uvm_pdaemon.c revision 1.84.4.9 1 /* $NetBSD: uvm_pdaemon.c,v 1.84.4.9 2007/10/26 17:03:11 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.84.4.9 2007/10/26 17:03:11 ad Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/pool.h>
84 #include <sys/buf.h>
85
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_pdpolicy.h>
88
89 /*
90 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
91 * in a pass thru the inactive list when swap is full. the value should be
92 * "small"... if it's too large we'll cycle the active pages thru the inactive
93 * queue too quickly to for them to be referenced and avoid being freed.
94 */
95
96 #define UVMPD_NUMDIRTYREACTS 16
97
98
99 /*
100 * local prototypes
101 */
102
103 static void uvmpd_scan(void);
104 static void uvmpd_scan_queue(void);
105 static void uvmpd_tune(void);
106
107 unsigned int uvm_pagedaemon_waiters;
108
109 /*
110 * XXX hack to avoid hangs when large processes fork.
111 */
112 int uvm_extrapages;
113
114 /*
115 * uvm_wait: wait (sleep) for the page daemon to free some pages
116 *
117 * => should be called with all locks released
118 * => should _not_ be called by the page daemon (to avoid deadlock)
119 */
120
121 void
122 uvm_wait(const char *wmsg)
123 {
124 int timo = 0;
125
126 mutex_spin_enter(&uvm_fpageqlock);
127
128 /*
129 * check for page daemon going to sleep (waiting for itself)
130 */
131
132 if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
133 /*
134 * now we have a problem: the pagedaemon wants to go to
135 * sleep until it frees more memory. but how can it
136 * free more memory if it is asleep? that is a deadlock.
137 * we have two options:
138 * [1] panic now
139 * [2] put a timeout on the sleep, thus causing the
140 * pagedaemon to only pause (rather than sleep forever)
141 *
142 * note that option [2] will only help us if we get lucky
143 * and some other process on the system breaks the deadlock
144 * by exiting or freeing memory (thus allowing the pagedaemon
145 * to continue). for now we panic if DEBUG is defined,
146 * otherwise we hope for the best with option [2] (better
147 * yet, this should never happen in the first place!).
148 */
149
150 printf("pagedaemon: deadlock detected!\n");
151 timo = hz >> 3; /* set timeout */
152 #if defined(DEBUG)
153 /* DEBUG: panic so we can debug it */
154 panic("pagedaemon deadlock");
155 #endif
156 }
157
158 uvm_pagedaemon_waiters++;
159 wakeup(&uvm.pagedaemon); /* wake the daemon! */
160 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
161 }
162
163 /*
164 * uvm_kick_pdaemon: perform checks to determine if we need to
165 * give the pagedaemon a nudge, and do so if necessary.
166 *
167 * => called with uvm_fpageqlock held.
168 */
169
170 void
171 uvm_kick_pdaemon(void)
172 {
173
174 KASSERT(mutex_owned(&uvm_fpageqlock));
175
176 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
177 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
178 uvmpdpol_needsscan_p())) {
179 wakeup(&uvm.pagedaemon);
180 }
181 }
182
183 /*
184 * uvmpd_tune: tune paging parameters
185 *
186 * => called when ever memory is added (or removed?) to the system
187 * => caller must call with page queues locked
188 */
189
190 static void
191 uvmpd_tune(void)
192 {
193 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
194
195 uvmexp.freemin = uvmexp.npages / 20;
196
197 /* between 16k and 256k */
198 /* XXX: what are these values good for? */
199 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
200 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
201
202 /* Make sure there's always a user page free. */
203 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
204 uvmexp.freemin = uvmexp.reserve_kernel + 1;
205
206 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
207 if (uvmexp.freetarg <= uvmexp.freemin)
208 uvmexp.freetarg = uvmexp.freemin + 1;
209
210 uvmexp.freetarg += uvm_extrapages;
211 uvm_extrapages = 0;
212
213 uvmexp.wiredmax = uvmexp.npages / 3;
214 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
215 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
216 }
217
218 /*
219 * uvm_pageout: the main loop for the pagedaemon
220 */
221
222 void
223 uvm_pageout(void *arg)
224 {
225 int bufcnt, npages = 0;
226 int extrapages = 0;
227 struct pool *pp;
228 uint64_t where;
229 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
230
231 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
232
233 /*
234 * ensure correct priority and set paging parameters...
235 */
236
237 uvm.pagedaemon_lwp = curlwp;
238 mutex_enter(&uvm_pageqlock);
239 npages = uvmexp.npages;
240 uvmpd_tune();
241 mutex_exit(&uvm_pageqlock);
242
243 /*
244 * main loop
245 */
246
247 for (;;) {
248 bool needsscan;
249
250 mutex_spin_enter(&uvm_fpageqlock);
251 if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
252 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
253 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
254 &uvm_fpageqlock, false, "pgdaemon", 0);
255 uvmexp.pdwoke++;
256 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
257 } else {
258 mutex_spin_exit(&uvm_fpageqlock);
259 }
260
261 /*
262 * now lock page queues and recompute inactive count
263 */
264
265 mutex_enter(&uvm_pageqlock);
266 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
267 npages = uvmexp.npages;
268 extrapages = uvm_extrapages;
269 mutex_spin_enter(&uvm_fpageqlock);
270 uvmpd_tune();
271 mutex_spin_exit(&uvm_fpageqlock);
272 }
273
274 uvmpdpol_tune();
275
276 /*
277 * Estimate a hint. Note that bufmem are returned to
278 * system only when entire pool page is empty.
279 */
280 mutex_spin_enter(&uvm_fpageqlock);
281 bufcnt = uvmexp.freetarg - uvmexp.free;
282 if (bufcnt < 0)
283 bufcnt = 0;
284
285 UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
286 uvmexp.free, uvmexp.freetarg, 0,0);
287
288 needsscan = uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
289 uvmpdpol_needsscan_p();
290 mutex_spin_exit(&uvm_fpageqlock);
291
292 /*
293 * scan if needed
294 */
295 if (needsscan)
296 uvmpd_scan();
297
298 /*
299 * if there's any free memory to be had,
300 * wake up any waiters.
301 */
302
303 mutex_spin_enter(&uvm_fpageqlock);
304 if (uvmexp.free > uvmexp.reserve_kernel ||
305 uvmexp.paging == 0) {
306 wakeup(&uvmexp.free);
307 uvm_pagedaemon_waiters = 0;
308 }
309 mutex_spin_exit(&uvm_fpageqlock);
310
311 /*
312 * scan done. unlock page queues (the only lock we are holding)
313 */
314 mutex_exit(&uvm_pageqlock);
315
316 /*
317 * start draining pool resources now that we're not
318 * holding any locks.
319 */
320 pool_drain_start(&pp, &where);
321
322 /*
323 * kill unused metadata buffers.
324 */
325 mutex_enter(&bufcache_lock);
326 buf_drain(bufcnt << PAGE_SHIFT);
327 mutex_exit(&bufcache_lock);
328
329 /*
330 * free any cached u-areas we don't need
331 */
332 uvm_uarea_drain(true);
333
334 /*
335 * complete draining the pools.
336 */
337 pool_drain_end(pp, where);
338 }
339 /*NOTREACHED*/
340 }
341
342
343 /*
344 * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
345 */
346
347 void
348 uvm_aiodone_worker(struct work *wk, void *dummy)
349 {
350 struct buf *bp = (void *)wk;
351
352 KASSERT(&bp->b_work == wk);
353
354 /*
355 * process an i/o that's done.
356 */
357
358 (*bp->b_iodone)(bp);
359 }
360
361 void
362 uvm_pageout_start(int npages)
363 {
364
365 mutex_spin_enter(&uvm_fpageqlock);
366 uvmexp.paging += npages;
367 mutex_spin_exit(&uvm_fpageqlock);
368 }
369
370 void
371 uvm_pageout_done(int npages)
372 {
373
374 mutex_spin_enter(&uvm_fpageqlock);
375 KASSERT(uvmexp.paging >= npages);
376 uvmexp.paging -= npages;
377
378 /*
379 * wake up either of pagedaemon or LWPs waiting for it.
380 */
381
382 if (uvmexp.free <= uvmexp.reserve_kernel) {
383 wakeup(&uvm.pagedaemon);
384 } else {
385 wakeup(&uvmexp.free);
386 uvm_pagedaemon_waiters = 0;
387 }
388 mutex_spin_exit(&uvm_fpageqlock);
389 }
390
391 /*
392 * uvmpd_trylockowner: trylock the page's owner.
393 *
394 * => called with pageq locked.
395 * => resolve orphaned O->A loaned page.
396 * => return the locked mutex on success. otherwise, return NULL.
397 */
398
399 kmutex_t *
400 uvmpd_trylockowner(struct vm_page *pg)
401 {
402 struct uvm_object *uobj = pg->uobject;
403 kmutex_t *slock;
404
405 KASSERT(mutex_owned(&uvm_pageqlock));
406
407 if (uobj != NULL) {
408 slock = &uobj->vmobjlock;
409 } else {
410 struct vm_anon *anon = pg->uanon;
411
412 KASSERT(anon != NULL);
413 slock = &anon->an_lock;
414 }
415
416 if (!mutex_tryenter(slock)) {
417 return NULL;
418 }
419
420 if (uobj == NULL) {
421
422 /*
423 * set PQ_ANON if it isn't set already.
424 */
425
426 if ((pg->pqflags & PQ_ANON) == 0) {
427 KASSERT(pg->loan_count > 0);
428 pg->loan_count--;
429 pg->pqflags |= PQ_ANON;
430 /* anon now owns it */
431 }
432 }
433
434 return slock;
435 }
436
437 #if defined(VMSWAP)
438 struct swapcluster {
439 int swc_slot;
440 int swc_nallocated;
441 int swc_nused;
442 struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
443 };
444
445 static void
446 swapcluster_init(struct swapcluster *swc)
447 {
448
449 swc->swc_slot = 0;
450 swc->swc_nused = 0;
451 }
452
453 static int
454 swapcluster_allocslots(struct swapcluster *swc)
455 {
456 int slot;
457 int npages;
458
459 if (swc->swc_slot != 0) {
460 return 0;
461 }
462
463 /* Even with strange MAXPHYS, the shift
464 implicitly rounds down to a page. */
465 npages = MAXPHYS >> PAGE_SHIFT;
466 slot = uvm_swap_alloc(&npages, true);
467 if (slot == 0) {
468 return ENOMEM;
469 }
470 swc->swc_slot = slot;
471 swc->swc_nallocated = npages;
472 swc->swc_nused = 0;
473
474 return 0;
475 }
476
477 static int
478 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
479 {
480 int slot;
481 struct uvm_object *uobj;
482
483 KASSERT(swc->swc_slot != 0);
484 KASSERT(swc->swc_nused < swc->swc_nallocated);
485 KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
486
487 slot = swc->swc_slot + swc->swc_nused;
488 uobj = pg->uobject;
489 if (uobj == NULL) {
490 KASSERT(mutex_owned(&pg->uanon->an_lock));
491 pg->uanon->an_swslot = slot;
492 } else {
493 int result;
494
495 KASSERT(mutex_owned(&uobj->vmobjlock));
496 result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
497 if (result == -1) {
498 return ENOMEM;
499 }
500 }
501 swc->swc_pages[swc->swc_nused] = pg;
502 swc->swc_nused++;
503
504 return 0;
505 }
506
507 static void
508 swapcluster_flush(struct swapcluster *swc, bool now)
509 {
510 int slot;
511 int nused;
512 int nallocated;
513 int error;
514
515 if (swc->swc_slot == 0) {
516 return;
517 }
518 KASSERT(swc->swc_nused <= swc->swc_nallocated);
519
520 slot = swc->swc_slot;
521 nused = swc->swc_nused;
522 nallocated = swc->swc_nallocated;
523
524 /*
525 * if this is the final pageout we could have a few
526 * unused swap blocks. if so, free them now.
527 */
528
529 if (nused < nallocated) {
530 if (!now) {
531 return;
532 }
533 uvm_swap_free(slot + nused, nallocated - nused);
534 }
535
536 /*
537 * now start the pageout.
538 */
539
540 uvmexp.pdpageouts++;
541 uvm_pageout_start(nused);
542 error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
543 KASSERT(error == 0);
544
545 /*
546 * zero swslot to indicate that we are
547 * no longer building a swap-backed cluster.
548 */
549
550 swc->swc_slot = 0;
551 swc->swc_nused = 0;
552 }
553
554 static int
555 swapcluster_nused(struct swapcluster *swc)
556 {
557
558 return swc->swc_nused;
559 }
560
561 /*
562 * uvmpd_dropswap: free any swap allocated to this page.
563 *
564 * => called with owner locked.
565 * => return true if a page had an associated slot.
566 */
567
568 static bool
569 uvmpd_dropswap(struct vm_page *pg)
570 {
571 bool result = false;
572 struct vm_anon *anon = pg->uanon;
573
574 if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
575 uvm_swap_free(anon->an_swslot, 1);
576 anon->an_swslot = 0;
577 pg->flags &= ~PG_CLEAN;
578 result = true;
579 } else if (pg->pqflags & PQ_AOBJ) {
580 int slot = uao_set_swslot(pg->uobject,
581 pg->offset >> PAGE_SHIFT, 0);
582 if (slot) {
583 uvm_swap_free(slot, 1);
584 pg->flags &= ~PG_CLEAN;
585 result = true;
586 }
587 }
588
589 return result;
590 }
591
592 /*
593 * uvmpd_trydropswap: try to free any swap allocated to this page.
594 *
595 * => return true if a slot is successfully freed.
596 */
597
598 bool
599 uvmpd_trydropswap(struct vm_page *pg)
600 {
601 kmutex_t *slock;
602 bool result;
603
604 if ((pg->flags & PG_BUSY) != 0) {
605 return false;
606 }
607
608 /*
609 * lock the page's owner.
610 */
611
612 slock = uvmpd_trylockowner(pg);
613 if (slock == NULL) {
614 return false;
615 }
616
617 /*
618 * skip this page if it's busy.
619 */
620
621 if ((pg->flags & PG_BUSY) != 0) {
622 mutex_exit(slock);
623 return false;
624 }
625
626 result = uvmpd_dropswap(pg);
627
628 mutex_exit(slock);
629
630 return result;
631 }
632
633 #endif /* defined(VMSWAP) */
634
635 /*
636 * uvmpd_scan_queue: scan an replace candidate list for pages
637 * to clean or free.
638 *
639 * => called with page queues locked
640 * => we work on meeting our free target by converting inactive pages
641 * into free pages.
642 * => we handle the building of swap-backed clusters
643 */
644
645 static void
646 uvmpd_scan_queue(void)
647 {
648 struct vm_page *p;
649 struct uvm_object *uobj;
650 struct vm_anon *anon;
651 #if defined(VMSWAP)
652 struct swapcluster swc;
653 #endif /* defined(VMSWAP) */
654 int dirtyreacts;
655 kmutex_t *slock;
656 UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
657
658 /*
659 * swslot is non-zero if we are building a swap cluster. we want
660 * to stay in the loop while we have a page to scan or we have
661 * a swap-cluster to build.
662 */
663
664 #if defined(VMSWAP)
665 swapcluster_init(&swc);
666 #endif /* defined(VMSWAP) */
667
668 dirtyreacts = 0;
669 uvmpdpol_scaninit();
670
671 while (/* CONSTCOND */ 1) {
672
673 /*
674 * see if we've met the free target.
675 */
676
677 if (uvmexp.free + uvmexp.paging
678 #if defined(VMSWAP)
679 + swapcluster_nused(&swc)
680 #endif /* defined(VMSWAP) */
681 >= uvmexp.freetarg << 2 ||
682 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
683 UVMHIST_LOG(pdhist," met free target: "
684 "exit loop", 0, 0, 0, 0);
685 break;
686 }
687
688 p = uvmpdpol_selectvictim();
689 if (p == NULL) {
690 break;
691 }
692 KASSERT(uvmpdpol_pageisqueued_p(p));
693 KASSERT(p->wire_count == 0);
694
695 /*
696 * we are below target and have a new page to consider.
697 */
698
699 anon = p->uanon;
700 uobj = p->uobject;
701
702 /*
703 * first we attempt to lock the object that this page
704 * belongs to. if our attempt fails we skip on to
705 * the next page (no harm done). it is important to
706 * "try" locking the object as we are locking in the
707 * wrong order (pageq -> object) and we don't want to
708 * deadlock.
709 *
710 * the only time we expect to see an ownerless page
711 * (i.e. a page with no uobject and !PQ_ANON) is if an
712 * anon has loaned a page from a uvm_object and the
713 * uvm_object has dropped the ownership. in that
714 * case, the anon can "take over" the loaned page
715 * and make it its own.
716 */
717
718 slock = uvmpd_trylockowner(p);
719 if (slock == NULL) {
720 continue;
721 }
722 if (p->flags & PG_BUSY) {
723 mutex_exit(slock);
724 uvmexp.pdbusy++;
725 continue;
726 }
727
728 /* does the page belong to an object? */
729 if (uobj != NULL) {
730 uvmexp.pdobscan++;
731 } else {
732 #if defined(VMSWAP)
733 KASSERT(anon != NULL);
734 uvmexp.pdanscan++;
735 #else /* defined(VMSWAP) */
736 panic("%s: anon", __func__);
737 #endif /* defined(VMSWAP) */
738 }
739
740
741 /*
742 * we now have the object and the page queues locked.
743 * if the page is not swap-backed, call the object's
744 * pager to flush and free the page.
745 */
746
747 #if defined(READAHEAD_STATS)
748 if ((p->pqflags & PQ_READAHEAD) != 0) {
749 p->pqflags &= ~PQ_READAHEAD;
750 uvm_ra_miss.ev_count++;
751 }
752 #endif /* defined(READAHEAD_STATS) */
753
754 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
755 KASSERT(uobj != NULL);
756 mutex_exit(&uvm_pageqlock);
757 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
758 p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
759 mutex_enter(&uvm_pageqlock);
760 continue;
761 }
762
763 /*
764 * the page is swap-backed. remove all the permissions
765 * from the page so we can sync the modified info
766 * without any race conditions. if the page is clean
767 * we can free it now and continue.
768 */
769
770 pmap_page_protect(p, VM_PROT_NONE);
771 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
772 p->flags &= ~(PG_CLEAN);
773 }
774 if (p->flags & PG_CLEAN) {
775 int slot;
776 int pageidx;
777
778 pageidx = p->offset >> PAGE_SHIFT;
779 uvm_pagefree(p);
780 uvmexp.pdfreed++;
781
782 /*
783 * for anons, we need to remove the page
784 * from the anon ourselves. for aobjs,
785 * pagefree did that for us.
786 */
787
788 if (anon) {
789 KASSERT(anon->an_swslot != 0);
790 anon->an_page = NULL;
791 slot = anon->an_swslot;
792 } else {
793 slot = uao_find_swslot(uobj, pageidx);
794 }
795 mutex_exit(slock);
796
797 if (slot > 0) {
798 /* this page is now only in swap. */
799 mutex_enter(&uvm_swap_data_lock);
800 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
801 uvmexp.swpgonly++;
802 mutex_exit(&uvm_swap_data_lock);
803 }
804 continue;
805 }
806
807 #if defined(VMSWAP)
808 /*
809 * this page is dirty, skip it if we'll have met our
810 * free target when all the current pageouts complete.
811 */
812
813 if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
814 mutex_exit(slock);
815 continue;
816 }
817
818 /*
819 * free any swap space allocated to the page since
820 * we'll have to write it again with its new data.
821 */
822
823 uvmpd_dropswap(p);
824
825 /*
826 * if all pages in swap are only in swap,
827 * the swap space is full and we can't page out
828 * any more swap-backed pages. reactivate this page
829 * so that we eventually cycle all pages through
830 * the inactive queue.
831 */
832
833 if (uvm_swapisfull()) {
834 dirtyreacts++;
835 uvm_pageactivate(p);
836 mutex_exit(slock);
837 continue;
838 }
839
840 /*
841 * start new swap pageout cluster (if necessary).
842 */
843
844 if (swapcluster_allocslots(&swc)) {
845 mutex_exit(slock);
846 dirtyreacts++; /* XXX */
847 continue;
848 }
849
850 /*
851 * at this point, we're definitely going reuse this
852 * page. mark the page busy and delayed-free.
853 * we should remove the page from the page queues
854 * so we don't ever look at it again.
855 * adjust counters and such.
856 */
857
858 p->flags |= PG_BUSY;
859 UVM_PAGE_OWN(p, "scan_queue");
860
861 p->flags |= PG_PAGEOUT;
862 uvm_pagedequeue(p);
863
864 uvmexp.pgswapout++;
865 mutex_exit(&uvm_pageqlock);
866
867 /*
868 * add the new page to the cluster.
869 */
870
871 if (swapcluster_add(&swc, p)) {
872 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
873 UVM_PAGE_OWN(p, NULL);
874 mutex_enter(&uvm_pageqlock);
875 dirtyreacts++;
876 uvm_pageactivate(p);
877 mutex_exit(slock);
878 continue;
879 }
880 mutex_exit(slock);
881
882 swapcluster_flush(&swc, false);
883 mutex_enter(&uvm_pageqlock);
884
885 /*
886 * the pageout is in progress. bump counters and set up
887 * for the next loop.
888 */
889
890 uvmexp.pdpending++;
891
892 #else /* defined(VMSWAP) */
893 uvm_pageactivate(p);
894 mutex_exit(slock);
895 #endif /* defined(VMSWAP) */
896 }
897
898 #if defined(VMSWAP)
899 mutex_exit(&uvm_pageqlock);
900 swapcluster_flush(&swc, true);
901 mutex_enter(&uvm_pageqlock);
902 #endif /* defined(VMSWAP) */
903 }
904
905 /*
906 * uvmpd_scan: scan the page queues and attempt to meet our targets.
907 *
908 * => called with pageq's locked
909 */
910
911 static void
912 uvmpd_scan(void)
913 {
914 int swap_shortage, pages_freed;
915 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
916
917 uvmexp.pdrevs++;
918
919 #ifndef __SWAP_BROKEN
920
921 /*
922 * swap out some processes if we are below our free target.
923 * we need to unlock the page queues for this.
924 */
925
926 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0 &&
927 uvm.swapout_enabled) {
928 uvmexp.pdswout++;
929 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
930 uvmexp.free, uvmexp.freetarg, 0, 0);
931 mutex_exit(&uvm_pageqlock);
932 uvm_swapout_threads();
933 mutex_enter(&uvm_pageqlock);
934
935 }
936 #endif
937
938 /*
939 * now we want to work on meeting our targets. first we work on our
940 * free target by converting inactive pages into free pages. then
941 * we work on meeting our inactive target by converting active pages
942 * to inactive ones.
943 */
944
945 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
946
947 pages_freed = uvmexp.pdfreed;
948 uvmpd_scan_queue();
949 pages_freed = uvmexp.pdfreed - pages_freed;
950
951 /*
952 * detect if we're not going to be able to page anything out
953 * until we free some swap resources from active pages.
954 */
955
956 swap_shortage = 0;
957 if (uvmexp.free < uvmexp.freetarg &&
958 uvmexp.swpginuse >= uvmexp.swpgavail &&
959 !uvm_swapisfull() &&
960 pages_freed == 0) {
961 swap_shortage = uvmexp.freetarg - uvmexp.free;
962 }
963
964 uvmpdpol_balancequeue(swap_shortage);
965 }
966
967 /*
968 * uvm_reclaimable: decide whether to wait for pagedaemon.
969 *
970 * => return true if it seems to be worth to do uvm_wait.
971 *
972 * XXX should be tunable.
973 * XXX should consider pools, etc?
974 */
975
976 bool
977 uvm_reclaimable(void)
978 {
979 int filepages;
980 int active, inactive;
981
982 /*
983 * if swap is not full, no problem.
984 */
985
986 if (!uvm_swapisfull()) {
987 return true;
988 }
989
990 /*
991 * file-backed pages can be reclaimed even when swap is full.
992 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
993 *
994 * XXX assume the worst case, ie. all wired pages are file-backed.
995 *
996 * XXX should consider about other reclaimable memory.
997 * XXX ie. pools, traditional buffer cache.
998 */
999
1000 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1001 uvm_estimatepageable(&active, &inactive);
1002 if (filepages >= MIN((active + inactive) >> 4,
1003 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1004 return true;
1005 }
1006
1007 /*
1008 * kill the process, fail allocation, etc..
1009 */
1010
1011 return false;
1012 }
1013
1014 void
1015 uvm_estimatepageable(int *active, int *inactive)
1016 {
1017
1018 uvmpdpol_estimatepageable(active, inactive);
1019 }
1020