Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.92.10.2
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.92.10.2 2008/12/13 01:15:43 haad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.92.10.2 2008/12/13 01:15:43 haad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 #include <sys/module.h>
     86 #include <sys/atomic.h>
     87 
     88 #include <uvm/uvm.h>
     89 #include <uvm/uvm_pdpolicy.h>
     90 
     91 /*
     92  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     93  * in a pass thru the inactive list when swap is full.  the value should be
     94  * "small"... if it's too large we'll cycle the active pages thru the inactive
     95  * queue too quickly to for them to be referenced and avoid being freed.
     96  */
     97 
     98 #define	UVMPD_NUMDIRTYREACTS	16
     99 
    100 #define	UVMPD_NUMTRYLOCKOWNER	16
    101 
    102 /*
    103  * local prototypes
    104  */
    105 
    106 static void	uvmpd_scan(void);
    107 static void	uvmpd_scan_queue(void);
    108 static void	uvmpd_tune(void);
    109 
    110 unsigned int uvm_pagedaemon_waiters;
    111 
    112 /*
    113  * XXX hack to avoid hangs when large processes fork.
    114  */
    115 u_int uvm_extrapages;
    116 
    117 /*
    118  * uvm_wait: wait (sleep) for the page daemon to free some pages
    119  *
    120  * => should be called with all locks released
    121  * => should _not_ be called by the page daemon (to avoid deadlock)
    122  */
    123 
    124 void
    125 uvm_wait(const char *wmsg)
    126 {
    127 	int timo = 0;
    128 
    129 	mutex_spin_enter(&uvm_fpageqlock);
    130 
    131 	/*
    132 	 * check for page daemon going to sleep (waiting for itself)
    133 	 */
    134 
    135 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    136 		/*
    137 		 * now we have a problem: the pagedaemon wants to go to
    138 		 * sleep until it frees more memory.   but how can it
    139 		 * free more memory if it is asleep?  that is a deadlock.
    140 		 * we have two options:
    141 		 *  [1] panic now
    142 		 *  [2] put a timeout on the sleep, thus causing the
    143 		 *      pagedaemon to only pause (rather than sleep forever)
    144 		 *
    145 		 * note that option [2] will only help us if we get lucky
    146 		 * and some other process on the system breaks the deadlock
    147 		 * by exiting or freeing memory (thus allowing the pagedaemon
    148 		 * to continue).  for now we panic if DEBUG is defined,
    149 		 * otherwise we hope for the best with option [2] (better
    150 		 * yet, this should never happen in the first place!).
    151 		 */
    152 
    153 		printf("pagedaemon: deadlock detected!\n");
    154 		timo = hz >> 3;		/* set timeout */
    155 #if defined(DEBUG)
    156 		/* DEBUG: panic so we can debug it */
    157 		panic("pagedaemon deadlock");
    158 #endif
    159 	}
    160 
    161 	uvm_pagedaemon_waiters++;
    162 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    163 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    164 }
    165 
    166 /*
    167  * uvm_kick_pdaemon: perform checks to determine if we need to
    168  * give the pagedaemon a nudge, and do so if necessary.
    169  *
    170  * => called with uvm_fpageqlock held.
    171  */
    172 
    173 void
    174 uvm_kick_pdaemon(void)
    175 {
    176 
    177 	KASSERT(mutex_owned(&uvm_fpageqlock));
    178 
    179 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    180 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    181 	     uvmpdpol_needsscan_p())) {
    182 		wakeup(&uvm.pagedaemon);
    183 	}
    184 }
    185 
    186 /*
    187  * uvmpd_tune: tune paging parameters
    188  *
    189  * => called when ever memory is added (or removed?) to the system
    190  * => caller must call with page queues locked
    191  */
    192 
    193 static void
    194 uvmpd_tune(void)
    195 {
    196 	int val;
    197 
    198 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    199 
    200 	/*
    201 	 * try to keep 0.5% of available RAM free, but limit to between
    202 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    203 	 */
    204 	val = uvmexp.npages / 200;
    205 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    206 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    207 	val *= ncpu;
    208 
    209 	/* Make sure there's always a user page free. */
    210 	if (val < uvmexp.reserve_kernel + 1)
    211 		val = uvmexp.reserve_kernel + 1;
    212 	uvmexp.freemin = val;
    213 
    214 	/* Calculate free target. */
    215 	val = (uvmexp.freemin * 4) / 3;
    216 	if (val <= uvmexp.freemin)
    217 		val = uvmexp.freemin + 1;
    218 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    219 
    220 	uvmexp.wiredmax = uvmexp.npages / 3;
    221 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    222 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    223 }
    224 
    225 /*
    226  * uvm_pageout: the main loop for the pagedaemon
    227  */
    228 
    229 void
    230 uvm_pageout(void *arg)
    231 {
    232 	int bufcnt, npages = 0;
    233 	int extrapages = 0;
    234 	struct pool *pp;
    235 	uint64_t where;
    236 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    237 
    238 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    239 
    240 	/*
    241 	 * ensure correct priority and set paging parameters...
    242 	 */
    243 
    244 	uvm.pagedaemon_lwp = curlwp;
    245 	mutex_enter(&uvm_pageqlock);
    246 	npages = uvmexp.npages;
    247 	uvmpd_tune();
    248 	mutex_exit(&uvm_pageqlock);
    249 
    250 	/*
    251 	 * main loop
    252 	 */
    253 
    254 	for (;;) {
    255 		bool needsscan, needsfree;
    256 
    257 		mutex_spin_enter(&uvm_fpageqlock);
    258 		if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
    259 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    260 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    261 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    262 			uvmexp.pdwoke++;
    263 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    264 		} else {
    265 			mutex_spin_exit(&uvm_fpageqlock);
    266 		}
    267 
    268 		/*
    269 		 * now lock page queues and recompute inactive count
    270 		 */
    271 
    272 		mutex_enter(&uvm_pageqlock);
    273 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    274 			npages = uvmexp.npages;
    275 			extrapages = uvm_extrapages;
    276 			mutex_spin_enter(&uvm_fpageqlock);
    277 			uvmpd_tune();
    278 			mutex_spin_exit(&uvm_fpageqlock);
    279 		}
    280 
    281 		uvmpdpol_tune();
    282 
    283 		/*
    284 		 * Estimate a hint.  Note that bufmem are returned to
    285 		 * system only when entire pool page is empty.
    286 		 */
    287 		mutex_spin_enter(&uvm_fpageqlock);
    288 		bufcnt = uvmexp.freetarg - uvmexp.free;
    289 		if (bufcnt < 0)
    290 			bufcnt = 0;
    291 
    292 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    293 		    uvmexp.free, uvmexp.freetarg, 0,0);
    294 
    295 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    296 		needsscan = needsfree || uvmpdpol_needsscan_p();
    297 		mutex_spin_exit(&uvm_fpageqlock);
    298 
    299 		/*
    300 		 * scan if needed
    301 		 */
    302 		if (needsscan)
    303 			uvmpd_scan();
    304 
    305 		/*
    306 		 * if there's any free memory to be had,
    307 		 * wake up any waiters.
    308 		 */
    309 
    310 		mutex_spin_enter(&uvm_fpageqlock);
    311 		if (uvmexp.free > uvmexp.reserve_kernel ||
    312 		    uvmexp.paging == 0) {
    313 			wakeup(&uvmexp.free);
    314 			uvm_pagedaemon_waiters = 0;
    315 		}
    316 		mutex_spin_exit(&uvm_fpageqlock);
    317 
    318 		/*
    319 		 * scan done.  unlock page queues (the only lock we are holding)
    320 		 */
    321 		mutex_exit(&uvm_pageqlock);
    322 
    323 		/*
    324 		 * if we don't need free memory, we're done.
    325 		 */
    326 
    327 		if (!needsfree)
    328 			continue;
    329 
    330 		/*
    331 		 * start draining pool resources now that we're not
    332 		 * holding any locks.
    333 		 */
    334 		pool_drain_start(&pp, &where);
    335 
    336 		/*
    337 		 * kill unused metadata buffers.
    338 		 */
    339 		mutex_enter(&bufcache_lock);
    340 		buf_drain(bufcnt << PAGE_SHIFT);
    341 		mutex_exit(&bufcache_lock);
    342 
    343 		/*
    344 		 * complete draining the pools.
    345 		 */
    346 		pool_drain_end(pp, where);
    347 	}
    348 	/*NOTREACHED*/
    349 }
    350 
    351 
    352 /*
    353  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    354  */
    355 
    356 void
    357 uvm_aiodone_worker(struct work *wk, void *dummy)
    358 {
    359 	struct buf *bp = (void *)wk;
    360 
    361 	KASSERT(&bp->b_work == wk);
    362 
    363 	/*
    364 	 * process an i/o that's done.
    365 	 */
    366 
    367 	(*bp->b_iodone)(bp);
    368 }
    369 
    370 void
    371 uvm_pageout_start(int npages)
    372 {
    373 
    374 	mutex_spin_enter(&uvm_fpageqlock);
    375 	uvmexp.paging += npages;
    376 	mutex_spin_exit(&uvm_fpageqlock);
    377 }
    378 
    379 void
    380 uvm_pageout_done(int npages)
    381 {
    382 
    383 	mutex_spin_enter(&uvm_fpageqlock);
    384 	KASSERT(uvmexp.paging >= npages);
    385 	uvmexp.paging -= npages;
    386 
    387 	/*
    388 	 * wake up either of pagedaemon or LWPs waiting for it.
    389 	 */
    390 
    391 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    392 		wakeup(&uvm.pagedaemon);
    393 	} else {
    394 		wakeup(&uvmexp.free);
    395 		uvm_pagedaemon_waiters = 0;
    396 	}
    397 	mutex_spin_exit(&uvm_fpageqlock);
    398 }
    399 
    400 /*
    401  * uvmpd_trylockowner: trylock the page's owner.
    402  *
    403  * => called with pageq locked.
    404  * => resolve orphaned O->A loaned page.
    405  * => return the locked mutex on success.  otherwise, return NULL.
    406  */
    407 
    408 kmutex_t *
    409 uvmpd_trylockowner(struct vm_page *pg)
    410 {
    411 	struct uvm_object *uobj = pg->uobject;
    412 	kmutex_t *slock;
    413 
    414 	KASSERT(mutex_owned(&uvm_pageqlock));
    415 
    416 	if (uobj != NULL) {
    417 		slock = &uobj->vmobjlock;
    418 	} else {
    419 		struct vm_anon *anon = pg->uanon;
    420 
    421 		KASSERT(anon != NULL);
    422 		slock = &anon->an_lock;
    423 	}
    424 
    425 	if (!mutex_tryenter(slock)) {
    426 		return NULL;
    427 	}
    428 
    429 	if (uobj == NULL) {
    430 
    431 		/*
    432 		 * set PQ_ANON if it isn't set already.
    433 		 */
    434 
    435 		if ((pg->pqflags & PQ_ANON) == 0) {
    436 			KASSERT(pg->loan_count > 0);
    437 			pg->loan_count--;
    438 			pg->pqflags |= PQ_ANON;
    439 			/* anon now owns it */
    440 		}
    441 	}
    442 
    443 	return slock;
    444 }
    445 
    446 #if defined(VMSWAP)
    447 struct swapcluster {
    448 	int swc_slot;
    449 	int swc_nallocated;
    450 	int swc_nused;
    451 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    452 };
    453 
    454 static void
    455 swapcluster_init(struct swapcluster *swc)
    456 {
    457 
    458 	swc->swc_slot = 0;
    459 	swc->swc_nused = 0;
    460 }
    461 
    462 static int
    463 swapcluster_allocslots(struct swapcluster *swc)
    464 {
    465 	int slot;
    466 	int npages;
    467 
    468 	if (swc->swc_slot != 0) {
    469 		return 0;
    470 	}
    471 
    472 	/* Even with strange MAXPHYS, the shift
    473 	   implicitly rounds down to a page. */
    474 	npages = MAXPHYS >> PAGE_SHIFT;
    475 	slot = uvm_swap_alloc(&npages, true);
    476 	if (slot == 0) {
    477 		return ENOMEM;
    478 	}
    479 	swc->swc_slot = slot;
    480 	swc->swc_nallocated = npages;
    481 	swc->swc_nused = 0;
    482 
    483 	return 0;
    484 }
    485 
    486 static int
    487 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    488 {
    489 	int slot;
    490 	struct uvm_object *uobj;
    491 
    492 	KASSERT(swc->swc_slot != 0);
    493 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    494 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    495 
    496 	slot = swc->swc_slot + swc->swc_nused;
    497 	uobj = pg->uobject;
    498 	if (uobj == NULL) {
    499 		KASSERT(mutex_owned(&pg->uanon->an_lock));
    500 		pg->uanon->an_swslot = slot;
    501 	} else {
    502 		int result;
    503 
    504 		KASSERT(mutex_owned(&uobj->vmobjlock));
    505 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    506 		if (result == -1) {
    507 			return ENOMEM;
    508 		}
    509 	}
    510 	swc->swc_pages[swc->swc_nused] = pg;
    511 	swc->swc_nused++;
    512 
    513 	return 0;
    514 }
    515 
    516 static void
    517 swapcluster_flush(struct swapcluster *swc, bool now)
    518 {
    519 	int slot;
    520 	int nused;
    521 	int nallocated;
    522 	int error;
    523 
    524 	if (swc->swc_slot == 0) {
    525 		return;
    526 	}
    527 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    528 
    529 	slot = swc->swc_slot;
    530 	nused = swc->swc_nused;
    531 	nallocated = swc->swc_nallocated;
    532 
    533 	/*
    534 	 * if this is the final pageout we could have a few
    535 	 * unused swap blocks.  if so, free them now.
    536 	 */
    537 
    538 	if (nused < nallocated) {
    539 		if (!now) {
    540 			return;
    541 		}
    542 		uvm_swap_free(slot + nused, nallocated - nused);
    543 	}
    544 
    545 	/*
    546 	 * now start the pageout.
    547 	 */
    548 
    549 	if (nused > 0) {
    550 		uvmexp.pdpageouts++;
    551 		uvm_pageout_start(nused);
    552 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    553 		KASSERT(error == 0 || error == ENOMEM);
    554 	}
    555 
    556 	/*
    557 	 * zero swslot to indicate that we are
    558 	 * no longer building a swap-backed cluster.
    559 	 */
    560 
    561 	swc->swc_slot = 0;
    562 	swc->swc_nused = 0;
    563 }
    564 
    565 static int
    566 swapcluster_nused(struct swapcluster *swc)
    567 {
    568 
    569 	return swc->swc_nused;
    570 }
    571 
    572 /*
    573  * uvmpd_dropswap: free any swap allocated to this page.
    574  *
    575  * => called with owner locked.
    576  * => return true if a page had an associated slot.
    577  */
    578 
    579 static bool
    580 uvmpd_dropswap(struct vm_page *pg)
    581 {
    582 	bool result = false;
    583 	struct vm_anon *anon = pg->uanon;
    584 
    585 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    586 		uvm_swap_free(anon->an_swslot, 1);
    587 		anon->an_swslot = 0;
    588 		pg->flags &= ~PG_CLEAN;
    589 		result = true;
    590 	} else if (pg->pqflags & PQ_AOBJ) {
    591 		int slot = uao_set_swslot(pg->uobject,
    592 		    pg->offset >> PAGE_SHIFT, 0);
    593 		if (slot) {
    594 			uvm_swap_free(slot, 1);
    595 			pg->flags &= ~PG_CLEAN;
    596 			result = true;
    597 		}
    598 	}
    599 
    600 	return result;
    601 }
    602 
    603 /*
    604  * uvmpd_trydropswap: try to free any swap allocated to this page.
    605  *
    606  * => return true if a slot is successfully freed.
    607  */
    608 
    609 bool
    610 uvmpd_trydropswap(struct vm_page *pg)
    611 {
    612 	kmutex_t *slock;
    613 	bool result;
    614 
    615 	if ((pg->flags & PG_BUSY) != 0) {
    616 		return false;
    617 	}
    618 
    619 	/*
    620 	 * lock the page's owner.
    621 	 */
    622 
    623 	slock = uvmpd_trylockowner(pg);
    624 	if (slock == NULL) {
    625 		return false;
    626 	}
    627 
    628 	/*
    629 	 * skip this page if it's busy.
    630 	 */
    631 
    632 	if ((pg->flags & PG_BUSY) != 0) {
    633 		mutex_exit(slock);
    634 		return false;
    635 	}
    636 
    637 	result = uvmpd_dropswap(pg);
    638 
    639 	mutex_exit(slock);
    640 
    641 	return result;
    642 }
    643 
    644 #endif /* defined(VMSWAP) */
    645 
    646 /*
    647  * uvmpd_scan_queue: scan an replace candidate list for pages
    648  * to clean or free.
    649  *
    650  * => called with page queues locked
    651  * => we work on meeting our free target by converting inactive pages
    652  *    into free pages.
    653  * => we handle the building of swap-backed clusters
    654  */
    655 
    656 static void
    657 uvmpd_scan_queue(void)
    658 {
    659 	struct vm_page *p;
    660 	struct uvm_object *uobj;
    661 	struct vm_anon *anon;
    662 #if defined(VMSWAP)
    663 	struct swapcluster swc;
    664 #endif /* defined(VMSWAP) */
    665 	int dirtyreacts;
    666 	int lockownerfail;
    667 	kmutex_t *slock;
    668 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    669 
    670 	/*
    671 	 * swslot is non-zero if we are building a swap cluster.  we want
    672 	 * to stay in the loop while we have a page to scan or we have
    673 	 * a swap-cluster to build.
    674 	 */
    675 
    676 #if defined(VMSWAP)
    677 	swapcluster_init(&swc);
    678 #endif /* defined(VMSWAP) */
    679 
    680 	dirtyreacts = 0;
    681 	lockownerfail = 0;
    682 	uvmpdpol_scaninit();
    683 
    684 	while (/* CONSTCOND */ 1) {
    685 
    686 		/*
    687 		 * see if we've met the free target.
    688 		 */
    689 
    690 		if (uvmexp.free + uvmexp.paging
    691 #if defined(VMSWAP)
    692 		    + swapcluster_nused(&swc)
    693 #endif /* defined(VMSWAP) */
    694 		    >= uvmexp.freetarg << 2 ||
    695 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    696 			UVMHIST_LOG(pdhist,"  met free target: "
    697 				    "exit loop", 0, 0, 0, 0);
    698 			break;
    699 		}
    700 
    701 		p = uvmpdpol_selectvictim();
    702 		if (p == NULL) {
    703 			break;
    704 		}
    705 		KASSERT(uvmpdpol_pageisqueued_p(p));
    706 		KASSERT(p->wire_count == 0);
    707 
    708 		/*
    709 		 * we are below target and have a new page to consider.
    710 		 */
    711 
    712 		anon = p->uanon;
    713 		uobj = p->uobject;
    714 
    715 		/*
    716 		 * first we attempt to lock the object that this page
    717 		 * belongs to.  if our attempt fails we skip on to
    718 		 * the next page (no harm done).  it is important to
    719 		 * "try" locking the object as we are locking in the
    720 		 * wrong order (pageq -> object) and we don't want to
    721 		 * deadlock.
    722 		 *
    723 		 * the only time we expect to see an ownerless page
    724 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    725 		 * anon has loaned a page from a uvm_object and the
    726 		 * uvm_object has dropped the ownership.  in that
    727 		 * case, the anon can "take over" the loaned page
    728 		 * and make it its own.
    729 		 */
    730 
    731 		slock = uvmpd_trylockowner(p);
    732 		if (slock == NULL) {
    733 			/*
    734 			 * yield cpu to make a chance for an LWP holding
    735 			 * the lock run.  otherwise we can busy-loop too long
    736 			 * if the page queue is filled with a lot of pages
    737 			 * from few objects.
    738 			 */
    739 			lockownerfail++;
    740 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    741 				mutex_exit(&uvm_pageqlock);
    742 				/* XXX Better than yielding but inadequate. */
    743 				kpause("livelock", false, 1, NULL);
    744 				mutex_enter(&uvm_pageqlock);
    745 				lockownerfail = 0;
    746 			}
    747 			continue;
    748 		}
    749 		if (p->flags & PG_BUSY) {
    750 			mutex_exit(slock);
    751 			uvmexp.pdbusy++;
    752 			continue;
    753 		}
    754 
    755 		/* does the page belong to an object? */
    756 		if (uobj != NULL) {
    757 			uvmexp.pdobscan++;
    758 		} else {
    759 #if defined(VMSWAP)
    760 			KASSERT(anon != NULL);
    761 			uvmexp.pdanscan++;
    762 #else /* defined(VMSWAP) */
    763 			panic("%s: anon", __func__);
    764 #endif /* defined(VMSWAP) */
    765 		}
    766 
    767 
    768 		/*
    769 		 * we now have the object and the page queues locked.
    770 		 * if the page is not swap-backed, call the object's
    771 		 * pager to flush and free the page.
    772 		 */
    773 
    774 #if defined(READAHEAD_STATS)
    775 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    776 			p->pqflags &= ~PQ_READAHEAD;
    777 			uvm_ra_miss.ev_count++;
    778 		}
    779 #endif /* defined(READAHEAD_STATS) */
    780 
    781 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    782 			KASSERT(uobj != NULL);
    783 			mutex_exit(&uvm_pageqlock);
    784 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    785 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    786 			mutex_enter(&uvm_pageqlock);
    787 			continue;
    788 		}
    789 
    790 		/*
    791 		 * the page is swap-backed.  remove all the permissions
    792 		 * from the page so we can sync the modified info
    793 		 * without any race conditions.  if the page is clean
    794 		 * we can free it now and continue.
    795 		 */
    796 
    797 		pmap_page_protect(p, VM_PROT_NONE);
    798 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    799 			p->flags &= ~(PG_CLEAN);
    800 		}
    801 		if (p->flags & PG_CLEAN) {
    802 			int slot;
    803 			int pageidx;
    804 
    805 			pageidx = p->offset >> PAGE_SHIFT;
    806 			uvm_pagefree(p);
    807 			uvmexp.pdfreed++;
    808 
    809 			/*
    810 			 * for anons, we need to remove the page
    811 			 * from the anon ourselves.  for aobjs,
    812 			 * pagefree did that for us.
    813 			 */
    814 
    815 			if (anon) {
    816 				KASSERT(anon->an_swslot != 0);
    817 				anon->an_page = NULL;
    818 				slot = anon->an_swslot;
    819 			} else {
    820 				slot = uao_find_swslot(uobj, pageidx);
    821 			}
    822 			mutex_exit(slock);
    823 
    824 			if (slot > 0) {
    825 				/* this page is now only in swap. */
    826 				mutex_enter(&uvm_swap_data_lock);
    827 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    828 				uvmexp.swpgonly++;
    829 				mutex_exit(&uvm_swap_data_lock);
    830 			}
    831 			continue;
    832 		}
    833 
    834 #if defined(VMSWAP)
    835 		/*
    836 		 * this page is dirty, skip it if we'll have met our
    837 		 * free target when all the current pageouts complete.
    838 		 */
    839 
    840 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    841 			mutex_exit(slock);
    842 			continue;
    843 		}
    844 
    845 		/*
    846 		 * free any swap space allocated to the page since
    847 		 * we'll have to write it again with its new data.
    848 		 */
    849 
    850 		uvmpd_dropswap(p);
    851 
    852 		/*
    853 		 * if all pages in swap are only in swap,
    854 		 * the swap space is full and we can't page out
    855 		 * any more swap-backed pages.  reactivate this page
    856 		 * so that we eventually cycle all pages through
    857 		 * the inactive queue.
    858 		 */
    859 
    860 		if (uvm_swapisfull()) {
    861 			dirtyreacts++;
    862 			uvm_pageactivate(p);
    863 			mutex_exit(slock);
    864 			continue;
    865 		}
    866 
    867 		/*
    868 		 * start new swap pageout cluster (if necessary).
    869 		 */
    870 
    871 		if (swapcluster_allocslots(&swc)) {
    872 			mutex_exit(slock);
    873 			dirtyreacts++; /* XXX */
    874 			continue;
    875 		}
    876 
    877 		/*
    878 		 * at this point, we're definitely going reuse this
    879 		 * page.  mark the page busy and delayed-free.
    880 		 * we should remove the page from the page queues
    881 		 * so we don't ever look at it again.
    882 		 * adjust counters and such.
    883 		 */
    884 
    885 		p->flags |= PG_BUSY;
    886 		UVM_PAGE_OWN(p, "scan_queue");
    887 
    888 		p->flags |= PG_PAGEOUT;
    889 		uvm_pagedequeue(p);
    890 
    891 		uvmexp.pgswapout++;
    892 		mutex_exit(&uvm_pageqlock);
    893 
    894 		/*
    895 		 * add the new page to the cluster.
    896 		 */
    897 
    898 		if (swapcluster_add(&swc, p)) {
    899 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    900 			UVM_PAGE_OWN(p, NULL);
    901 			mutex_enter(&uvm_pageqlock);
    902 			dirtyreacts++;
    903 			uvm_pageactivate(p);
    904 			mutex_exit(slock);
    905 			continue;
    906 		}
    907 		mutex_exit(slock);
    908 
    909 		swapcluster_flush(&swc, false);
    910 		mutex_enter(&uvm_pageqlock);
    911 
    912 		/*
    913 		 * the pageout is in progress.  bump counters and set up
    914 		 * for the next loop.
    915 		 */
    916 
    917 		uvmexp.pdpending++;
    918 
    919 #else /* defined(VMSWAP) */
    920 		uvm_pageactivate(p);
    921 		mutex_exit(slock);
    922 #endif /* defined(VMSWAP) */
    923 	}
    924 
    925 #if defined(VMSWAP)
    926 	mutex_exit(&uvm_pageqlock);
    927 	swapcluster_flush(&swc, true);
    928 	mutex_enter(&uvm_pageqlock);
    929 #endif /* defined(VMSWAP) */
    930 }
    931 
    932 /*
    933  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    934  *
    935  * => called with pageq's locked
    936  */
    937 
    938 static void
    939 uvmpd_scan(void)
    940 {
    941 	int swap_shortage, pages_freed;
    942 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    943 
    944 	uvmexp.pdrevs++;
    945 
    946 	/*
    947 	 * work on meeting our targets.   first we work on our free target
    948 	 * by converting inactive pages into free pages.  then we work on
    949 	 * meeting our inactive target by converting active pages to
    950 	 * inactive ones.
    951 	 */
    952 
    953 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    954 
    955 	pages_freed = uvmexp.pdfreed;
    956 	uvmpd_scan_queue();
    957 	pages_freed = uvmexp.pdfreed - pages_freed;
    958 
    959 	/*
    960 	 * detect if we're not going to be able to page anything out
    961 	 * until we free some swap resources from active pages.
    962 	 */
    963 
    964 	swap_shortage = 0;
    965 	if (uvmexp.free < uvmexp.freetarg &&
    966 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    967 	    !uvm_swapisfull() &&
    968 	    pages_freed == 0) {
    969 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    970 	}
    971 
    972 	uvmpdpol_balancequeue(swap_shortage);
    973 
    974 	/*
    975 	 * swap out some processes if we are still below the minimum
    976 	 * free target.  we need to unlock the page queues for this.
    977 	 */
    978 
    979 	if (uvmexp.free < uvmexp.freemin && uvmexp.nswapdev != 0 &&
    980 	    uvm.swapout_enabled) {
    981 		uvmexp.pdswout++;
    982 		UVMHIST_LOG(pdhist,"  free %d < min %d: swapout",
    983 		    uvmexp.free, uvmexp.freemin, 0, 0);
    984 		mutex_exit(&uvm_pageqlock);
    985 		uvm_swapout_threads();
    986 		mutex_enter(&uvm_pageqlock);
    987 	}
    988 
    989 	/*
    990 	 * if still below the minimum target, try unloading kernel
    991 	 * modules.
    992 	 */
    993 
    994 	if (uvmexp.free < uvmexp.freemin) {
    995 		module_thread_kick();
    996 	}
    997 }
    998 
    999 /*
   1000  * uvm_reclaimable: decide whether to wait for pagedaemon.
   1001  *
   1002  * => return true if it seems to be worth to do uvm_wait.
   1003  *
   1004  * XXX should be tunable.
   1005  * XXX should consider pools, etc?
   1006  */
   1007 
   1008 bool
   1009 uvm_reclaimable(void)
   1010 {
   1011 	int filepages;
   1012 	int active, inactive;
   1013 
   1014 	/*
   1015 	 * if swap is not full, no problem.
   1016 	 */
   1017 
   1018 	if (!uvm_swapisfull()) {
   1019 		return true;
   1020 	}
   1021 
   1022 	/*
   1023 	 * file-backed pages can be reclaimed even when swap is full.
   1024 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1025 	 *
   1026 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1027 	 *
   1028 	 * XXX should consider about other reclaimable memory.
   1029 	 * XXX ie. pools, traditional buffer cache.
   1030 	 */
   1031 
   1032 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1033 	uvm_estimatepageable(&active, &inactive);
   1034 	if (filepages >= MIN((active + inactive) >> 4,
   1035 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1036 		return true;
   1037 	}
   1038 
   1039 	/*
   1040 	 * kill the process, fail allocation, etc..
   1041 	 */
   1042 
   1043 	return false;
   1044 }
   1045 
   1046 void
   1047 uvm_estimatepageable(int *active, int *inactive)
   1048 {
   1049 
   1050 	uvmpdpol_estimatepageable(active, inactive);
   1051 }
   1052