol_selectvictim();
    650 		if (p == NULL) {
    651 			break;
    652 		}
    653 		KASSERT(uvmpdpol_pageisqueued_p(p));
    654 		KASSERT(p->wire_count == 0);
    655 
    656 		/*
    657 		 * we are below target and have a new page to consider.
    658 		 */
    659 
    660 		anon = p->uanon;
    661 		uobj = p->uobject;
    662 
    663 		/*
    664 		 * first we attempt to lock the object that this page
    665 		 * belongs to.  if our attempt fails we skip on to
    666 		 * the next page (no harm done).  it is important to
    667 		 * "try" locking the object as we are locking in the
    668 		 * wrong order (pageq -> object) and we don't want to
    669 		 * deadlock.
    670 		 *
    671 		 * the only time we expect to see an ownerless page
    672 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    673 		 * anon has loaned a page from a uvm_object and the
    674 		 * uvm_object has dropped the ownership.  in that
    675 		 * case, the anon can "take over" the loaned page
    676 		 * and make it its own.
    677 		 */
    678 
    679 		slock = uvmpd_trylockowner(p);
    680 		if (slock == NULL) {
    681 			continue;
    682 		}
    683 		if (p->flags & PG_BUSY) {
    684 			simple_unlock(slock);
    685 			uvmexp.pdbusy++;
    686 			continue;
    687 		}
    688 
    689 		/* does the page belong to an object? */
    690 		if (uobj != NULL) {
    691 			uvmexp.pdobscan++;
    692 		} else {
    693 #if defined(VMSWAP)
    694 			KASSERT(anon != NULL);
    695 			uvmexp.pdanscan++;
    696 #else /* defined(VMSWAP) */
    697 			panic("%s: anon", __func__);
    698 #endif /* defined(VMSWAP) */
    699 		}
    700 
    701 
    702 		/*
    703 		 * we now have the object and the page queues locked.
    704 		 * if the page is not swap-backed, call the object's
    705 		 * pager to flush and free the page.
    706 		 */
    707 
    708 #if defined(READAHEAD_STATS)
    709 		if ((p->flags & PG_SPECULATIVE) != 0) {
    710 			p->flags &= ~PG_SPECULATIVE;
    711 			uvm_ra_miss.ev_count++;
    712 		}
    713 #endif /* defined(READAHEAD_STATS) */
    714 
    715 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    716 			uvm_unlock_pageq();
    717 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    718 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    719 			uvm_lock_pageq();
    720 			continue;
    721 		}
    722 
    723 		/*
    724 		 * the page is swap-backed.  remove all the permissions
    725 		 * from the page so we can sync the modified info
    726 		 * without any race conditions.  if the page is clean
    727 		 * we can free it now and continue.
    728 		 */
    729 
    730 		pmap_page_protect(p, VM_PROT_NONE);
    731 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    732 			p->flags &= ~(PG_CLEAN);
    733 		}
    734 		if (p->flags & PG_CLEAN) {
    735 			int slot;
    736 			int pageidx;
    737 
    738 			pageidx = p->offset >> PAGE_SHIFT;
    739 			uvm_pagefree(p);
    740 			uvmexp.pdfreed++;
    741 
    742 			/*
    743 			 * for anons, we need to remove the page
    744 			 * from the anon ourselves.  for aobjs,
    745 			 * pagefree did that for us.
    746 			 */
    747 
    748 			if (anon) {
    749 				KASSERT(anon->an_swslot != 0);
    750 				anon->an_page = NULL;
    751 				slot = anon->an_swslot;
    752 			} else {
    753 				slot = uao_find_swslot(uobj, pageidx);
    754 			}
    755 			simple_unlock(slock);
    756 
    757 			if (slot > 0) {
    758 				/* this page is now only in swap. */
    759 				simple_lock(&uvm.swap_data_lock);
    760 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    761 				uvmexp.swpgonly++;
    762 				simple_unlock(&uvm.swap_data_lock);
    763 			}
    764 			continue;
    765 		}
    766 
    767 #if defined(VMSWAP)
    768 		/*
    769 		 * this page is dirty, skip it if we'll have met our
    770 		 * free target when all the current pageouts complete.
    771 		 */
    772 
    773 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    774 			simple_unlock(slock);
    775 			continue;
    776 		}
    777 
    778 		/*
    779 		 * free any swap space allocated to the page since
    780 		 * we'll have to write it again with its new data.
    781 		 */
    782 
    783 		uvmpd_dropswap(p);
    784 
    785 		/*
    786 		 * if all pages in swap are only in swap,
    787 		 * the swap space is full and we can't page out
    788 		 * any more swap-backed pages.  reactivate this page
    789 		 * so that we eventually cycle all pages through
    790 		 * the inactive queue.
    791 		 */
    792 
    793 		if (uvm_swapisfull()) {
    794 			dirtyreacts++;
    795 			uvm_pageactivate(p);
    796 			simple_unlock(slock);
    797 			continue;
    798 		}
    799 
    800 		/*
    801 		 * start new swap pageout cluster (if necessary).
    802 		 */
    803 
    804 		if (swapcluster_allocslots(&swc)) {
    805 			simple_unlock(slock);
    806 			dirtyreacts++; /* XXX */
    807 			continue;
    808 		}
    809 
    810 		/*
    811 		 * at this point, we're definitely going reuse this
    812 		 * page.  mark the page busy and delayed-free.
    813 		 * we should remove the page from the page queues
    814 		 * so we don't ever look at it again.
    815 		 * adjust counters and such.
    816 		 */
    817 
    818 		p->flags |= PG_BUSY;
    819 		UVM_PAGE_OWN(p, "scan_queue");
    820 
    821 		p->flags |= PG_PAGEOUT;
    822 		uvmexp.paging++;
    823 		uvm_pagedequeue(p);
    824 
    825 		uvmexp.pgswapout++;
    826 		uvm_unlock_pageq();
    827 
    828 		/*
    829 		 * add the new page to the cluster.
    830 		 */
    831 
    832 		if (swapcluster_add(&swc, p)) {
    833 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    834 			UVM_PAGE_OWN(p, NULL);
    835 			uvm_lock_pageq();
    836 			uvmexp.paging--;
    837 			dirtyreacts++;
    838 			uvm_pageactivate(p);
    839 			simple_unlock(slock);
    840 			continue;
    841 		}
    842 		simple_unlock(slock);
    843 
    844 		swapcluster_flush(&swc, FALSE);
    845 		uvm_lock_pageq();
    846 
    847 		/*
    848 		 * the pageout is in progress.  bump counters and set up
    849 		 * for the next loop.
    850 		 */
    851 
    852 		uvmexp.pdpending++;
    853 
    854 #else /* defined(VMSWAP) */
    855 		uvm_pageactivate(p);
    856 		simple_unlock(slock);
    857 #endif /* defined(VMSWAP) */
    858 	}
    859 
    860 #if defined(VMSWAP)
    861 	uvm_unlock_pageq();
    862 	swapcluster_flush(&swc, TRUE);
    863 	uvm_lock_pageq();
    864 #endif /* defined(VMSWAP) */
    865 }
    866 
    867 /*
    868  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    869  *
    870  * => called with pageq's locked
    871  */
    872 
    873 static void
    874 uvmpd_scan(void)
    875 {
    876 	int swap_shortage, pages_freed;
    877 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    878 
    879 	uvmexp.pdrevs++;
    880 
    881 #ifndef __SWAP_BROKEN
    882 
    883 	/*
    884 	 * swap out some processes if we are below our free target.
    885 	 * we need to unlock the page queues for this.
    886 	 */
    887 
    888 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    889 		uvmexp.pdswout++;
    890 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    891 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    892 		uvm_unlock_pageq();
    893 		uvm_swapout_threads();
    894 		uvm_lock_pageq();
    895 
    896 	}
    897 #endif
    898 
    899 	/*
    900 	 * now we want to work on meeting our targets.   first we work on our
    901 	 * free target by converting inactive pages into free pages.  then
    902 	 * we work on meeting our inactive target by converting active pages
    903 	 * to inactive ones.
    904 	 */
    905 
    906 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    907 
    908 	pages_freed = uvmexp.pdfreed;
    909 	uvmpd_scan_queue();
    910 	pages_freed = uvmexp.pdfreed - pages_freed;
    911 
    912 	/*
    913 	 * detect if we're not going to be able to page anything out
    914 	 * until we free some swap resources from active pages.
    915 	 */
    916 
    917 	swap_shortage = 0;
    918 	if (uvmexp.free < uvmexp.freetarg &&
    919 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    920 	    !uvm_swapisfull() &&
    921 	    pages_freed == 0) {
    922 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    923 	}
    924 
    925 	uvmpdpol_balancequeue(swap_shortage);
    926 }
    927 
    928 /*
    929  * uvm_reclaimable: decide whether to wait for pagedaemon.
    930  *
    931  * => return TRUE if it seems to be worth to do uvm_wait.
    932  *
    933  * XXX should be tunable.
    934  * XXX should consider pools, etc?
    935  */
    936 
    937 boolean_t
    938 uvm_reclaimable(void)
    939 {
    940 	int filepages;
    941 	int active, inactive;
    942 
    943 	/*
    944 	 * if swap is not full, no problem.
    945 	 */
    946 
    947 	if (!uvm_swapisfull()) {
    948 		return TRUE;
    949 	}
    950 
    951 	/*
    952 	 * file-backed pages can be reclaimed even when swap is full.
    953 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    954 	 *
    955 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    956 	 *
    957 	 * XXX should consider about other reclaimable memory.
    958 	 * XXX ie. pools, traditional buffer cache.
    959 	 */
    960 
    961 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    962 	uvm_estimatepageable(&active, &inactive);
    963 	if (filepages >= MIN((active + inactive) >> 4,
    964 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    965 		return TRUE;
    966 	}
    967 
    968 	/*
    969 	 * kill the process, fail allocation, etc..
    970 	 */
    971 
    972 	return FALSE;
    973 }
    974 
    975 void
    976 uvm_estimatepageable(int *active, int *inactive)
    977 {
    978 
    979 	uvmpdpol_estimatepageable(active, inactive);
    980 }
    981