Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.92
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.92 2008/02/29 20:35:23 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.92 2008/02/29 20:35:23 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_pdpolicy.h>
     88 
     89 /*
     90  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     91  * in a pass thru the inactive list when swap is full.  the value should be
     92  * "small"... if it's too large we'll cycle the active pages thru the inactive
     93  * queue too quickly to for them to be referenced and avoid being freed.
     94  */
     95 
     96 #define	UVMPD_NUMDIRTYREACTS	16
     97 
     98 #define	UVMPD_NUMTRYLOCKOWNER	16
     99 
    100 /*
    101  * local prototypes
    102  */
    103 
    104 static void	uvmpd_scan(void);
    105 static void	uvmpd_scan_queue(void);
    106 static void	uvmpd_tune(void);
    107 
    108 unsigned int uvm_pagedaemon_waiters;
    109 
    110 /*
    111  * XXX hack to avoid hangs when large processes fork.
    112  */
    113 int uvm_extrapages;
    114 
    115 /*
    116  * uvm_wait: wait (sleep) for the page daemon to free some pages
    117  *
    118  * => should be called with all locks released
    119  * => should _not_ be called by the page daemon (to avoid deadlock)
    120  */
    121 
    122 void
    123 uvm_wait(const char *wmsg)
    124 {
    125 	int timo = 0;
    126 
    127 	mutex_spin_enter(&uvm_fpageqlock);
    128 
    129 	/*
    130 	 * check for page daemon going to sleep (waiting for itself)
    131 	 */
    132 
    133 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    134 		/*
    135 		 * now we have a problem: the pagedaemon wants to go to
    136 		 * sleep until it frees more memory.   but how can it
    137 		 * free more memory if it is asleep?  that is a deadlock.
    138 		 * we have two options:
    139 		 *  [1] panic now
    140 		 *  [2] put a timeout on the sleep, thus causing the
    141 		 *      pagedaemon to only pause (rather than sleep forever)
    142 		 *
    143 		 * note that option [2] will only help us if we get lucky
    144 		 * and some other process on the system breaks the deadlock
    145 		 * by exiting or freeing memory (thus allowing the pagedaemon
    146 		 * to continue).  for now we panic if DEBUG is defined,
    147 		 * otherwise we hope for the best with option [2] (better
    148 		 * yet, this should never happen in the first place!).
    149 		 */
    150 
    151 		printf("pagedaemon: deadlock detected!\n");
    152 		timo = hz >> 3;		/* set timeout */
    153 #if defined(DEBUG)
    154 		/* DEBUG: panic so we can debug it */
    155 		panic("pagedaemon deadlock");
    156 #endif
    157 	}
    158 
    159 	uvm_pagedaemon_waiters++;
    160 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    161 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    162 }
    163 
    164 /*
    165  * uvm_kick_pdaemon: perform checks to determine if we need to
    166  * give the pagedaemon a nudge, and do so if necessary.
    167  *
    168  * => called with uvm_fpageqlock held.
    169  */
    170 
    171 void
    172 uvm_kick_pdaemon(void)
    173 {
    174 
    175 	KASSERT(mutex_owned(&uvm_fpageqlock));
    176 
    177 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    178 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    179 	     uvmpdpol_needsscan_p())) {
    180 		wakeup(&uvm.pagedaemon);
    181 	}
    182 }
    183 
    184 /*
    185  * uvmpd_tune: tune paging parameters
    186  *
    187  * => called when ever memory is added (or removed?) to the system
    188  * => caller must call with page queues locked
    189  */
    190 
    191 static void
    192 uvmpd_tune(void)
    193 {
    194 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    195 
    196 	uvmexp.freemin = uvmexp.npages / 20;
    197 
    198 	/* between 16k and 256k */
    199 	/* XXX:  what are these values good for? */
    200 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    201 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    202 
    203 	/* Make sure there's always a user page free. */
    204 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    205 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    206 
    207 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    208 	if (uvmexp.freetarg <= uvmexp.freemin)
    209 		uvmexp.freetarg = uvmexp.freemin + 1;
    210 
    211 	uvmexp.freetarg += uvm_extrapages;
    212 	uvm_extrapages = 0;
    213 
    214 	uvmexp.wiredmax = uvmexp.npages / 3;
    215 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    216 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    217 }
    218 
    219 /*
    220  * uvm_pageout: the main loop for the pagedaemon
    221  */
    222 
    223 void
    224 uvm_pageout(void *arg)
    225 {
    226 	int bufcnt, npages = 0;
    227 	int extrapages = 0;
    228 	struct pool *pp;
    229 	uint64_t where;
    230 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    231 
    232 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    233 
    234 	/*
    235 	 * ensure correct priority and set paging parameters...
    236 	 */
    237 
    238 	uvm.pagedaemon_lwp = curlwp;
    239 	mutex_enter(&uvm_pageqlock);
    240 	npages = uvmexp.npages;
    241 	uvmpd_tune();
    242 	mutex_exit(&uvm_pageqlock);
    243 
    244 	/*
    245 	 * main loop
    246 	 */
    247 
    248 	for (;;) {
    249 		bool needsscan;
    250 
    251 		mutex_spin_enter(&uvm_fpageqlock);
    252 		if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
    253 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    254 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    255 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    256 			uvmexp.pdwoke++;
    257 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    258 		} else {
    259 			mutex_spin_exit(&uvm_fpageqlock);
    260 		}
    261 
    262 		/*
    263 		 * now lock page queues and recompute inactive count
    264 		 */
    265 
    266 		mutex_enter(&uvm_pageqlock);
    267 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    268 			npages = uvmexp.npages;
    269 			extrapages = uvm_extrapages;
    270 			mutex_spin_enter(&uvm_fpageqlock);
    271 			uvmpd_tune();
    272 			mutex_spin_exit(&uvm_fpageqlock);
    273 		}
    274 
    275 		uvmpdpol_tune();
    276 
    277 		/*
    278 		 * Estimate a hint.  Note that bufmem are returned to
    279 		 * system only when entire pool page is empty.
    280 		 */
    281 		mutex_spin_enter(&uvm_fpageqlock);
    282 		bufcnt = uvmexp.freetarg - uvmexp.free;
    283 		if (bufcnt < 0)
    284 			bufcnt = 0;
    285 
    286 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    287 		    uvmexp.free, uvmexp.freetarg, 0,0);
    288 
    289 		needsscan = uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    290 		    uvmpdpol_needsscan_p();
    291 		mutex_spin_exit(&uvm_fpageqlock);
    292 
    293 		/*
    294 		 * scan if needed
    295 		 */
    296 		if (needsscan)
    297 			uvmpd_scan();
    298 
    299 		/*
    300 		 * if there's any free memory to be had,
    301 		 * wake up any waiters.
    302 		 */
    303 
    304 		mutex_spin_enter(&uvm_fpageqlock);
    305 		if (uvmexp.free > uvmexp.reserve_kernel ||
    306 		    uvmexp.paging == 0) {
    307 			wakeup(&uvmexp.free);
    308 			uvm_pagedaemon_waiters = 0;
    309 		}
    310 		mutex_spin_exit(&uvm_fpageqlock);
    311 
    312 		/*
    313 		 * scan done.  unlock page queues (the only lock we are holding)
    314 		 */
    315 		mutex_exit(&uvm_pageqlock);
    316 
    317 		/*
    318 		 * start draining pool resources now that we're not
    319 		 * holding any locks.
    320 		 */
    321 		pool_drain_start(&pp, &where);
    322 
    323 		/*
    324 		 * kill unused metadata buffers.
    325 		 */
    326 		mutex_enter(&bufcache_lock);
    327 		buf_drain(bufcnt << PAGE_SHIFT);
    328 		mutex_exit(&bufcache_lock);
    329 
    330 		/*
    331 		 * complete draining the pools.
    332 		 */
    333 		pool_drain_end(pp, where);
    334 	}
    335 	/*NOTREACHED*/
    336 }
    337 
    338 
    339 /*
    340  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    341  */
    342 
    343 void
    344 uvm_aiodone_worker(struct work *wk, void *dummy)
    345 {
    346 	struct buf *bp = (void *)wk;
    347 
    348 	KASSERT(&bp->b_work == wk);
    349 
    350 	/*
    351 	 * process an i/o that's done.
    352 	 */
    353 
    354 	(*bp->b_iodone)(bp);
    355 }
    356 
    357 void
    358 uvm_pageout_start(int npages)
    359 {
    360 
    361 	mutex_spin_enter(&uvm_fpageqlock);
    362 	uvmexp.paging += npages;
    363 	mutex_spin_exit(&uvm_fpageqlock);
    364 }
    365 
    366 void
    367 uvm_pageout_done(int npages)
    368 {
    369 
    370 	mutex_spin_enter(&uvm_fpageqlock);
    371 	KASSERT(uvmexp.paging >= npages);
    372 	uvmexp.paging -= npages;
    373 
    374 	/*
    375 	 * wake up either of pagedaemon or LWPs waiting for it.
    376 	 */
    377 
    378 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    379 		wakeup(&uvm.pagedaemon);
    380 	} else {
    381 		wakeup(&uvmexp.free);
    382 		uvm_pagedaemon_waiters = 0;
    383 	}
    384 	mutex_spin_exit(&uvm_fpageqlock);
    385 }
    386 
    387 /*
    388  * uvmpd_trylockowner: trylock the page's owner.
    389  *
    390  * => called with pageq locked.
    391  * => resolve orphaned O->A loaned page.
    392  * => return the locked mutex on success.  otherwise, return NULL.
    393  */
    394 
    395 kmutex_t *
    396 uvmpd_trylockowner(struct vm_page *pg)
    397 {
    398 	struct uvm_object *uobj = pg->uobject;
    399 	kmutex_t *slock;
    400 
    401 	KASSERT(mutex_owned(&uvm_pageqlock));
    402 
    403 	if (uobj != NULL) {
    404 		slock = &uobj->vmobjlock;
    405 	} else {
    406 		struct vm_anon *anon = pg->uanon;
    407 
    408 		KASSERT(anon != NULL);
    409 		slock = &anon->an_lock;
    410 	}
    411 
    412 	if (!mutex_tryenter(slock)) {
    413 		return NULL;
    414 	}
    415 
    416 	if (uobj == NULL) {
    417 
    418 		/*
    419 		 * set PQ_ANON if it isn't set already.
    420 		 */
    421 
    422 		if ((pg->pqflags & PQ_ANON) == 0) {
    423 			KASSERT(pg->loan_count > 0);
    424 			pg->loan_count--;
    425 			pg->pqflags |= PQ_ANON;
    426 			/* anon now owns it */
    427 		}
    428 	}
    429 
    430 	return slock;
    431 }
    432 
    433 #if defined(VMSWAP)
    434 struct swapcluster {
    435 	int swc_slot;
    436 	int swc_nallocated;
    437 	int swc_nused;
    438 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    439 };
    440 
    441 static void
    442 swapcluster_init(struct swapcluster *swc)
    443 {
    444 
    445 	swc->swc_slot = 0;
    446 	swc->swc_nused = 0;
    447 }
    448 
    449 static int
    450 swapcluster_allocslots(struct swapcluster *swc)
    451 {
    452 	int slot;
    453 	int npages;
    454 
    455 	if (swc->swc_slot != 0) {
    456 		return 0;
    457 	}
    458 
    459 	/* Even with strange MAXPHYS, the shift
    460 	   implicitly rounds down to a page. */
    461 	npages = MAXPHYS >> PAGE_SHIFT;
    462 	slot = uvm_swap_alloc(&npages, true);
    463 	if (slot == 0) {
    464 		return ENOMEM;
    465 	}
    466 	swc->swc_slot = slot;
    467 	swc->swc_nallocated = npages;
    468 	swc->swc_nused = 0;
    469 
    470 	return 0;
    471 }
    472 
    473 static int
    474 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    475 {
    476 	int slot;
    477 	struct uvm_object *uobj;
    478 
    479 	KASSERT(swc->swc_slot != 0);
    480 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    481 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    482 
    483 	slot = swc->swc_slot + swc->swc_nused;
    484 	uobj = pg->uobject;
    485 	if (uobj == NULL) {
    486 		KASSERT(mutex_owned(&pg->uanon->an_lock));
    487 		pg->uanon->an_swslot = slot;
    488 	} else {
    489 		int result;
    490 
    491 		KASSERT(mutex_owned(&uobj->vmobjlock));
    492 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    493 		if (result == -1) {
    494 			return ENOMEM;
    495 		}
    496 	}
    497 	swc->swc_pages[swc->swc_nused] = pg;
    498 	swc->swc_nused++;
    499 
    500 	return 0;
    501 }
    502 
    503 static void
    504 swapcluster_flush(struct swapcluster *swc, bool now)
    505 {
    506 	int slot;
    507 	int nused;
    508 	int nallocated;
    509 	int error;
    510 
    511 	if (swc->swc_slot == 0) {
    512 		return;
    513 	}
    514 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    515 
    516 	slot = swc->swc_slot;
    517 	nused = swc->swc_nused;
    518 	nallocated = swc->swc_nallocated;
    519 
    520 	/*
    521 	 * if this is the final pageout we could have a few
    522 	 * unused swap blocks.  if so, free them now.
    523 	 */
    524 
    525 	if (nused < nallocated) {
    526 		if (!now) {
    527 			return;
    528 		}
    529 		uvm_swap_free(slot + nused, nallocated - nused);
    530 	}
    531 
    532 	/*
    533 	 * now start the pageout.
    534 	 */
    535 
    536 	if (nused > 0) {
    537 		uvmexp.pdpageouts++;
    538 		uvm_pageout_start(nused);
    539 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    540 		KASSERT(error == 0 || error == ENOMEM);
    541 	}
    542 
    543 	/*
    544 	 * zero swslot to indicate that we are
    545 	 * no longer building a swap-backed cluster.
    546 	 */
    547 
    548 	swc->swc_slot = 0;
    549 	swc->swc_nused = 0;
    550 }
    551 
    552 static int
    553 swapcluster_nused(struct swapcluster *swc)
    554 {
    555 
    556 	return swc->swc_nused;
    557 }
    558 
    559 /*
    560  * uvmpd_dropswap: free any swap allocated to this page.
    561  *
    562  * => called with owner locked.
    563  * => return true if a page had an associated slot.
    564  */
    565 
    566 static bool
    567 uvmpd_dropswap(struct vm_page *pg)
    568 {
    569 	bool result = false;
    570 	struct vm_anon *anon = pg->uanon;
    571 
    572 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    573 		uvm_swap_free(anon->an_swslot, 1);
    574 		anon->an_swslot = 0;
    575 		pg->flags &= ~PG_CLEAN;
    576 		result = true;
    577 	} else if (pg->pqflags & PQ_AOBJ) {
    578 		int slot = uao_set_swslot(pg->uobject,
    579 		    pg->offset >> PAGE_SHIFT, 0);
    580 		if (slot) {
    581 			uvm_swap_free(slot, 1);
    582 			pg->flags &= ~PG_CLEAN;
    583 			result = true;
    584 		}
    585 	}
    586 
    587 	return result;
    588 }
    589 
    590 /*
    591  * uvmpd_trydropswap: try to free any swap allocated to this page.
    592  *
    593  * => return true if a slot is successfully freed.
    594  */
    595 
    596 bool
    597 uvmpd_trydropswap(struct vm_page *pg)
    598 {
    599 	kmutex_t *slock;
    600 	bool result;
    601 
    602 	if ((pg->flags & PG_BUSY) != 0) {
    603 		return false;
    604 	}
    605 
    606 	/*
    607 	 * lock the page's owner.
    608 	 */
    609 
    610 	slock = uvmpd_trylockowner(pg);
    611 	if (slock == NULL) {
    612 		return false;
    613 	}
    614 
    615 	/*
    616 	 * skip this page if it's busy.
    617 	 */
    618 
    619 	if ((pg->flags & PG_BUSY) != 0) {
    620 		mutex_exit(slock);
    621 		return false;
    622 	}
    623 
    624 	result = uvmpd_dropswap(pg);
    625 
    626 	mutex_exit(slock);
    627 
    628 	return result;
    629 }
    630 
    631 #endif /* defined(VMSWAP) */
    632 
    633 /*
    634  * uvmpd_scan_queue: scan an replace candidate list for pages
    635  * to clean or free.
    636  *
    637  * => called with page queues locked
    638  * => we work on meeting our free target by converting inactive pages
    639  *    into free pages.
    640  * => we handle the building of swap-backed clusters
    641  */
    642 
    643 static void
    644 uvmpd_scan_queue(void)
    645 {
    646 	struct vm_page *p;
    647 	struct uvm_object *uobj;
    648 	struct vm_anon *anon;
    649 #if defined(VMSWAP)
    650 	struct swapcluster swc;
    651 #endif /* defined(VMSWAP) */
    652 	int dirtyreacts;
    653 	int lockownerfail;
    654 	kmutex_t *slock;
    655 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    656 
    657 	/*
    658 	 * swslot is non-zero if we are building a swap cluster.  we want
    659 	 * to stay in the loop while we have a page to scan or we have
    660 	 * a swap-cluster to build.
    661 	 */
    662 
    663 #if defined(VMSWAP)
    664 	swapcluster_init(&swc);
    665 #endif /* defined(VMSWAP) */
    666 
    667 	dirtyreacts = 0;
    668 	lockownerfail = 0;
    669 	uvmpdpol_scaninit();
    670 
    671 	while (/* CONSTCOND */ 1) {
    672 
    673 		/*
    674 		 * see if we've met the free target.
    675 		 */
    676 
    677 		if (uvmexp.free + uvmexp.paging
    678 #if defined(VMSWAP)
    679 		    + swapcluster_nused(&swc)
    680 #endif /* defined(VMSWAP) */
    681 		    >= uvmexp.freetarg << 2 ||
    682 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    683 			UVMHIST_LOG(pdhist,"  met free target: "
    684 				    "exit loop", 0, 0, 0, 0);
    685 			break;
    686 		}
    687 
    688 		p = uvmpdpol_selectvictim();
    689 		if (p == NULL) {
    690 			break;
    691 		}
    692 		KASSERT(uvmpdpol_pageisqueued_p(p));
    693 		KASSERT(p->wire_count == 0);
    694 
    695 		/*
    696 		 * we are below target and have a new page to consider.
    697 		 */
    698 
    699 		anon = p->uanon;
    700 		uobj = p->uobject;
    701 
    702 		/*
    703 		 * first we attempt to lock the object that this page
    704 		 * belongs to.  if our attempt fails we skip on to
    705 		 * the next page (no harm done).  it is important to
    706 		 * "try" locking the object as we are locking in the
    707 		 * wrong order (pageq -> object) and we don't want to
    708 		 * deadlock.
    709 		 *
    710 		 * the only time we expect to see an ownerless page
    711 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    712 		 * anon has loaned a page from a uvm_object and the
    713 		 * uvm_object has dropped the ownership.  in that
    714 		 * case, the anon can "take over" the loaned page
    715 		 * and make it its own.
    716 		 */
    717 
    718 		slock = uvmpd_trylockowner(p);
    719 		if (slock == NULL) {
    720 			/*
    721 			 * yield cpu to make a chance for an LWP holding
    722 			 * the lock run.  otherwise we can busy-loop too long
    723 			 * if the page queue is filled with a lot of pages
    724 			 * from few objects.
    725 			 */
    726 			lockownerfail++;
    727 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    728 				mutex_exit(&uvm_pageqlock);
    729 				/* XXX Better than yielding but inadequate. */
    730 				kpause("livelock", false, 1, NULL);
    731 				mutex_enter(&uvm_pageqlock);
    732 				lockownerfail = 0;
    733 			}
    734 			continue;
    735 		}
    736 		if (p->flags & PG_BUSY) {
    737 			mutex_exit(slock);
    738 			uvmexp.pdbusy++;
    739 			continue;
    740 		}
    741 
    742 		/* does the page belong to an object? */
    743 		if (uobj != NULL) {
    744 			uvmexp.pdobscan++;
    745 		} else {
    746 #if defined(VMSWAP)
    747 			KASSERT(anon != NULL);
    748 			uvmexp.pdanscan++;
    749 #else /* defined(VMSWAP) */
    750 			panic("%s: anon", __func__);
    751 #endif /* defined(VMSWAP) */
    752 		}
    753 
    754 
    755 		/*
    756 		 * we now have the object and the page queues locked.
    757 		 * if the page is not swap-backed, call the object's
    758 		 * pager to flush and free the page.
    759 		 */
    760 
    761 #if defined(READAHEAD_STATS)
    762 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    763 			p->pqflags &= ~PQ_READAHEAD;
    764 			uvm_ra_miss.ev_count++;
    765 		}
    766 #endif /* defined(READAHEAD_STATS) */
    767 
    768 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    769 			KASSERT(uobj != NULL);
    770 			mutex_exit(&uvm_pageqlock);
    771 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    772 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    773 			mutex_enter(&uvm_pageqlock);
    774 			continue;
    775 		}
    776 
    777 		/*
    778 		 * the page is swap-backed.  remove all the permissions
    779 		 * from the page so we can sync the modified info
    780 		 * without any race conditions.  if the page is clean
    781 		 * we can free it now and continue.
    782 		 */
    783 
    784 		pmap_page_protect(p, VM_PROT_NONE);
    785 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    786 			p->flags &= ~(PG_CLEAN);
    787 		}
    788 		if (p->flags & PG_CLEAN) {
    789 			int slot;
    790 			int pageidx;
    791 
    792 			pageidx = p->offset >> PAGE_SHIFT;
    793 			uvm_pagefree(p);
    794 			uvmexp.pdfreed++;
    795 
    796 			/*
    797 			 * for anons, we need to remove the page
    798 			 * from the anon ourselves.  for aobjs,
    799 			 * pagefree did that for us.
    800 			 */
    801 
    802 			if (anon) {
    803 				KASSERT(anon->an_swslot != 0);
    804 				anon->an_page = NULL;
    805 				slot = anon->an_swslot;
    806 			} else {
    807 				slot = uao_find_swslot(uobj, pageidx);
    808 			}
    809 			mutex_exit(slock);
    810 
    811 			if (slot > 0) {
    812 				/* this page is now only in swap. */
    813 				mutex_enter(&uvm_swap_data_lock);
    814 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    815 				uvmexp.swpgonly++;
    816 				mutex_exit(&uvm_swap_data_lock);
    817 			}
    818 			continue;
    819 		}
    820 
    821 #if defined(VMSWAP)
    822 		/*
    823 		 * this page is dirty, skip it if we'll have met our
    824 		 * free target when all the current pageouts complete.
    825 		 */
    826 
    827 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    828 			mutex_exit(slock);
    829 			continue;
    830 		}
    831 
    832 		/*
    833 		 * free any swap space allocated to the page since
    834 		 * we'll have to write it again with its new data.
    835 		 */
    836 
    837 		uvmpd_dropswap(p);
    838 
    839 		/*
    840 		 * if all pages in swap are only in swap,
    841 		 * the swap space is full and we can't page out
    842 		 * any more swap-backed pages.  reactivate this page
    843 		 * so that we eventually cycle all pages through
    844 		 * the inactive queue.
    845 		 */
    846 
    847 		if (uvm_swapisfull()) {
    848 			dirtyreacts++;
    849 			uvm_pageactivate(p);
    850 			mutex_exit(slock);
    851 			continue;
    852 		}
    853 
    854 		/*
    855 		 * start new swap pageout cluster (if necessary).
    856 		 */
    857 
    858 		if (swapcluster_allocslots(&swc)) {
    859 			mutex_exit(slock);
    860 			dirtyreacts++; /* XXX */
    861 			continue;
    862 		}
    863 
    864 		/*
    865 		 * at this point, we're definitely going reuse this
    866 		 * page.  mark the page busy and delayed-free.
    867 		 * we should remove the page from the page queues
    868 		 * so we don't ever look at it again.
    869 		 * adjust counters and such.
    870 		 */
    871 
    872 		p->flags |= PG_BUSY;
    873 		UVM_PAGE_OWN(p, "scan_queue");
    874 
    875 		p->flags |= PG_PAGEOUT;
    876 		uvm_pagedequeue(p);
    877 
    878 		uvmexp.pgswapout++;
    879 		mutex_exit(&uvm_pageqlock);
    880 
    881 		/*
    882 		 * add the new page to the cluster.
    883 		 */
    884 
    885 		if (swapcluster_add(&swc, p)) {
    886 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    887 			UVM_PAGE_OWN(p, NULL);
    888 			mutex_enter(&uvm_pageqlock);
    889 			dirtyreacts++;
    890 			uvm_pageactivate(p);
    891 			mutex_exit(slock);
    892 			continue;
    893 		}
    894 		mutex_exit(slock);
    895 
    896 		swapcluster_flush(&swc, false);
    897 		mutex_enter(&uvm_pageqlock);
    898 
    899 		/*
    900 		 * the pageout is in progress.  bump counters and set up
    901 		 * for the next loop.
    902 		 */
    903 
    904 		uvmexp.pdpending++;
    905 
    906 #else /* defined(VMSWAP) */
    907 		uvm_pageactivate(p);
    908 		mutex_exit(slock);
    909 #endif /* defined(VMSWAP) */
    910 	}
    911 
    912 #if defined(VMSWAP)
    913 	mutex_exit(&uvm_pageqlock);
    914 	swapcluster_flush(&swc, true);
    915 	mutex_enter(&uvm_pageqlock);
    916 #endif /* defined(VMSWAP) */
    917 }
    918 
    919 /*
    920  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    921  *
    922  * => called with pageq's locked
    923  */
    924 
    925 static void
    926 uvmpd_scan(void)
    927 {
    928 	int swap_shortage, pages_freed;
    929 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    930 
    931 	uvmexp.pdrevs++;
    932 
    933 #ifndef __SWAP_BROKEN
    934 
    935 	/*
    936 	 * swap out some processes if we are below our free target.
    937 	 * we need to unlock the page queues for this.
    938 	 */
    939 
    940 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0 &&
    941 	    uvm.swapout_enabled) {
    942 		uvmexp.pdswout++;
    943 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    944 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    945 		mutex_exit(&uvm_pageqlock);
    946 		uvm_swapout_threads();
    947 		mutex_enter(&uvm_pageqlock);
    948 
    949 	}
    950 #endif
    951 
    952 	/*
    953 	 * now we want to work on meeting our targets.   first we work on our
    954 	 * free target by converting inactive pages into free pages.  then
    955 	 * we work on meeting our inactive target by converting active pages
    956 	 * to inactive ones.
    957 	 */
    958 
    959 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    960 
    961 	pages_freed = uvmexp.pdfreed;
    962 	uvmpd_scan_queue();
    963 	pages_freed = uvmexp.pdfreed - pages_freed;
    964 
    965 	/*
    966 	 * detect if we're not going to be able to page anything out
    967 	 * until we free some swap resources from active pages.
    968 	 */
    969 
    970 	swap_shortage = 0;
    971 	if (uvmexp.free < uvmexp.freetarg &&
    972 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    973 	    !uvm_swapisfull() &&
    974 	    pages_freed == 0) {
    975 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    976 	}
    977 
    978 	uvmpdpol_balancequeue(swap_shortage);
    979 }
    980 
    981 /*
    982  * uvm_reclaimable: decide whether to wait for pagedaemon.
    983  *
    984  * => return true if it seems to be worth to do uvm_wait.
    985  *
    986  * XXX should be tunable.
    987  * XXX should consider pools, etc?
    988  */
    989 
    990 bool
    991 uvm_reclaimable(void)
    992 {
    993 	int filepages;
    994 	int active, inactive;
    995 
    996 	/*
    997 	 * if swap is not full, no problem.
    998 	 */
    999 
   1000 	if (!uvm_swapisfull()) {
   1001 		return true;
   1002 	}
   1003 
   1004 	/*
   1005 	 * file-backed pages can be reclaimed even when swap is full.
   1006 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1007 	 *
   1008 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1009 	 *
   1010 	 * XXX should consider about other reclaimable memory.
   1011 	 * XXX ie. pools, traditional buffer cache.
   1012 	 */
   1013 
   1014 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1015 	uvm_estimatepageable(&active, &inactive);
   1016 	if (filepages >= MIN((active + inactive) >> 4,
   1017 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1018 		return true;
   1019 	}
   1020 
   1021 	/*
   1022 	 * kill the process, fail allocation, etc..
   1023 	 */
   1024 
   1025 	return false;
   1026 }
   1027 
   1028 void
   1029 uvm_estimatepageable(int *active, int *inactive)
   1030 {
   1031 
   1032 	uvmpdpol_estimatepageable(active, inactive);
   1033 }
   1034