uvm_pdaemon.c revision 1.93.4.2.4.2 1 /* $NetBSD: uvm_pdaemon.c,v 1.93.4.2.4.2 2011/06/03 07:59:58 matt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.93.4.2.4.2 2011/06/03 07:59:58 matt Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/pool.h>
84 #include <sys/buf.h>
85 #include <sys/atomic.h>
86
87 #include <uvm/uvm.h>
88 #include <uvm/uvm_pdpolicy.h>
89
90 /*
91 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
92 * in a pass thru the inactive list when swap is full. the value should be
93 * "small"... if it's too large we'll cycle the active pages thru the inactive
94 * queue too quickly to for them to be referenced and avoid being freed.
95 */
96
97 #define UVMPD_NUMDIRTYREACTS 16
98
99 #define UVMPD_NUMTRYLOCKOWNER 16
100
101 /*
102 * local prototypes
103 */
104
105 static void uvmpd_scan(void);
106 static void uvmpd_scan_queue(void);
107 static void uvmpd_tune(void);
108
109 unsigned int uvm_pagedaemon_waiters;
110
111 /*
112 * XXX hack to avoid hangs when large processes fork.
113 */
114 u_int uvm_extrapages;
115
116 static bool
117 uvm_color_needsscan_p(void)
118 {
119 struct pgfreelist *pgfl = uvm.page_free;
120 for (int color = 0; color < uvmexp.ncolors; color++, pgfl++) {
121 u_long freepages =
122 pgfl->pgfl_pages[PGFL_UNKNOWN]
123 + pgfl->pgfl_pages[PGFL_ZEROS];
124 if (freepages * uvmexp.ncolors < uvmexp.freetarg)
125 return true;
126 }
127 return false;
128 }
129
130 /*
131 * uvm_wait: wait (sleep) for the page daemon to free some pages
132 *
133 * => should be called with all locks released
134 * => should _not_ be called by the page daemon (to avoid deadlock)
135 */
136
137 void
138 uvm_wait(const char *wmsg)
139 {
140 int timo = 0;
141
142 mutex_spin_enter(&uvm_fpageqlock);
143
144 /*
145 * check for page daemon going to sleep (waiting for itself)
146 */
147
148 if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
149 /*
150 * now we have a problem: the pagedaemon wants to go to
151 * sleep until it frees more memory. but how can it
152 * free more memory if it is asleep? that is a deadlock.
153 * we have two options:
154 * [1] panic now
155 * [2] put a timeout on the sleep, thus causing the
156 * pagedaemon to only pause (rather than sleep forever)
157 *
158 * note that option [2] will only help us if we get lucky
159 * and some other process on the system breaks the deadlock
160 * by exiting or freeing memory (thus allowing the pagedaemon
161 * to continue). for now we panic if DEBUG is defined,
162 * otherwise we hope for the best with option [2] (better
163 * yet, this should never happen in the first place!).
164 */
165
166 printf("pagedaemon: deadlock detected!\n");
167 timo = hz >> 3; /* set timeout */
168 #if defined(DEBUG)
169 /* DEBUG: panic so we can debug it */
170 panic("pagedaemon deadlock");
171 #endif
172 }
173
174 uvm_pagedaemon_waiters++;
175 wakeup(&uvm.pagedaemon); /* wake the daemon! */
176 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
177 }
178
179 /*
180 * uvm_kick_pdaemon: perform checks to determine if we need to
181 * give the pagedaemon a nudge, and do so if necessary.
182 *
183 * => called with uvm_fpageqlock held.
184 */
185
186 void
187 uvm_kick_pdaemon(void)
188 {
189
190 KASSERT(mutex_owned(&uvm_fpageqlock));
191
192 if (uvmexp.free + uvmexp.paging < uvmexp.freemin
193 || (uvmexp.free + uvmexp.paging < uvmexp.freetarg
194 && uvmpdpol_needsscan_p())
195 || uvm_color_needsscan_p()) {
196 wakeup(&uvm.pagedaemon);
197 }
198 }
199
200 /*
201 * uvmpd_tune: tune paging parameters
202 *
203 * => called when ever memory is added (or removed?) to the system
204 * => caller must call with page queues locked
205 */
206
207 static void
208 uvmpd_tune(void)
209 {
210 int val;
211
212 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
213
214 /*
215 * try to keep 0.5% of available RAM free, but limit to between
216 * 128k and 1024k per-CPU. XXX: what are these values good for?
217 */
218 val = uvmexp.npages / 200;
219 val = MAX(val, (128*1024) >> PAGE_SHIFT);
220 val = MIN(val, (1024*1024) >> PAGE_SHIFT);
221 val *= ncpu;
222
223 /* Make sure there's always a user page free. */
224 if (val < uvmexp.reserve_kernel + 1)
225 val = uvmexp.reserve_kernel + 1;
226 uvmexp.freemin = val;
227
228 /* Calculate free target. */
229 val = (uvmexp.freemin * 4) / 3;
230 if (val <= uvmexp.freemin)
231 val = uvmexp.freemin + 1;
232 uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
233
234 uvmexp.wiredmax = uvmexp.npages / 3;
235 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
236 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
237 }
238
239 /*
240 * uvm_pageout: the main loop for the pagedaemon
241 */
242
243 void
244 uvm_pageout(void *arg)
245 {
246 int bufcnt, npages = 0;
247 int extrapages = 0;
248 struct pool *pp;
249 uint64_t where;
250 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
251
252 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
253
254 /*
255 * ensure correct priority and set paging parameters...
256 */
257
258 uvm.pagedaemon_lwp = curlwp;
259 mutex_enter(&uvm_pageqlock);
260 npages = uvmexp.npages;
261 uvmpd_tune();
262 mutex_exit(&uvm_pageqlock);
263
264 /*
265 * main loop
266 */
267
268 for (;;) {
269 bool needsscan, needsfree;
270
271 mutex_spin_enter(&uvm_fpageqlock);
272 if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
273 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
274 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
275 &uvm_fpageqlock, false, "pgdaemon", 0);
276 uvmexp.pdwoke++;
277 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
278 } else {
279 mutex_spin_exit(&uvm_fpageqlock);
280 }
281
282 /*
283 * now lock page queues and recompute inactive count
284 */
285
286 mutex_enter(&uvm_pageqlock);
287 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
288 npages = uvmexp.npages;
289 extrapages = uvm_extrapages;
290 mutex_spin_enter(&uvm_fpageqlock);
291 uvmpd_tune();
292 mutex_spin_exit(&uvm_fpageqlock);
293 }
294
295 uvmpdpol_tune();
296
297 /*
298 * Estimate a hint. Note that bufmem are returned to
299 * system only when entire pool page is empty.
300 */
301 mutex_spin_enter(&uvm_fpageqlock);
302 bufcnt = uvmexp.freetarg - uvmexp.free;
303 if (bufcnt < 0)
304 bufcnt = 0;
305
306 UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
307 uvmexp.free, uvmexp.freetarg, 0,0);
308
309 needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
310 needsscan = needsfree || uvmpdpol_needsscan_p();
311 needsscan = needsscan || uvm_color_needsscan_p();
312
313 /*
314 * scan if needed
315 */
316 if (needsscan) {
317 mutex_spin_exit(&uvm_fpageqlock);
318 uvmpd_scan();
319 mutex_spin_enter(&uvm_fpageqlock);
320 }
321
322 /*
323 * if there's any free memory to be had,
324 * wake up any waiters.
325 */
326 if (uvmexp.free > uvmexp.reserve_kernel ||
327 uvmexp.paging == 0) {
328 wakeup(&uvmexp.free);
329 uvm_pagedaemon_waiters = 0;
330 }
331 mutex_spin_exit(&uvm_fpageqlock);
332
333 /*
334 * scan done. unlock page queues (the only lock we are holding)
335 */
336 mutex_exit(&uvm_pageqlock);
337
338 /*
339 * if we don't need free memory, we're done.
340 */
341
342 if (!needsfree)
343 continue;
344
345 /*
346 * start draining pool resources now that we're not
347 * holding any locks.
348 */
349 pool_drain_start(&pp, &where);
350
351 /*
352 * kill unused metadata buffers.
353 */
354 mutex_enter(&bufcache_lock);
355 buf_drain(bufcnt << PAGE_SHIFT);
356 mutex_exit(&bufcache_lock);
357
358 /*
359 * complete draining the pools.
360 */
361 pool_drain_end(pp, where);
362 }
363 /*NOTREACHED*/
364 }
365
366
367 /*
368 * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
369 */
370
371 void
372 uvm_aiodone_worker(struct work *wk, void *dummy)
373 {
374 struct buf *bp = (void *)wk;
375
376 KASSERT(&bp->b_work == wk);
377
378 /*
379 * process an i/o that's done.
380 */
381
382 (*bp->b_iodone)(bp);
383 }
384
385 void
386 uvm_pageout_start(int npages)
387 {
388
389 mutex_spin_enter(&uvm_fpageqlock);
390 uvmexp.paging += npages;
391 mutex_spin_exit(&uvm_fpageqlock);
392 }
393
394 void
395 uvm_pageout_done(int npages)
396 {
397
398 mutex_spin_enter(&uvm_fpageqlock);
399 KASSERT(uvmexp.paging >= npages);
400 uvmexp.paging -= npages;
401
402 /*
403 * wake up either of pagedaemon or LWPs waiting for it.
404 */
405
406 if (uvmexp.free <= uvmexp.reserve_kernel) {
407 wakeup(&uvm.pagedaemon);
408 } else {
409 wakeup(&uvmexp.free);
410 uvm_pagedaemon_waiters = 0;
411 }
412 mutex_spin_exit(&uvm_fpageqlock);
413 }
414
415 /*
416 * uvmpd_trylockowner: trylock the page's owner.
417 *
418 * => called with pageq locked.
419 * => resolve orphaned O->A loaned page.
420 * => return the locked mutex on success. otherwise, return NULL.
421 */
422
423 kmutex_t *
424 uvmpd_trylockowner(struct vm_page *pg)
425 {
426 struct uvm_object *uobj = pg->uobject;
427 kmutex_t *slock;
428
429 KASSERT(mutex_owned(&uvm_pageqlock));
430
431 if (uobj != NULL) {
432 slock = &uobj->vmobjlock;
433 } else {
434 struct vm_anon *anon = pg->uanon;
435
436 KASSERT(anon != NULL);
437 slock = &anon->an_lock;
438 }
439
440 if (!mutex_tryenter(slock)) {
441 return NULL;
442 }
443
444 if (uobj == NULL) {
445
446 /*
447 * set PQ_ANON if it isn't set already.
448 */
449
450 if ((pg->pqflags & PQ_ANON) == 0) {
451 KASSERT(pg->loan_count > 0);
452 pg->loan_count--;
453 pg->pqflags |= PQ_ANON;
454 /* anon now owns it */
455 }
456 }
457
458 return slock;
459 }
460
461 #if defined(VMSWAP)
462 struct swapcluster {
463 int swc_slot;
464 int swc_nallocated;
465 int swc_nused;
466 struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
467 };
468
469 static void
470 swapcluster_init(struct swapcluster *swc)
471 {
472
473 swc->swc_slot = 0;
474 swc->swc_nused = 0;
475 }
476
477 static int
478 swapcluster_allocslots(struct swapcluster *swc)
479 {
480 int slot;
481 int npages;
482
483 if (swc->swc_slot != 0) {
484 return 0;
485 }
486
487 /* Even with strange MAXPHYS, the shift
488 implicitly rounds down to a page. */
489 npages = MAXPHYS >> PAGE_SHIFT;
490 slot = uvm_swap_alloc(&npages, true);
491 if (slot == 0) {
492 return ENOMEM;
493 }
494 swc->swc_slot = slot;
495 swc->swc_nallocated = npages;
496 swc->swc_nused = 0;
497
498 return 0;
499 }
500
501 static int
502 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
503 {
504 int slot;
505 struct uvm_object *uobj;
506
507 KASSERT(swc->swc_slot != 0);
508 KASSERT(swc->swc_nused < swc->swc_nallocated);
509 KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
510
511 slot = swc->swc_slot + swc->swc_nused;
512 uobj = pg->uobject;
513 if (uobj == NULL) {
514 KASSERT(mutex_owned(&pg->uanon->an_lock));
515 pg->uanon->an_swslot = slot;
516 } else {
517 int result;
518
519 KASSERT(mutex_owned(&uobj->vmobjlock));
520 result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
521 if (result == -1) {
522 return ENOMEM;
523 }
524 }
525 swc->swc_pages[swc->swc_nused] = pg;
526 swc->swc_nused++;
527
528 return 0;
529 }
530
531 static void
532 swapcluster_flush(struct swapcluster *swc, bool now)
533 {
534 int slot;
535 int nused;
536 int nallocated;
537 int error;
538
539 if (swc->swc_slot == 0) {
540 return;
541 }
542 KASSERT(swc->swc_nused <= swc->swc_nallocated);
543
544 slot = swc->swc_slot;
545 nused = swc->swc_nused;
546 nallocated = swc->swc_nallocated;
547
548 /*
549 * if this is the final pageout we could have a few
550 * unused swap blocks. if so, free them now.
551 */
552
553 if (nused < nallocated) {
554 if (!now) {
555 return;
556 }
557 uvm_swap_free(slot + nused, nallocated - nused);
558 }
559
560 /*
561 * now start the pageout.
562 */
563
564 if (nused > 0) {
565 uvmexp.pdpageouts++;
566 uvm_pageout_start(nused);
567 error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
568 KASSERT(error == 0 || error == ENOMEM);
569 }
570
571 /*
572 * zero swslot to indicate that we are
573 * no longer building a swap-backed cluster.
574 */
575
576 swc->swc_slot = 0;
577 swc->swc_nused = 0;
578 }
579
580 static int
581 swapcluster_nused(struct swapcluster *swc)
582 {
583
584 return swc->swc_nused;
585 }
586
587 /*
588 * uvmpd_dropswap: free any swap allocated to this page.
589 *
590 * => called with owner locked.
591 * => return true if a page had an associated slot.
592 */
593
594 static bool
595 uvmpd_dropswap(struct vm_page *pg)
596 {
597 bool result = false;
598 struct vm_anon *anon = pg->uanon;
599
600 if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
601 uvm_swap_free(anon->an_swslot, 1);
602 anon->an_swslot = 0;
603 pg->flags &= ~PG_CLEAN;
604 result = true;
605 } else if (pg->pqflags & PQ_AOBJ) {
606 int slot = uao_set_swslot(pg->uobject,
607 pg->offset >> PAGE_SHIFT, 0);
608 if (slot) {
609 uvm_swap_free(slot, 1);
610 pg->flags &= ~PG_CLEAN;
611 result = true;
612 }
613 }
614
615 return result;
616 }
617
618 /*
619 * uvmpd_trydropswap: try to free any swap allocated to this page.
620 *
621 * => return true if a slot is successfully freed.
622 */
623
624 bool
625 uvmpd_trydropswap(struct vm_page *pg)
626 {
627 kmutex_t *slock;
628 bool result;
629
630 if ((pg->flags & PG_BUSY) != 0) {
631 return false;
632 }
633
634 /*
635 * lock the page's owner.
636 */
637
638 slock = uvmpd_trylockowner(pg);
639 if (slock == NULL) {
640 return false;
641 }
642
643 /*
644 * skip this page if it's busy.
645 */
646
647 if ((pg->flags & PG_BUSY) != 0) {
648 mutex_exit(slock);
649 return false;
650 }
651
652 result = uvmpd_dropswap(pg);
653
654 mutex_exit(slock);
655
656 return result;
657 }
658
659 #endif /* defined(VMSWAP) */
660
661 /*
662 * uvmpd_scan_queue: scan an replace candidate list for pages
663 * to clean or free.
664 *
665 * => called with page queues locked
666 * => we work on meeting our free target by converting inactive pages
667 * into free pages.
668 * => we handle the building of swap-backed clusters
669 */
670
671 static void
672 uvmpd_scan_queue(void)
673 {
674 struct vm_page *p;
675 struct uvm_object *uobj;
676 struct vm_anon *anon;
677 #if defined(VMSWAP)
678 struct swapcluster swc;
679 #endif /* defined(VMSWAP) */
680 int dirtyreacts;
681 int lockownerfail;
682 kmutex_t *slock;
683 UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
684
685 /*
686 * swslot is non-zero if we are building a swap cluster. we want
687 * to stay in the loop while we have a page to scan or we have
688 * a swap-cluster to build.
689 */
690
691 #if defined(VMSWAP)
692 swapcluster_init(&swc);
693 #endif /* defined(VMSWAP) */
694
695 dirtyreacts = 0;
696 lockownerfail = 0;
697 uvmpdpol_scaninit();
698
699 while (/* CONSTCOND */ 1) {
700
701 /*
702 * see if we've met the free target.
703 */
704
705 if (uvmexp.free + uvmexp.paging
706 #if defined(VMSWAP)
707 + swapcluster_nused(&swc)
708 #endif /* defined(VMSWAP) */
709 >= uvmexp.freetarg << 2 ||
710 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
711 UVMHIST_LOG(pdhist," met free target: "
712 "exit loop", 0, 0, 0, 0);
713 break;
714 }
715
716 p = uvmpdpol_selectvictim();
717 if (p == NULL) {
718 break;
719 }
720 KASSERT(uvmpdpol_pageisqueued_p(p));
721 KASSERT(p->wire_count == 0);
722
723 /*
724 * we are below target and have a new page to consider.
725 */
726
727 anon = p->uanon;
728 uobj = p->uobject;
729
730 /*
731 * first we attempt to lock the object that this page
732 * belongs to. if our attempt fails we skip on to
733 * the next page (no harm done). it is important to
734 * "try" locking the object as we are locking in the
735 * wrong order (pageq -> object) and we don't want to
736 * deadlock.
737 *
738 * the only time we expect to see an ownerless page
739 * (i.e. a page with no uobject and !PQ_ANON) is if an
740 * anon has loaned a page from a uvm_object and the
741 * uvm_object has dropped the ownership. in that
742 * case, the anon can "take over" the loaned page
743 * and make it its own.
744 */
745
746 slock = uvmpd_trylockowner(p);
747 if (slock == NULL) {
748 /*
749 * yield cpu to make a chance for an LWP holding
750 * the lock run. otherwise we can busy-loop too long
751 * if the page queue is filled with a lot of pages
752 * from few objects.
753 */
754 lockownerfail++;
755 if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
756 mutex_exit(&uvm_pageqlock);
757 /* XXX Better than yielding but inadequate. */
758 kpause("livelock", false, 1, NULL);
759 mutex_enter(&uvm_pageqlock);
760 lockownerfail = 0;
761 }
762 continue;
763 }
764 if (p->flags & PG_BUSY) {
765 mutex_exit(slock);
766 uvmexp.pdbusy++;
767 continue;
768 }
769
770 /* does the page belong to an object? */
771 if (uobj != NULL) {
772 uvmexp.pdobscan++;
773 } else {
774 #if defined(VMSWAP)
775 KASSERT(anon != NULL);
776 uvmexp.pdanscan++;
777 #else /* defined(VMSWAP) */
778 panic("%s: anon", __func__);
779 #endif /* defined(VMSWAP) */
780 }
781
782
783 /*
784 * we now have the object and the page queues locked.
785 * if the page is not swap-backed, call the object's
786 * pager to flush and free the page.
787 */
788
789 #if defined(READAHEAD_STATS)
790 if ((p->pqflags & PQ_READAHEAD) != 0) {
791 p->pqflags &= ~PQ_READAHEAD;
792 uvm_ra_miss.ev_count++;
793 }
794 #endif /* defined(READAHEAD_STATS) */
795
796 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
797 KASSERT(uobj != NULL);
798 mutex_exit(&uvm_pageqlock);
799 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
800 p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
801 mutex_enter(&uvm_pageqlock);
802 continue;
803 }
804
805 /*
806 * the page is swap-backed. remove all the permissions
807 * from the page so we can sync the modified info
808 * without any race conditions. if the page is clean
809 * we can free it now and continue.
810 */
811
812 pmap_page_protect(p, VM_PROT_NONE);
813 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
814 p->flags &= ~(PG_CLEAN);
815 }
816 if (p->flags & PG_CLEAN) {
817 int slot;
818 int pageidx;
819
820 pageidx = p->offset >> PAGE_SHIFT;
821 uvm_pagefree(p);
822 uvmexp.pdfreed++;
823
824 /*
825 * for anons, we need to remove the page
826 * from the anon ourselves. for aobjs,
827 * pagefree did that for us.
828 */
829
830 if (anon) {
831 KASSERT(anon->an_swslot != 0);
832 anon->an_page = NULL;
833 slot = anon->an_swslot;
834 } else {
835 slot = uao_find_swslot(uobj, pageidx);
836 }
837 mutex_exit(slock);
838
839 if (slot > 0) {
840 /* this page is now only in swap. */
841 mutex_enter(&uvm_swap_data_lock);
842 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
843 uvmexp.swpgonly++;
844 mutex_exit(&uvm_swap_data_lock);
845 }
846 continue;
847 }
848
849 #if defined(VMSWAP)
850 /*
851 * this page is dirty, skip it if we'll have met our
852 * free target when all the current pageouts complete.
853 */
854
855 if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
856 mutex_exit(slock);
857 continue;
858 }
859
860 /*
861 * free any swap space allocated to the page since
862 * we'll have to write it again with its new data.
863 */
864
865 uvmpd_dropswap(p);
866
867 /*
868 * start new swap pageout cluster (if necessary).
869 *
870 * if swap is full reactivate this page so that
871 * we eventually cycle all pages through the
872 * inactive queue.
873 */
874
875 if (swapcluster_allocslots(&swc)) {
876 dirtyreacts++;
877 uvm_pageactivate(p);
878 mutex_exit(slock);
879 continue;
880 }
881
882 /*
883 * at this point, we're definitely going reuse this
884 * page. mark the page busy and delayed-free.
885 * we should remove the page from the page queues
886 * so we don't ever look at it again.
887 * adjust counters and such.
888 */
889
890 p->flags |= PG_BUSY;
891 UVM_PAGE_OWN(p, "scan_queue");
892
893 p->flags |= PG_PAGEOUT;
894 uvm_pagedequeue(p);
895
896 uvmexp.pgswapout++;
897 mutex_exit(&uvm_pageqlock);
898
899 /*
900 * add the new page to the cluster.
901 */
902
903 if (swapcluster_add(&swc, p)) {
904 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
905 UVM_PAGE_OWN(p, NULL);
906 mutex_enter(&uvm_pageqlock);
907 dirtyreacts++;
908 uvm_pageactivate(p);
909 mutex_exit(slock);
910 continue;
911 }
912 mutex_exit(slock);
913
914 swapcluster_flush(&swc, false);
915 mutex_enter(&uvm_pageqlock);
916
917 /*
918 * the pageout is in progress. bump counters and set up
919 * for the next loop.
920 */
921
922 uvmexp.pdpending++;
923
924 #else /* defined(VMSWAP) */
925 uvm_pageactivate(p);
926 mutex_exit(slock);
927 #endif /* defined(VMSWAP) */
928 }
929
930 #if defined(VMSWAP)
931 mutex_exit(&uvm_pageqlock);
932 swapcluster_flush(&swc, true);
933 mutex_enter(&uvm_pageqlock);
934 #endif /* defined(VMSWAP) */
935 }
936
937 /*
938 * uvmpd_scan: scan the page queues and attempt to meet our targets.
939 *
940 * => called with pageq's locked
941 */
942
943 static void
944 uvmpd_scan(void)
945 {
946 int swap_shortage, pages_freed;
947 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
948
949 uvmexp.pdrevs++;
950
951 /*
952 * work on meeting our targets. first we work on our free target
953 * by converting inactive pages into free pages. then we work on
954 * meeting our inactive target by converting active pages to
955 * inactive ones.
956 */
957
958 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
959
960 pages_freed = uvmexp.pdfreed;
961 uvmpd_scan_queue();
962 pages_freed = uvmexp.pdfreed - pages_freed;
963
964 /*
965 * detect if we're not going to be able to page anything out
966 * until we free some swap resources from active pages.
967 */
968
969 swap_shortage = 0;
970 if (uvmexp.free < uvmexp.freetarg &&
971 uvmexp.swpginuse >= uvmexp.swpgavail &&
972 !uvm_swapisfull() &&
973 pages_freed == 0) {
974 swap_shortage = uvmexp.freetarg - uvmexp.free;
975 }
976
977 uvmpdpol_balancequeue(swap_shortage);
978
979 /*
980 * swap out some processes if we are still below the minimum
981 * free target. we need to unlock the page queues for this.
982 */
983
984 if (uvmexp.free < uvmexp.freemin && uvmexp.nswapdev != 0 &&
985 uvm.swapout_enabled) {
986 uvmexp.pdswout++;
987 UVMHIST_LOG(pdhist," free %d < min %d: swapout",
988 uvmexp.free, uvmexp.freemin, 0, 0);
989 mutex_exit(&uvm_pageqlock);
990 uvm_swapout_threads();
991 mutex_enter(&uvm_pageqlock);
992
993 }
994 }
995
996 /*
997 * uvm_reclaimable: decide whether to wait for pagedaemon.
998 *
999 * => return true if it seems to be worth to do uvm_wait.
1000 *
1001 * XXX should be tunable.
1002 * XXX should consider pools, etc?
1003 */
1004
1005 bool
1006 uvm_reclaimable(void)
1007 {
1008 int filepages;
1009 int active, inactive;
1010
1011 /*
1012 * if swap is not full, no problem.
1013 */
1014
1015 if (!uvm_swapisfull()) {
1016 return true;
1017 }
1018
1019 /*
1020 * file-backed pages can be reclaimed even when swap is full.
1021 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1022 *
1023 * XXX assume the worst case, ie. all wired pages are file-backed.
1024 *
1025 * XXX should consider about other reclaimable memory.
1026 * XXX ie. pools, traditional buffer cache.
1027 */
1028
1029 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1030 uvm_estimatepageable(&active, &inactive);
1031 if (filepages >= MIN((active + inactive) >> 4,
1032 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1033 return true;
1034 }
1035
1036 /*
1037 * kill the process, fail allocation, etc..
1038 */
1039
1040 return false;
1041 }
1042
1043 void
1044 uvm_estimatepageable(int *active, int *inactive)
1045 {
1046
1047 uvmpdpol_estimatepageable(active, inactive);
1048 }
1049