Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.77
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.77 2006/09/15 15:51:13 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.77 2006/09/15 15:51:13 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 #include <sys/vnode.h>
     86 
     87 #include <uvm/uvm.h>
     88 #include <uvm/uvm_pdpolicy.h>
     89 
     90 /*
     91  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     92  * in a pass thru the inactive list when swap is full.  the value should be
     93  * "small"... if it's too large we'll cycle the active pages thru the inactive
     94  * queue too quickly to for them to be referenced and avoid being freed.
     95  */
     96 
     97 #define UVMPD_NUMDIRTYREACTS 16
     98 
     99 
    100 /*
    101  * local prototypes
    102  */
    103 
    104 static void	uvmpd_scan(void);
    105 static void	uvmpd_scan_queue(void);
    106 static void	uvmpd_tune(void);
    107 
    108 /*
    109  * XXX hack to avoid hangs when large processes fork.
    110  */
    111 int uvm_extrapages;
    112 
    113 /*
    114  * uvm_wait: wait (sleep) for the page daemon to free some pages
    115  *
    116  * => should be called with all locks released
    117  * => should _not_ be called by the page daemon (to avoid deadlock)
    118  */
    119 
    120 void
    121 uvm_wait(const char *wmsg)
    122 {
    123 	int timo = 0;
    124 	int s = splbio();
    125 
    126 	/*
    127 	 * check for page daemon going to sleep (waiting for itself)
    128 	 */
    129 
    130 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    131 		/*
    132 		 * now we have a problem: the pagedaemon wants to go to
    133 		 * sleep until it frees more memory.   but how can it
    134 		 * free more memory if it is asleep?  that is a deadlock.
    135 		 * we have two options:
    136 		 *  [1] panic now
    137 		 *  [2] put a timeout on the sleep, thus causing the
    138 		 *      pagedaemon to only pause (rather than sleep forever)
    139 		 *
    140 		 * note that option [2] will only help us if we get lucky
    141 		 * and some other process on the system breaks the deadlock
    142 		 * by exiting or freeing memory (thus allowing the pagedaemon
    143 		 * to continue).  for now we panic if DEBUG is defined,
    144 		 * otherwise we hope for the best with option [2] (better
    145 		 * yet, this should never happen in the first place!).
    146 		 */
    147 
    148 		printf("pagedaemon: deadlock detected!\n");
    149 		timo = hz >> 3;		/* set timeout */
    150 #if defined(DEBUG)
    151 		/* DEBUG: panic so we can debug it */
    152 		panic("pagedaemon deadlock");
    153 #endif
    154 	}
    155 
    156 	simple_lock(&uvm.pagedaemon_lock);
    157 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    158 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    159 	    timo);
    160 
    161 	splx(s);
    162 }
    163 
    164 /*
    165  * uvm_kick_pdaemon: perform checks to determine if we need to
    166  * give the pagedaemon a nudge, and do so if necessary.
    167  */
    168 
    169 void
    170 uvm_kick_pdaemon(void)
    171 {
    172 
    173 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    174 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    175 	     uvmpdpol_needsscan_p())) {
    176 		wakeup(&uvm.pagedaemon);
    177 	}
    178 }
    179 
    180 /*
    181  * uvmpd_tune: tune paging parameters
    182  *
    183  * => called when ever memory is added (or removed?) to the system
    184  * => caller must call with page queues locked
    185  */
    186 
    187 static void
    188 uvmpd_tune(void)
    189 {
    190 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    191 
    192 	uvmexp.freemin = uvmexp.npages / 20;
    193 
    194 	/* between 16k and 256k */
    195 	/* XXX:  what are these values good for? */
    196 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    197 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    198 
    199 	/* Make sure there's always a user page free. */
    200 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    201 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    202 
    203 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    204 	if (uvmexp.freetarg <= uvmexp.freemin)
    205 		uvmexp.freetarg = uvmexp.freemin + 1;
    206 
    207 	uvmexp.freetarg += uvm_extrapages;
    208 	uvm_extrapages = 0;
    209 
    210 	uvmexp.wiredmax = uvmexp.npages / 3;
    211 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    212 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    213 }
    214 
    215 /*
    216  * uvm_pageout: the main loop for the pagedaemon
    217  */
    218 
    219 void
    220 uvm_pageout(void *arg)
    221 {
    222 	int bufcnt, npages = 0;
    223 	int extrapages = 0;
    224 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    225 
    226 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    227 
    228 	/*
    229 	 * ensure correct priority and set paging parameters...
    230 	 */
    231 
    232 	uvm.pagedaemon_proc = curproc;
    233 	uvm_lock_pageq();
    234 	npages = uvmexp.npages;
    235 	uvmpd_tune();
    236 	uvm_unlock_pageq();
    237 
    238 	/*
    239 	 * main loop
    240 	 */
    241 
    242 	for (;;) {
    243 		simple_lock(&uvm.pagedaemon_lock);
    244 
    245 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    246 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    247 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    248 		uvmexp.pdwoke++;
    249 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    250 
    251 		/*
    252 		 * now lock page queues and recompute inactive count
    253 		 */
    254 
    255 		uvm_lock_pageq();
    256 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    257 			npages = uvmexp.npages;
    258 			extrapages = uvm_extrapages;
    259 			uvmpd_tune();
    260 		}
    261 
    262 		uvmpdpol_tune();
    263 
    264 		/*
    265 		 * Estimate a hint.  Note that bufmem are returned to
    266 		 * system only when entire pool page is empty.
    267 		 */
    268 		bufcnt = uvmexp.freetarg - uvmexp.free;
    269 		if (bufcnt < 0)
    270 			bufcnt = 0;
    271 
    272 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    273 		    uvmexp.free, uvmexp.freetarg, 0,0);
    274 
    275 		/*
    276 		 * scan if needed
    277 		 */
    278 
    279 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    280 		    uvmpdpol_needsscan_p()) {
    281 			uvmpd_scan();
    282 		}
    283 
    284 		/*
    285 		 * if there's any free memory to be had,
    286 		 * wake up any waiters.
    287 		 */
    288 
    289 		if (uvmexp.free > uvmexp.reserve_kernel ||
    290 		    uvmexp.paging == 0) {
    291 			wakeup(&uvmexp.free);
    292 		}
    293 
    294 		/*
    295 		 * scan done.  unlock page queues (the only lock we are holding)
    296 		 */
    297 
    298 		uvm_unlock_pageq();
    299 
    300 		buf_drain(bufcnt << PAGE_SHIFT);
    301 
    302 		/*
    303 		 * drain pool resources now that we're not holding any locks
    304 		 */
    305 
    306 		pool_drain(0);
    307 
    308 		/*
    309 		 * free any cached u-areas we don't need
    310 		 */
    311 		uvm_uarea_drain(TRUE);
    312 
    313 	}
    314 	/*NOTREACHED*/
    315 }
    316 
    317 
    318 /*
    319  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    320  */
    321 
    322 void
    323 uvm_aiodone_daemon(void *arg)
    324 {
    325 	int s, free;
    326 	struct buf *bp, *nbp;
    327 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    328 
    329 	for (;;) {
    330 
    331 		/*
    332 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    333 		 * we need splbio because we want to make sure the aio_done list
    334 		 * is totally empty before we go to sleep.
    335 		 */
    336 
    337 		s = splbio();
    338 		simple_lock(&uvm.aiodoned_lock);
    339 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    340 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    341 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    342 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    343 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    344 
    345 			/* relock aiodoned_lock, still at splbio */
    346 			simple_lock(&uvm.aiodoned_lock);
    347 		}
    348 
    349 		/*
    350 		 * check for done aio structures
    351 		 */
    352 
    353 		bp = TAILQ_FIRST(&uvm.aio_done);
    354 		if (bp) {
    355 			TAILQ_INIT(&uvm.aio_done);
    356 		}
    357 
    358 		simple_unlock(&uvm.aiodoned_lock);
    359 		splx(s);
    360 
    361 		/*
    362 		 * process each i/o that's done.
    363 		 */
    364 
    365 		free = uvmexp.free;
    366 		while (bp != NULL) {
    367 			nbp = TAILQ_NEXT(bp, b_freelist);
    368 			(*bp->b_iodone)(bp);
    369 			bp = nbp;
    370 		}
    371 		if (free <= uvmexp.reserve_kernel) {
    372 			s = uvm_lock_fpageq();
    373 			wakeup(&uvm.pagedaemon);
    374 			uvm_unlock_fpageq(s);
    375 		} else {
    376 			simple_lock(&uvm.pagedaemon_lock);
    377 			wakeup(&uvmexp.free);
    378 			simple_unlock(&uvm.pagedaemon_lock);
    379 		}
    380 	}
    381 }
    382 
    383 /*
    384  * uvmpd_trylockowner: trylock the page's owner.
    385  *
    386  * => called with pageq locked.
    387  * => resolve orphaned O->A loaned page.
    388  * => return the locked simplelock on success.  otherwise, return NULL.
    389  */
    390 
    391 struct simplelock *
    392 uvmpd_trylockowner(struct vm_page *pg)
    393 {
    394 	struct uvm_object *uobj = pg->uobject;
    395 	struct simplelock *slock;
    396 
    397 	UVM_LOCK_ASSERT_PAGEQ();
    398 	if (uobj != NULL) {
    399 		slock = &uobj->vmobjlock;
    400 	} else {
    401 		struct vm_anon *anon = pg->uanon;
    402 
    403 		KASSERT(anon != NULL);
    404 		slock = &anon->an_lock;
    405 	}
    406 
    407 	if (!simple_lock_try(slock)) {
    408 		return NULL;
    409 	}
    410 
    411 	if (uobj == NULL) {
    412 
    413 		/*
    414 		 * set PQ_ANON if it isn't set already.
    415 		 */
    416 
    417 		if ((pg->pqflags & PQ_ANON) == 0) {
    418 			KASSERT(pg->loan_count > 0);
    419 			pg->loan_count--;
    420 			pg->pqflags |= PQ_ANON;
    421 			/* anon now owns it */
    422 		}
    423 	}
    424 
    425 	return slock;
    426 }
    427 
    428 #if defined(VMSWAP)
    429 struct swapcluster {
    430 	int swc_slot;
    431 	int swc_nallocated;
    432 	int swc_nused;
    433 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    434 };
    435 
    436 static void
    437 swapcluster_init(struct swapcluster *swc)
    438 {
    439 
    440 	swc->swc_slot = 0;
    441 }
    442 
    443 static int
    444 swapcluster_allocslots(struct swapcluster *swc)
    445 {
    446 	int slot;
    447 	int npages;
    448 
    449 	if (swc->swc_slot != 0) {
    450 		return 0;
    451 	}
    452 
    453 	/* Even with strange MAXPHYS, the shift
    454 	   implicitly rounds down to a page. */
    455 	npages = MAXPHYS >> PAGE_SHIFT;
    456 	slot = uvm_swap_alloc(&npages, TRUE);
    457 	if (slot == 0) {
    458 		return ENOMEM;
    459 	}
    460 	swc->swc_slot = slot;
    461 	swc->swc_nallocated = npages;
    462 	swc->swc_nused = 0;
    463 
    464 	return 0;
    465 }
    466 
    467 static int
    468 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    469 {
    470 	int slot;
    471 	struct uvm_object *uobj;
    472 
    473 	KASSERT(swc->swc_slot != 0);
    474 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    475 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    476 
    477 	slot = swc->swc_slot + swc->swc_nused;
    478 	uobj = pg->uobject;
    479 	if (uobj == NULL) {
    480 		LOCK_ASSERT(simple_lock_held(&pg->uanon->an_lock));
    481 		pg->uanon->an_swslot = slot;
    482 	} else {
    483 		int result;
    484 
    485 		LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
    486 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    487 		if (result == -1) {
    488 			return ENOMEM;
    489 		}
    490 	}
    491 	swc->swc_pages[swc->swc_nused] = pg;
    492 	swc->swc_nused++;
    493 
    494 	return 0;
    495 }
    496 
    497 static void
    498 swapcluster_flush(struct swapcluster *swc, boolean_t now)
    499 {
    500 	int slot;
    501 	int nused;
    502 	int nallocated;
    503 	int error;
    504 
    505 	if (swc->swc_slot == 0) {
    506 		return;
    507 	}
    508 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    509 
    510 	slot = swc->swc_slot;
    511 	nused = swc->swc_nused;
    512 	nallocated = swc->swc_nallocated;
    513 
    514 	/*
    515 	 * if this is the final pageout we could have a few
    516 	 * unused swap blocks.  if so, free them now.
    517 	 */
    518 
    519 	if (nused < nallocated) {
    520 		if (!now) {
    521 			return;
    522 		}
    523 		uvm_swap_free(slot + nused, nallocated - nused);
    524 	}
    525 
    526 	/*
    527 	 * now start the pageout.
    528 	 */
    529 
    530 	uvmexp.pdpageouts++;
    531 	error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    532 	KASSERT(error == 0);
    533 
    534 	/*
    535 	 * zero swslot to indicate that we are
    536 	 * no longer building a swap-backed cluster.
    537 	 */
    538 
    539 	swc->swc_slot = 0;
    540 }
    541 
    542 /*
    543  * uvmpd_dropswap: free any swap allocated to this page.
    544  *
    545  * => called with owner locked.
    546  * => return TRUE if a page had an associated slot.
    547  */
    548 
    549 static boolean_t
    550 uvmpd_dropswap(struct vm_page *pg)
    551 {
    552 	boolean_t result = FALSE;
    553 	struct vm_anon *anon = pg->uanon;
    554 
    555 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    556 		uvm_swap_free(anon->an_swslot, 1);
    557 		anon->an_swslot = 0;
    558 		pg->flags &= ~PG_CLEAN;
    559 		result = TRUE;
    560 	} else if (pg->pqflags & PQ_AOBJ) {
    561 		int slot = uao_set_swslot(pg->uobject,
    562 		    pg->offset >> PAGE_SHIFT, 0);
    563 		if (slot) {
    564 			uvm_swap_free(slot, 1);
    565 			pg->flags &= ~PG_CLEAN;
    566 			result = TRUE;
    567 		}
    568 	}
    569 
    570 	return result;
    571 }
    572 
    573 /*
    574  * uvmpd_trydropswap: try to free any swap allocated to this page.
    575  *
    576  * => return TRUE if a slot is successfully freed.
    577  */
    578 
    579 boolean_t
    580 uvmpd_trydropswap(struct vm_page *pg)
    581 {
    582 	struct simplelock *slock;
    583 	boolean_t result;
    584 
    585 	if ((pg->flags & PG_BUSY) != 0) {
    586 		return FALSE;
    587 	}
    588 
    589 	/*
    590 	 * lock the page's owner.
    591 	 */
    592 
    593 	slock = uvmpd_trylockowner(pg);
    594 	if (slock == NULL) {
    595 		return FALSE;
    596 	}
    597 
    598 	/*
    599 	 * skip this page if it's busy.
    600 	 */
    601 
    602 	if ((pg->flags & PG_BUSY) != 0) {
    603 		simple_unlock(slock);
    604 		return FALSE;
    605 	}
    606 
    607 	result = uvmpd_dropswap(pg);
    608 
    609 	simple_unlock(slock);
    610 
    611 	return result;
    612 }
    613 
    614 #endif /* defined(VMSWAP) */
    615 
    616 /*
    617  * uvmpd_scan_queue: scan an replace candidate list for pages
    618  * to clean or free.
    619  *
    620  * => called with page queues locked
    621  * => we work on meeting our free target by converting inactive pages
    622  *    into free pages.
    623  * => we handle the building of swap-backed clusters
    624  */
    625 
    626 static void
    627 uvmpd_scan_queue(void)
    628 {
    629 	struct vm_page *p;
    630 	struct uvm_object *uobj;
    631 	struct vm_anon *anon;
    632 #if defined(VMSWAP)
    633 	struct swapcluster swc;
    634 #endif /* defined(VMSWAP) */
    635 	int dirtyreacts;
    636 	struct simplelock *slock;
    637 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    638 
    639 	/*
    640 	 * swslot is non-zero if we are building a swap cluster.  we want
    641 	 * to stay in the loop while we have a page to scan or we have
    642 	 * a swap-cluster to build.
    643 	 */
    644 
    645 #if defined(VMSWAP)
    646 	swapcluster_init(&swc);
    647 #endif /* defined(VMSWAP) */
    648 
    649 	dirtyreacts = 0;
    650 	uvmpdpol_scaninit();
    651 
    652 	while (/* CONSTCOND */ 1) {
    653 
    654 		/*
    655 		 * see if we've met the free target.
    656 		 */
    657 
    658 		if (uvmexp.free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    659 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    660 			UVMHIST_LOG(pdhist,"  met free target: "
    661 				    "exit loop", 0, 0, 0, 0);
    662 			break;
    663 		}
    664 
    665 		p = uvmpdpol_selectvictim();
    666 		if (p == NULL) {
    667 			break;
    668 		}
    669 		KASSERT(uvmpdpol_pageisqueued_p(p));
    670 		KASSERT(p->wire_count == 0);
    671 
    672 		/*
    673 		 * we are below target and have a new page to consider.
    674 		 */
    675 
    676 		anon = p->uanon;
    677 		uobj = p->uobject;
    678 
    679 		/*
    680 		 * first we attempt to lock the object that this page
    681 		 * belongs to.  if our attempt fails we skip on to
    682 		 * the next page (no harm done).  it is important to
    683 		 * "try" locking the object as we are locking in the
    684 		 * wrong order (pageq -> object) and we don't want to
    685 		 * deadlock.
    686 		 *
    687 		 * the only time we expect to see an ownerless page
    688 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    689 		 * anon has loaned a page from a uvm_object and the
    690 		 * uvm_object has dropped the ownership.  in that
    691 		 * case, the anon can "take over" the loaned page
    692 		 * and make it its own.
    693 		 */
    694 
    695 		slock = uvmpd_trylockowner(p);
    696 		if (slock == NULL) {
    697 			continue;
    698 		}
    699 		if (p->flags & PG_BUSY) {
    700 			simple_unlock(slock);
    701 			uvmexp.pdbusy++;
    702 			continue;
    703 		}
    704 
    705 		/* does the page belong to an object? */
    706 		if (uobj != NULL) {
    707 			uvmexp.pdobscan++;
    708 		} else {
    709 #if defined(VMSWAP)
    710 			KASSERT(anon != NULL);
    711 			uvmexp.pdanscan++;
    712 #else /* defined(VMSWAP) */
    713 			panic("%s: anon", __func__);
    714 #endif /* defined(VMSWAP) */
    715 		}
    716 
    717 
    718 		/*
    719 		 * we now have the object and the page queues locked.
    720 		 * if the page is not swap-backed, call the object's
    721 		 * pager to flush and free the page.
    722 		 */
    723 
    724 #if defined(READAHEAD_STATS)
    725 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    726 			p->pqflags &= ~PQ_READAHEAD;
    727 			uvm_ra_miss.ev_count++;
    728 		}
    729 #endif /* defined(READAHEAD_STATS) */
    730 
    731 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    732 			uvm_unlock_pageq();
    733 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    734 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    735 			uvm_lock_pageq();
    736 			continue;
    737 		}
    738 
    739 		/*
    740 		 * the page is swap-backed.  remove all the permissions
    741 		 * from the page so we can sync the modified info
    742 		 * without any race conditions.  if the page is clean
    743 		 * we can free it now and continue.
    744 		 */
    745 
    746 		pmap_page_protect(p, VM_PROT_NONE);
    747 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    748 			p->flags &= ~(PG_CLEAN);
    749 		}
    750 		if (p->flags & PG_CLEAN) {
    751 			int slot;
    752 			int pageidx;
    753 
    754 			pageidx = p->offset >> PAGE_SHIFT;
    755 			uvm_pagefree(p);
    756 			uvmexp.pdfreed++;
    757 
    758 			/*
    759 			 * for anons, we need to remove the page
    760 			 * from the anon ourselves.  for aobjs,
    761 			 * pagefree did that for us.
    762 			 */
    763 
    764 			if (anon) {
    765 				KASSERT(anon->an_swslot != 0);
    766 				anon->an_page = NULL;
    767 				slot = anon->an_swslot;
    768 			} else {
    769 				slot = uao_find_swslot(uobj, pageidx);
    770 			}
    771 			simple_unlock(slock);
    772 
    773 			if (slot > 0) {
    774 				/* this page is now only in swap. */
    775 				simple_lock(&uvm.swap_data_lock);
    776 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    777 				uvmexp.swpgonly++;
    778 				simple_unlock(&uvm.swap_data_lock);
    779 			}
    780 			continue;
    781 		}
    782 
    783 #if defined(VMSWAP)
    784 		/*
    785 		 * this page is dirty, skip it if we'll have met our
    786 		 * free target when all the current pageouts complete.
    787 		 */
    788 
    789 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    790 			simple_unlock(slock);
    791 			continue;
    792 		}
    793 
    794 		/*
    795 		 * free any swap space allocated to the page since
    796 		 * we'll have to write it again with its new data.
    797 		 */
    798 
    799 		uvmpd_dropswap(p);
    800 
    801 		/*
    802 		 * if all pages in swap are only in swap,
    803 		 * the swap space is full and we can't page out
    804 		 * any more swap-backed pages.  reactivate this page
    805 		 * so that we eventually cycle all pages through
    806 		 * the inactive queue.
    807 		 */
    808 
    809 		if (uvm_swapisfull()) {
    810 			dirtyreacts++;
    811 			uvm_pageactivate(p);
    812 			simple_unlock(slock);
    813 			continue;
    814 		}
    815 
    816 		/*
    817 		 * start new swap pageout cluster (if necessary).
    818 		 */
    819 
    820 		if (swapcluster_allocslots(&swc)) {
    821 			simple_unlock(slock);
    822 			dirtyreacts++; /* XXX */
    823 			continue;
    824 		}
    825 
    826 		/*
    827 		 * at this point, we're definitely going reuse this
    828 		 * page.  mark the page busy and delayed-free.
    829 		 * we should remove the page from the page queues
    830 		 * so we don't ever look at it again.
    831 		 * adjust counters and such.
    832 		 */
    833 
    834 		p->flags |= PG_BUSY;
    835 		UVM_PAGE_OWN(p, "scan_queue");
    836 
    837 		p->flags |= PG_PAGEOUT;
    838 		uvmexp.paging++;
    839 		uvm_pagedequeue(p);
    840 
    841 		uvmexp.pgswapout++;
    842 		uvm_unlock_pageq();
    843 
    844 		/*
    845 		 * add the new page to the cluster.
    846 		 */
    847 
    848 		if (swapcluster_add(&swc, p)) {
    849 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    850 			UVM_PAGE_OWN(p, NULL);
    851 			uvm_lock_pageq();
    852 			uvmexp.paging--;
    853 			dirtyreacts++;
    854 			uvm_pageactivate(p);
    855 			simple_unlock(slock);
    856 			continue;
    857 		}
    858 		simple_unlock(slock);
    859 
    860 		swapcluster_flush(&swc, FALSE);
    861 		uvm_lock_pageq();
    862 
    863 		/*
    864 		 * the pageout is in progress.  bump counters and set up
    865 		 * for the next loop.
    866 		 */
    867 
    868 		uvmexp.pdpending++;
    869 
    870 #else /* defined(VMSWAP) */
    871 		uvm_pageactivate(p);
    872 		simple_unlock(slock);
    873 #endif /* defined(VMSWAP) */
    874 	}
    875 
    876 #if defined(VMSWAP)
    877 	uvm_unlock_pageq();
    878 	swapcluster_flush(&swc, TRUE);
    879 	uvm_lock_pageq();
    880 #endif /* defined(VMSWAP) */
    881 }
    882 
    883 /*
    884  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    885  *
    886  * => called with pageq's locked
    887  */
    888 
    889 static void
    890 uvmpd_scan(void)
    891 {
    892 	int swap_shortage, pages_freed;
    893 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    894 
    895 	uvmexp.pdrevs++;
    896 
    897 #ifndef __SWAP_BROKEN
    898 
    899 	/*
    900 	 * swap out some processes if we are below our free target.
    901 	 * we need to unlock the page queues for this.
    902 	 */
    903 
    904 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    905 		uvmexp.pdswout++;
    906 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    907 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    908 		uvm_unlock_pageq();
    909 		uvm_swapout_threads();
    910 		uvm_lock_pageq();
    911 
    912 	}
    913 #endif
    914 
    915 	/*
    916 	 * now we want to work on meeting our targets.   first we work on our
    917 	 * free target by converting inactive pages into free pages.  then
    918 	 * we work on meeting our inactive target by converting active pages
    919 	 * to inactive ones.
    920 	 */
    921 
    922 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    923 
    924 	pages_freed = uvmexp.pdfreed;
    925 	uvmpd_scan_queue();
    926 	pages_freed = uvmexp.pdfreed - pages_freed;
    927 
    928 	/*
    929 	 * detect if we're not going to be able to page anything out
    930 	 * until we free some swap resources from active pages.
    931 	 */
    932 
    933 	swap_shortage = 0;
    934 	if (uvmexp.free < uvmexp.freetarg &&
    935 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    936 	    !uvm_swapisfull() &&
    937 	    pages_freed == 0) {
    938 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    939 	}
    940 
    941 	uvmpdpol_balancequeue(swap_shortage);
    942 }
    943 
    944 /*
    945  * uvm_reclaimable: decide whether to wait for pagedaemon.
    946  *
    947  * => return TRUE if it seems to be worth to do uvm_wait.
    948  *
    949  * XXX should be tunable.
    950  * XXX should consider pools, etc?
    951  */
    952 
    953 boolean_t
    954 uvm_reclaimable(void)
    955 {
    956 	int filepages;
    957 	int active, inactive;
    958 
    959 	/*
    960 	 * if swap is not full, no problem.
    961 	 */
    962 
    963 	if (!uvm_swapisfull()) {
    964 		return TRUE;
    965 	}
    966 
    967 	/*
    968 	 * file-backed pages can be reclaimed even when swap is full.
    969 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    970 	 *
    971 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    972 	 *
    973 	 * XXX should consider about other reclaimable memory.
    974 	 * XXX ie. pools, traditional buffer cache.
    975 	 */
    976 
    977 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    978 	uvm_estimatepageable(&active, &inactive);
    979 	if (filepages >= MIN((active + inactive) >> 4,
    980 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    981 		return TRUE;
    982 	}
    983 
    984 	/*
    985 	 * kill the process, fail allocation, etc..
    986 	 */
    987 
    988 	return FALSE;
    989 }
    990 
    991 void
    992 uvm_estimatepageable(int *active, int *inactive)
    993 {
    994 
    995 	uvmpdpol_estimatepageable(active, inactive);
    996 }
    997