Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.93.4.2
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.93.4.2 2009/02/02 19:24:04 snj Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.93.4.2 2009/02/02 19:24:04 snj Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 #include <sys/atomic.h>
     86 
     87 #include <uvm/uvm.h>
     88 #include <uvm/uvm_pdpolicy.h>
     89 
     90 /*
     91  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     92  * in a pass thru the inactive list when swap is full.  the value should be
     93  * "small"... if it's too large we'll cycle the active pages thru the inactive
     94  * queue too quickly to for them to be referenced and avoid being freed.
     95  */
     96 
     97 #define	UVMPD_NUMDIRTYREACTS	16
     98 
     99 #define	UVMPD_NUMTRYLOCKOWNER	16
    100 
    101 /*
    102  * local prototypes
    103  */
    104 
    105 static void	uvmpd_scan(void);
    106 static void	uvmpd_scan_queue(void);
    107 static void	uvmpd_tune(void);
    108 
    109 unsigned int uvm_pagedaemon_waiters;
    110 
    111 /*
    112  * XXX hack to avoid hangs when large processes fork.
    113  */
    114 u_int uvm_extrapages;
    115 
    116 /*
    117  * uvm_wait: wait (sleep) for the page daemon to free some pages
    118  *
    119  * => should be called with all locks released
    120  * => should _not_ be called by the page daemon (to avoid deadlock)
    121  */
    122 
    123 void
    124 uvm_wait(const char *wmsg)
    125 {
    126 	int timo = 0;
    127 
    128 	mutex_spin_enter(&uvm_fpageqlock);
    129 
    130 	/*
    131 	 * check for page daemon going to sleep (waiting for itself)
    132 	 */
    133 
    134 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    135 		/*
    136 		 * now we have a problem: the pagedaemon wants to go to
    137 		 * sleep until it frees more memory.   but how can it
    138 		 * free more memory if it is asleep?  that is a deadlock.
    139 		 * we have two options:
    140 		 *  [1] panic now
    141 		 *  [2] put a timeout on the sleep, thus causing the
    142 		 *      pagedaemon to only pause (rather than sleep forever)
    143 		 *
    144 		 * note that option [2] will only help us if we get lucky
    145 		 * and some other process on the system breaks the deadlock
    146 		 * by exiting or freeing memory (thus allowing the pagedaemon
    147 		 * to continue).  for now we panic if DEBUG is defined,
    148 		 * otherwise we hope for the best with option [2] (better
    149 		 * yet, this should never happen in the first place!).
    150 		 */
    151 
    152 		printf("pagedaemon: deadlock detected!\n");
    153 		timo = hz >> 3;		/* set timeout */
    154 #if defined(DEBUG)
    155 		/* DEBUG: panic so we can debug it */
    156 		panic("pagedaemon deadlock");
    157 #endif
    158 	}
    159 
    160 	uvm_pagedaemon_waiters++;
    161 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    162 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    163 }
    164 
    165 /*
    166  * uvm_kick_pdaemon: perform checks to determine if we need to
    167  * give the pagedaemon a nudge, and do so if necessary.
    168  *
    169  * => called with uvm_fpageqlock held.
    170  */
    171 
    172 void
    173 uvm_kick_pdaemon(void)
    174 {
    175 
    176 	KASSERT(mutex_owned(&uvm_fpageqlock));
    177 
    178 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    179 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    180 	     uvmpdpol_needsscan_p())) {
    181 		wakeup(&uvm.pagedaemon);
    182 	}
    183 }
    184 
    185 /*
    186  * uvmpd_tune: tune paging parameters
    187  *
    188  * => called when ever memory is added (or removed?) to the system
    189  * => caller must call with page queues locked
    190  */
    191 
    192 static void
    193 uvmpd_tune(void)
    194 {
    195 	int val;
    196 
    197 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    198 
    199 	/*
    200 	 * try to keep 0.5% of available RAM free, but limit to between
    201 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    202 	 */
    203 	val = uvmexp.npages / 200;
    204 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    205 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    206 	val *= ncpu;
    207 
    208 	/* Make sure there's always a user page free. */
    209 	if (val < uvmexp.reserve_kernel + 1)
    210 		val = uvmexp.reserve_kernel + 1;
    211 	uvmexp.freemin = val;
    212 
    213 	/* Calculate free target. */
    214 	val = (uvmexp.freemin * 4) / 3;
    215 	if (val <= uvmexp.freemin)
    216 		val = uvmexp.freemin + 1;
    217 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    218 
    219 	uvmexp.wiredmax = uvmexp.npages / 3;
    220 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    221 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    222 }
    223 
    224 /*
    225  * uvm_pageout: the main loop for the pagedaemon
    226  */
    227 
    228 void
    229 uvm_pageout(void *arg)
    230 {
    231 	int bufcnt, npages = 0;
    232 	int extrapages = 0;
    233 	struct pool *pp;
    234 	uint64_t where;
    235 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    236 
    237 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    238 
    239 	/*
    240 	 * ensure correct priority and set paging parameters...
    241 	 */
    242 
    243 	uvm.pagedaemon_lwp = curlwp;
    244 	mutex_enter(&uvm_pageqlock);
    245 	npages = uvmexp.npages;
    246 	uvmpd_tune();
    247 	mutex_exit(&uvm_pageqlock);
    248 
    249 	/*
    250 	 * main loop
    251 	 */
    252 
    253 	for (;;) {
    254 		bool needsscan, needsfree;
    255 
    256 		mutex_spin_enter(&uvm_fpageqlock);
    257 		if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
    258 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    259 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    260 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    261 			uvmexp.pdwoke++;
    262 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    263 		} else {
    264 			mutex_spin_exit(&uvm_fpageqlock);
    265 		}
    266 
    267 		/*
    268 		 * now lock page queues and recompute inactive count
    269 		 */
    270 
    271 		mutex_enter(&uvm_pageqlock);
    272 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    273 			npages = uvmexp.npages;
    274 			extrapages = uvm_extrapages;
    275 			mutex_spin_enter(&uvm_fpageqlock);
    276 			uvmpd_tune();
    277 			mutex_spin_exit(&uvm_fpageqlock);
    278 		}
    279 
    280 		uvmpdpol_tune();
    281 
    282 		/*
    283 		 * Estimate a hint.  Note that bufmem are returned to
    284 		 * system only when entire pool page is empty.
    285 		 */
    286 		mutex_spin_enter(&uvm_fpageqlock);
    287 		bufcnt = uvmexp.freetarg - uvmexp.free;
    288 		if (bufcnt < 0)
    289 			bufcnt = 0;
    290 
    291 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    292 		    uvmexp.free, uvmexp.freetarg, 0,0);
    293 
    294 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    295 		needsscan = needsfree || uvmpdpol_needsscan_p();
    296 
    297 		/*
    298 		 * scan if needed
    299 		 */
    300 		if (needsscan) {
    301 			mutex_spin_exit(&uvm_fpageqlock);
    302 			uvmpd_scan();
    303 			mutex_spin_enter(&uvm_fpageqlock);
    304 		}
    305 
    306 		/*
    307 		 * if there's any free memory to be had,
    308 		 * wake up any waiters.
    309 		 */
    310 		if (uvmexp.free > uvmexp.reserve_kernel ||
    311 		    uvmexp.paging == 0) {
    312 			wakeup(&uvmexp.free);
    313 			uvm_pagedaemon_waiters = 0;
    314 		}
    315 		mutex_spin_exit(&uvm_fpageqlock);
    316 
    317 		/*
    318 		 * scan done.  unlock page queues (the only lock we are holding)
    319 		 */
    320 		mutex_exit(&uvm_pageqlock);
    321 
    322 		/*
    323 		 * if we don't need free memory, we're done.
    324 		 */
    325 
    326 		if (!needsfree)
    327 			continue;
    328 
    329 		/*
    330 		 * start draining pool resources now that we're not
    331 		 * holding any locks.
    332 		 */
    333 		pool_drain_start(&pp, &where);
    334 
    335 		/*
    336 		 * kill unused metadata buffers.
    337 		 */
    338 		mutex_enter(&bufcache_lock);
    339 		buf_drain(bufcnt << PAGE_SHIFT);
    340 		mutex_exit(&bufcache_lock);
    341 
    342 		/*
    343 		 * complete draining the pools.
    344 		 */
    345 		pool_drain_end(pp, where);
    346 	}
    347 	/*NOTREACHED*/
    348 }
    349 
    350 
    351 /*
    352  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    353  */
    354 
    355 void
    356 uvm_aiodone_worker(struct work *wk, void *dummy)
    357 {
    358 	struct buf *bp = (void *)wk;
    359 
    360 	KASSERT(&bp->b_work == wk);
    361 
    362 	/*
    363 	 * process an i/o that's done.
    364 	 */
    365 
    366 	(*bp->b_iodone)(bp);
    367 }
    368 
    369 void
    370 uvm_pageout_start(int npages)
    371 {
    372 
    373 	mutex_spin_enter(&uvm_fpageqlock);
    374 	uvmexp.paging += npages;
    375 	mutex_spin_exit(&uvm_fpageqlock);
    376 }
    377 
    378 void
    379 uvm_pageout_done(int npages)
    380 {
    381 
    382 	mutex_spin_enter(&uvm_fpageqlock);
    383 	KASSERT(uvmexp.paging >= npages);
    384 	uvmexp.paging -= npages;
    385 
    386 	/*
    387 	 * wake up either of pagedaemon or LWPs waiting for it.
    388 	 */
    389 
    390 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    391 		wakeup(&uvm.pagedaemon);
    392 	} else {
    393 		wakeup(&uvmexp.free);
    394 		uvm_pagedaemon_waiters = 0;
    395 	}
    396 	mutex_spin_exit(&uvm_fpageqlock);
    397 }
    398 
    399 /*
    400  * uvmpd_trylockowner: trylock the page's owner.
    401  *
    402  * => called with pageq locked.
    403  * => resolve orphaned O->A loaned page.
    404  * => return the locked mutex on success.  otherwise, return NULL.
    405  */
    406 
    407 kmutex_t *
    408 uvmpd_trylockowner(struct vm_page *pg)
    409 {
    410 	struct uvm_object *uobj = pg->uobject;
    411 	kmutex_t *slock;
    412 
    413 	KASSERT(mutex_owned(&uvm_pageqlock));
    414 
    415 	if (uobj != NULL) {
    416 		slock = &uobj->vmobjlock;
    417 	} else {
    418 		struct vm_anon *anon = pg->uanon;
    419 
    420 		KASSERT(anon != NULL);
    421 		slock = &anon->an_lock;
    422 	}
    423 
    424 	if (!mutex_tryenter(slock)) {
    425 		return NULL;
    426 	}
    427 
    428 	if (uobj == NULL) {
    429 
    430 		/*
    431 		 * set PQ_ANON if it isn't set already.
    432 		 */
    433 
    434 		if ((pg->pqflags & PQ_ANON) == 0) {
    435 			KASSERT(pg->loan_count > 0);
    436 			pg->loan_count--;
    437 			pg->pqflags |= PQ_ANON;
    438 			/* anon now owns it */
    439 		}
    440 	}
    441 
    442 	return slock;
    443 }
    444 
    445 #if defined(VMSWAP)
    446 struct swapcluster {
    447 	int swc_slot;
    448 	int swc_nallocated;
    449 	int swc_nused;
    450 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    451 };
    452 
    453 static void
    454 swapcluster_init(struct swapcluster *swc)
    455 {
    456 
    457 	swc->swc_slot = 0;
    458 	swc->swc_nused = 0;
    459 }
    460 
    461 static int
    462 swapcluster_allocslots(struct swapcluster *swc)
    463 {
    464 	int slot;
    465 	int npages;
    466 
    467 	if (swc->swc_slot != 0) {
    468 		return 0;
    469 	}
    470 
    471 	/* Even with strange MAXPHYS, the shift
    472 	   implicitly rounds down to a page. */
    473 	npages = MAXPHYS >> PAGE_SHIFT;
    474 	slot = uvm_swap_alloc(&npages, true);
    475 	if (slot == 0) {
    476 		return ENOMEM;
    477 	}
    478 	swc->swc_slot = slot;
    479 	swc->swc_nallocated = npages;
    480 	swc->swc_nused = 0;
    481 
    482 	return 0;
    483 }
    484 
    485 static int
    486 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    487 {
    488 	int slot;
    489 	struct uvm_object *uobj;
    490 
    491 	KASSERT(swc->swc_slot != 0);
    492 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    493 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    494 
    495 	slot = swc->swc_slot + swc->swc_nused;
    496 	uobj = pg->uobject;
    497 	if (uobj == NULL) {
    498 		KASSERT(mutex_owned(&pg->uanon->an_lock));
    499 		pg->uanon->an_swslot = slot;
    500 	} else {
    501 		int result;
    502 
    503 		KASSERT(mutex_owned(&uobj->vmobjlock));
    504 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    505 		if (result == -1) {
    506 			return ENOMEM;
    507 		}
    508 	}
    509 	swc->swc_pages[swc->swc_nused] = pg;
    510 	swc->swc_nused++;
    511 
    512 	return 0;
    513 }
    514 
    515 static void
    516 swapcluster_flush(struct swapcluster *swc, bool now)
    517 {
    518 	int slot;
    519 	int nused;
    520 	int nallocated;
    521 	int error;
    522 
    523 	if (swc->swc_slot == 0) {
    524 		return;
    525 	}
    526 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    527 
    528 	slot = swc->swc_slot;
    529 	nused = swc->swc_nused;
    530 	nallocated = swc->swc_nallocated;
    531 
    532 	/*
    533 	 * if this is the final pageout we could have a few
    534 	 * unused swap blocks.  if so, free them now.
    535 	 */
    536 
    537 	if (nused < nallocated) {
    538 		if (!now) {
    539 			return;
    540 		}
    541 		uvm_swap_free(slot + nused, nallocated - nused);
    542 	}
    543 
    544 	/*
    545 	 * now start the pageout.
    546 	 */
    547 
    548 	if (nused > 0) {
    549 		uvmexp.pdpageouts++;
    550 		uvm_pageout_start(nused);
    551 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    552 		KASSERT(error == 0 || error == ENOMEM);
    553 	}
    554 
    555 	/*
    556 	 * zero swslot to indicate that we are
    557 	 * no longer building a swap-backed cluster.
    558 	 */
    559 
    560 	swc->swc_slot = 0;
    561 	swc->swc_nused = 0;
    562 }
    563 
    564 static int
    565 swapcluster_nused(struct swapcluster *swc)
    566 {
    567 
    568 	return swc->swc_nused;
    569 }
    570 
    571 /*
    572  * uvmpd_dropswap: free any swap allocated to this page.
    573  *
    574  * => called with owner locked.
    575  * => return true if a page had an associated slot.
    576  */
    577 
    578 static bool
    579 uvmpd_dropswap(struct vm_page *pg)
    580 {
    581 	bool result = false;
    582 	struct vm_anon *anon = pg->uanon;
    583 
    584 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    585 		uvm_swap_free(anon->an_swslot, 1);
    586 		anon->an_swslot = 0;
    587 		pg->flags &= ~PG_CLEAN;
    588 		result = true;
    589 	} else if (pg->pqflags & PQ_AOBJ) {
    590 		int slot = uao_set_swslot(pg->uobject,
    591 		    pg->offset >> PAGE_SHIFT, 0);
    592 		if (slot) {
    593 			uvm_swap_free(slot, 1);
    594 			pg->flags &= ~PG_CLEAN;
    595 			result = true;
    596 		}
    597 	}
    598 
    599 	return result;
    600 }
    601 
    602 /*
    603  * uvmpd_trydropswap: try to free any swap allocated to this page.
    604  *
    605  * => return true if a slot is successfully freed.
    606  */
    607 
    608 bool
    609 uvmpd_trydropswap(struct vm_page *pg)
    610 {
    611 	kmutex_t *slock;
    612 	bool result;
    613 
    614 	if ((pg->flags & PG_BUSY) != 0) {
    615 		return false;
    616 	}
    617 
    618 	/*
    619 	 * lock the page's owner.
    620 	 */
    621 
    622 	slock = uvmpd_trylockowner(pg);
    623 	if (slock == NULL) {
    624 		return false;
    625 	}
    626 
    627 	/*
    628 	 * skip this page if it's busy.
    629 	 */
    630 
    631 	if ((pg->flags & PG_BUSY) != 0) {
    632 		mutex_exit(slock);
    633 		return false;
    634 	}
    635 
    636 	result = uvmpd_dropswap(pg);
    637 
    638 	mutex_exit(slock);
    639 
    640 	return result;
    641 }
    642 
    643 #endif /* defined(VMSWAP) */
    644 
    645 /*
    646  * uvmpd_scan_queue: scan an replace candidate list for pages
    647  * to clean or free.
    648  *
    649  * => called with page queues locked
    650  * => we work on meeting our free target by converting inactive pages
    651  *    into free pages.
    652  * => we handle the building of swap-backed clusters
    653  */
    654 
    655 static void
    656 uvmpd_scan_queue(void)
    657 {
    658 	struct vm_page *p;
    659 	struct uvm_object *uobj;
    660 	struct vm_anon *anon;
    661 #if defined(VMSWAP)
    662 	struct swapcluster swc;
    663 #endif /* defined(VMSWAP) */
    664 	int dirtyreacts;
    665 	int lockownerfail;
    666 	kmutex_t *slock;
    667 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    668 
    669 	/*
    670 	 * swslot is non-zero if we are building a swap cluster.  we want
    671 	 * to stay in the loop while we have a page to scan or we have
    672 	 * a swap-cluster to build.
    673 	 */
    674 
    675 #if defined(VMSWAP)
    676 	swapcluster_init(&swc);
    677 #endif /* defined(VMSWAP) */
    678 
    679 	dirtyreacts = 0;
    680 	lockownerfail = 0;
    681 	uvmpdpol_scaninit();
    682 
    683 	while (/* CONSTCOND */ 1) {
    684 
    685 		/*
    686 		 * see if we've met the free target.
    687 		 */
    688 
    689 		if (uvmexp.free + uvmexp.paging
    690 #if defined(VMSWAP)
    691 		    + swapcluster_nused(&swc)
    692 #endif /* defined(VMSWAP) */
    693 		    >= uvmexp.freetarg << 2 ||
    694 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    695 			UVMHIST_LOG(pdhist,"  met free target: "
    696 				    "exit loop", 0, 0, 0, 0);
    697 			break;
    698 		}
    699 
    700 		p = uvmpdpol_selectvictim();
    701 		if (p == NULL) {
    702 			break;
    703 		}
    704 		KASSERT(uvmpdpol_pageisqueued_p(p));
    705 		KASSERT(p->wire_count == 0);
    706 
    707 		/*
    708 		 * we are below target and have a new page to consider.
    709 		 */
    710 
    711 		anon = p->uanon;
    712 		uobj = p->uobject;
    713 
    714 		/*
    715 		 * first we attempt to lock the object that this page
    716 		 * belongs to.  if our attempt fails we skip on to
    717 		 * the next page (no harm done).  it is important to
    718 		 * "try" locking the object as we are locking in the
    719 		 * wrong order (pageq -> object) and we don't want to
    720 		 * deadlock.
    721 		 *
    722 		 * the only time we expect to see an ownerless page
    723 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    724 		 * anon has loaned a page from a uvm_object and the
    725 		 * uvm_object has dropped the ownership.  in that
    726 		 * case, the anon can "take over" the loaned page
    727 		 * and make it its own.
    728 		 */
    729 
    730 		slock = uvmpd_trylockowner(p);
    731 		if (slock == NULL) {
    732 			/*
    733 			 * yield cpu to make a chance for an LWP holding
    734 			 * the lock run.  otherwise we can busy-loop too long
    735 			 * if the page queue is filled with a lot of pages
    736 			 * from few objects.
    737 			 */
    738 			lockownerfail++;
    739 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    740 				mutex_exit(&uvm_pageqlock);
    741 				/* XXX Better than yielding but inadequate. */
    742 				kpause("livelock", false, 1, NULL);
    743 				mutex_enter(&uvm_pageqlock);
    744 				lockownerfail = 0;
    745 			}
    746 			continue;
    747 		}
    748 		if (p->flags & PG_BUSY) {
    749 			mutex_exit(slock);
    750 			uvmexp.pdbusy++;
    751 			continue;
    752 		}
    753 
    754 		/* does the page belong to an object? */
    755 		if (uobj != NULL) {
    756 			uvmexp.pdobscan++;
    757 		} else {
    758 #if defined(VMSWAP)
    759 			KASSERT(anon != NULL);
    760 			uvmexp.pdanscan++;
    761 #else /* defined(VMSWAP) */
    762 			panic("%s: anon", __func__);
    763 #endif /* defined(VMSWAP) */
    764 		}
    765 
    766 
    767 		/*
    768 		 * we now have the object and the page queues locked.
    769 		 * if the page is not swap-backed, call the object's
    770 		 * pager to flush and free the page.
    771 		 */
    772 
    773 #if defined(READAHEAD_STATS)
    774 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    775 			p->pqflags &= ~PQ_READAHEAD;
    776 			uvm_ra_miss.ev_count++;
    777 		}
    778 #endif /* defined(READAHEAD_STATS) */
    779 
    780 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    781 			KASSERT(uobj != NULL);
    782 			mutex_exit(&uvm_pageqlock);
    783 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    784 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    785 			mutex_enter(&uvm_pageqlock);
    786 			continue;
    787 		}
    788 
    789 		/*
    790 		 * the page is swap-backed.  remove all the permissions
    791 		 * from the page so we can sync the modified info
    792 		 * without any race conditions.  if the page is clean
    793 		 * we can free it now and continue.
    794 		 */
    795 
    796 		pmap_page_protect(p, VM_PROT_NONE);
    797 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    798 			p->flags &= ~(PG_CLEAN);
    799 		}
    800 		if (p->flags & PG_CLEAN) {
    801 			int slot;
    802 			int pageidx;
    803 
    804 			pageidx = p->offset >> PAGE_SHIFT;
    805 			uvm_pagefree(p);
    806 			uvmexp.pdfreed++;
    807 
    808 			/*
    809 			 * for anons, we need to remove the page
    810 			 * from the anon ourselves.  for aobjs,
    811 			 * pagefree did that for us.
    812 			 */
    813 
    814 			if (anon) {
    815 				KASSERT(anon->an_swslot != 0);
    816 				anon->an_page = NULL;
    817 				slot = anon->an_swslot;
    818 			} else {
    819 				slot = uao_find_swslot(uobj, pageidx);
    820 			}
    821 			mutex_exit(slock);
    822 
    823 			if (slot > 0) {
    824 				/* this page is now only in swap. */
    825 				mutex_enter(&uvm_swap_data_lock);
    826 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    827 				uvmexp.swpgonly++;
    828 				mutex_exit(&uvm_swap_data_lock);
    829 			}
    830 			continue;
    831 		}
    832 
    833 #if defined(VMSWAP)
    834 		/*
    835 		 * this page is dirty, skip it if we'll have met our
    836 		 * free target when all the current pageouts complete.
    837 		 */
    838 
    839 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    840 			mutex_exit(slock);
    841 			continue;
    842 		}
    843 
    844 		/*
    845 		 * free any swap space allocated to the page since
    846 		 * we'll have to write it again with its new data.
    847 		 */
    848 
    849 		uvmpd_dropswap(p);
    850 
    851 		/*
    852 		 * start new swap pageout cluster (if necessary).
    853 		 *
    854 		 * if swap is full reactivate this page so that
    855 		 * we eventually cycle all pages through the
    856 		 * inactive queue.
    857 		 */
    858 
    859 		if (swapcluster_allocslots(&swc)) {
    860 			dirtyreacts++;
    861 			uvm_pageactivate(p);
    862 			mutex_exit(slock);
    863 			continue;
    864 		}
    865 
    866 		/*
    867 		 * at this point, we're definitely going reuse this
    868 		 * page.  mark the page busy and delayed-free.
    869 		 * we should remove the page from the page queues
    870 		 * so we don't ever look at it again.
    871 		 * adjust counters and such.
    872 		 */
    873 
    874 		p->flags |= PG_BUSY;
    875 		UVM_PAGE_OWN(p, "scan_queue");
    876 
    877 		p->flags |= PG_PAGEOUT;
    878 		uvm_pagedequeue(p);
    879 
    880 		uvmexp.pgswapout++;
    881 		mutex_exit(&uvm_pageqlock);
    882 
    883 		/*
    884 		 * add the new page to the cluster.
    885 		 */
    886 
    887 		if (swapcluster_add(&swc, p)) {
    888 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    889 			UVM_PAGE_OWN(p, NULL);
    890 			mutex_enter(&uvm_pageqlock);
    891 			dirtyreacts++;
    892 			uvm_pageactivate(p);
    893 			mutex_exit(slock);
    894 			continue;
    895 		}
    896 		mutex_exit(slock);
    897 
    898 		swapcluster_flush(&swc, false);
    899 		mutex_enter(&uvm_pageqlock);
    900 
    901 		/*
    902 		 * the pageout is in progress.  bump counters and set up
    903 		 * for the next loop.
    904 		 */
    905 
    906 		uvmexp.pdpending++;
    907 
    908 #else /* defined(VMSWAP) */
    909 		uvm_pageactivate(p);
    910 		mutex_exit(slock);
    911 #endif /* defined(VMSWAP) */
    912 	}
    913 
    914 #if defined(VMSWAP)
    915 	mutex_exit(&uvm_pageqlock);
    916 	swapcluster_flush(&swc, true);
    917 	mutex_enter(&uvm_pageqlock);
    918 #endif /* defined(VMSWAP) */
    919 }
    920 
    921 /*
    922  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    923  *
    924  * => called with pageq's locked
    925  */
    926 
    927 static void
    928 uvmpd_scan(void)
    929 {
    930 	int swap_shortage, pages_freed;
    931 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    932 
    933 	uvmexp.pdrevs++;
    934 
    935 	/*
    936 	 * work on meeting our targets.   first we work on our free target
    937 	 * by converting inactive pages into free pages.  then we work on
    938 	 * meeting our inactive target by converting active pages to
    939 	 * inactive ones.
    940 	 */
    941 
    942 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    943 
    944 	pages_freed = uvmexp.pdfreed;
    945 	uvmpd_scan_queue();
    946 	pages_freed = uvmexp.pdfreed - pages_freed;
    947 
    948 	/*
    949 	 * detect if we're not going to be able to page anything out
    950 	 * until we free some swap resources from active pages.
    951 	 */
    952 
    953 	swap_shortage = 0;
    954 	if (uvmexp.free < uvmexp.freetarg &&
    955 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    956 	    !uvm_swapisfull() &&
    957 	    pages_freed == 0) {
    958 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    959 	}
    960 
    961 	uvmpdpol_balancequeue(swap_shortage);
    962 
    963 	/*
    964 	 * swap out some processes if we are still below the minimum
    965 	 * free target.  we need to unlock the page queues for this.
    966 	 */
    967 
    968 	if (uvmexp.free < uvmexp.freemin && uvmexp.nswapdev != 0 &&
    969 	    uvm.swapout_enabled) {
    970 		uvmexp.pdswout++;
    971 		UVMHIST_LOG(pdhist,"  free %d < min %d: swapout",
    972 		    uvmexp.free, uvmexp.freemin, 0, 0);
    973 		mutex_exit(&uvm_pageqlock);
    974 		uvm_swapout_threads();
    975 		mutex_enter(&uvm_pageqlock);
    976 
    977 	}
    978 }
    979 
    980 /*
    981  * uvm_reclaimable: decide whether to wait for pagedaemon.
    982  *
    983  * => return true if it seems to be worth to do uvm_wait.
    984  *
    985  * XXX should be tunable.
    986  * XXX should consider pools, etc?
    987  */
    988 
    989 bool
    990 uvm_reclaimable(void)
    991 {
    992 	int filepages;
    993 	int active, inactive;
    994 
    995 	/*
    996 	 * if swap is not full, no problem.
    997 	 */
    998 
    999 	if (!uvm_swapisfull()) {
   1000 		return true;
   1001 	}
   1002 
   1003 	/*
   1004 	 * file-backed pages can be reclaimed even when swap is full.
   1005 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1006 	 *
   1007 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1008 	 *
   1009 	 * XXX should consider about other reclaimable memory.
   1010 	 * XXX ie. pools, traditional buffer cache.
   1011 	 */
   1012 
   1013 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1014 	uvm_estimatepageable(&active, &inactive);
   1015 	if (filepages >= MIN((active + inactive) >> 4,
   1016 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1017 		return true;
   1018 	}
   1019 
   1020 	/*
   1021 	 * kill the process, fail allocation, etc..
   1022 	 */
   1023 
   1024 	return false;
   1025 }
   1026 
   1027 void
   1028 uvm_estimatepageable(int *active, int *inactive)
   1029 {
   1030 
   1031 	uvmpdpol_estimatepageable(active, inactive);
   1032 }
   1033