Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.80
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.80 2006/11/01 10:18:27 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.80 2006/11/01 10:18:27 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_pdpolicy.h>
     88 
     89 /*
     90  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     91  * in a pass thru the inactive list when swap is full.  the value should be
     92  * "small"... if it's too large we'll cycle the active pages thru the inactive
     93  * queue too quickly to for them to be referenced and avoid being freed.
     94  */
     95 
     96 #define UVMPD_NUMDIRTYREACTS 16
     97 
     98 
     99 /*
    100  * local prototypes
    101  */
    102 
    103 static void	uvmpd_scan(void);
    104 static void	uvmpd_scan_queue(void);
    105 static void	uvmpd_tune(void);
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 int uvm_extrapages;
    111 
    112 /*
    113  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114  *
    115  * => should be called with all locks released
    116  * => should _not_ be called by the page daemon (to avoid deadlock)
    117  */
    118 
    119 void
    120 uvm_wait(const char *wmsg)
    121 {
    122 	int timo = 0;
    123 	int s = splbio();
    124 
    125 	/*
    126 	 * check for page daemon going to sleep (waiting for itself)
    127 	 */
    128 
    129 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    130 		/*
    131 		 * now we have a problem: the pagedaemon wants to go to
    132 		 * sleep until it frees more memory.   but how can it
    133 		 * free more memory if it is asleep?  that is a deadlock.
    134 		 * we have two options:
    135 		 *  [1] panic now
    136 		 *  [2] put a timeout on the sleep, thus causing the
    137 		 *      pagedaemon to only pause (rather than sleep forever)
    138 		 *
    139 		 * note that option [2] will only help us if we get lucky
    140 		 * and some other process on the system breaks the deadlock
    141 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142 		 * to continue).  for now we panic if DEBUG is defined,
    143 		 * otherwise we hope for the best with option [2] (better
    144 		 * yet, this should never happen in the first place!).
    145 		 */
    146 
    147 		printf("pagedaemon: deadlock detected!\n");
    148 		timo = hz >> 3;		/* set timeout */
    149 #if defined(DEBUG)
    150 		/* DEBUG: panic so we can debug it */
    151 		panic("pagedaemon deadlock");
    152 #endif
    153 	}
    154 
    155 	simple_lock(&uvm.pagedaemon_lock);
    156 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    158 	    timo);
    159 
    160 	splx(s);
    161 }
    162 
    163 /*
    164  * uvm_kick_pdaemon: perform checks to determine if we need to
    165  * give the pagedaemon a nudge, and do so if necessary.
    166  */
    167 
    168 void
    169 uvm_kick_pdaemon(void)
    170 {
    171 
    172 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    173 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    174 	     uvmpdpol_needsscan_p())) {
    175 		wakeup(&uvm.pagedaemon);
    176 	}
    177 }
    178 
    179 /*
    180  * uvmpd_tune: tune paging parameters
    181  *
    182  * => called when ever memory is added (or removed?) to the system
    183  * => caller must call with page queues locked
    184  */
    185 
    186 static void
    187 uvmpd_tune(void)
    188 {
    189 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    190 
    191 	uvmexp.freemin = uvmexp.npages / 20;
    192 
    193 	/* between 16k and 256k */
    194 	/* XXX:  what are these values good for? */
    195 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    196 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    197 
    198 	/* Make sure there's always a user page free. */
    199 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    200 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    201 
    202 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    203 	if (uvmexp.freetarg <= uvmexp.freemin)
    204 		uvmexp.freetarg = uvmexp.freemin + 1;
    205 
    206 	uvmexp.freetarg += uvm_extrapages;
    207 	uvm_extrapages = 0;
    208 
    209 	uvmexp.wiredmax = uvmexp.npages / 3;
    210 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    211 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    212 }
    213 
    214 /*
    215  * uvm_pageout: the main loop for the pagedaemon
    216  */
    217 
    218 void
    219 uvm_pageout(void *arg)
    220 {
    221 	int bufcnt, npages = 0;
    222 	int extrapages = 0;
    223 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    224 
    225 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    226 
    227 	/*
    228 	 * ensure correct priority and set paging parameters...
    229 	 */
    230 
    231 	uvm.pagedaemon_proc = curproc;
    232 	uvm_lock_pageq();
    233 	npages = uvmexp.npages;
    234 	uvmpd_tune();
    235 	uvm_unlock_pageq();
    236 
    237 	/*
    238 	 * main loop
    239 	 */
    240 
    241 	for (;;) {
    242 		simple_lock(&uvm.pagedaemon_lock);
    243 
    244 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    245 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    246 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    247 		uvmexp.pdwoke++;
    248 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    249 
    250 		/*
    251 		 * now lock page queues and recompute inactive count
    252 		 */
    253 
    254 		uvm_lock_pageq();
    255 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    256 			npages = uvmexp.npages;
    257 			extrapages = uvm_extrapages;
    258 			uvmpd_tune();
    259 		}
    260 
    261 		uvmpdpol_tune();
    262 
    263 		/*
    264 		 * Estimate a hint.  Note that bufmem are returned to
    265 		 * system only when entire pool page is empty.
    266 		 */
    267 		bufcnt = uvmexp.freetarg - uvmexp.free;
    268 		if (bufcnt < 0)
    269 			bufcnt = 0;
    270 
    271 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    272 		    uvmexp.free, uvmexp.freetarg, 0,0);
    273 
    274 		/*
    275 		 * scan if needed
    276 		 */
    277 
    278 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    279 		    uvmpdpol_needsscan_p()) {
    280 			uvmpd_scan();
    281 		}
    282 
    283 		/*
    284 		 * if there's any free memory to be had,
    285 		 * wake up any waiters.
    286 		 */
    287 
    288 		if (uvmexp.free > uvmexp.reserve_kernel ||
    289 		    uvmexp.paging == 0) {
    290 			wakeup(&uvmexp.free);
    291 		}
    292 
    293 		/*
    294 		 * scan done.  unlock page queues (the only lock we are holding)
    295 		 */
    296 
    297 		uvm_unlock_pageq();
    298 
    299 		buf_drain(bufcnt << PAGE_SHIFT);
    300 
    301 		/*
    302 		 * drain pool resources now that we're not holding any locks
    303 		 */
    304 
    305 		pool_drain(0);
    306 
    307 		/*
    308 		 * free any cached u-areas we don't need
    309 		 */
    310 		uvm_uarea_drain(TRUE);
    311 
    312 	}
    313 	/*NOTREACHED*/
    314 }
    315 
    316 
    317 /*
    318  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    319  */
    320 
    321 void
    322 uvm_aiodone_daemon(void *arg)
    323 {
    324 	int s, free;
    325 	struct buf *bp, *nbp;
    326 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    327 
    328 	for (;;) {
    329 
    330 		/*
    331 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    332 		 * we need splbio because we want to make sure the aio_done list
    333 		 * is totally empty before we go to sleep.
    334 		 */
    335 
    336 		s = splbio();
    337 		simple_lock(&uvm.aiodoned_lock);
    338 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    339 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    340 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    341 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    342 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    343 
    344 			/* relock aiodoned_lock, still at splbio */
    345 			simple_lock(&uvm.aiodoned_lock);
    346 		}
    347 
    348 		/*
    349 		 * check for done aio structures
    350 		 */
    351 
    352 		bp = TAILQ_FIRST(&uvm.aio_done);
    353 		if (bp) {
    354 			TAILQ_INIT(&uvm.aio_done);
    355 		}
    356 
    357 		simple_unlock(&uvm.aiodoned_lock);
    358 		splx(s);
    359 
    360 		/*
    361 		 * process each i/o that's done.
    362 		 */
    363 
    364 		free = uvmexp.free;
    365 		while (bp != NULL) {
    366 			nbp = TAILQ_NEXT(bp, b_freelist);
    367 			(*bp->b_iodone)(bp);
    368 			bp = nbp;
    369 		}
    370 		if (free <= uvmexp.reserve_kernel) {
    371 			s = uvm_lock_fpageq();
    372 			wakeup(&uvm.pagedaemon);
    373 			uvm_unlock_fpageq(s);
    374 		} else {
    375 			simple_lock(&uvm.pagedaemon_lock);
    376 			wakeup(&uvmexp.free);
    377 			simple_unlock(&uvm.pagedaemon_lock);
    378 		}
    379 	}
    380 }
    381 
    382 /*
    383  * uvmpd_trylockowner: trylock the page's owner.
    384  *
    385  * => called with pageq locked.
    386  * => resolve orphaned O->A loaned page.
    387  * => return the locked simplelock on success.  otherwise, return NULL.
    388  */
    389 
    390 struct simplelock *
    391 uvmpd_trylockowner(struct vm_page *pg)
    392 {
    393 	struct uvm_object *uobj = pg->uobject;
    394 	struct simplelock *slock;
    395 
    396 	UVM_LOCK_ASSERT_PAGEQ();
    397 	if (uobj != NULL) {
    398 		slock = &uobj->vmobjlock;
    399 	} else {
    400 		struct vm_anon *anon = pg->uanon;
    401 
    402 		KASSERT(anon != NULL);
    403 		slock = &anon->an_lock;
    404 	}
    405 
    406 	if (!simple_lock_try(slock)) {
    407 		return NULL;
    408 	}
    409 
    410 	if (uobj == NULL) {
    411 
    412 		/*
    413 		 * set PQ_ANON if it isn't set already.
    414 		 */
    415 
    416 		if ((pg->pqflags & PQ_ANON) == 0) {
    417 			KASSERT(pg->loan_count > 0);
    418 			pg->loan_count--;
    419 			pg->pqflags |= PQ_ANON;
    420 			/* anon now owns it */
    421 		}
    422 	}
    423 
    424 	return slock;
    425 }
    426 
    427 #if defined(VMSWAP)
    428 struct swapcluster {
    429 	int swc_slot;
    430 	int swc_nallocated;
    431 	int swc_nused;
    432 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    433 };
    434 
    435 static void
    436 swapcluster_init(struct swapcluster *swc)
    437 {
    438 
    439 	swc->swc_slot = 0;
    440 }
    441 
    442 static int
    443 swapcluster_allocslots(struct swapcluster *swc)
    444 {
    445 	int slot;
    446 	int npages;
    447 
    448 	if (swc->swc_slot != 0) {
    449 		return 0;
    450 	}
    451 
    452 	/* Even with strange MAXPHYS, the shift
    453 	   implicitly rounds down to a page. */
    454 	npages = MAXPHYS >> PAGE_SHIFT;
    455 	slot = uvm_swap_alloc(&npages, TRUE);
    456 	if (slot == 0) {
    457 		return ENOMEM;
    458 	}
    459 	swc->swc_slot = slot;
    460 	swc->swc_nallocated = npages;
    461 	swc->swc_nused = 0;
    462 
    463 	return 0;
    464 }
    465 
    466 static int
    467 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    468 {
    469 	int slot;
    470 	struct uvm_object *uobj;
    471 
    472 	KASSERT(swc->swc_slot != 0);
    473 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    474 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    475 
    476 	slot = swc->swc_slot + swc->swc_nused;
    477 	uobj = pg->uobject;
    478 	if (uobj == NULL) {
    479 		LOCK_ASSERT(simple_lock_held(&pg->uanon->an_lock));
    480 		pg->uanon->an_swslot = slot;
    481 	} else {
    482 		int result;
    483 
    484 		LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
    485 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    486 		if (result == -1) {
    487 			return ENOMEM;
    488 		}
    489 	}
    490 	swc->swc_pages[swc->swc_nused] = pg;
    491 	swc->swc_nused++;
    492 
    493 	return 0;
    494 }
    495 
    496 static void
    497 swapcluster_flush(struct swapcluster *swc, boolean_t now)
    498 {
    499 	int slot;
    500 	int nused;
    501 	int nallocated;
    502 	int error;
    503 
    504 	if (swc->swc_slot == 0) {
    505 		return;
    506 	}
    507 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    508 
    509 	slot = swc->swc_slot;
    510 	nused = swc->swc_nused;
    511 	nallocated = swc->swc_nallocated;
    512 
    513 	/*
    514 	 * if this is the final pageout we could have a few
    515 	 * unused swap blocks.  if so, free them now.
    516 	 */
    517 
    518 	if (nused < nallocated) {
    519 		if (!now) {
    520 			return;
    521 		}
    522 		uvm_swap_free(slot + nused, nallocated - nused);
    523 	}
    524 
    525 	/*
    526 	 * now start the pageout.
    527 	 */
    528 
    529 	uvmexp.pdpageouts++;
    530 	error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    531 	KASSERT(error == 0);
    532 
    533 	/*
    534 	 * zero swslot to indicate that we are
    535 	 * no longer building a swap-backed cluster.
    536 	 */
    537 
    538 	swc->swc_slot = 0;
    539 }
    540 
    541 /*
    542  * uvmpd_dropswap: free any swap allocated to this page.
    543  *
    544  * => called with owner locked.
    545  * => return TRUE if a page had an associated slot.
    546  */
    547 
    548 static boolean_t
    549 uvmpd_dropswap(struct vm_page *pg)
    550 {
    551 	boolean_t result = FALSE;
    552 	struct vm_anon *anon = pg->uanon;
    553 
    554 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    555 		uvm_swap_free(anon->an_swslot, 1);
    556 		anon->an_swslot = 0;
    557 		pg->flags &= ~PG_CLEAN;
    558 		result = TRUE;
    559 	} else if (pg->pqflags & PQ_AOBJ) {
    560 		int slot = uao_set_swslot(pg->uobject,
    561 		    pg->offset >> PAGE_SHIFT, 0);
    562 		if (slot) {
    563 			uvm_swap_free(slot, 1);
    564 			pg->flags &= ~PG_CLEAN;
    565 			result = TRUE;
    566 		}
    567 	}
    568 
    569 	return result;
    570 }
    571 
    572 /*
    573  * uvmpd_trydropswap: try to free any swap allocated to this page.
    574  *
    575  * => return TRUE if a slot is successfully freed.
    576  */
    577 
    578 boolean_t
    579 uvmpd_trydropswap(struct vm_page *pg)
    580 {
    581 	struct simplelock *slock;
    582 	boolean_t result;
    583 
    584 	if ((pg->flags & PG_BUSY) != 0) {
    585 		return FALSE;
    586 	}
    587 
    588 	/*
    589 	 * lock the page's owner.
    590 	 */
    591 
    592 	slock = uvmpd_trylockowner(pg);
    593 	if (slock == NULL) {
    594 		return FALSE;
    595 	}
    596 
    597 	/*
    598 	 * skip this page if it's busy.
    599 	 */
    600 
    601 	if ((pg->flags & PG_BUSY) != 0) {
    602 		simple_unlock(slock);
    603 		return FALSE;
    604 	}
    605 
    606 	result = uvmpd_dropswap(pg);
    607 
    608 	simple_unlock(slock);
    609 
    610 	return result;
    611 }
    612 
    613 #endif /* defined(VMSWAP) */
    614 
    615 /*
    616  * uvmpd_scan_queue: scan an replace candidate list for pages
    617  * to clean or free.
    618  *
    619  * => called with page queues locked
    620  * => we work on meeting our free target by converting inactive pages
    621  *    into free pages.
    622  * => we handle the building of swap-backed clusters
    623  */
    624 
    625 static void
    626 uvmpd_scan_queue(void)
    627 {
    628 	struct vm_page *p;
    629 	struct uvm_object *uobj;
    630 	struct vm_anon *anon;
    631 #if defined(VMSWAP)
    632 	struct swapcluster swc;
    633 #endif /* defined(VMSWAP) */
    634 	int dirtyreacts;
    635 	struct simplelock *slock;
    636 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    637 
    638 	/*
    639 	 * swslot is non-zero if we are building a swap cluster.  we want
    640 	 * to stay in the loop while we have a page to scan or we have
    641 	 * a swap-cluster to build.
    642 	 */
    643 
    644 #if defined(VMSWAP)
    645 	swapcluster_init(&swc);
    646 #endif /* defined(VMSWAP) */
    647 
    648 	dirtyreacts = 0;
    649 	uvmpdpol_scaninit();
    650 
    651 	while (/* CONSTCOND */ 1) {
    652 
    653 		/*
    654 		 * see if we've met the free target.
    655 		 */
    656 
    657 		if (uvmexp.free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    658 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    659 			UVMHIST_LOG(pdhist,"  met free target: "
    660 				    "exit loop", 0, 0, 0, 0);
    661 			break;
    662 		}
    663 
    664 		p = uvmpdpol_selectvictim();
    665 		if (p == NULL) {
    666 			break;
    667 		}
    668 		KASSERT(uvmpdpol_pageisqueued_p(p));
    669 		KASSERT(p->wire_count == 0);
    670 
    671 		/*
    672 		 * we are below target and have a new page to consider.
    673 		 */
    674 
    675 		anon = p->uanon;
    676 		uobj = p->uobject;
    677 
    678 		/*
    679 		 * first we attempt to lock the object that this page
    680 		 * belongs to.  if our attempt fails we skip on to
    681 		 * the next page (no harm done).  it is important to
    682 		 * "try" locking the object as we are locking in the
    683 		 * wrong order (pageq -> object) and we don't want to
    684 		 * deadlock.
    685 		 *
    686 		 * the only time we expect to see an ownerless page
    687 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    688 		 * anon has loaned a page from a uvm_object and the
    689 		 * uvm_object has dropped the ownership.  in that
    690 		 * case, the anon can "take over" the loaned page
    691 		 * and make it its own.
    692 		 */
    693 
    694 		slock = uvmpd_trylockowner(p);
    695 		if (slock == NULL) {
    696 			continue;
    697 		}
    698 		if (p->flags & PG_BUSY) {
    699 			simple_unlock(slock);
    700 			uvmexp.pdbusy++;
    701 			continue;
    702 		}
    703 
    704 		/* does the page belong to an object? */
    705 		if (uobj != NULL) {
    706 			uvmexp.pdobscan++;
    707 		} else {
    708 #if defined(VMSWAP)
    709 			KASSERT(anon != NULL);
    710 			uvmexp.pdanscan++;
    711 #else /* defined(VMSWAP) */
    712 			panic("%s: anon", __func__);
    713 #endif /* defined(VMSWAP) */
    714 		}
    715 
    716 
    717 		/*
    718 		 * we now have the object and the page queues locked.
    719 		 * if the page is not swap-backed, call the object's
    720 		 * pager to flush and free the page.
    721 		 */
    722 
    723 #if defined(READAHEAD_STATS)
    724 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    725 			p->pqflags &= ~PQ_READAHEAD;
    726 			uvm_ra_miss.ev_count++;
    727 		}
    728 #endif /* defined(READAHEAD_STATS) */
    729 
    730 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    731 			uvm_unlock_pageq();
    732 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    733 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    734 			uvm_lock_pageq();
    735 			continue;
    736 		}
    737 
    738 		/*
    739 		 * the page is swap-backed.  remove all the permissions
    740 		 * from the page so we can sync the modified info
    741 		 * without any race conditions.  if the page is clean
    742 		 * we can free it now and continue.
    743 		 */
    744 
    745 		pmap_page_protect(p, VM_PROT_NONE);
    746 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    747 			p->flags &= ~(PG_CLEAN);
    748 		}
    749 		if (p->flags & PG_CLEAN) {
    750 			int slot;
    751 			int pageidx;
    752 
    753 			pageidx = p->offset >> PAGE_SHIFT;
    754 			uvm_pagefree(p);
    755 			uvmexp.pdfreed++;
    756 
    757 			/*
    758 			 * for anons, we need to remove the page
    759 			 * from the anon ourselves.  for aobjs,
    760 			 * pagefree did that for us.
    761 			 */
    762 
    763 			if (anon) {
    764 				KASSERT(anon->an_swslot != 0);
    765 				anon->an_page = NULL;
    766 				slot = anon->an_swslot;
    767 			} else {
    768 				slot = uao_find_swslot(uobj, pageidx);
    769 			}
    770 			simple_unlock(slock);
    771 
    772 			if (slot > 0) {
    773 				/* this page is now only in swap. */
    774 				simple_lock(&uvm.swap_data_lock);
    775 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    776 				uvmexp.swpgonly++;
    777 				simple_unlock(&uvm.swap_data_lock);
    778 			}
    779 			continue;
    780 		}
    781 
    782 #if defined(VMSWAP)
    783 		/*
    784 		 * this page is dirty, skip it if we'll have met our
    785 		 * free target when all the current pageouts complete.
    786 		 */
    787 
    788 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    789 			simple_unlock(slock);
    790 			continue;
    791 		}
    792 
    793 		/*
    794 		 * free any swap space allocated to the page since
    795 		 * we'll have to write it again with its new data.
    796 		 */
    797 
    798 		uvmpd_dropswap(p);
    799 
    800 		/*
    801 		 * if all pages in swap are only in swap,
    802 		 * the swap space is full and we can't page out
    803 		 * any more swap-backed pages.  reactivate this page
    804 		 * so that we eventually cycle all pages through
    805 		 * the inactive queue.
    806 		 */
    807 
    808 		if (uvm_swapisfull()) {
    809 			dirtyreacts++;
    810 			uvm_pageactivate(p);
    811 			simple_unlock(slock);
    812 			continue;
    813 		}
    814 
    815 		/*
    816 		 * start new swap pageout cluster (if necessary).
    817 		 */
    818 
    819 		if (swapcluster_allocslots(&swc)) {
    820 			simple_unlock(slock);
    821 			dirtyreacts++; /* XXX */
    822 			continue;
    823 		}
    824 
    825 		/*
    826 		 * at this point, we're definitely going reuse this
    827 		 * page.  mark the page busy and delayed-free.
    828 		 * we should remove the page from the page queues
    829 		 * so we don't ever look at it again.
    830 		 * adjust counters and such.
    831 		 */
    832 
    833 		p->flags |= PG_BUSY;
    834 		UVM_PAGE_OWN(p, "scan_queue");
    835 
    836 		p->flags |= PG_PAGEOUT;
    837 		uvmexp.paging++;
    838 		uvm_pagedequeue(p);
    839 
    840 		uvmexp.pgswapout++;
    841 		uvm_unlock_pageq();
    842 
    843 		/*
    844 		 * add the new page to the cluster.
    845 		 */
    846 
    847 		if (swapcluster_add(&swc, p)) {
    848 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    849 			UVM_PAGE_OWN(p, NULL);
    850 			uvm_lock_pageq();
    851 			uvmexp.paging--;
    852 			dirtyreacts++;
    853 			uvm_pageactivate(p);
    854 			simple_unlock(slock);
    855 			continue;
    856 		}
    857 		simple_unlock(slock);
    858 
    859 		swapcluster_flush(&swc, FALSE);
    860 		uvm_lock_pageq();
    861 
    862 		/*
    863 		 * the pageout is in progress.  bump counters and set up
    864 		 * for the next loop.
    865 		 */
    866 
    867 		uvmexp.pdpending++;
    868 
    869 #else /* defined(VMSWAP) */
    870 		uvm_pageactivate(p);
    871 		simple_unlock(slock);
    872 #endif /* defined(VMSWAP) */
    873 	}
    874 
    875 #if defined(VMSWAP)
    876 	uvm_unlock_pageq();
    877 	swapcluster_flush(&swc, TRUE);
    878 	uvm_lock_pageq();
    879 #endif /* defined(VMSWAP) */
    880 }
    881 
    882 /*
    883  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    884  *
    885  * => called with pageq's locked
    886  */
    887 
    888 static void
    889 uvmpd_scan(void)
    890 {
    891 	int swap_shortage, pages_freed;
    892 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    893 
    894 	uvmexp.pdrevs++;
    895 
    896 #ifndef __SWAP_BROKEN
    897 
    898 	/*
    899 	 * swap out some processes if we are below our free target.
    900 	 * we need to unlock the page queues for this.
    901 	 */
    902 
    903 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    904 		uvmexp.pdswout++;
    905 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    906 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    907 		uvm_unlock_pageq();
    908 		uvm_swapout_threads();
    909 		uvm_lock_pageq();
    910 
    911 	}
    912 #endif
    913 
    914 	/*
    915 	 * now we want to work on meeting our targets.   first we work on our
    916 	 * free target by converting inactive pages into free pages.  then
    917 	 * we work on meeting our inactive target by converting active pages
    918 	 * to inactive ones.
    919 	 */
    920 
    921 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    922 
    923 	pages_freed = uvmexp.pdfreed;
    924 	uvmpd_scan_queue();
    925 	pages_freed = uvmexp.pdfreed - pages_freed;
    926 
    927 	/*
    928 	 * detect if we're not going to be able to page anything out
    929 	 * until we free some swap resources from active pages.
    930 	 */
    931 
    932 	swap_shortage = 0;
    933 	if (uvmexp.free < uvmexp.freetarg &&
    934 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    935 	    !uvm_swapisfull() &&
    936 	    pages_freed == 0) {
    937 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    938 	}
    939 
    940 	uvmpdpol_balancequeue(swap_shortage);
    941 }
    942 
    943 /*
    944  * uvm_reclaimable: decide whether to wait for pagedaemon.
    945  *
    946  * => return TRUE if it seems to be worth to do uvm_wait.
    947  *
    948  * XXX should be tunable.
    949  * XXX should consider pools, etc?
    950  */
    951 
    952 boolean_t
    953 uvm_reclaimable(void)
    954 {
    955 	int filepages;
    956 	int active, inactive;
    957 
    958 	/*
    959 	 * if swap is not full, no problem.
    960 	 */
    961 
    962 	if (!uvm_swapisfull()) {
    963 		return TRUE;
    964 	}
    965 
    966 	/*
    967 	 * file-backed pages can be reclaimed even when swap is full.
    968 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    969 	 *
    970 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    971 	 *
    972 	 * XXX should consider about other reclaimable memory.
    973 	 * XXX ie. pools, traditional buffer cache.
    974 	 */
    975 
    976 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    977 	uvm_estimatepageable(&active, &inactive);
    978 	if (filepages >= MIN((active + inactive) >> 4,
    979 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    980 		return TRUE;
    981 	}
    982 
    983 	/*
    984 	 * kill the process, fail allocation, etc..
    985 	 */
    986 
    987 	return FALSE;
    988 }
    989 
    990 void
    991 uvm_estimatepageable(int *active, int *inactive)
    992 {
    993 
    994 	uvmpdpol_estimatepageable(active, inactive);
    995 }
    996