Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.89
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.89 2008/01/02 11:49:19 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.89 2008/01/02 11:49:19 ad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_pdpolicy.h>
     88 
     89 /*
     90  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     91  * in a pass thru the inactive list when swap is full.  the value should be
     92  * "small"... if it's too large we'll cycle the active pages thru the inactive
     93  * queue too quickly to for them to be referenced and avoid being freed.
     94  */
     95 
     96 #define	UVMPD_NUMDIRTYREACTS	16
     97 
     98 #define	UVMPD_NUMTRYLOCKOWNER	16
     99 
    100 /*
    101  * local prototypes
    102  */
    103 
    104 static void	uvmpd_scan(void);
    105 static void	uvmpd_scan_queue(void);
    106 static void	uvmpd_tune(void);
    107 
    108 unsigned int uvm_pagedaemon_waiters;
    109 
    110 /*
    111  * XXX hack to avoid hangs when large processes fork.
    112  */
    113 int uvm_extrapages;
    114 
    115 /*
    116  * uvm_wait: wait (sleep) for the page daemon to free some pages
    117  *
    118  * => should be called with all locks released
    119  * => should _not_ be called by the page daemon (to avoid deadlock)
    120  */
    121 
    122 void
    123 uvm_wait(const char *wmsg)
    124 {
    125 	int timo = 0;
    126 
    127 	mutex_spin_enter(&uvm_fpageqlock);
    128 
    129 	/*
    130 	 * check for page daemon going to sleep (waiting for itself)
    131 	 */
    132 
    133 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    134 		/*
    135 		 * now we have a problem: the pagedaemon wants to go to
    136 		 * sleep until it frees more memory.   but how can it
    137 		 * free more memory if it is asleep?  that is a deadlock.
    138 		 * we have two options:
    139 		 *  [1] panic now
    140 		 *  [2] put a timeout on the sleep, thus causing the
    141 		 *      pagedaemon to only pause (rather than sleep forever)
    142 		 *
    143 		 * note that option [2] will only help us if we get lucky
    144 		 * and some other process on the system breaks the deadlock
    145 		 * by exiting or freeing memory (thus allowing the pagedaemon
    146 		 * to continue).  for now we panic if DEBUG is defined,
    147 		 * otherwise we hope for the best with option [2] (better
    148 		 * yet, this should never happen in the first place!).
    149 		 */
    150 
    151 		printf("pagedaemon: deadlock detected!\n");
    152 		timo = hz >> 3;		/* set timeout */
    153 #if defined(DEBUG)
    154 		/* DEBUG: panic so we can debug it */
    155 		panic("pagedaemon deadlock");
    156 #endif
    157 	}
    158 
    159 	uvm_pagedaemon_waiters++;
    160 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    161 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    162 }
    163 
    164 /*
    165  * uvm_kick_pdaemon: perform checks to determine if we need to
    166  * give the pagedaemon a nudge, and do so if necessary.
    167  *
    168  * => called with uvm_fpageqlock held.
    169  */
    170 
    171 void
    172 uvm_kick_pdaemon(void)
    173 {
    174 
    175 	KASSERT(mutex_owned(&uvm_fpageqlock));
    176 
    177 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    178 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    179 	     uvmpdpol_needsscan_p())) {
    180 		wakeup(&uvm.pagedaemon);
    181 	}
    182 }
    183 
    184 /*
    185  * uvmpd_tune: tune paging parameters
    186  *
    187  * => called when ever memory is added (or removed?) to the system
    188  * => caller must call with page queues locked
    189  */
    190 
    191 static void
    192 uvmpd_tune(void)
    193 {
    194 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    195 
    196 	uvmexp.freemin = uvmexp.npages / 20;
    197 
    198 	/* between 16k and 256k */
    199 	/* XXX:  what are these values good for? */
    200 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    201 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    202 
    203 	/* Make sure there's always a user page free. */
    204 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    205 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    206 
    207 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    208 	if (uvmexp.freetarg <= uvmexp.freemin)
    209 		uvmexp.freetarg = uvmexp.freemin + 1;
    210 
    211 	uvmexp.freetarg += uvm_extrapages;
    212 	uvm_extrapages = 0;
    213 
    214 	uvmexp.wiredmax = uvmexp.npages / 3;
    215 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    216 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    217 }
    218 
    219 /*
    220  * uvm_pageout: the main loop for the pagedaemon
    221  */
    222 
    223 void
    224 uvm_pageout(void *arg)
    225 {
    226 	int bufcnt, npages = 0;
    227 	int extrapages = 0;
    228 	struct pool *pp;
    229 	uint64_t where;
    230 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    231 
    232 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    233 
    234 	/*
    235 	 * ensure correct priority and set paging parameters...
    236 	 */
    237 
    238 	uvm.pagedaemon_lwp = curlwp;
    239 	mutex_enter(&uvm_pageqlock);
    240 	npages = uvmexp.npages;
    241 	uvmpd_tune();
    242 	mutex_exit(&uvm_pageqlock);
    243 
    244 	/*
    245 	 * main loop
    246 	 */
    247 
    248 	for (;;) {
    249 		bool needsscan;
    250 
    251 		mutex_spin_enter(&uvm_fpageqlock);
    252 		if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
    253 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    254 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    255 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    256 			uvmexp.pdwoke++;
    257 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    258 		} else {
    259 			mutex_spin_exit(&uvm_fpageqlock);
    260 		}
    261 
    262 		/*
    263 		 * now lock page queues and recompute inactive count
    264 		 */
    265 
    266 		mutex_enter(&uvm_pageqlock);
    267 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    268 			npages = uvmexp.npages;
    269 			extrapages = uvm_extrapages;
    270 			mutex_spin_enter(&uvm_fpageqlock);
    271 			uvmpd_tune();
    272 			mutex_spin_exit(&uvm_fpageqlock);
    273 		}
    274 
    275 		uvmpdpol_tune();
    276 
    277 		/*
    278 		 * Estimate a hint.  Note that bufmem are returned to
    279 		 * system only when entire pool page is empty.
    280 		 */
    281 		mutex_spin_enter(&uvm_fpageqlock);
    282 		bufcnt = uvmexp.freetarg - uvmexp.free;
    283 		if (bufcnt < 0)
    284 			bufcnt = 0;
    285 
    286 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    287 		    uvmexp.free, uvmexp.freetarg, 0,0);
    288 
    289 		needsscan = uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    290 		    uvmpdpol_needsscan_p();
    291 		mutex_spin_exit(&uvm_fpageqlock);
    292 
    293 		/*
    294 		 * scan if needed
    295 		 */
    296 		if (needsscan)
    297 			uvmpd_scan();
    298 
    299 		/*
    300 		 * if there's any free memory to be had,
    301 		 * wake up any waiters.
    302 		 */
    303 
    304 		mutex_spin_enter(&uvm_fpageqlock);
    305 		if (uvmexp.free > uvmexp.reserve_kernel ||
    306 		    uvmexp.paging == 0) {
    307 			wakeup(&uvmexp.free);
    308 			uvm_pagedaemon_waiters = 0;
    309 		}
    310 		mutex_spin_exit(&uvm_fpageqlock);
    311 
    312 		/*
    313 		 * scan done.  unlock page queues (the only lock we are holding)
    314 		 */
    315 		mutex_exit(&uvm_pageqlock);
    316 
    317 		/*
    318 		 * start draining pool resources now that we're not
    319 		 * holding any locks.
    320 		 */
    321 		pool_drain_start(&pp, &where);
    322 
    323 		/*
    324 		 * kill unused metadata buffers.
    325 		 */
    326 		mutex_enter(&bufcache_lock);
    327 		buf_drain(bufcnt << PAGE_SHIFT);
    328 		mutex_exit(&bufcache_lock);
    329 
    330 		/*
    331 		 * free any cached u-areas we don't need
    332 		 */
    333 		uvm_uarea_drain(true);
    334 
    335 		/*
    336 		 * complete draining the pools.
    337 		 */
    338 		pool_drain_end(pp, where);
    339 	}
    340 	/*NOTREACHED*/
    341 }
    342 
    343 
    344 /*
    345  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    346  */
    347 
    348 void
    349 uvm_aiodone_worker(struct work *wk, void *dummy)
    350 {
    351 	struct buf *bp = (void *)wk;
    352 
    353 	KASSERT(&bp->b_work == wk);
    354 
    355 	/*
    356 	 * process an i/o that's done.
    357 	 */
    358 
    359 	(*bp->b_iodone)(bp);
    360 }
    361 
    362 void
    363 uvm_pageout_start(int npages)
    364 {
    365 
    366 	mutex_spin_enter(&uvm_fpageqlock);
    367 	uvmexp.paging += npages;
    368 	mutex_spin_exit(&uvm_fpageqlock);
    369 }
    370 
    371 void
    372 uvm_pageout_done(int npages)
    373 {
    374 
    375 	mutex_spin_enter(&uvm_fpageqlock);
    376 	KASSERT(uvmexp.paging >= npages);
    377 	uvmexp.paging -= npages;
    378 
    379 	/*
    380 	 * wake up either of pagedaemon or LWPs waiting for it.
    381 	 */
    382 
    383 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    384 		wakeup(&uvm.pagedaemon);
    385 	} else {
    386 		wakeup(&uvmexp.free);
    387 		uvm_pagedaemon_waiters = 0;
    388 	}
    389 	mutex_spin_exit(&uvm_fpageqlock);
    390 }
    391 
    392 /*
    393  * uvmpd_trylockowner: trylock the page's owner.
    394  *
    395  * => called with pageq locked.
    396  * => resolve orphaned O->A loaned page.
    397  * => return the locked mutex on success.  otherwise, return NULL.
    398  */
    399 
    400 kmutex_t *
    401 uvmpd_trylockowner(struct vm_page *pg)
    402 {
    403 	struct uvm_object *uobj = pg->uobject;
    404 	kmutex_t *slock;
    405 
    406 	KASSERT(mutex_owned(&uvm_pageqlock));
    407 
    408 	if (uobj != NULL) {
    409 		slock = &uobj->vmobjlock;
    410 	} else {
    411 		struct vm_anon *anon = pg->uanon;
    412 
    413 		KASSERT(anon != NULL);
    414 		slock = &anon->an_lock;
    415 	}
    416 
    417 	if (!mutex_tryenter(slock)) {
    418 		return NULL;
    419 	}
    420 
    421 	if (uobj == NULL) {
    422 
    423 		/*
    424 		 * set PQ_ANON if it isn't set already.
    425 		 */
    426 
    427 		if ((pg->pqflags & PQ_ANON) == 0) {
    428 			KASSERT(pg->loan_count > 0);
    429 			pg->loan_count--;
    430 			pg->pqflags |= PQ_ANON;
    431 			/* anon now owns it */
    432 		}
    433 	}
    434 
    435 	return slock;
    436 }
    437 
    438 #if defined(VMSWAP)
    439 struct swapcluster {
    440 	int swc_slot;
    441 	int swc_nallocated;
    442 	int swc_nused;
    443 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    444 };
    445 
    446 static void
    447 swapcluster_init(struct swapcluster *swc)
    448 {
    449 
    450 	swc->swc_slot = 0;
    451 	swc->swc_nused = 0;
    452 }
    453 
    454 static int
    455 swapcluster_allocslots(struct swapcluster *swc)
    456 {
    457 	int slot;
    458 	int npages;
    459 
    460 	if (swc->swc_slot != 0) {
    461 		return 0;
    462 	}
    463 
    464 	/* Even with strange MAXPHYS, the shift
    465 	   implicitly rounds down to a page. */
    466 	npages = MAXPHYS >> PAGE_SHIFT;
    467 	slot = uvm_swap_alloc(&npages, true);
    468 	if (slot == 0) {
    469 		return ENOMEM;
    470 	}
    471 	swc->swc_slot = slot;
    472 	swc->swc_nallocated = npages;
    473 	swc->swc_nused = 0;
    474 
    475 	return 0;
    476 }
    477 
    478 static int
    479 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    480 {
    481 	int slot;
    482 	struct uvm_object *uobj;
    483 
    484 	KASSERT(swc->swc_slot != 0);
    485 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    486 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    487 
    488 	slot = swc->swc_slot + swc->swc_nused;
    489 	uobj = pg->uobject;
    490 	if (uobj == NULL) {
    491 		KASSERT(mutex_owned(&pg->uanon->an_lock));
    492 		pg->uanon->an_swslot = slot;
    493 	} else {
    494 		int result;
    495 
    496 		KASSERT(mutex_owned(&uobj->vmobjlock));
    497 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    498 		if (result == -1) {
    499 			return ENOMEM;
    500 		}
    501 	}
    502 	swc->swc_pages[swc->swc_nused] = pg;
    503 	swc->swc_nused++;
    504 
    505 	return 0;
    506 }
    507 
    508 static void
    509 swapcluster_flush(struct swapcluster *swc, bool now)
    510 {
    511 	int slot;
    512 	int nused;
    513 	int nallocated;
    514 	int error;
    515 
    516 	if (swc->swc_slot == 0) {
    517 		return;
    518 	}
    519 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    520 
    521 	slot = swc->swc_slot;
    522 	nused = swc->swc_nused;
    523 	nallocated = swc->swc_nallocated;
    524 
    525 	/*
    526 	 * if this is the final pageout we could have a few
    527 	 * unused swap blocks.  if so, free them now.
    528 	 */
    529 
    530 	if (nused < nallocated) {
    531 		if (!now) {
    532 			return;
    533 		}
    534 		uvm_swap_free(slot + nused, nallocated - nused);
    535 	}
    536 
    537 	/*
    538 	 * now start the pageout.
    539 	 */
    540 
    541 	uvmexp.pdpageouts++;
    542 	uvm_pageout_start(nused);
    543 	error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    544 	KASSERT(error == 0);
    545 
    546 	/*
    547 	 * zero swslot to indicate that we are
    548 	 * no longer building a swap-backed cluster.
    549 	 */
    550 
    551 	swc->swc_slot = 0;
    552 	swc->swc_nused = 0;
    553 }
    554 
    555 static int
    556 swapcluster_nused(struct swapcluster *swc)
    557 {
    558 
    559 	return swc->swc_nused;
    560 }
    561 
    562 /*
    563  * uvmpd_dropswap: free any swap allocated to this page.
    564  *
    565  * => called with owner locked.
    566  * => return true if a page had an associated slot.
    567  */
    568 
    569 static bool
    570 uvmpd_dropswap(struct vm_page *pg)
    571 {
    572 	bool result = false;
    573 	struct vm_anon *anon = pg->uanon;
    574 
    575 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    576 		uvm_swap_free(anon->an_swslot, 1);
    577 		anon->an_swslot = 0;
    578 		pg->flags &= ~PG_CLEAN;
    579 		result = true;
    580 	} else if (pg->pqflags & PQ_AOBJ) {
    581 		int slot = uao_set_swslot(pg->uobject,
    582 		    pg->offset >> PAGE_SHIFT, 0);
    583 		if (slot) {
    584 			uvm_swap_free(slot, 1);
    585 			pg->flags &= ~PG_CLEAN;
    586 			result = true;
    587 		}
    588 	}
    589 
    590 	return result;
    591 }
    592 
    593 /*
    594  * uvmpd_trydropswap: try to free any swap allocated to this page.
    595  *
    596  * => return true if a slot is successfully freed.
    597  */
    598 
    599 bool
    600 uvmpd_trydropswap(struct vm_page *pg)
    601 {
    602 	kmutex_t *slock;
    603 	bool result;
    604 
    605 	if ((pg->flags & PG_BUSY) != 0) {
    606 		return false;
    607 	}
    608 
    609 	/*
    610 	 * lock the page's owner.
    611 	 */
    612 
    613 	slock = uvmpd_trylockowner(pg);
    614 	if (slock == NULL) {
    615 		return false;
    616 	}
    617 
    618 	/*
    619 	 * skip this page if it's busy.
    620 	 */
    621 
    622 	if ((pg->flags & PG_BUSY) != 0) {
    623 		mutex_exit(slock);
    624 		return false;
    625 	}
    626 
    627 	result = uvmpd_dropswap(pg);
    628 
    629 	mutex_exit(slock);
    630 
    631 	return result;
    632 }
    633 
    634 #endif /* defined(VMSWAP) */
    635 
    636 /*
    637  * uvmpd_scan_queue: scan an replace candidate list for pages
    638  * to clean or free.
    639  *
    640  * => called with page queues locked
    641  * => we work on meeting our free target by converting inactive pages
    642  *    into free pages.
    643  * => we handle the building of swap-backed clusters
    644  */
    645 
    646 static void
    647 uvmpd_scan_queue(void)
    648 {
    649 	struct vm_page *p;
    650 	struct uvm_object *uobj;
    651 	struct vm_anon *anon;
    652 #if defined(VMSWAP)
    653 	struct swapcluster swc;
    654 #endif /* defined(VMSWAP) */
    655 	int dirtyreacts;
    656 	int lockownerfail;
    657 	kmutex_t *slock;
    658 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    659 
    660 	/*
    661 	 * swslot is non-zero if we are building a swap cluster.  we want
    662 	 * to stay in the loop while we have a page to scan or we have
    663 	 * a swap-cluster to build.
    664 	 */
    665 
    666 #if defined(VMSWAP)
    667 	swapcluster_init(&swc);
    668 #endif /* defined(VMSWAP) */
    669 
    670 	dirtyreacts = 0;
    671 	lockownerfail = 0;
    672 	uvmpdpol_scaninit();
    673 
    674 	while (/* CONSTCOND */ 1) {
    675 
    676 		/*
    677 		 * see if we've met the free target.
    678 		 */
    679 
    680 		if (uvmexp.free + uvmexp.paging
    681 #if defined(VMSWAP)
    682 		    + swapcluster_nused(&swc)
    683 #endif /* defined(VMSWAP) */
    684 		    >= uvmexp.freetarg << 2 ||
    685 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    686 			UVMHIST_LOG(pdhist,"  met free target: "
    687 				    "exit loop", 0, 0, 0, 0);
    688 			break;
    689 		}
    690 
    691 		p = uvmpdpol_selectvictim();
    692 		if (p == NULL) {
    693 			break;
    694 		}
    695 		KASSERT(uvmpdpol_pageisqueued_p(p));
    696 		KASSERT(p->wire_count == 0);
    697 
    698 		/*
    699 		 * we are below target and have a new page to consider.
    700 		 */
    701 
    702 		anon = p->uanon;
    703 		uobj = p->uobject;
    704 
    705 		/*
    706 		 * first we attempt to lock the object that this page
    707 		 * belongs to.  if our attempt fails we skip on to
    708 		 * the next page (no harm done).  it is important to
    709 		 * "try" locking the object as we are locking in the
    710 		 * wrong order (pageq -> object) and we don't want to
    711 		 * deadlock.
    712 		 *
    713 		 * the only time we expect to see an ownerless page
    714 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    715 		 * anon has loaned a page from a uvm_object and the
    716 		 * uvm_object has dropped the ownership.  in that
    717 		 * case, the anon can "take over" the loaned page
    718 		 * and make it its own.
    719 		 */
    720 
    721 		slock = uvmpd_trylockowner(p);
    722 		if (slock == NULL) {
    723 			/*
    724 			 * yield cpu to make a chance for an LWP holding
    725 			 * the lock run.  otherwise we can busy-loop too long
    726 			 * if the page queue is filled with a lot of pages
    727 			 * from few objects.
    728 			 */
    729 			lockownerfail++;
    730 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    731 				mutex_exit(&uvm_pageqlock);
    732 				/* XXX Better than yielding but inadequate. */
    733 				kpause("livelock", false, 1, NULL);
    734 				mutex_enter(&uvm_pageqlock);
    735 				lockownerfail = 0;
    736 			}
    737 			continue;
    738 		}
    739 		if (p->flags & PG_BUSY) {
    740 			mutex_exit(slock);
    741 			uvmexp.pdbusy++;
    742 			continue;
    743 		}
    744 
    745 		/* does the page belong to an object? */
    746 		if (uobj != NULL) {
    747 			uvmexp.pdobscan++;
    748 		} else {
    749 #if defined(VMSWAP)
    750 			KASSERT(anon != NULL);
    751 			uvmexp.pdanscan++;
    752 #else /* defined(VMSWAP) */
    753 			panic("%s: anon", __func__);
    754 #endif /* defined(VMSWAP) */
    755 		}
    756 
    757 
    758 		/*
    759 		 * we now have the object and the page queues locked.
    760 		 * if the page is not swap-backed, call the object's
    761 		 * pager to flush and free the page.
    762 		 */
    763 
    764 #if defined(READAHEAD_STATS)
    765 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    766 			p->pqflags &= ~PQ_READAHEAD;
    767 			uvm_ra_miss.ev_count++;
    768 		}
    769 #endif /* defined(READAHEAD_STATS) */
    770 
    771 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    772 			KASSERT(uobj != NULL);
    773 			mutex_exit(&uvm_pageqlock);
    774 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    775 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    776 			mutex_enter(&uvm_pageqlock);
    777 			continue;
    778 		}
    779 
    780 		/*
    781 		 * the page is swap-backed.  remove all the permissions
    782 		 * from the page so we can sync the modified info
    783 		 * without any race conditions.  if the page is clean
    784 		 * we can free it now and continue.
    785 		 */
    786 
    787 		pmap_page_protect(p, VM_PROT_NONE);
    788 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    789 			p->flags &= ~(PG_CLEAN);
    790 		}
    791 		if (p->flags & PG_CLEAN) {
    792 			int slot;
    793 			int pageidx;
    794 
    795 			pageidx = p->offset >> PAGE_SHIFT;
    796 			uvm_pagefree(p);
    797 			uvmexp.pdfreed++;
    798 
    799 			/*
    800 			 * for anons, we need to remove the page
    801 			 * from the anon ourselves.  for aobjs,
    802 			 * pagefree did that for us.
    803 			 */
    804 
    805 			if (anon) {
    806 				KASSERT(anon->an_swslot != 0);
    807 				anon->an_page = NULL;
    808 				slot = anon->an_swslot;
    809 			} else {
    810 				slot = uao_find_swslot(uobj, pageidx);
    811 			}
    812 			mutex_exit(slock);
    813 
    814 			if (slot > 0) {
    815 				/* this page is now only in swap. */
    816 				mutex_enter(&uvm_swap_data_lock);
    817 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    818 				uvmexp.swpgonly++;
    819 				mutex_exit(&uvm_swap_data_lock);
    820 			}
    821 			continue;
    822 		}
    823 
    824 #if defined(VMSWAP)
    825 		/*
    826 		 * this page is dirty, skip it if we'll have met our
    827 		 * free target when all the current pageouts complete.
    828 		 */
    829 
    830 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    831 			mutex_exit(slock);
    832 			continue;
    833 		}
    834 
    835 		/*
    836 		 * free any swap space allocated to the page since
    837 		 * we'll have to write it again with its new data.
    838 		 */
    839 
    840 		uvmpd_dropswap(p);
    841 
    842 		/*
    843 		 * if all pages in swap are only in swap,
    844 		 * the swap space is full and we can't page out
    845 		 * any more swap-backed pages.  reactivate this page
    846 		 * so that we eventually cycle all pages through
    847 		 * the inactive queue.
    848 		 */
    849 
    850 		if (uvm_swapisfull()) {
    851 			dirtyreacts++;
    852 			uvm_pageactivate(p);
    853 			mutex_exit(slock);
    854 			continue;
    855 		}
    856 
    857 		/*
    858 		 * start new swap pageout cluster (if necessary).
    859 		 */
    860 
    861 		if (swapcluster_allocslots(&swc)) {
    862 			mutex_exit(slock);
    863 			dirtyreacts++; /* XXX */
    864 			continue;
    865 		}
    866 
    867 		/*
    868 		 * at this point, we're definitely going reuse this
    869 		 * page.  mark the page busy and delayed-free.
    870 		 * we should remove the page from the page queues
    871 		 * so we don't ever look at it again.
    872 		 * adjust counters and such.
    873 		 */
    874 
    875 		p->flags |= PG_BUSY;
    876 		UVM_PAGE_OWN(p, "scan_queue");
    877 
    878 		p->flags |= PG_PAGEOUT;
    879 		uvm_pagedequeue(p);
    880 
    881 		uvmexp.pgswapout++;
    882 		mutex_exit(&uvm_pageqlock);
    883 
    884 		/*
    885 		 * add the new page to the cluster.
    886 		 */
    887 
    888 		if (swapcluster_add(&swc, p)) {
    889 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    890 			UVM_PAGE_OWN(p, NULL);
    891 			mutex_enter(&uvm_pageqlock);
    892 			dirtyreacts++;
    893 			uvm_pageactivate(p);
    894 			mutex_exit(slock);
    895 			continue;
    896 		}
    897 		mutex_exit(slock);
    898 
    899 		swapcluster_flush(&swc, false);
    900 		mutex_enter(&uvm_pageqlock);
    901 
    902 		/*
    903 		 * the pageout is in progress.  bump counters and set up
    904 		 * for the next loop.
    905 		 */
    906 
    907 		uvmexp.pdpending++;
    908 
    909 #else /* defined(VMSWAP) */
    910 		uvm_pageactivate(p);
    911 		mutex_exit(slock);
    912 #endif /* defined(VMSWAP) */
    913 	}
    914 
    915 #if defined(VMSWAP)
    916 	mutex_exit(&uvm_pageqlock);
    917 	swapcluster_flush(&swc, true);
    918 	mutex_enter(&uvm_pageqlock);
    919 #endif /* defined(VMSWAP) */
    920 }
    921 
    922 /*
    923  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    924  *
    925  * => called with pageq's locked
    926  */
    927 
    928 static void
    929 uvmpd_scan(void)
    930 {
    931 	int swap_shortage, pages_freed;
    932 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    933 
    934 	uvmexp.pdrevs++;
    935 
    936 #ifndef __SWAP_BROKEN
    937 
    938 	/*
    939 	 * swap out some processes if we are below our free target.
    940 	 * we need to unlock the page queues for this.
    941 	 */
    942 
    943 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0 &&
    944 	    uvm.swapout_enabled) {
    945 		uvmexp.pdswout++;
    946 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    947 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    948 		mutex_exit(&uvm_pageqlock);
    949 		uvm_swapout_threads();
    950 		mutex_enter(&uvm_pageqlock);
    951 
    952 	}
    953 #endif
    954 
    955 	/*
    956 	 * now we want to work on meeting our targets.   first we work on our
    957 	 * free target by converting inactive pages into free pages.  then
    958 	 * we work on meeting our inactive target by converting active pages
    959 	 * to inactive ones.
    960 	 */
    961 
    962 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    963 
    964 	pages_freed = uvmexp.pdfreed;
    965 	uvmpd_scan_queue();
    966 	pages_freed = uvmexp.pdfreed - pages_freed;
    967 
    968 	/*
    969 	 * detect if we're not going to be able to page anything out
    970 	 * until we free some swap resources from active pages.
    971 	 */
    972 
    973 	swap_shortage = 0;
    974 	if (uvmexp.free < uvmexp.freetarg &&
    975 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    976 	    !uvm_swapisfull() &&
    977 	    pages_freed == 0) {
    978 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    979 	}
    980 
    981 	uvmpdpol_balancequeue(swap_shortage);
    982 }
    983 
    984 /*
    985  * uvm_reclaimable: decide whether to wait for pagedaemon.
    986  *
    987  * => return true if it seems to be worth to do uvm_wait.
    988  *
    989  * XXX should be tunable.
    990  * XXX should consider pools, etc?
    991  */
    992 
    993 bool
    994 uvm_reclaimable(void)
    995 {
    996 	int filepages;
    997 	int active, inactive;
    998 
    999 	/*
   1000 	 * if swap is not full, no problem.
   1001 	 */
   1002 
   1003 	if (!uvm_swapisfull()) {
   1004 		return true;
   1005 	}
   1006 
   1007 	/*
   1008 	 * file-backed pages can be reclaimed even when swap is full.
   1009 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1010 	 *
   1011 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1012 	 *
   1013 	 * XXX should consider about other reclaimable memory.
   1014 	 * XXX ie. pools, traditional buffer cache.
   1015 	 */
   1016 
   1017 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1018 	uvm_estimatepageable(&active, &inactive);
   1019 	if (filepages >= MIN((active + inactive) >> 4,
   1020 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1021 		return true;
   1022 	}
   1023 
   1024 	/*
   1025 	 * kill the process, fail allocation, etc..
   1026 	 */
   1027 
   1028 	return false;
   1029 }
   1030 
   1031 void
   1032 uvm_estimatepageable(int *active, int *inactive)
   1033 {
   1034 
   1035 	uvmpdpol_estimatepageable(active, inactive);
   1036 }
   1037