uvm_pdaemon.c revision 1.84.4.7 1 /* $NetBSD: uvm_pdaemon.c,v 1.84.4.7 2007/08/24 23:28:49 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.84.4.7 2007/08/24 23:28:49 ad Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/pool.h>
84 #include <sys/buf.h>
85
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_pdpolicy.h>
88
89 /*
90 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
91 * in a pass thru the inactive list when swap is full. the value should be
92 * "small"... if it's too large we'll cycle the active pages thru the inactive
93 * queue too quickly to for them to be referenced and avoid being freed.
94 */
95
96 #define UVMPD_NUMDIRTYREACTS 16
97
98
99 /*
100 * local prototypes
101 */
102
103 static void uvmpd_scan(void);
104 static void uvmpd_scan_queue(void);
105 static void uvmpd_tune(void);
106
107 unsigned int uvm_pagedaemon_waiters;
108
109 /*
110 * XXX hack to avoid hangs when large processes fork.
111 */
112 int uvm_extrapages;
113
114 /*
115 * uvm_wait: wait (sleep) for the page daemon to free some pages
116 *
117 * => should be called with all locks released
118 * => should _not_ be called by the page daemon (to avoid deadlock)
119 */
120
121 void
122 uvm_wait(const char *wmsg)
123 {
124 int timo = 0;
125
126 mutex_spin_enter(&uvm_fpageqlock);
127
128 /*
129 * check for page daemon going to sleep (waiting for itself)
130 */
131
132 if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
133 /*
134 * now we have a problem: the pagedaemon wants to go to
135 * sleep until it frees more memory. but how can it
136 * free more memory if it is asleep? that is a deadlock.
137 * we have two options:
138 * [1] panic now
139 * [2] put a timeout on the sleep, thus causing the
140 * pagedaemon to only pause (rather than sleep forever)
141 *
142 * note that option [2] will only help us if we get lucky
143 * and some other process on the system breaks the deadlock
144 * by exiting or freeing memory (thus allowing the pagedaemon
145 * to continue). for now we panic if DEBUG is defined,
146 * otherwise we hope for the best with option [2] (better
147 * yet, this should never happen in the first place!).
148 */
149
150 printf("pagedaemon: deadlock detected!\n");
151 timo = hz >> 3; /* set timeout */
152 #if defined(DEBUG)
153 /* DEBUG: panic so we can debug it */
154 panic("pagedaemon deadlock");
155 #endif
156 }
157
158 uvm_pagedaemon_waiters++;
159 wakeup(&uvm.pagedaemon); /* wake the daemon! */
160 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
161 }
162
163 /*
164 * uvm_kick_pdaemon: perform checks to determine if we need to
165 * give the pagedaemon a nudge, and do so if necessary.
166 *
167 * => called with uvm_fpageqlock held.
168 */
169
170 void
171 uvm_kick_pdaemon(void)
172 {
173
174 KASSERT(mutex_owned(&uvm_fpageqlock));
175
176 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
177 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
178 uvmpdpol_needsscan_p())) {
179 wakeup(&uvm.pagedaemon);
180 }
181 }
182
183 /*
184 * uvmpd_tune: tune paging parameters
185 *
186 * => called when ever memory is added (or removed?) to the system
187 * => caller must call with page queues locked
188 */
189
190 static void
191 uvmpd_tune(void)
192 {
193 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
194
195 uvmexp.freemin = uvmexp.npages / 20;
196
197 /* between 16k and 256k */
198 /* XXX: what are these values good for? */
199 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
200 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
201
202 /* Make sure there's always a user page free. */
203 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
204 uvmexp.freemin = uvmexp.reserve_kernel + 1;
205
206 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
207 if (uvmexp.freetarg <= uvmexp.freemin)
208 uvmexp.freetarg = uvmexp.freemin + 1;
209
210 uvmexp.freetarg += uvm_extrapages;
211 uvm_extrapages = 0;
212
213 uvmexp.wiredmax = uvmexp.npages / 3;
214 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
215 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
216 }
217
218 /*
219 * uvm_pageout: the main loop for the pagedaemon
220 */
221
222 void
223 uvm_pageout(void *arg)
224 {
225 int bufcnt, npages = 0;
226 int extrapages = 0;
227 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
228
229 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
230
231 /*
232 * ensure correct priority and set paging parameters...
233 */
234
235 uvm.pagedaemon_lwp = curlwp;
236 mutex_enter(&uvm_pageqlock);
237 npages = uvmexp.npages;
238 uvmpd_tune();
239 mutex_exit(&uvm_pageqlock);
240
241 /*
242 * main loop
243 */
244
245 for (;;) {
246 bool needsscan;
247
248 mutex_spin_enter(&uvm_fpageqlock);
249 if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
250 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
251 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
252 &uvm_fpageqlock, false, "pgdaemon", 0);
253 uvmexp.pdwoke++;
254 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
255 } else {
256 mutex_spin_exit(&uvm_fpageqlock);
257 }
258
259 /*
260 * now lock page queues and recompute inactive count
261 */
262
263 mutex_enter(&uvm_pageqlock);
264 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
265 npages = uvmexp.npages;
266 extrapages = uvm_extrapages;
267 mutex_spin_enter(&uvm_fpageqlock);
268 uvmpd_tune();
269 mutex_spin_exit(&uvm_fpageqlock);
270 }
271
272 uvmpdpol_tune();
273
274 /*
275 * Estimate a hint. Note that bufmem are returned to
276 * system only when entire pool page is empty.
277 */
278 mutex_spin_enter(&uvm_fpageqlock);
279 bufcnt = uvmexp.freetarg - uvmexp.free;
280 if (bufcnt < 0)
281 bufcnt = 0;
282
283 UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
284 uvmexp.free, uvmexp.freetarg, 0,0);
285
286 needsscan = uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
287 uvmpdpol_needsscan_p();
288 mutex_spin_exit(&uvm_fpageqlock);
289
290 /*
291 * scan if needed
292 */
293 if (needsscan)
294 uvmpd_scan();
295
296 /*
297 * if there's any free memory to be had,
298 * wake up any waiters.
299 */
300
301 mutex_spin_enter(&uvm_fpageqlock);
302 if (uvmexp.free > uvmexp.reserve_kernel ||
303 uvmexp.paging == 0) {
304 wakeup(&uvmexp.free);
305 uvm_pagedaemon_waiters = 0;
306 }
307 mutex_spin_exit(&uvm_fpageqlock);
308
309 /*
310 * scan done. unlock page queues (the only lock we are holding)
311 */
312
313 mutex_exit(&uvm_pageqlock);
314
315 mutex_enter(&bufcache_lock);
316 buf_drain(bufcnt << PAGE_SHIFT);
317 mutex_exit(&bufcache_lock);
318
319 /*
320 * drain pool resources now that we're not holding any locks
321 */
322
323 pool_drain(0);
324
325 /*
326 * free any cached u-areas we don't need
327 */
328 uvm_uarea_drain(true);
329
330 }
331 /*NOTREACHED*/
332 }
333
334
335 /*
336 * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
337 */
338
339 void
340 uvm_aiodone_worker(struct work *wk, void *dummy)
341 {
342 struct buf *bp = (void *)wk;
343
344 KASSERT(&bp->b_work == wk);
345
346 /*
347 * process an i/o that's done.
348 */
349
350 (*bp->b_iodone)(bp);
351 }
352
353 void
354 uvm_pageout_start(int npages)
355 {
356
357 mutex_spin_enter(&uvm_fpageqlock);
358 uvmexp.paging += npages;
359 mutex_spin_exit(&uvm_fpageqlock);
360 }
361
362 void
363 uvm_pageout_done(int npages)
364 {
365
366 mutex_spin_enter(&uvm_fpageqlock);
367 KASSERT(uvmexp.paging >= npages);
368 uvmexp.paging -= npages;
369
370 /*
371 * wake up either of pagedaemon or LWPs waiting for it.
372 */
373
374 if (uvmexp.free <= uvmexp.reserve_kernel) {
375 wakeup(&uvm.pagedaemon);
376 } else {
377 wakeup(&uvmexp.free);
378 uvm_pagedaemon_waiters = 0;
379 }
380 mutex_spin_exit(&uvm_fpageqlock);
381 }
382
383 /*
384 * uvmpd_trylockowner: trylock the page's owner.
385 *
386 * => called with pageq locked.
387 * => resolve orphaned O->A loaned page.
388 * => return the locked mutex on success. otherwise, return NULL.
389 */
390
391 kmutex_t *
392 uvmpd_trylockowner(struct vm_page *pg)
393 {
394 struct uvm_object *uobj = pg->uobject;
395 kmutex_t *slock;
396
397 KASSERT(mutex_owned(&uvm_pageqlock));
398
399 if (uobj != NULL) {
400 slock = &uobj->vmobjlock;
401 } else {
402 struct vm_anon *anon = pg->uanon;
403
404 KASSERT(anon != NULL);
405 slock = &anon->an_lock;
406 }
407
408 if (!mutex_tryenter(slock)) {
409 return NULL;
410 }
411
412 if (uobj == NULL) {
413
414 /*
415 * set PQ_ANON if it isn't set already.
416 */
417
418 if ((pg->pqflags & PQ_ANON) == 0) {
419 KASSERT(pg->loan_count > 0);
420 pg->loan_count--;
421 pg->pqflags |= PQ_ANON;
422 /* anon now owns it */
423 }
424 }
425
426 return slock;
427 }
428
429 #if defined(VMSWAP)
430 struct swapcluster {
431 int swc_slot;
432 int swc_nallocated;
433 int swc_nused;
434 struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
435 };
436
437 static void
438 swapcluster_init(struct swapcluster *swc)
439 {
440
441 swc->swc_slot = 0;
442 }
443
444 static int
445 swapcluster_allocslots(struct swapcluster *swc)
446 {
447 int slot;
448 int npages;
449
450 if (swc->swc_slot != 0) {
451 return 0;
452 }
453
454 /* Even with strange MAXPHYS, the shift
455 implicitly rounds down to a page. */
456 npages = MAXPHYS >> PAGE_SHIFT;
457 slot = uvm_swap_alloc(&npages, true);
458 if (slot == 0) {
459 return ENOMEM;
460 }
461 swc->swc_slot = slot;
462 swc->swc_nallocated = npages;
463 swc->swc_nused = 0;
464
465 return 0;
466 }
467
468 static int
469 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
470 {
471 int slot;
472 struct uvm_object *uobj;
473
474 KASSERT(swc->swc_slot != 0);
475 KASSERT(swc->swc_nused < swc->swc_nallocated);
476 KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
477
478 slot = swc->swc_slot + swc->swc_nused;
479 uobj = pg->uobject;
480 if (uobj == NULL) {
481 KASSERT(mutex_owned(&pg->uanon->an_lock));
482 pg->uanon->an_swslot = slot;
483 } else {
484 int result;
485
486 KASSERT(mutex_owned(&uobj->vmobjlock));
487 result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
488 if (result == -1) {
489 return ENOMEM;
490 }
491 }
492 swc->swc_pages[swc->swc_nused] = pg;
493 swc->swc_nused++;
494
495 return 0;
496 }
497
498 static void
499 swapcluster_flush(struct swapcluster *swc, bool now)
500 {
501 int slot;
502 int nused;
503 int nallocated;
504 int error;
505
506 if (swc->swc_slot == 0) {
507 return;
508 }
509 KASSERT(swc->swc_nused <= swc->swc_nallocated);
510
511 slot = swc->swc_slot;
512 nused = swc->swc_nused;
513 nallocated = swc->swc_nallocated;
514
515 /*
516 * if this is the final pageout we could have a few
517 * unused swap blocks. if so, free them now.
518 */
519
520 if (nused < nallocated) {
521 if (!now) {
522 return;
523 }
524 uvm_swap_free(slot + nused, nallocated - nused);
525 }
526
527 /*
528 * now start the pageout.
529 */
530
531 uvmexp.pdpageouts++;
532 uvm_pageout_start(nused);
533 error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
534 KASSERT(error == 0);
535
536 /*
537 * zero swslot to indicate that we are
538 * no longer building a swap-backed cluster.
539 */
540
541 swc->swc_slot = 0;
542 }
543
544 static int
545 swapcluster_nused(struct swapcluster *swc)
546 {
547
548 return swc->swc_nused;
549 }
550
551 /*
552 * uvmpd_dropswap: free any swap allocated to this page.
553 *
554 * => called with owner locked.
555 * => return true if a page had an associated slot.
556 */
557
558 static bool
559 uvmpd_dropswap(struct vm_page *pg)
560 {
561 bool result = false;
562 struct vm_anon *anon = pg->uanon;
563
564 if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
565 uvm_swap_free(anon->an_swslot, 1);
566 anon->an_swslot = 0;
567 pg->flags &= ~PG_CLEAN;
568 result = true;
569 } else if (pg->pqflags & PQ_AOBJ) {
570 int slot = uao_set_swslot(pg->uobject,
571 pg->offset >> PAGE_SHIFT, 0);
572 if (slot) {
573 uvm_swap_free(slot, 1);
574 pg->flags &= ~PG_CLEAN;
575 result = true;
576 }
577 }
578
579 return result;
580 }
581
582 /*
583 * uvmpd_trydropswap: try to free any swap allocated to this page.
584 *
585 * => return true if a slot is successfully freed.
586 */
587
588 bool
589 uvmpd_trydropswap(struct vm_page *pg)
590 {
591 kmutex_t *slock;
592 bool result;
593
594 if ((pg->flags & PG_BUSY) != 0) {
595 return false;
596 }
597
598 /*
599 * lock the page's owner.
600 */
601
602 slock = uvmpd_trylockowner(pg);
603 if (slock == NULL) {
604 return false;
605 }
606
607 /*
608 * skip this page if it's busy.
609 */
610
611 if ((pg->flags & PG_BUSY) != 0) {
612 mutex_exit(slock);
613 return false;
614 }
615
616 result = uvmpd_dropswap(pg);
617
618 mutex_exit(slock);
619
620 return result;
621 }
622
623 #endif /* defined(VMSWAP) */
624
625 /*
626 * uvmpd_scan_queue: scan an replace candidate list for pages
627 * to clean or free.
628 *
629 * => called with page queues locked
630 * => we work on meeting our free target by converting inactive pages
631 * into free pages.
632 * => we handle the building of swap-backed clusters
633 */
634
635 static void
636 uvmpd_scan_queue(void)
637 {
638 struct vm_page *p;
639 struct uvm_object *uobj;
640 struct vm_anon *anon;
641 #if defined(VMSWAP)
642 struct swapcluster swc;
643 #endif /* defined(VMSWAP) */
644 int dirtyreacts;
645 kmutex_t *slock;
646 UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
647
648 /*
649 * swslot is non-zero if we are building a swap cluster. we want
650 * to stay in the loop while we have a page to scan or we have
651 * a swap-cluster to build.
652 */
653
654 #if defined(VMSWAP)
655 swapcluster_init(&swc);
656 #endif /* defined(VMSWAP) */
657
658 dirtyreacts = 0;
659 uvmpdpol_scaninit();
660
661 while (/* CONSTCOND */ 1) {
662
663 /*
664 * see if we've met the free target.
665 */
666
667 if (uvmexp.free + uvmexp.paging
668 #if defined(VMSWAP)
669 + swapcluster_nused(&swc)
670 #endif /* defined(VMSWAP) */
671 >= uvmexp.freetarg << 2 ||
672 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
673 UVMHIST_LOG(pdhist," met free target: "
674 "exit loop", 0, 0, 0, 0);
675 break;
676 }
677
678 p = uvmpdpol_selectvictim();
679 if (p == NULL) {
680 break;
681 }
682 KASSERT(uvmpdpol_pageisqueued_p(p));
683 KASSERT(p->wire_count == 0);
684
685 /*
686 * we are below target and have a new page to consider.
687 */
688
689 anon = p->uanon;
690 uobj = p->uobject;
691
692 /*
693 * first we attempt to lock the object that this page
694 * belongs to. if our attempt fails we skip on to
695 * the next page (no harm done). it is important to
696 * "try" locking the object as we are locking in the
697 * wrong order (pageq -> object) and we don't want to
698 * deadlock.
699 *
700 * the only time we expect to see an ownerless page
701 * (i.e. a page with no uobject and !PQ_ANON) is if an
702 * anon has loaned a page from a uvm_object and the
703 * uvm_object has dropped the ownership. in that
704 * case, the anon can "take over" the loaned page
705 * and make it its own.
706 */
707
708 slock = uvmpd_trylockowner(p);
709 if (slock == NULL) {
710 continue;
711 }
712 if (p->flags & PG_BUSY) {
713 mutex_exit(slock);
714 uvmexp.pdbusy++;
715 continue;
716 }
717
718 /* does the page belong to an object? */
719 if (uobj != NULL) {
720 uvmexp.pdobscan++;
721 } else {
722 #if defined(VMSWAP)
723 KASSERT(anon != NULL);
724 uvmexp.pdanscan++;
725 #else /* defined(VMSWAP) */
726 panic("%s: anon", __func__);
727 #endif /* defined(VMSWAP) */
728 }
729
730
731 /*
732 * we now have the object and the page queues locked.
733 * if the page is not swap-backed, call the object's
734 * pager to flush and free the page.
735 */
736
737 #if defined(READAHEAD_STATS)
738 if ((p->pqflags & PQ_READAHEAD) != 0) {
739 p->pqflags &= ~PQ_READAHEAD;
740 uvm_ra_miss.ev_count++;
741 }
742 #endif /* defined(READAHEAD_STATS) */
743
744 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
745 KASSERT(uobj != NULL);
746 mutex_exit(&uvm_pageqlock);
747 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
748 p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
749 mutex_enter(&uvm_pageqlock);
750 continue;
751 }
752
753 /*
754 * the page is swap-backed. remove all the permissions
755 * from the page so we can sync the modified info
756 * without any race conditions. if the page is clean
757 * we can free it now and continue.
758 */
759
760 pmap_page_protect(p, VM_PROT_NONE);
761 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
762 p->flags &= ~(PG_CLEAN);
763 }
764 if (p->flags & PG_CLEAN) {
765 int slot;
766 int pageidx;
767
768 pageidx = p->offset >> PAGE_SHIFT;
769 uvm_pagefree(p);
770 uvmexp.pdfreed++;
771
772 /*
773 * for anons, we need to remove the page
774 * from the anon ourselves. for aobjs,
775 * pagefree did that for us.
776 */
777
778 if (anon) {
779 KASSERT(anon->an_swslot != 0);
780 anon->an_page = NULL;
781 slot = anon->an_swslot;
782 } else {
783 slot = uao_find_swslot(uobj, pageidx);
784 }
785 mutex_exit(slock);
786
787 if (slot > 0) {
788 /* this page is now only in swap. */
789 mutex_enter(&uvm_swap_data_lock);
790 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
791 uvmexp.swpgonly++;
792 mutex_exit(&uvm_swap_data_lock);
793 }
794 continue;
795 }
796
797 #if defined(VMSWAP)
798 /*
799 * this page is dirty, skip it if we'll have met our
800 * free target when all the current pageouts complete.
801 */
802
803 if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
804 mutex_exit(slock);
805 continue;
806 }
807
808 /*
809 * free any swap space allocated to the page since
810 * we'll have to write it again with its new data.
811 */
812
813 uvmpd_dropswap(p);
814
815 /*
816 * if all pages in swap are only in swap,
817 * the swap space is full and we can't page out
818 * any more swap-backed pages. reactivate this page
819 * so that we eventually cycle all pages through
820 * the inactive queue.
821 */
822
823 if (uvm_swapisfull()) {
824 dirtyreacts++;
825 uvm_pageactivate(p);
826 mutex_exit(slock);
827 continue;
828 }
829
830 /*
831 * start new swap pageout cluster (if necessary).
832 */
833
834 if (swapcluster_allocslots(&swc)) {
835 mutex_exit(slock);
836 dirtyreacts++; /* XXX */
837 continue;
838 }
839
840 /*
841 * at this point, we're definitely going reuse this
842 * page. mark the page busy and delayed-free.
843 * we should remove the page from the page queues
844 * so we don't ever look at it again.
845 * adjust counters and such.
846 */
847
848 p->flags |= PG_BUSY;
849 UVM_PAGE_OWN(p, "scan_queue");
850
851 p->flags |= PG_PAGEOUT;
852 uvm_pagedequeue(p);
853
854 uvmexp.pgswapout++;
855 mutex_exit(&uvm_pageqlock);
856
857 /*
858 * add the new page to the cluster.
859 */
860
861 if (swapcluster_add(&swc, p)) {
862 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
863 UVM_PAGE_OWN(p, NULL);
864 mutex_enter(&uvm_pageqlock);
865 dirtyreacts++;
866 uvm_pageactivate(p);
867 mutex_exit(slock);
868 continue;
869 }
870 mutex_exit(slock);
871
872 swapcluster_flush(&swc, false);
873 mutex_enter(&uvm_pageqlock);
874
875 /*
876 * the pageout is in progress. bump counters and set up
877 * for the next loop.
878 */
879
880 uvmexp.pdpending++;
881
882 #else /* defined(VMSWAP) */
883 uvm_pageactivate(p);
884 mutex_exit(slock);
885 #endif /* defined(VMSWAP) */
886 }
887
888 #if defined(VMSWAP)
889 mutex_exit(&uvm_pageqlock);
890 swapcluster_flush(&swc, true);
891 mutex_enter(&uvm_pageqlock);
892 #endif /* defined(VMSWAP) */
893 }
894
895 /*
896 * uvmpd_scan: scan the page queues and attempt to meet our targets.
897 *
898 * => called with pageq's locked
899 */
900
901 static void
902 uvmpd_scan(void)
903 {
904 int swap_shortage, pages_freed;
905 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
906
907 uvmexp.pdrevs++;
908
909 #ifndef __SWAP_BROKEN
910
911 /*
912 * swap out some processes if we are below our free target.
913 * we need to unlock the page queues for this.
914 */
915
916 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0 &&
917 uvm.swapout_enabled) {
918 uvmexp.pdswout++;
919 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
920 uvmexp.free, uvmexp.freetarg, 0, 0);
921 mutex_exit(&uvm_pageqlock);
922 uvm_swapout_threads();
923 mutex_enter(&uvm_pageqlock);
924
925 }
926 #endif
927
928 /*
929 * now we want to work on meeting our targets. first we work on our
930 * free target by converting inactive pages into free pages. then
931 * we work on meeting our inactive target by converting active pages
932 * to inactive ones.
933 */
934
935 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
936
937 pages_freed = uvmexp.pdfreed;
938 uvmpd_scan_queue();
939 pages_freed = uvmexp.pdfreed - pages_freed;
940
941 /*
942 * detect if we're not going to be able to page anything out
943 * until we free some swap resources from active pages.
944 */
945
946 swap_shortage = 0;
947 if (uvmexp.free < uvmexp.freetarg &&
948 uvmexp.swpginuse >= uvmexp.swpgavail &&
949 !uvm_swapisfull() &&
950 pages_freed == 0) {
951 swap_shortage = uvmexp.freetarg - uvmexp.free;
952 }
953
954 uvmpdpol_balancequeue(swap_shortage);
955 }
956
957 /*
958 * uvm_reclaimable: decide whether to wait for pagedaemon.
959 *
960 * => return true if it seems to be worth to do uvm_wait.
961 *
962 * XXX should be tunable.
963 * XXX should consider pools, etc?
964 */
965
966 bool
967 uvm_reclaimable(void)
968 {
969 int filepages;
970 int active, inactive;
971
972 /*
973 * if swap is not full, no problem.
974 */
975
976 if (!uvm_swapisfull()) {
977 return true;
978 }
979
980 /*
981 * file-backed pages can be reclaimed even when swap is full.
982 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
983 *
984 * XXX assume the worst case, ie. all wired pages are file-backed.
985 *
986 * XXX should consider about other reclaimable memory.
987 * XXX ie. pools, traditional buffer cache.
988 */
989
990 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
991 uvm_estimatepageable(&active, &inactive);
992 if (filepages >= MIN((active + inactive) >> 4,
993 5 * 1024 * 1024 >> PAGE_SHIFT)) {
994 return true;
995 }
996
997 /*
998 * kill the process, fail allocation, etc..
999 */
1000
1001 return false;
1002 }
1003
1004 void
1005 uvm_estimatepageable(int *active, int *inactive)
1006 {
1007
1008 uvmpdpol_estimatepageable(active, inactive);
1009 }
1010