Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.88
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.88 2007/11/07 00:23:46 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.88 2007/11/07 00:23:46 ad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_pdpolicy.h>
     88 
     89 /*
     90  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     91  * in a pass thru the inactive list when swap is full.  the value should be
     92  * "small"... if it's too large we'll cycle the active pages thru the inactive
     93  * queue too quickly to for them to be referenced and avoid being freed.
     94  */
     95 
     96 #define UVMPD_NUMDIRTYREACTS 16
     97 
     98 
     99 /*
    100  * local prototypes
    101  */
    102 
    103 static void	uvmpd_scan(void);
    104 static void	uvmpd_scan_queue(void);
    105 static void	uvmpd_tune(void);
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 int uvm_extrapages;
    111 
    112 /*
    113  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114  *
    115  * => should be called with all locks released
    116  * => should _not_ be called by the page daemon (to avoid deadlock)
    117  */
    118 
    119 void
    120 uvm_wait(const char *wmsg)
    121 {
    122 	int timo = 0;
    123 	int s = splbio();
    124 
    125 	/*
    126 	 * check for page daemon going to sleep (waiting for itself)
    127 	 */
    128 
    129 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    130 		/*
    131 		 * now we have a problem: the pagedaemon wants to go to
    132 		 * sleep until it frees more memory.   but how can it
    133 		 * free more memory if it is asleep?  that is a deadlock.
    134 		 * we have two options:
    135 		 *  [1] panic now
    136 		 *  [2] put a timeout on the sleep, thus causing the
    137 		 *      pagedaemon to only pause (rather than sleep forever)
    138 		 *
    139 		 * note that option [2] will only help us if we get lucky
    140 		 * and some other process on the system breaks the deadlock
    141 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142 		 * to continue).  for now we panic if DEBUG is defined,
    143 		 * otherwise we hope for the best with option [2] (better
    144 		 * yet, this should never happen in the first place!).
    145 		 */
    146 
    147 		printf("pagedaemon: deadlock detected!\n");
    148 		timo = hz >> 3;		/* set timeout */
    149 #if defined(DEBUG)
    150 		/* DEBUG: panic so we can debug it */
    151 		panic("pagedaemon deadlock");
    152 #endif
    153 	}
    154 
    155 	mutex_enter(&uvm_pagedaemon_lock);
    156 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157 	mtsleep(&uvmexp.free, PVM, wmsg, timo, &uvm_pagedaemon_lock);
    158 	mutex_exit(&uvm_pagedaemon_lock);
    159 
    160 	splx(s);
    161 }
    162 
    163 /*
    164  * uvm_kick_pdaemon: perform checks to determine if we need to
    165  * give the pagedaemon a nudge, and do so if necessary.
    166  */
    167 
    168 void
    169 uvm_kick_pdaemon(void)
    170 {
    171 
    172 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    173 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    174 	     uvmpdpol_needsscan_p())) {
    175 		wakeup(&uvm.pagedaemon);
    176 	}
    177 }
    178 
    179 /*
    180  * uvmpd_tune: tune paging parameters
    181  *
    182  * => called when ever memory is added (or removed?) to the system
    183  * => caller must call with page queues locked
    184  */
    185 
    186 static void
    187 uvmpd_tune(void)
    188 {
    189 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    190 
    191 	uvmexp.freemin = uvmexp.npages / 20;
    192 
    193 	/* between 16k and 256k */
    194 	/* XXX:  what are these values good for? */
    195 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    196 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    197 
    198 	/* Make sure there's always a user page free. */
    199 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    200 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    201 
    202 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    203 	if (uvmexp.freetarg <= uvmexp.freemin)
    204 		uvmexp.freetarg = uvmexp.freemin + 1;
    205 
    206 	uvmexp.freetarg += uvm_extrapages;
    207 	uvm_extrapages = 0;
    208 
    209 	uvmexp.wiredmax = uvmexp.npages / 3;
    210 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    211 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    212 }
    213 
    214 /*
    215  * uvm_pageout: the main loop for the pagedaemon
    216  */
    217 
    218 void
    219 uvm_pageout(void *arg)
    220 {
    221 	int bufcnt, npages = 0;
    222 	int extrapages = 0;
    223 	struct pool *pp;
    224 	uint64_t where;
    225 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    226 
    227 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    228 
    229 	/*
    230 	 * ensure correct priority and set paging parameters...
    231 	 */
    232 
    233 	uvm.pagedaemon_lwp = curlwp;
    234 	uvm_lock_pageq();
    235 	npages = uvmexp.npages;
    236 	uvmpd_tune();
    237 	uvm_unlock_pageq();
    238 
    239 	/*
    240 	 * main loop
    241 	 */
    242 
    243 	for (;;) {
    244 		mutex_enter(&uvm_pagedaemon_lock);
    245 
    246 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    247 		mtsleep(&uvm.pagedaemon, PVM | PNORELOCK, "pgdaemon", 0,
    248 		    &uvm_pagedaemon_lock);
    249 		uvmexp.pdwoke++;
    250 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    251 
    252 		/*
    253 		 * now lock page queues and recompute inactive count
    254 		 */
    255 
    256 		uvm_lock_pageq();
    257 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    258 			npages = uvmexp.npages;
    259 			extrapages = uvm_extrapages;
    260 			uvmpd_tune();
    261 		}
    262 
    263 		uvmpdpol_tune();
    264 
    265 		/*
    266 		 * Estimate a hint.  Note that bufmem are returned to
    267 		 * system only when entire pool page is empty.
    268 		 */
    269 		bufcnt = uvmexp.freetarg - uvmexp.free;
    270 		if (bufcnt < 0)
    271 			bufcnt = 0;
    272 
    273 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    274 		    uvmexp.free, uvmexp.freetarg, 0,0);
    275 
    276 		/*
    277 		 * scan if needed
    278 		 */
    279 
    280 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    281 		    uvmpdpol_needsscan_p()) {
    282 			uvmpd_scan();
    283 		}
    284 
    285 		/*
    286 		 * if there's any free memory to be had,
    287 		 * wake up any waiters.
    288 		 */
    289 
    290 		if (uvmexp.free > uvmexp.reserve_kernel ||
    291 		    uvmexp.paging == 0) {
    292 			wakeup(&uvmexp.free);
    293 		}
    294 
    295 		/*
    296 		 * scan done.  unlock page queues (the only lock we are holding)
    297 		 */
    298 
    299 		uvm_unlock_pageq();
    300 
    301 		/*
    302 		 * start draining pool resources now that we're not
    303 		 * holding any locks.
    304 		 */
    305 		pool_drain_start(&pp, &where);
    306 
    307 		/*
    308 		 * kill unused metadata buffers.
    309 		 */
    310 		buf_drain(bufcnt << PAGE_SHIFT);
    311 
    312 		/*
    313 		 * free any cached u-areas we don't need
    314 		 */
    315 		uvm_uarea_drain(true);
    316 
    317 		/*
    318 		 * complete draining the pools.
    319 		 */
    320 		pool_drain_end(pp, where);
    321 	}
    322 	/*NOTREACHED*/
    323 }
    324 
    325 
    326 /*
    327  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    328  */
    329 
    330 void
    331 uvm_aiodone_worker(struct work *wk, void *dummy)
    332 {
    333 	int free;
    334 	struct buf *bp = (void *)wk;
    335 
    336 	KASSERT(&bp->b_work == wk);
    337 
    338 	/*
    339 	 * process an i/o that's done.
    340 	 */
    341 
    342 	free = uvmexp.free;
    343 	(*bp->b_iodone)(bp);
    344 	if (free <= uvmexp.reserve_kernel) {
    345 		mutex_spin_enter(&uvm_fpageqlock);
    346 		wakeup(&uvm.pagedaemon);
    347 		mutex_spin_exit(&uvm_fpageqlock);
    348 	} else {
    349 		mutex_enter(&uvm_pagedaemon_lock);
    350 		wakeup(&uvmexp.free);
    351 		mutex_exit(&uvm_pagedaemon_lock);
    352 	}
    353 }
    354 
    355 /*
    356  * uvmpd_trylockowner: trylock the page's owner.
    357  *
    358  * => called with pageq locked.
    359  * => resolve orphaned O->A loaned page.
    360  * => return the locked simplelock on success.  otherwise, return NULL.
    361  */
    362 
    363 struct simplelock *
    364 uvmpd_trylockowner(struct vm_page *pg)
    365 {
    366 	struct uvm_object *uobj = pg->uobject;
    367 	struct simplelock *slock;
    368 
    369 	UVM_LOCK_ASSERT_PAGEQ();
    370 	if (uobj != NULL) {
    371 		slock = &uobj->vmobjlock;
    372 	} else {
    373 		struct vm_anon *anon = pg->uanon;
    374 
    375 		KASSERT(anon != NULL);
    376 		slock = &anon->an_lock;
    377 	}
    378 
    379 	if (!simple_lock_try(slock)) {
    380 		return NULL;
    381 	}
    382 
    383 	if (uobj == NULL) {
    384 
    385 		/*
    386 		 * set PQ_ANON if it isn't set already.
    387 		 */
    388 
    389 		if ((pg->pqflags & PQ_ANON) == 0) {
    390 			KASSERT(pg->loan_count > 0);
    391 			pg->loan_count--;
    392 			pg->pqflags |= PQ_ANON;
    393 			/* anon now owns it */
    394 		}
    395 	}
    396 
    397 	return slock;
    398 }
    399 
    400 #if defined(VMSWAP)
    401 struct swapcluster {
    402 	int swc_slot;
    403 	int swc_nallocated;
    404 	int swc_nused;
    405 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    406 };
    407 
    408 static void
    409 swapcluster_init(struct swapcluster *swc)
    410 {
    411 
    412 	swc->swc_slot = 0;
    413 }
    414 
    415 static int
    416 swapcluster_allocslots(struct swapcluster *swc)
    417 {
    418 	int slot;
    419 	int npages;
    420 
    421 	if (swc->swc_slot != 0) {
    422 		return 0;
    423 	}
    424 
    425 	/* Even with strange MAXPHYS, the shift
    426 	   implicitly rounds down to a page. */
    427 	npages = MAXPHYS >> PAGE_SHIFT;
    428 	slot = uvm_swap_alloc(&npages, true);
    429 	if (slot == 0) {
    430 		return ENOMEM;
    431 	}
    432 	swc->swc_slot = slot;
    433 	swc->swc_nallocated = npages;
    434 	swc->swc_nused = 0;
    435 
    436 	return 0;
    437 }
    438 
    439 static int
    440 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    441 {
    442 	int slot;
    443 	struct uvm_object *uobj;
    444 
    445 	KASSERT(swc->swc_slot != 0);
    446 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    447 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    448 
    449 	slot = swc->swc_slot + swc->swc_nused;
    450 	uobj = pg->uobject;
    451 	if (uobj == NULL) {
    452 		LOCK_ASSERT(simple_lock_held(&pg->uanon->an_lock));
    453 		pg->uanon->an_swslot = slot;
    454 	} else {
    455 		int result;
    456 
    457 		LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
    458 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    459 		if (result == -1) {
    460 			return ENOMEM;
    461 		}
    462 	}
    463 	swc->swc_pages[swc->swc_nused] = pg;
    464 	swc->swc_nused++;
    465 
    466 	return 0;
    467 }
    468 
    469 static void
    470 swapcluster_flush(struct swapcluster *swc, bool now)
    471 {
    472 	int slot;
    473 	int nused;
    474 	int nallocated;
    475 	int error;
    476 
    477 	if (swc->swc_slot == 0) {
    478 		return;
    479 	}
    480 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    481 
    482 	slot = swc->swc_slot;
    483 	nused = swc->swc_nused;
    484 	nallocated = swc->swc_nallocated;
    485 
    486 	/*
    487 	 * if this is the final pageout we could have a few
    488 	 * unused swap blocks.  if so, free them now.
    489 	 */
    490 
    491 	if (nused < nallocated) {
    492 		if (!now) {
    493 			return;
    494 		}
    495 		uvm_swap_free(slot + nused, nallocated - nused);
    496 	}
    497 
    498 	/*
    499 	 * now start the pageout.
    500 	 */
    501 
    502 	uvmexp.pdpageouts++;
    503 	error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    504 	KASSERT(error == 0);
    505 
    506 	/*
    507 	 * zero swslot to indicate that we are
    508 	 * no longer building a swap-backed cluster.
    509 	 */
    510 
    511 	swc->swc_slot = 0;
    512 }
    513 
    514 /*
    515  * uvmpd_dropswap: free any swap allocated to this page.
    516  *
    517  * => called with owner locked.
    518  * => return true if a page had an associated slot.
    519  */
    520 
    521 static bool
    522 uvmpd_dropswap(struct vm_page *pg)
    523 {
    524 	bool result = false;
    525 	struct vm_anon *anon = pg->uanon;
    526 
    527 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    528 		uvm_swap_free(anon->an_swslot, 1);
    529 		anon->an_swslot = 0;
    530 		pg->flags &= ~PG_CLEAN;
    531 		result = true;
    532 	} else if (pg->pqflags & PQ_AOBJ) {
    533 		int slot = uao_set_swslot(pg->uobject,
    534 		    pg->offset >> PAGE_SHIFT, 0);
    535 		if (slot) {
    536 			uvm_swap_free(slot, 1);
    537 			pg->flags &= ~PG_CLEAN;
    538 			result = true;
    539 		}
    540 	}
    541 
    542 	return result;
    543 }
    544 
    545 /*
    546  * uvmpd_trydropswap: try to free any swap allocated to this page.
    547  *
    548  * => return true if a slot is successfully freed.
    549  */
    550 
    551 bool
    552 uvmpd_trydropswap(struct vm_page *pg)
    553 {
    554 	struct simplelock *slock;
    555 	bool result;
    556 
    557 	if ((pg->flags & PG_BUSY) != 0) {
    558 		return false;
    559 	}
    560 
    561 	/*
    562 	 * lock the page's owner.
    563 	 */
    564 
    565 	slock = uvmpd_trylockowner(pg);
    566 	if (slock == NULL) {
    567 		return false;
    568 	}
    569 
    570 	/*
    571 	 * skip this page if it's busy.
    572 	 */
    573 
    574 	if ((pg->flags & PG_BUSY) != 0) {
    575 		simple_unlock(slock);
    576 		return false;
    577 	}
    578 
    579 	result = uvmpd_dropswap(pg);
    580 
    581 	simple_unlock(slock);
    582 
    583 	return result;
    584 }
    585 
    586 #endif /* defined(VMSWAP) */
    587 
    588 /*
    589  * uvmpd_scan_queue: scan an replace candidate list for pages
    590  * to clean or free.
    591  *
    592  * => called with page queues locked
    593  * => we work on meeting our free target by converting inactive pages
    594  *    into free pages.
    595  * => we handle the building of swap-backed clusters
    596  */
    597 
    598 static void
    599 uvmpd_scan_queue(void)
    600 {
    601 	struct vm_page *p;
    602 	struct uvm_object *uobj;
    603 	struct vm_anon *anon;
    604 #if defined(VMSWAP)
    605 	struct swapcluster swc;
    606 #endif /* defined(VMSWAP) */
    607 	int dirtyreacts;
    608 	struct simplelock *slock;
    609 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    610 
    611 	/*
    612 	 * swslot is non-zero if we are building a swap cluster.  we want
    613 	 * to stay in the loop while we have a page to scan or we have
    614 	 * a swap-cluster to build.
    615 	 */
    616 
    617 #if defined(VMSWAP)
    618 	swapcluster_init(&swc);
    619 #endif /* defined(VMSWAP) */
    620 
    621 	dirtyreacts = 0;
    622 	uvmpdpol_scaninit();
    623 
    624 	while (/* CONSTCOND */ 1) {
    625 
    626 		/*
    627 		 * see if we've met the free target.
    628 		 */
    629 
    630 		if (uvmexp.free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    631 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    632 			UVMHIST_LOG(pdhist,"  met free target: "
    633 				    "exit loop", 0, 0, 0, 0);
    634 			break;
    635 		}
    636 
    637 		p = uvmpdpol_selectvictim();
    638 		if (p == NULL) {
    639 			break;
    640 		}
    641 		KASSERT(uvmpdpol_pageisqueued_p(p));
    642 		KASSERT(p->wire_count == 0);
    643 
    644 		/*
    645 		 * we are below target and have a new page to consider.
    646 		 */
    647 
    648 		anon = p->uanon;
    649 		uobj = p->uobject;
    650 
    651 		/*
    652 		 * first we attempt to lock the object that this page
    653 		 * belongs to.  if our attempt fails we skip on to
    654 		 * the next page (no harm done).  it is important to
    655 		 * "try" locking the object as we are locking in the
    656 		 * wrong order (pageq -> object) and we don't want to
    657 		 * deadlock.
    658 		 *
    659 		 * the only time we expect to see an ownerless page
    660 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    661 		 * anon has loaned a page from a uvm_object and the
    662 		 * uvm_object has dropped the ownership.  in that
    663 		 * case, the anon can "take over" the loaned page
    664 		 * and make it its own.
    665 		 */
    666 
    667 		slock = uvmpd_trylockowner(p);
    668 		if (slock == NULL) {
    669 			continue;
    670 		}
    671 		if (p->flags & PG_BUSY) {
    672 			simple_unlock(slock);
    673 			uvmexp.pdbusy++;
    674 			continue;
    675 		}
    676 
    677 		/* does the page belong to an object? */
    678 		if (uobj != NULL) {
    679 			uvmexp.pdobscan++;
    680 		} else {
    681 #if defined(VMSWAP)
    682 			KASSERT(anon != NULL);
    683 			uvmexp.pdanscan++;
    684 #else /* defined(VMSWAP) */
    685 			panic("%s: anon", __func__);
    686 #endif /* defined(VMSWAP) */
    687 		}
    688 
    689 
    690 		/*
    691 		 * we now have the object and the page queues locked.
    692 		 * if the page is not swap-backed, call the object's
    693 		 * pager to flush and free the page.
    694 		 */
    695 
    696 #if defined(READAHEAD_STATS)
    697 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    698 			p->pqflags &= ~PQ_READAHEAD;
    699 			uvm_ra_miss.ev_count++;
    700 		}
    701 #endif /* defined(READAHEAD_STATS) */
    702 
    703 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    704 			KASSERT(uobj != NULL);
    705 			uvm_unlock_pageq();
    706 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    707 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    708 			uvm_lock_pageq();
    709 			continue;
    710 		}
    711 
    712 		/*
    713 		 * the page is swap-backed.  remove all the permissions
    714 		 * from the page so we can sync the modified info
    715 		 * without any race conditions.  if the page is clean
    716 		 * we can free it now and continue.
    717 		 */
    718 
    719 		pmap_page_protect(p, VM_PROT_NONE);
    720 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    721 			p->flags &= ~(PG_CLEAN);
    722 		}
    723 		if (p->flags & PG_CLEAN) {
    724 			int slot;
    725 			int pageidx;
    726 
    727 			pageidx = p->offset >> PAGE_SHIFT;
    728 			uvm_pagefree(p);
    729 			uvmexp.pdfreed++;
    730 
    731 			/*
    732 			 * for anons, we need to remove the page
    733 			 * from the anon ourselves.  for aobjs,
    734 			 * pagefree did that for us.
    735 			 */
    736 
    737 			if (anon) {
    738 				KASSERT(anon->an_swslot != 0);
    739 				anon->an_page = NULL;
    740 				slot = anon->an_swslot;
    741 			} else {
    742 				slot = uao_find_swslot(uobj, pageidx);
    743 			}
    744 			simple_unlock(slock);
    745 
    746 			if (slot > 0) {
    747 				/* this page is now only in swap. */
    748 				mutex_enter(&uvm_swap_data_lock);
    749 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    750 				uvmexp.swpgonly++;
    751 				mutex_exit(&uvm_swap_data_lock);
    752 			}
    753 			continue;
    754 		}
    755 
    756 #if defined(VMSWAP)
    757 		/*
    758 		 * this page is dirty, skip it if we'll have met our
    759 		 * free target when all the current pageouts complete.
    760 		 */
    761 
    762 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    763 			simple_unlock(slock);
    764 			continue;
    765 		}
    766 
    767 		/*
    768 		 * free any swap space allocated to the page since
    769 		 * we'll have to write it again with its new data.
    770 		 */
    771 
    772 		uvmpd_dropswap(p);
    773 
    774 		/*
    775 		 * if all pages in swap are only in swap,
    776 		 * the swap space is full and we can't page out
    777 		 * any more swap-backed pages.  reactivate this page
    778 		 * so that we eventually cycle all pages through
    779 		 * the inactive queue.
    780 		 */
    781 
    782 		if (uvm_swapisfull()) {
    783 			dirtyreacts++;
    784 			uvm_pageactivate(p);
    785 			simple_unlock(slock);
    786 			continue;
    787 		}
    788 
    789 		/*
    790 		 * start new swap pageout cluster (if necessary).
    791 		 */
    792 
    793 		if (swapcluster_allocslots(&swc)) {
    794 			simple_unlock(slock);
    795 			dirtyreacts++; /* XXX */
    796 			continue;
    797 		}
    798 
    799 		/*
    800 		 * at this point, we're definitely going reuse this
    801 		 * page.  mark the page busy and delayed-free.
    802 		 * we should remove the page from the page queues
    803 		 * so we don't ever look at it again.
    804 		 * adjust counters and such.
    805 		 */
    806 
    807 		p->flags |= PG_BUSY;
    808 		UVM_PAGE_OWN(p, "scan_queue");
    809 
    810 		p->flags |= PG_PAGEOUT;
    811 		uvmexp.paging++;
    812 		uvm_pagedequeue(p);
    813 
    814 		uvmexp.pgswapout++;
    815 		uvm_unlock_pageq();
    816 
    817 		/*
    818 		 * add the new page to the cluster.
    819 		 */
    820 
    821 		if (swapcluster_add(&swc, p)) {
    822 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    823 			UVM_PAGE_OWN(p, NULL);
    824 			uvm_lock_pageq();
    825 			uvmexp.paging--;
    826 			dirtyreacts++;
    827 			uvm_pageactivate(p);
    828 			simple_unlock(slock);
    829 			continue;
    830 		}
    831 		simple_unlock(slock);
    832 
    833 		swapcluster_flush(&swc, false);
    834 		uvm_lock_pageq();
    835 
    836 		/*
    837 		 * the pageout is in progress.  bump counters and set up
    838 		 * for the next loop.
    839 		 */
    840 
    841 		uvmexp.pdpending++;
    842 
    843 #else /* defined(VMSWAP) */
    844 		uvm_pageactivate(p);
    845 		simple_unlock(slock);
    846 #endif /* defined(VMSWAP) */
    847 	}
    848 
    849 #if defined(VMSWAP)
    850 	uvm_unlock_pageq();
    851 	swapcluster_flush(&swc, true);
    852 	uvm_lock_pageq();
    853 #endif /* defined(VMSWAP) */
    854 }
    855 
    856 /*
    857  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    858  *
    859  * => called with pageq's locked
    860  */
    861 
    862 static void
    863 uvmpd_scan(void)
    864 {
    865 	int swap_shortage, pages_freed;
    866 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    867 
    868 	uvmexp.pdrevs++;
    869 
    870 #ifndef __SWAP_BROKEN
    871 
    872 	/*
    873 	 * swap out some processes if we are below our free target.
    874 	 * we need to unlock the page queues for this.
    875 	 */
    876 
    877 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0 &&
    878 	    uvm.swapout_enabled) {
    879 		uvmexp.pdswout++;
    880 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    881 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    882 		uvm_unlock_pageq();
    883 		uvm_swapout_threads();
    884 		uvm_lock_pageq();
    885 
    886 	}
    887 #endif
    888 
    889 	/*
    890 	 * now we want to work on meeting our targets.   first we work on our
    891 	 * free target by converting inactive pages into free pages.  then
    892 	 * we work on meeting our inactive target by converting active pages
    893 	 * to inactive ones.
    894 	 */
    895 
    896 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    897 
    898 	pages_freed = uvmexp.pdfreed;
    899 	uvmpd_scan_queue();
    900 	pages_freed = uvmexp.pdfreed - pages_freed;
    901 
    902 	/*
    903 	 * detect if we're not going to be able to page anything out
    904 	 * until we free some swap resources from active pages.
    905 	 */
    906 
    907 	swap_shortage = 0;
    908 	if (uvmexp.free < uvmexp.freetarg &&
    909 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    910 	    !uvm_swapisfull() &&
    911 	    pages_freed == 0) {
    912 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    913 	}
    914 
    915 	uvmpdpol_balancequeue(swap_shortage);
    916 }
    917 
    918 /*
    919  * uvm_reclaimable: decide whether to wait for pagedaemon.
    920  *
    921  * => return true if it seems to be worth to do uvm_wait.
    922  *
    923  * XXX should be tunable.
    924  * XXX should consider pools, etc?
    925  */
    926 
    927 bool
    928 uvm_reclaimable(void)
    929 {
    930 	int filepages;
    931 	int active, inactive;
    932 
    933 	/*
    934 	 * if swap is not full, no problem.
    935 	 */
    936 
    937 	if (!uvm_swapisfull()) {
    938 		return true;
    939 	}
    940 
    941 	/*
    942 	 * file-backed pages can be reclaimed even when swap is full.
    943 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    944 	 *
    945 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    946 	 *
    947 	 * XXX should consider about other reclaimable memory.
    948 	 * XXX ie. pools, traditional buffer cache.
    949 	 */
    950 
    951 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    952 	uvm_estimatepageable(&active, &inactive);
    953 	if (filepages >= MIN((active + inactive) >> 4,
    954 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    955 		return true;
    956 	}
    957 
    958 	/*
    959 	 * kill the process, fail allocation, etc..
    960 	 */
    961 
    962 	return false;
    963 }
    964 
    965 void
    966 uvm_estimatepageable(int *active, int *inactive)
    967 {
    968 
    969 	uvmpdpol_estimatepageable(active, inactive);
    970 }
    971