Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.98
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.98 2009/08/10 23:17:29 haad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.98 2009/08/10 23:17:29 haad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 #include <sys/module.h>
     86 #include <sys/atomic.h>
     87 
     88 #include <uvm/uvm.h>
     89 #include <uvm/uvm_pdpolicy.h>
     90 
     91 /*
     92  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     93  * in a pass thru the inactive list when swap is full.  the value should be
     94  * "small"... if it's too large we'll cycle the active pages thru the inactive
     95  * queue too quickly to for them to be referenced and avoid being freed.
     96  */
     97 
     98 #define	UVMPD_NUMDIRTYREACTS	16
     99 
    100 #define	UVMPD_NUMTRYLOCKOWNER	16
    101 
    102 /*
    103  * local prototypes
    104  */
    105 
    106 static void	uvmpd_scan(void);
    107 static void	uvmpd_scan_queue(void);
    108 static void	uvmpd_tune(void);
    109 
    110 unsigned int uvm_pagedaemon_waiters;
    111 
    112 /*
    113  * XXX hack to avoid hangs when large processes fork.
    114  */
    115 u_int uvm_extrapages;
    116 
    117 static kmutex_t uvm_reclaim_lock;
    118 
    119 SLIST_HEAD(uvm_reclaim_hooks, uvm_reclaim_hook) uvm_reclaim_list;
    120 
    121 
    122 /*
    123  * uvm_wait: wait (sleep) for the page daemon to free some pages
    124  *
    125  * => should be called with all locks released
    126  * => should _not_ be called by the page daemon (to avoid deadlock)
    127  */
    128 
    129 void
    130 uvm_wait(const char *wmsg)
    131 {
    132 	int timo = 0;
    133 
    134 	mutex_spin_enter(&uvm_fpageqlock);
    135 
    136 	/*
    137 	 * check for page daemon going to sleep (waiting for itself)
    138 	 */
    139 
    140 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    141 		/*
    142 		 * now we have a problem: the pagedaemon wants to go to
    143 		 * sleep until it frees more memory.   but how can it
    144 		 * free more memory if it is asleep?  that is a deadlock.
    145 		 * we have two options:
    146 		 *  [1] panic now
    147 		 *  [2] put a timeout on the sleep, thus causing the
    148 		 *      pagedaemon to only pause (rather than sleep forever)
    149 		 *
    150 		 * note that option [2] will only help us if we get lucky
    151 		 * and some other process on the system breaks the deadlock
    152 		 * by exiting or freeing memory (thus allowing the pagedaemon
    153 		 * to continue).  for now we panic if DEBUG is defined,
    154 		 * otherwise we hope for the best with option [2] (better
    155 		 * yet, this should never happen in the first place!).
    156 		 */
    157 
    158 		printf("pagedaemon: deadlock detected!\n");
    159 		timo = hz >> 3;		/* set timeout */
    160 #if defined(DEBUG)
    161 		/* DEBUG: panic so we can debug it */
    162 		panic("pagedaemon deadlock");
    163 #endif
    164 	}
    165 
    166 	uvm_pagedaemon_waiters++;
    167 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    168 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    169 }
    170 
    171 /*
    172  * uvm_kick_pdaemon: perform checks to determine if we need to
    173  * give the pagedaemon a nudge, and do so if necessary.
    174  *
    175  * => called with uvm_fpageqlock held.
    176  */
    177 
    178 void
    179 uvm_kick_pdaemon(void)
    180 {
    181 
    182 	KASSERT(mutex_owned(&uvm_fpageqlock));
    183 
    184 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    185 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    186 	     uvmpdpol_needsscan_p())) {
    187 		wakeup(&uvm.pagedaemon);
    188 	}
    189 }
    190 
    191 /*
    192  * uvmpd_tune: tune paging parameters
    193  *
    194  * => called when ever memory is added (or removed?) to the system
    195  * => caller must call with page queues locked
    196  */
    197 
    198 static void
    199 uvmpd_tune(void)
    200 {
    201 	int val;
    202 
    203 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    204 
    205 	/*
    206 	 * try to keep 0.5% of available RAM free, but limit to between
    207 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    208 	 */
    209 	val = uvmexp.npages / 200;
    210 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    211 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    212 	val *= ncpu;
    213 
    214 	/* Make sure there's always a user page free. */
    215 	if (val < uvmexp.reserve_kernel + 1)
    216 		val = uvmexp.reserve_kernel + 1;
    217 	uvmexp.freemin = val;
    218 
    219 	/* Calculate free target. */
    220 	val = (uvmexp.freemin * 4) / 3;
    221 	if (val <= uvmexp.freemin)
    222 		val = uvmexp.freemin + 1;
    223 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    224 
    225 	uvmexp.wiredmax = uvmexp.npages / 3;
    226 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    227 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    228 }
    229 
    230 /*
    231  * uvm_pageout: the main loop for the pagedaemon
    232  */
    233 
    234 void
    235 uvm_pageout(void *arg)
    236 {
    237 	int bufcnt, npages = 0;
    238 	int extrapages = 0;
    239 	struct pool *pp;
    240 	uint64_t where;
    241 	struct uvm_reclaim_hook *hook;
    242 
    243 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    244 
    245 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    246 
    247 	/*
    248 	 * ensure correct priority and set paging parameters...
    249 	 */
    250 
    251 	uvm.pagedaemon_lwp = curlwp;
    252 	mutex_enter(&uvm_pageqlock);
    253 	npages = uvmexp.npages;
    254 	uvmpd_tune();
    255 	mutex_exit(&uvm_pageqlock);
    256 
    257 	/*
    258 	 * main loop
    259 	 */
    260 
    261 	for (;;) {
    262 		bool needsscan, needsfree;
    263 
    264 		mutex_spin_enter(&uvm_fpageqlock);
    265 		if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
    266 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    267 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    268 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    269 			uvmexp.pdwoke++;
    270 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    271 		} else {
    272 			mutex_spin_exit(&uvm_fpageqlock);
    273 		}
    274 
    275 		/*
    276 		 * now lock page queues and recompute inactive count
    277 		 */
    278 
    279 		mutex_enter(&uvm_pageqlock);
    280 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    281 			npages = uvmexp.npages;
    282 			extrapages = uvm_extrapages;
    283 			mutex_spin_enter(&uvm_fpageqlock);
    284 			uvmpd_tune();
    285 			mutex_spin_exit(&uvm_fpageqlock);
    286 		}
    287 
    288 		uvmpdpol_tune();
    289 
    290 		/*
    291 		 * Estimate a hint.  Note that bufmem are returned to
    292 		 * system only when entire pool page is empty.
    293 		 */
    294 		mutex_spin_enter(&uvm_fpageqlock);
    295 		bufcnt = uvmexp.freetarg - uvmexp.free;
    296 		if (bufcnt < 0)
    297 			bufcnt = 0;
    298 
    299 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    300 		    uvmexp.free, uvmexp.freetarg, 0,0);
    301 
    302 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    303 		needsscan = needsfree || uvmpdpol_needsscan_p();
    304 
    305 		/*
    306 		 * scan if needed
    307 		 */
    308 		if (needsscan) {
    309 			mutex_spin_exit(&uvm_fpageqlock);
    310 			uvmpd_scan();
    311 			mutex_spin_enter(&uvm_fpageqlock);
    312 		}
    313 
    314 		/*
    315 		 * if there's any free memory to be had,
    316 		 * wake up any waiters.
    317 		 */
    318 		if (uvmexp.free > uvmexp.reserve_kernel ||
    319 		    uvmexp.paging == 0) {
    320 			wakeup(&uvmexp.free);
    321 			uvm_pagedaemon_waiters = 0;
    322 		}
    323 		mutex_spin_exit(&uvm_fpageqlock);
    324 
    325 		/*
    326 		 * scan done.  unlock page queues (the only lock we are holding)
    327 		 */
    328 		mutex_exit(&uvm_pageqlock);
    329 
    330 		/*
    331 		 * if we don't need free memory, we're done.
    332 		 */
    333 
    334 		if (!needsfree)
    335 			continue;
    336 
    337 		/*
    338 		 * start draining pool resources now that we're not
    339 		 * holding any locks.
    340 		 */
    341 		pool_drain_start(&pp, &where);
    342 
    343 		/*
    344 		 * kill unused metadata buffers.
    345 		 */
    346 		mutex_enter(&bufcache_lock);
    347 		buf_drain(bufcnt << PAGE_SHIFT);
    348 		mutex_exit(&bufcache_lock);
    349 
    350 		mutex_enter(&uvm_reclaim_lock);
    351 		SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
    352 			(*hook->uvm_reclaim_hook)();
    353 		}
    354 		mutex_exit(&uvm_reclaim_lock);
    355 
    356 
    357 		/*
    358 		 * complete draining the pools.
    359 		 */
    360 		pool_drain_end(pp, where);
    361 	}
    362 	/*NOTREACHED*/
    363 }
    364 
    365 
    366 /*
    367  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    368  */
    369 
    370 void
    371 uvm_aiodone_worker(struct work *wk, void *dummy)
    372 {
    373 	struct buf *bp = (void *)wk;
    374 
    375 	KASSERT(&bp->b_work == wk);
    376 
    377 	/*
    378 	 * process an i/o that's done.
    379 	 */
    380 
    381 	(*bp->b_iodone)(bp);
    382 }
    383 
    384 void
    385 uvm_pageout_start(int npages)
    386 {
    387 
    388 	mutex_spin_enter(&uvm_fpageqlock);
    389 	uvmexp.paging += npages;
    390 	mutex_spin_exit(&uvm_fpageqlock);
    391 }
    392 
    393 void
    394 uvm_pageout_done(int npages)
    395 {
    396 
    397 	mutex_spin_enter(&uvm_fpageqlock);
    398 	KASSERT(uvmexp.paging >= npages);
    399 	uvmexp.paging -= npages;
    400 
    401 	/*
    402 	 * wake up either of pagedaemon or LWPs waiting for it.
    403 	 */
    404 
    405 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    406 		wakeup(&uvm.pagedaemon);
    407 	} else {
    408 		wakeup(&uvmexp.free);
    409 		uvm_pagedaemon_waiters = 0;
    410 	}
    411 	mutex_spin_exit(&uvm_fpageqlock);
    412 }
    413 
    414 /*
    415  * uvmpd_trylockowner: trylock the page's owner.
    416  *
    417  * => called with pageq locked.
    418  * => resolve orphaned O->A loaned page.
    419  * => return the locked mutex on success.  otherwise, return NULL.
    420  */
    421 
    422 kmutex_t *
    423 uvmpd_trylockowner(struct vm_page *pg)
    424 {
    425 	struct uvm_object *uobj = pg->uobject;
    426 	kmutex_t *slock;
    427 
    428 	KASSERT(mutex_owned(&uvm_pageqlock));
    429 
    430 	if (uobj != NULL) {
    431 		slock = &uobj->vmobjlock;
    432 	} else {
    433 		struct vm_anon *anon = pg->uanon;
    434 
    435 		KASSERT(anon != NULL);
    436 		slock = &anon->an_lock;
    437 	}
    438 
    439 	if (!mutex_tryenter(slock)) {
    440 		return NULL;
    441 	}
    442 
    443 	if (uobj == NULL) {
    444 
    445 		/*
    446 		 * set PQ_ANON if it isn't set already.
    447 		 */
    448 
    449 		if ((pg->pqflags & PQ_ANON) == 0) {
    450 			KASSERT(pg->loan_count > 0);
    451 			pg->loan_count--;
    452 			pg->pqflags |= PQ_ANON;
    453 			/* anon now owns it */
    454 		}
    455 	}
    456 
    457 	return slock;
    458 }
    459 
    460 #if defined(VMSWAP)
    461 struct swapcluster {
    462 	int swc_slot;
    463 	int swc_nallocated;
    464 	int swc_nused;
    465 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    466 };
    467 
    468 static void
    469 swapcluster_init(struct swapcluster *swc)
    470 {
    471 
    472 	swc->swc_slot = 0;
    473 	swc->swc_nused = 0;
    474 }
    475 
    476 static int
    477 swapcluster_allocslots(struct swapcluster *swc)
    478 {
    479 	int slot;
    480 	int npages;
    481 
    482 	if (swc->swc_slot != 0) {
    483 		return 0;
    484 	}
    485 
    486 	/* Even with strange MAXPHYS, the shift
    487 	   implicitly rounds down to a page. */
    488 	npages = MAXPHYS >> PAGE_SHIFT;
    489 	slot = uvm_swap_alloc(&npages, true);
    490 	if (slot == 0) {
    491 		return ENOMEM;
    492 	}
    493 	swc->swc_slot = slot;
    494 	swc->swc_nallocated = npages;
    495 	swc->swc_nused = 0;
    496 
    497 	return 0;
    498 }
    499 
    500 static int
    501 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    502 {
    503 	int slot;
    504 	struct uvm_object *uobj;
    505 
    506 	KASSERT(swc->swc_slot != 0);
    507 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    508 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    509 
    510 	slot = swc->swc_slot + swc->swc_nused;
    511 	uobj = pg->uobject;
    512 	if (uobj == NULL) {
    513 		KASSERT(mutex_owned(&pg->uanon->an_lock));
    514 		pg->uanon->an_swslot = slot;
    515 	} else {
    516 		int result;
    517 
    518 		KASSERT(mutex_owned(&uobj->vmobjlock));
    519 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    520 		if (result == -1) {
    521 			return ENOMEM;
    522 		}
    523 	}
    524 	swc->swc_pages[swc->swc_nused] = pg;
    525 	swc->swc_nused++;
    526 
    527 	return 0;
    528 }
    529 
    530 static void
    531 swapcluster_flush(struct swapcluster *swc, bool now)
    532 {
    533 	int slot;
    534 	int nused;
    535 	int nallocated;
    536 	int error;
    537 
    538 	if (swc->swc_slot == 0) {
    539 		return;
    540 	}
    541 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    542 
    543 	slot = swc->swc_slot;
    544 	nused = swc->swc_nused;
    545 	nallocated = swc->swc_nallocated;
    546 
    547 	/*
    548 	 * if this is the final pageout we could have a few
    549 	 * unused swap blocks.  if so, free them now.
    550 	 */
    551 
    552 	if (nused < nallocated) {
    553 		if (!now) {
    554 			return;
    555 		}
    556 		uvm_swap_free(slot + nused, nallocated - nused);
    557 	}
    558 
    559 	/*
    560 	 * now start the pageout.
    561 	 */
    562 
    563 	if (nused > 0) {
    564 		uvmexp.pdpageouts++;
    565 		uvm_pageout_start(nused);
    566 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    567 		KASSERT(error == 0 || error == ENOMEM);
    568 	}
    569 
    570 	/*
    571 	 * zero swslot to indicate that we are
    572 	 * no longer building a swap-backed cluster.
    573 	 */
    574 
    575 	swc->swc_slot = 0;
    576 	swc->swc_nused = 0;
    577 }
    578 
    579 static int
    580 swapcluster_nused(struct swapcluster *swc)
    581 {
    582 
    583 	return swc->swc_nused;
    584 }
    585 
    586 /*
    587  * uvmpd_dropswap: free any swap allocated to this page.
    588  *
    589  * => called with owner locked.
    590  * => return true if a page had an associated slot.
    591  */
    592 
    593 static bool
    594 uvmpd_dropswap(struct vm_page *pg)
    595 {
    596 	bool result = false;
    597 	struct vm_anon *anon = pg->uanon;
    598 
    599 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    600 		uvm_swap_free(anon->an_swslot, 1);
    601 		anon->an_swslot = 0;
    602 		pg->flags &= ~PG_CLEAN;
    603 		result = true;
    604 	} else if (pg->pqflags & PQ_AOBJ) {
    605 		int slot = uao_set_swslot(pg->uobject,
    606 		    pg->offset >> PAGE_SHIFT, 0);
    607 		if (slot) {
    608 			uvm_swap_free(slot, 1);
    609 			pg->flags &= ~PG_CLEAN;
    610 			result = true;
    611 		}
    612 	}
    613 
    614 	return result;
    615 }
    616 
    617 /*
    618  * uvmpd_trydropswap: try to free any swap allocated to this page.
    619  *
    620  * => return true if a slot is successfully freed.
    621  */
    622 
    623 bool
    624 uvmpd_trydropswap(struct vm_page *pg)
    625 {
    626 	kmutex_t *slock;
    627 	bool result;
    628 
    629 	if ((pg->flags & PG_BUSY) != 0) {
    630 		return false;
    631 	}
    632 
    633 	/*
    634 	 * lock the page's owner.
    635 	 */
    636 
    637 	slock = uvmpd_trylockowner(pg);
    638 	if (slock == NULL) {
    639 		return false;
    640 	}
    641 
    642 	/*
    643 	 * skip this page if it's busy.
    644 	 */
    645 
    646 	if ((pg->flags & PG_BUSY) != 0) {
    647 		mutex_exit(slock);
    648 		return false;
    649 	}
    650 
    651 	result = uvmpd_dropswap(pg);
    652 
    653 	mutex_exit(slock);
    654 
    655 	return result;
    656 }
    657 
    658 #endif /* defined(VMSWAP) */
    659 
    660 /*
    661  * uvmpd_scan_queue: scan an replace candidate list for pages
    662  * to clean or free.
    663  *
    664  * => called with page queues locked
    665  * => we work on meeting our free target by converting inactive pages
    666  *    into free pages.
    667  * => we handle the building of swap-backed clusters
    668  */
    669 
    670 static void
    671 uvmpd_scan_queue(void)
    672 {
    673 	struct vm_page *p;
    674 	struct uvm_object *uobj;
    675 	struct vm_anon *anon;
    676 #if defined(VMSWAP)
    677 	struct swapcluster swc;
    678 #endif /* defined(VMSWAP) */
    679 	int dirtyreacts;
    680 	int lockownerfail;
    681 	kmutex_t *slock;
    682 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    683 
    684 	/*
    685 	 * swslot is non-zero if we are building a swap cluster.  we want
    686 	 * to stay in the loop while we have a page to scan or we have
    687 	 * a swap-cluster to build.
    688 	 */
    689 
    690 #if defined(VMSWAP)
    691 	swapcluster_init(&swc);
    692 #endif /* defined(VMSWAP) */
    693 
    694 	dirtyreacts = 0;
    695 	lockownerfail = 0;
    696 	uvmpdpol_scaninit();
    697 
    698 	while (/* CONSTCOND */ 1) {
    699 
    700 		/*
    701 		 * see if we've met the free target.
    702 		 */
    703 
    704 		if (uvmexp.free + uvmexp.paging
    705 #if defined(VMSWAP)
    706 		    + swapcluster_nused(&swc)
    707 #endif /* defined(VMSWAP) */
    708 		    >= uvmexp.freetarg << 2 ||
    709 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    710 			UVMHIST_LOG(pdhist,"  met free target: "
    711 				    "exit loop", 0, 0, 0, 0);
    712 			break;
    713 		}
    714 
    715 		p = uvmpdpol_selectvictim();
    716 		if (p == NULL) {
    717 			break;
    718 		}
    719 		KASSERT(uvmpdpol_pageisqueued_p(p));
    720 		KASSERT(p->wire_count == 0);
    721 
    722 		/*
    723 		 * we are below target and have a new page to consider.
    724 		 */
    725 
    726 		anon = p->uanon;
    727 		uobj = p->uobject;
    728 
    729 		/*
    730 		 * first we attempt to lock the object that this page
    731 		 * belongs to.  if our attempt fails we skip on to
    732 		 * the next page (no harm done).  it is important to
    733 		 * "try" locking the object as we are locking in the
    734 		 * wrong order (pageq -> object) and we don't want to
    735 		 * deadlock.
    736 		 *
    737 		 * the only time we expect to see an ownerless page
    738 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    739 		 * anon has loaned a page from a uvm_object and the
    740 		 * uvm_object has dropped the ownership.  in that
    741 		 * case, the anon can "take over" the loaned page
    742 		 * and make it its own.
    743 		 */
    744 
    745 		slock = uvmpd_trylockowner(p);
    746 		if (slock == NULL) {
    747 			/*
    748 			 * yield cpu to make a chance for an LWP holding
    749 			 * the lock run.  otherwise we can busy-loop too long
    750 			 * if the page queue is filled with a lot of pages
    751 			 * from few objects.
    752 			 */
    753 			lockownerfail++;
    754 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    755 				mutex_exit(&uvm_pageqlock);
    756 				/* XXX Better than yielding but inadequate. */
    757 				kpause("livelock", false, 1, NULL);
    758 				mutex_enter(&uvm_pageqlock);
    759 				lockownerfail = 0;
    760 			}
    761 			continue;
    762 		}
    763 		if (p->flags & PG_BUSY) {
    764 			mutex_exit(slock);
    765 			uvmexp.pdbusy++;
    766 			continue;
    767 		}
    768 
    769 		/* does the page belong to an object? */
    770 		if (uobj != NULL) {
    771 			uvmexp.pdobscan++;
    772 		} else {
    773 #if defined(VMSWAP)
    774 			KASSERT(anon != NULL);
    775 			uvmexp.pdanscan++;
    776 #else /* defined(VMSWAP) */
    777 			panic("%s: anon", __func__);
    778 #endif /* defined(VMSWAP) */
    779 		}
    780 
    781 
    782 		/*
    783 		 * we now have the object and the page queues locked.
    784 		 * if the page is not swap-backed, call the object's
    785 		 * pager to flush and free the page.
    786 		 */
    787 
    788 #if defined(READAHEAD_STATS)
    789 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    790 			p->pqflags &= ~PQ_READAHEAD;
    791 			uvm_ra_miss.ev_count++;
    792 		}
    793 #endif /* defined(READAHEAD_STATS) */
    794 
    795 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    796 			KASSERT(uobj != NULL);
    797 			mutex_exit(&uvm_pageqlock);
    798 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    799 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    800 			mutex_enter(&uvm_pageqlock);
    801 			continue;
    802 		}
    803 
    804 		/*
    805 		 * the page is swap-backed.  remove all the permissions
    806 		 * from the page so we can sync the modified info
    807 		 * without any race conditions.  if the page is clean
    808 		 * we can free it now and continue.
    809 		 */
    810 
    811 		pmap_page_protect(p, VM_PROT_NONE);
    812 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    813 			p->flags &= ~(PG_CLEAN);
    814 		}
    815 		if (p->flags & PG_CLEAN) {
    816 			int slot;
    817 			int pageidx;
    818 
    819 			pageidx = p->offset >> PAGE_SHIFT;
    820 			uvm_pagefree(p);
    821 			uvmexp.pdfreed++;
    822 
    823 			/*
    824 			 * for anons, we need to remove the page
    825 			 * from the anon ourselves.  for aobjs,
    826 			 * pagefree did that for us.
    827 			 */
    828 
    829 			if (anon) {
    830 				KASSERT(anon->an_swslot != 0);
    831 				anon->an_page = NULL;
    832 				slot = anon->an_swslot;
    833 			} else {
    834 				slot = uao_find_swslot(uobj, pageidx);
    835 			}
    836 			mutex_exit(slock);
    837 
    838 			if (slot > 0) {
    839 				/* this page is now only in swap. */
    840 				mutex_enter(&uvm_swap_data_lock);
    841 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    842 				uvmexp.swpgonly++;
    843 				mutex_exit(&uvm_swap_data_lock);
    844 			}
    845 			continue;
    846 		}
    847 
    848 #if defined(VMSWAP)
    849 		/*
    850 		 * this page is dirty, skip it if we'll have met our
    851 		 * free target when all the current pageouts complete.
    852 		 */
    853 
    854 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    855 			mutex_exit(slock);
    856 			continue;
    857 		}
    858 
    859 		/*
    860 		 * free any swap space allocated to the page since
    861 		 * we'll have to write it again with its new data.
    862 		 */
    863 
    864 		uvmpd_dropswap(p);
    865 
    866 		/*
    867 		 * start new swap pageout cluster (if necessary).
    868 		 *
    869 		 * if swap is full reactivate this page so that
    870 		 * we eventually cycle all pages through the
    871 		 * inactive queue.
    872 		 */
    873 
    874 		if (swapcluster_allocslots(&swc)) {
    875 			dirtyreacts++;
    876 			uvm_pageactivate(p);
    877 			mutex_exit(slock);
    878 			continue;
    879 		}
    880 
    881 		/*
    882 		 * at this point, we're definitely going reuse this
    883 		 * page.  mark the page busy and delayed-free.
    884 		 * we should remove the page from the page queues
    885 		 * so we don't ever look at it again.
    886 		 * adjust counters and such.
    887 		 */
    888 
    889 		p->flags |= PG_BUSY;
    890 		UVM_PAGE_OWN(p, "scan_queue");
    891 
    892 		p->flags |= PG_PAGEOUT;
    893 		uvm_pagedequeue(p);
    894 
    895 		uvmexp.pgswapout++;
    896 		mutex_exit(&uvm_pageqlock);
    897 
    898 		/*
    899 		 * add the new page to the cluster.
    900 		 */
    901 
    902 		if (swapcluster_add(&swc, p)) {
    903 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    904 			UVM_PAGE_OWN(p, NULL);
    905 			mutex_enter(&uvm_pageqlock);
    906 			dirtyreacts++;
    907 			uvm_pageactivate(p);
    908 			mutex_exit(slock);
    909 			continue;
    910 		}
    911 		mutex_exit(slock);
    912 
    913 		swapcluster_flush(&swc, false);
    914 		mutex_enter(&uvm_pageqlock);
    915 
    916 		/*
    917 		 * the pageout is in progress.  bump counters and set up
    918 		 * for the next loop.
    919 		 */
    920 
    921 		uvmexp.pdpending++;
    922 
    923 #else /* defined(VMSWAP) */
    924 		uvm_pageactivate(p);
    925 		mutex_exit(slock);
    926 #endif /* defined(VMSWAP) */
    927 	}
    928 
    929 #if defined(VMSWAP)
    930 	mutex_exit(&uvm_pageqlock);
    931 	swapcluster_flush(&swc, true);
    932 	mutex_enter(&uvm_pageqlock);
    933 #endif /* defined(VMSWAP) */
    934 }
    935 
    936 /*
    937  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    938  *
    939  * => called with pageq's locked
    940  */
    941 
    942 static void
    943 uvmpd_scan(void)
    944 {
    945 	int swap_shortage, pages_freed;
    946 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    947 
    948 	uvmexp.pdrevs++;
    949 
    950 	/*
    951 	 * work on meeting our targets.   first we work on our free target
    952 	 * by converting inactive pages into free pages.  then we work on
    953 	 * meeting our inactive target by converting active pages to
    954 	 * inactive ones.
    955 	 */
    956 
    957 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    958 
    959 	pages_freed = uvmexp.pdfreed;
    960 	uvmpd_scan_queue();
    961 	pages_freed = uvmexp.pdfreed - pages_freed;
    962 
    963 	/*
    964 	 * detect if we're not going to be able to page anything out
    965 	 * until we free some swap resources from active pages.
    966 	 */
    967 
    968 	swap_shortage = 0;
    969 	if (uvmexp.free < uvmexp.freetarg &&
    970 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    971 	    !uvm_swapisfull() &&
    972 	    pages_freed == 0) {
    973 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    974 	}
    975 
    976 	uvmpdpol_balancequeue(swap_shortage);
    977 
    978 	/*
    979 	 * swap out some processes if we are still below the minimum
    980 	 * free target.  we need to unlock the page queues for this.
    981 	 */
    982 
    983 	if (uvmexp.free < uvmexp.freemin && uvmexp.nswapdev != 0 &&
    984 	    uvm.swapout_enabled) {
    985 		uvmexp.pdswout++;
    986 		UVMHIST_LOG(pdhist,"  free %d < min %d: swapout",
    987 		    uvmexp.free, uvmexp.freemin, 0, 0);
    988 		mutex_exit(&uvm_pageqlock);
    989 		uvm_swapout_threads();
    990 		mutex_enter(&uvm_pageqlock);
    991 	}
    992 
    993 	/*
    994 	 * if still below the minimum target, try unloading kernel
    995 	 * modules.
    996 	 */
    997 
    998 	if (uvmexp.free < uvmexp.freemin) {
    999 		module_thread_kick();
   1000 	}
   1001 }
   1002 
   1003 /*
   1004  * uvm_reclaimable: decide whether to wait for pagedaemon.
   1005  *
   1006  * => return true if it seems to be worth to do uvm_wait.
   1007  *
   1008  * XXX should be tunable.
   1009  * XXX should consider pools, etc?
   1010  */
   1011 
   1012 bool
   1013 uvm_reclaimable(void)
   1014 {
   1015 	int filepages;
   1016 	int active, inactive;
   1017 
   1018 	/*
   1019 	 * if swap is not full, no problem.
   1020 	 */
   1021 
   1022 	if (!uvm_swapisfull()) {
   1023 		return true;
   1024 	}
   1025 
   1026 	/*
   1027 	 * file-backed pages can be reclaimed even when swap is full.
   1028 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1029 	 *
   1030 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1031 	 *
   1032 	 * XXX should consider about other reclaimable memory.
   1033 	 * XXX ie. pools, traditional buffer cache.
   1034 	 */
   1035 
   1036 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1037 	uvm_estimatepageable(&active, &inactive);
   1038 	if (filepages >= MIN((active + inactive) >> 4,
   1039 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1040 		return true;
   1041 	}
   1042 
   1043 	/*
   1044 	 * kill the process, fail allocation, etc..
   1045 	 */
   1046 
   1047 	return false;
   1048 }
   1049 
   1050 void
   1051 uvm_estimatepageable(int *active, int *inactive)
   1052 {
   1053 
   1054 	uvmpdpol_estimatepageable(active, inactive);
   1055 }
   1056 
   1057 void
   1058 uvm_reclaim_init(void)
   1059 {
   1060 
   1061 	/* Initialize UVM reclaim hooks. */
   1062 	mutex_init(&uvm_reclaim_lock, MUTEX_DEFAULT, IPL_NONE);
   1063 	SLIST_INIT(&uvm_reclaim_list);
   1064 
   1065 }
   1066 
   1067 void
   1068 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook)
   1069 {
   1070 
   1071 	KASSERT(hook != NULL);
   1072 
   1073 	mutex_enter(&uvm_reclaim_lock);
   1074 	SLIST_INSERT_HEAD(&uvm_reclaim_list, hook, uvm_reclaim_next);
   1075 	mutex_exit(&uvm_reclaim_lock);
   1076 }
   1077 
   1078 void
   1079 uvm_reclaim_hook_del(struct uvm_reclaim_hook *hook_entry)
   1080 {
   1081 	struct uvm_reclaim_hook *hook;
   1082 
   1083 	KASSERT(hook_entry != NULL);
   1084 
   1085 	mutex_enter(&uvm_reclaim_lock);
   1086 	SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
   1087 		if (hook != hook_entry) {
   1088 			continue;
   1089 		}
   1090 
   1091 		SLIST_REMOVE(&uvm_reclaim_list, hook, uvm_reclaim_hook,
   1092 		    uvm_reclaim_next);
   1093 		break;
   1094 	}
   1095 
   1096 	mutex_exit(&uvm_reclaim_lock);
   1097 }
   1098