uvm_pdaemon.c revision 1.84.4.6 1 /* $NetBSD: uvm_pdaemon.c,v 1.84.4.6 2007/08/22 09:36:28 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.84.4.6 2007/08/22 09:36:28 yamt Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/pool.h>
84 #include <sys/buf.h>
85
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_pdpolicy.h>
88
89 /*
90 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
91 * in a pass thru the inactive list when swap is full. the value should be
92 * "small"... if it's too large we'll cycle the active pages thru the inactive
93 * queue too quickly to for them to be referenced and avoid being freed.
94 */
95
96 #define UVMPD_NUMDIRTYREACTS 16
97
98
99 /*
100 * local prototypes
101 */
102
103 static void uvmpd_scan(void);
104 static void uvmpd_scan_queue(void);
105 static void uvmpd_tune(void);
106
107 unsigned int uvm_pagedaemon_waiters;
108
109 /*
110 * XXX hack to avoid hangs when large processes fork.
111 */
112 int uvm_extrapages;
113
114 /*
115 * uvm_wait: wait (sleep) for the page daemon to free some pages
116 *
117 * => should be called with all locks released
118 * => should _not_ be called by the page daemon (to avoid deadlock)
119 */
120
121 void
122 uvm_wait(const char *wmsg)
123 {
124 int timo = 0;
125
126 mutex_spin_enter(&uvm_fpageqlock);
127
128 /*
129 * check for page daemon going to sleep (waiting for itself)
130 */
131
132 if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
133 /*
134 * now we have a problem: the pagedaemon wants to go to
135 * sleep until it frees more memory. but how can it
136 * free more memory if it is asleep? that is a deadlock.
137 * we have two options:
138 * [1] panic now
139 * [2] put a timeout on the sleep, thus causing the
140 * pagedaemon to only pause (rather than sleep forever)
141 *
142 * note that option [2] will only help us if we get lucky
143 * and some other process on the system breaks the deadlock
144 * by exiting or freeing memory (thus allowing the pagedaemon
145 * to continue). for now we panic if DEBUG is defined,
146 * otherwise we hope for the best with option [2] (better
147 * yet, this should never happen in the first place!).
148 */
149
150 printf("pagedaemon: deadlock detected!\n");
151 timo = hz >> 3; /* set timeout */
152 #if defined(DEBUG)
153 /* DEBUG: panic so we can debug it */
154 panic("pagedaemon deadlock");
155 #endif
156 }
157
158 uvm_pagedaemon_waiters++;
159 wakeup(&uvm.pagedaemon); /* wake the daemon! */
160 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
161 }
162
163 /*
164 * uvm_kick_pdaemon: perform checks to determine if we need to
165 * give the pagedaemon a nudge, and do so if necessary.
166 *
167 * => called with uvm_fpageqlock held.
168 */
169
170 void
171 uvm_kick_pdaemon(void)
172 {
173
174 KASSERT(mutex_owned(&uvm_fpageqlock));
175
176 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
177 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
178 uvmpdpol_needsscan_p())) {
179 wakeup(&uvm.pagedaemon);
180 }
181 }
182
183 /*
184 * uvmpd_tune: tune paging parameters
185 *
186 * => called when ever memory is added (or removed?) to the system
187 * => caller must call with page queues locked
188 */
189
190 static void
191 uvmpd_tune(void)
192 {
193 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
194
195 uvmexp.freemin = uvmexp.npages / 20;
196
197 /* between 16k and 256k */
198 /* XXX: what are these values good for? */
199 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
200 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
201
202 /* Make sure there's always a user page free. */
203 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
204 uvmexp.freemin = uvmexp.reserve_kernel + 1;
205
206 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
207 if (uvmexp.freetarg <= uvmexp.freemin)
208 uvmexp.freetarg = uvmexp.freemin + 1;
209
210 uvmexp.freetarg += uvm_extrapages;
211 uvm_extrapages = 0;
212
213 uvmexp.wiredmax = uvmexp.npages / 3;
214 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
215 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
216 }
217
218 /*
219 * uvm_pageout: the main loop for the pagedaemon
220 */
221
222 void
223 uvm_pageout(void *arg)
224 {
225 int bufcnt, npages = 0;
226 int extrapages = 0;
227 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
228
229 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
230
231 /*
232 * ensure correct priority and set paging parameters...
233 */
234
235 uvm.pagedaemon_lwp = curlwp;
236 mutex_enter(&uvm_pageqlock);
237 npages = uvmexp.npages;
238 uvmpd_tune();
239 mutex_exit(&uvm_pageqlock);
240
241 /*
242 * main loop
243 */
244
245 for (;;) {
246 bool needsscan;
247
248 mutex_spin_enter(&uvm_fpageqlock);
249 if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
250 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
251 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
252 &uvm_fpageqlock, false, "pgdaemon", 0);
253 uvmexp.pdwoke++;
254 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
255 } else {
256 mutex_spin_exit(&uvm_fpageqlock);
257 }
258
259 /*
260 * now lock page queues and recompute inactive count
261 */
262
263 mutex_enter(&uvm_pageqlock);
264 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
265 npages = uvmexp.npages;
266 extrapages = uvm_extrapages;
267 mutex_spin_enter(&uvm_fpageqlock);
268 uvmpd_tune();
269 mutex_spin_exit(&uvm_fpageqlock);
270 }
271
272 uvmpdpol_tune();
273
274 /*
275 * Estimate a hint. Note that bufmem are returned to
276 * system only when entire pool page is empty.
277 */
278 mutex_spin_enter(&uvm_fpageqlock);
279 bufcnt = uvmexp.freetarg - uvmexp.free;
280 if (bufcnt < 0)
281 bufcnt = 0;
282
283 UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
284 uvmexp.free, uvmexp.freetarg, 0,0);
285
286 needsscan = uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
287 uvmpdpol_needsscan_p();
288 mutex_spin_exit(&uvm_fpageqlock);
289
290 /*
291 * scan if needed
292 */
293 if (needsscan)
294 uvmpd_scan();
295
296 /*
297 * if there's any free memory to be had,
298 * wake up any waiters.
299 */
300
301 mutex_spin_enter(&uvm_fpageqlock);
302 if (uvmexp.free > uvmexp.reserve_kernel ||
303 uvmexp.paging == 0) {
304 wakeup(&uvmexp.free);
305 uvm_pagedaemon_waiters = 0;
306 }
307 mutex_spin_exit(&uvm_fpageqlock);
308
309 /*
310 * scan done. unlock page queues (the only lock we are holding)
311 */
312
313 mutex_exit(&uvm_pageqlock);
314
315 buf_drain(bufcnt << PAGE_SHIFT);
316
317 /*
318 * drain pool resources now that we're not holding any locks
319 */
320
321 pool_drain(0);
322
323 /*
324 * free any cached u-areas we don't need
325 */
326 uvm_uarea_drain(true);
327
328 }
329 /*NOTREACHED*/
330 }
331
332
333 /*
334 * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
335 */
336
337 void
338 uvm_aiodone_worker(struct work *wk, void *dummy)
339 {
340 struct buf *bp = (void *)wk;
341
342 KASSERT(&bp->b_work == wk);
343
344 /*
345 * process an i/o that's done.
346 */
347
348 (*bp->b_iodone)(bp);
349 }
350
351 void
352 uvm_pageout_start(int npages)
353 {
354
355 mutex_spin_enter(&uvm_fpageqlock);
356 uvmexp.paging += npages;
357 mutex_spin_exit(&uvm_fpageqlock);
358 }
359
360 void
361 uvm_pageout_done(int npages)
362 {
363
364 mutex_spin_enter(&uvm_fpageqlock);
365 KASSERT(uvmexp.paging >= npages);
366 uvmexp.paging -= npages;
367
368 /*
369 * wake up either of pagedaemon or LWPs waiting for it.
370 */
371
372 if (uvmexp.free <= uvmexp.reserve_kernel) {
373 wakeup(&uvm.pagedaemon);
374 } else {
375 wakeup(&uvmexp.free);
376 uvm_pagedaemon_waiters = 0;
377 }
378 mutex_spin_exit(&uvm_fpageqlock);
379 }
380
381 /*
382 * uvmpd_trylockowner: trylock the page's owner.
383 *
384 * => called with pageq locked.
385 * => resolve orphaned O->A loaned page.
386 * => return the locked mutex on success. otherwise, return NULL.
387 */
388
389 kmutex_t *
390 uvmpd_trylockowner(struct vm_page *pg)
391 {
392 struct uvm_object *uobj = pg->uobject;
393 kmutex_t *slock;
394
395 KASSERT(mutex_owned(&uvm_pageqlock));
396
397 if (uobj != NULL) {
398 slock = &uobj->vmobjlock;
399 } else {
400 struct vm_anon *anon = pg->uanon;
401
402 KASSERT(anon != NULL);
403 slock = &anon->an_lock;
404 }
405
406 if (!mutex_tryenter(slock)) {
407 return NULL;
408 }
409
410 if (uobj == NULL) {
411
412 /*
413 * set PQ_ANON if it isn't set already.
414 */
415
416 if ((pg->pqflags & PQ_ANON) == 0) {
417 KASSERT(pg->loan_count > 0);
418 pg->loan_count--;
419 pg->pqflags |= PQ_ANON;
420 /* anon now owns it */
421 }
422 }
423
424 return slock;
425 }
426
427 #if defined(VMSWAP)
428 struct swapcluster {
429 int swc_slot;
430 int swc_nallocated;
431 int swc_nused;
432 struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
433 };
434
435 static void
436 swapcluster_init(struct swapcluster *swc)
437 {
438
439 swc->swc_slot = 0;
440 }
441
442 static int
443 swapcluster_allocslots(struct swapcluster *swc)
444 {
445 int slot;
446 int npages;
447
448 if (swc->swc_slot != 0) {
449 return 0;
450 }
451
452 /* Even with strange MAXPHYS, the shift
453 implicitly rounds down to a page. */
454 npages = MAXPHYS >> PAGE_SHIFT;
455 slot = uvm_swap_alloc(&npages, true);
456 if (slot == 0) {
457 return ENOMEM;
458 }
459 swc->swc_slot = slot;
460 swc->swc_nallocated = npages;
461 swc->swc_nused = 0;
462
463 return 0;
464 }
465
466 static int
467 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
468 {
469 int slot;
470 struct uvm_object *uobj;
471
472 KASSERT(swc->swc_slot != 0);
473 KASSERT(swc->swc_nused < swc->swc_nallocated);
474 KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
475
476 slot = swc->swc_slot + swc->swc_nused;
477 uobj = pg->uobject;
478 if (uobj == NULL) {
479 KASSERT(mutex_owned(&pg->uanon->an_lock));
480 pg->uanon->an_swslot = slot;
481 } else {
482 int result;
483
484 KASSERT(mutex_owned(&uobj->vmobjlock));
485 result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
486 if (result == -1) {
487 return ENOMEM;
488 }
489 }
490 swc->swc_pages[swc->swc_nused] = pg;
491 swc->swc_nused++;
492
493 return 0;
494 }
495
496 static void
497 swapcluster_flush(struct swapcluster *swc, bool now)
498 {
499 int slot;
500 int nused;
501 int nallocated;
502 int error;
503
504 if (swc->swc_slot == 0) {
505 return;
506 }
507 KASSERT(swc->swc_nused <= swc->swc_nallocated);
508
509 slot = swc->swc_slot;
510 nused = swc->swc_nused;
511 nallocated = swc->swc_nallocated;
512
513 /*
514 * if this is the final pageout we could have a few
515 * unused swap blocks. if so, free them now.
516 */
517
518 if (nused < nallocated) {
519 if (!now) {
520 return;
521 }
522 uvm_swap_free(slot + nused, nallocated - nused);
523 }
524
525 /*
526 * now start the pageout.
527 */
528
529 uvmexp.pdpageouts++;
530 uvm_pageout_start(nused);
531 error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
532 KASSERT(error == 0);
533
534 /*
535 * zero swslot to indicate that we are
536 * no longer building a swap-backed cluster.
537 */
538
539 swc->swc_slot = 0;
540 }
541
542 static int
543 swapcluster_nused(struct swapcluster *swc)
544 {
545
546 return swc->swc_nused;
547 }
548
549 /*
550 * uvmpd_dropswap: free any swap allocated to this page.
551 *
552 * => called with owner locked.
553 * => return true if a page had an associated slot.
554 */
555
556 static bool
557 uvmpd_dropswap(struct vm_page *pg)
558 {
559 bool result = false;
560 struct vm_anon *anon = pg->uanon;
561
562 if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
563 uvm_swap_free(anon->an_swslot, 1);
564 anon->an_swslot = 0;
565 pg->flags &= ~PG_CLEAN;
566 result = true;
567 } else if (pg->pqflags & PQ_AOBJ) {
568 int slot = uao_set_swslot(pg->uobject,
569 pg->offset >> PAGE_SHIFT, 0);
570 if (slot) {
571 uvm_swap_free(slot, 1);
572 pg->flags &= ~PG_CLEAN;
573 result = true;
574 }
575 }
576
577 return result;
578 }
579
580 /*
581 * uvmpd_trydropswap: try to free any swap allocated to this page.
582 *
583 * => return true if a slot is successfully freed.
584 */
585
586 bool
587 uvmpd_trydropswap(struct vm_page *pg)
588 {
589 kmutex_t *slock;
590 bool result;
591
592 if ((pg->flags & PG_BUSY) != 0) {
593 return false;
594 }
595
596 /*
597 * lock the page's owner.
598 */
599
600 slock = uvmpd_trylockowner(pg);
601 if (slock == NULL) {
602 return false;
603 }
604
605 /*
606 * skip this page if it's busy.
607 */
608
609 if ((pg->flags & PG_BUSY) != 0) {
610 mutex_exit(slock);
611 return false;
612 }
613
614 result = uvmpd_dropswap(pg);
615
616 mutex_exit(slock);
617
618 return result;
619 }
620
621 #endif /* defined(VMSWAP) */
622
623 /*
624 * uvmpd_scan_queue: scan an replace candidate list for pages
625 * to clean or free.
626 *
627 * => called with page queues locked
628 * => we work on meeting our free target by converting inactive pages
629 * into free pages.
630 * => we handle the building of swap-backed clusters
631 */
632
633 static void
634 uvmpd_scan_queue(void)
635 {
636 struct vm_page *p;
637 struct uvm_object *uobj;
638 struct vm_anon *anon;
639 #if defined(VMSWAP)
640 struct swapcluster swc;
641 #endif /* defined(VMSWAP) */
642 int dirtyreacts;
643 kmutex_t *slock;
644 UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
645
646 /*
647 * swslot is non-zero if we are building a swap cluster. we want
648 * to stay in the loop while we have a page to scan or we have
649 * a swap-cluster to build.
650 */
651
652 #if defined(VMSWAP)
653 swapcluster_init(&swc);
654 #endif /* defined(VMSWAP) */
655
656 dirtyreacts = 0;
657 uvmpdpol_scaninit();
658
659 while (/* CONSTCOND */ 1) {
660
661 /*
662 * see if we've met the free target.
663 */
664
665 if (uvmexp.free + uvmexp.paging
666 #if defined(VMSWAP)
667 + swapcluster_nused(&swc)
668 #endif /* defined(VMSWAP) */
669 >= uvmexp.freetarg << 2 ||
670 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
671 UVMHIST_LOG(pdhist," met free target: "
672 "exit loop", 0, 0, 0, 0);
673 break;
674 }
675
676 p = uvmpdpol_selectvictim();
677 if (p == NULL) {
678 break;
679 }
680 KASSERT(uvmpdpol_pageisqueued_p(p));
681 KASSERT(p->wire_count == 0);
682
683 /*
684 * we are below target and have a new page to consider.
685 */
686
687 anon = p->uanon;
688 uobj = p->uobject;
689
690 /*
691 * first we attempt to lock the object that this page
692 * belongs to. if our attempt fails we skip on to
693 * the next page (no harm done). it is important to
694 * "try" locking the object as we are locking in the
695 * wrong order (pageq -> object) and we don't want to
696 * deadlock.
697 *
698 * the only time we expect to see an ownerless page
699 * (i.e. a page with no uobject and !PQ_ANON) is if an
700 * anon has loaned a page from a uvm_object and the
701 * uvm_object has dropped the ownership. in that
702 * case, the anon can "take over" the loaned page
703 * and make it its own.
704 */
705
706 slock = uvmpd_trylockowner(p);
707 if (slock == NULL) {
708 continue;
709 }
710 if (p->flags & PG_BUSY) {
711 mutex_exit(slock);
712 uvmexp.pdbusy++;
713 continue;
714 }
715
716 /* does the page belong to an object? */
717 if (uobj != NULL) {
718 uvmexp.pdobscan++;
719 } else {
720 #if defined(VMSWAP)
721 KASSERT(anon != NULL);
722 uvmexp.pdanscan++;
723 #else /* defined(VMSWAP) */
724 panic("%s: anon", __func__);
725 #endif /* defined(VMSWAP) */
726 }
727
728
729 /*
730 * we now have the object and the page queues locked.
731 * if the page is not swap-backed, call the object's
732 * pager to flush and free the page.
733 */
734
735 #if defined(READAHEAD_STATS)
736 if ((p->pqflags & PQ_READAHEAD) != 0) {
737 p->pqflags &= ~PQ_READAHEAD;
738 uvm_ra_miss.ev_count++;
739 }
740 #endif /* defined(READAHEAD_STATS) */
741
742 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
743 KASSERT(uobj != NULL);
744 mutex_exit(&uvm_pageqlock);
745 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
746 p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
747 mutex_enter(&uvm_pageqlock);
748 continue;
749 }
750
751 /*
752 * the page is swap-backed. remove all the permissions
753 * from the page so we can sync the modified info
754 * without any race conditions. if the page is clean
755 * we can free it now and continue.
756 */
757
758 pmap_page_protect(p, VM_PROT_NONE);
759 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
760 p->flags &= ~(PG_CLEAN);
761 }
762 if (p->flags & PG_CLEAN) {
763 int slot;
764 int pageidx;
765
766 pageidx = p->offset >> PAGE_SHIFT;
767 uvm_pagefree(p);
768 uvmexp.pdfreed++;
769
770 /*
771 * for anons, we need to remove the page
772 * from the anon ourselves. for aobjs,
773 * pagefree did that for us.
774 */
775
776 if (anon) {
777 KASSERT(anon->an_swslot != 0);
778 anon->an_page = NULL;
779 slot = anon->an_swslot;
780 } else {
781 slot = uao_find_swslot(uobj, pageidx);
782 }
783 mutex_exit(slock);
784
785 if (slot > 0) {
786 /* this page is now only in swap. */
787 mutex_enter(&uvm_swap_data_lock);
788 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
789 uvmexp.swpgonly++;
790 mutex_exit(&uvm_swap_data_lock);
791 }
792 continue;
793 }
794
795 #if defined(VMSWAP)
796 /*
797 * this page is dirty, skip it if we'll have met our
798 * free target when all the current pageouts complete.
799 */
800
801 if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
802 mutex_exit(slock);
803 continue;
804 }
805
806 /*
807 * free any swap space allocated to the page since
808 * we'll have to write it again with its new data.
809 */
810
811 uvmpd_dropswap(p);
812
813 /*
814 * if all pages in swap are only in swap,
815 * the swap space is full and we can't page out
816 * any more swap-backed pages. reactivate this page
817 * so that we eventually cycle all pages through
818 * the inactive queue.
819 */
820
821 if (uvm_swapisfull()) {
822 dirtyreacts++;
823 uvm_pageactivate(p);
824 mutex_exit(slock);
825 continue;
826 }
827
828 /*
829 * start new swap pageout cluster (if necessary).
830 */
831
832 if (swapcluster_allocslots(&swc)) {
833 mutex_exit(slock);
834 dirtyreacts++; /* XXX */
835 continue;
836 }
837
838 /*
839 * at this point, we're definitely going reuse this
840 * page. mark the page busy and delayed-free.
841 * we should remove the page from the page queues
842 * so we don't ever look at it again.
843 * adjust counters and such.
844 */
845
846 p->flags |= PG_BUSY;
847 UVM_PAGE_OWN(p, "scan_queue");
848
849 p->flags |= PG_PAGEOUT;
850 uvm_pagedequeue(p);
851
852 uvmexp.pgswapout++;
853 mutex_exit(&uvm_pageqlock);
854
855 /*
856 * add the new page to the cluster.
857 */
858
859 if (swapcluster_add(&swc, p)) {
860 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
861 UVM_PAGE_OWN(p, NULL);
862 mutex_enter(&uvm_pageqlock);
863 dirtyreacts++;
864 uvm_pageactivate(p);
865 mutex_exit(slock);
866 continue;
867 }
868 mutex_exit(slock);
869
870 swapcluster_flush(&swc, false);
871 mutex_enter(&uvm_pageqlock);
872
873 /*
874 * the pageout is in progress. bump counters and set up
875 * for the next loop.
876 */
877
878 uvmexp.pdpending++;
879
880 #else /* defined(VMSWAP) */
881 uvm_pageactivate(p);
882 mutex_exit(slock);
883 #endif /* defined(VMSWAP) */
884 }
885
886 #if defined(VMSWAP)
887 mutex_exit(&uvm_pageqlock);
888 swapcluster_flush(&swc, true);
889 mutex_enter(&uvm_pageqlock);
890 #endif /* defined(VMSWAP) */
891 }
892
893 /*
894 * uvmpd_scan: scan the page queues and attempt to meet our targets.
895 *
896 * => called with pageq's locked
897 */
898
899 static void
900 uvmpd_scan(void)
901 {
902 int swap_shortage, pages_freed;
903 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
904
905 uvmexp.pdrevs++;
906
907 #ifndef __SWAP_BROKEN
908
909 /*
910 * swap out some processes if we are below our free target.
911 * we need to unlock the page queues for this.
912 */
913
914 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0 &&
915 uvm.swapout_enabled) {
916 uvmexp.pdswout++;
917 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
918 uvmexp.free, uvmexp.freetarg, 0, 0);
919 mutex_exit(&uvm_pageqlock);
920 uvm_swapout_threads();
921 mutex_enter(&uvm_pageqlock);
922
923 }
924 #endif
925
926 /*
927 * now we want to work on meeting our targets. first we work on our
928 * free target by converting inactive pages into free pages. then
929 * we work on meeting our inactive target by converting active pages
930 * to inactive ones.
931 */
932
933 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
934
935 pages_freed = uvmexp.pdfreed;
936 uvmpd_scan_queue();
937 pages_freed = uvmexp.pdfreed - pages_freed;
938
939 /*
940 * detect if we're not going to be able to page anything out
941 * until we free some swap resources from active pages.
942 */
943
944 swap_shortage = 0;
945 if (uvmexp.free < uvmexp.freetarg &&
946 uvmexp.swpginuse >= uvmexp.swpgavail &&
947 !uvm_swapisfull() &&
948 pages_freed == 0) {
949 swap_shortage = uvmexp.freetarg - uvmexp.free;
950 }
951
952 uvmpdpol_balancequeue(swap_shortage);
953 }
954
955 /*
956 * uvm_reclaimable: decide whether to wait for pagedaemon.
957 *
958 * => return true if it seems to be worth to do uvm_wait.
959 *
960 * XXX should be tunable.
961 * XXX should consider pools, etc?
962 */
963
964 bool
965 uvm_reclaimable(void)
966 {
967 int filepages;
968 int active, inactive;
969
970 /*
971 * if swap is not full, no problem.
972 */
973
974 if (!uvm_swapisfull()) {
975 return true;
976 }
977
978 /*
979 * file-backed pages can be reclaimed even when swap is full.
980 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
981 *
982 * XXX assume the worst case, ie. all wired pages are file-backed.
983 *
984 * XXX should consider about other reclaimable memory.
985 * XXX ie. pools, traditional buffer cache.
986 */
987
988 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
989 uvm_estimatepageable(&active, &inactive);
990 if (filepages >= MIN((active + inactive) >> 4,
991 5 * 1024 * 1024 >> PAGE_SHIFT)) {
992 return true;
993 }
994
995 /*
996 * kill the process, fail allocation, etc..
997 */
998
999 return false;
1000 }
1001
1002 void
1003 uvm_estimatepageable(int *active, int *inactive)
1004 {
1005
1006 uvmpdpol_estimatepageable(active, inactive);
1007 }
1008