Home | History | Annotate | Line # | Download | only in uvm
uvm_pdpolicy_clock.c revision 1.29
      1  1.29  mlelstv /*	$NetBSD: uvm_pdpolicy_clock.c,v 1.29 2020/01/01 01:18:34 mlelstv Exp $	*/
      2   1.2     yamt /*	NetBSD: uvm_pdaemon.c,v 1.72 2006/01/05 10:47:33 yamt Exp $	*/
      3   1.2     yamt 
      4  1.28       ad /*-
      5  1.28       ad  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      6  1.28       ad  * All rights reserved.
      7  1.28       ad  *
      8  1.28       ad  * This code is derived from software contributed to The NetBSD Foundation
      9  1.28       ad  * by Andrew Doran.
     10  1.28       ad  *
     11  1.28       ad  * Redistribution and use in source and binary forms, with or without
     12  1.28       ad  * modification, are permitted provided that the following conditions
     13  1.28       ad  * are met:
     14  1.28       ad  * 1. Redistributions of source code must retain the above copyright
     15  1.28       ad  *    notice, this list of conditions and the following disclaimer.
     16  1.28       ad  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.28       ad  *    notice, this list of conditions and the following disclaimer in the
     18  1.28       ad  *    documentation and/or other materials provided with the distribution.
     19  1.28       ad  *
     20  1.28       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  1.28       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  1.28       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  1.28       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  1.28       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.28       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.28       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.28       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.28       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.28       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.28       ad  * POSSIBILITY OF SUCH DAMAGE.
     31  1.28       ad  */
     32  1.28       ad 
     33   1.2     yamt /*
     34   1.2     yamt  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     35   1.2     yamt  * Copyright (c) 1991, 1993, The Regents of the University of California.
     36   1.2     yamt  *
     37   1.2     yamt  * All rights reserved.
     38   1.2     yamt  *
     39   1.2     yamt  * This code is derived from software contributed to Berkeley by
     40   1.2     yamt  * The Mach Operating System project at Carnegie-Mellon University.
     41   1.2     yamt  *
     42   1.2     yamt  * Redistribution and use in source and binary forms, with or without
     43   1.2     yamt  * modification, are permitted provided that the following conditions
     44   1.2     yamt  * are met:
     45   1.2     yamt  * 1. Redistributions of source code must retain the above copyright
     46   1.2     yamt  *    notice, this list of conditions and the following disclaimer.
     47   1.2     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     48   1.2     yamt  *    notice, this list of conditions and the following disclaimer in the
     49   1.2     yamt  *    documentation and/or other materials provided with the distribution.
     50  1.13    chuck  * 3. Neither the name of the University nor the names of its contributors
     51   1.2     yamt  *    may be used to endorse or promote products derived from this software
     52   1.2     yamt  *    without specific prior written permission.
     53   1.2     yamt  *
     54   1.2     yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55   1.2     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56   1.2     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57   1.2     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58   1.2     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59   1.2     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60   1.2     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61   1.2     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62   1.2     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63   1.2     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64   1.2     yamt  * SUCH DAMAGE.
     65   1.2     yamt  *
     66   1.2     yamt  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     67   1.2     yamt  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     68   1.2     yamt  *
     69   1.2     yamt  *
     70   1.2     yamt  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     71   1.2     yamt  * All rights reserved.
     72   1.2     yamt  *
     73   1.2     yamt  * Permission to use, copy, modify and distribute this software and
     74   1.2     yamt  * its documentation is hereby granted, provided that both the copyright
     75   1.2     yamt  * notice and this permission notice appear in all copies of the
     76   1.2     yamt  * software, derivative works or modified versions, and any portions
     77   1.2     yamt  * thereof, and that both notices appear in supporting documentation.
     78   1.2     yamt  *
     79   1.2     yamt  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     80   1.2     yamt  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     81   1.2     yamt  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     82   1.2     yamt  *
     83   1.2     yamt  * Carnegie Mellon requests users of this software to return to
     84   1.2     yamt  *
     85   1.2     yamt  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     86   1.2     yamt  *  School of Computer Science
     87   1.2     yamt  *  Carnegie Mellon University
     88   1.2     yamt  *  Pittsburgh PA 15213-3890
     89   1.2     yamt  *
     90   1.2     yamt  * any improvements or extensions that they make and grant Carnegie the
     91   1.2     yamt  * rights to redistribute these changes.
     92   1.2     yamt  */
     93   1.2     yamt 
     94   1.2     yamt #if defined(PDSIM)
     95   1.2     yamt 
     96   1.2     yamt #include "pdsim.h"
     97   1.2     yamt 
     98   1.2     yamt #else /* defined(PDSIM) */
     99   1.2     yamt 
    100   1.2     yamt #include <sys/cdefs.h>
    101  1.29  mlelstv __KERNEL_RCSID(0, "$NetBSD: uvm_pdpolicy_clock.c,v 1.29 2020/01/01 01:18:34 mlelstv Exp $");
    102   1.2     yamt 
    103   1.2     yamt #include <sys/param.h>
    104   1.2     yamt #include <sys/proc.h>
    105   1.2     yamt #include <sys/systm.h>
    106   1.2     yamt #include <sys/kernel.h>
    107  1.28       ad #include <sys/kmem.h>
    108  1.29  mlelstv #include <sys/atomic.h>
    109   1.2     yamt 
    110   1.2     yamt #include <uvm/uvm.h>
    111   1.2     yamt #include <uvm/uvm_pdpolicy.h>
    112   1.2     yamt #include <uvm/uvm_pdpolicy_impl.h>
    113  1.18       ad #include <uvm/uvm_stat.h>
    114   1.2     yamt 
    115   1.2     yamt #endif /* defined(PDSIM) */
    116   1.2     yamt 
    117  1.28       ad /*
    118  1.28       ad  * per-CPU queue of pending page status changes.  128 entries makes for a
    119  1.28       ad  * 1kB queue on _LP64 and has been found to be a reasonable compromise that
    120  1.28       ad  * keeps lock contention events and wait times low, while not using too much
    121  1.28       ad  * memory nor allowing global state to fall too far behind.
    122  1.28       ad  */
    123  1.28       ad #if !defined(CLOCK_PDQ_SIZE)
    124  1.28       ad #define	CLOCK_PDQ_SIZE	128
    125  1.28       ad #endif /* !defined(CLOCK_PDQ_SIZE) */
    126  1.28       ad 
    127  1.28       ad #define	PQ_TIME		0xffffffc0	/* time of last activation */
    128  1.28       ad #define PQ_INACTIVE	0x00000010	/* page is in inactive list */
    129  1.28       ad #define PQ_ACTIVE	0x00000020	/* page is in active list */
    130   1.2     yamt 
    131   1.2     yamt #if !defined(CLOCK_INACTIVEPCT)
    132   1.2     yamt #define	CLOCK_INACTIVEPCT	33
    133   1.2     yamt #endif /* !defined(CLOCK_INACTIVEPCT) */
    134   1.2     yamt 
    135   1.2     yamt struct uvmpdpol_globalstate {
    136  1.18       ad 	kmutex_t lock;			/* lock on state */
    137  1.18       ad 					/* <= compiler pads here */
    138  1.18       ad 	struct pglist s_activeq		/* allocated pages, in use */
    139  1.18       ad 	    __aligned(COHERENCY_UNIT);
    140   1.2     yamt 	struct pglist s_inactiveq;	/* pages between the clock hands */
    141   1.2     yamt 	int s_active;
    142   1.2     yamt 	int s_inactive;
    143   1.2     yamt 	int s_inactarg;
    144   1.2     yamt 	struct uvm_pctparam s_anonmin;
    145   1.2     yamt 	struct uvm_pctparam s_filemin;
    146   1.2     yamt 	struct uvm_pctparam s_execmin;
    147   1.2     yamt 	struct uvm_pctparam s_anonmax;
    148   1.2     yamt 	struct uvm_pctparam s_filemax;
    149   1.2     yamt 	struct uvm_pctparam s_execmax;
    150   1.2     yamt 	struct uvm_pctparam s_inactivepct;
    151   1.2     yamt };
    152   1.2     yamt 
    153   1.2     yamt struct uvmpdpol_scanstate {
    154   1.7  thorpej 	bool ss_anonreact, ss_filereact, ss_execreact;
    155  1.24       ad 	struct vm_page ss_marker;
    156   1.2     yamt };
    157   1.2     yamt 
    158  1.18       ad static void	uvmpdpol_pageactivate_locked(struct vm_page *);
    159  1.18       ad static void	uvmpdpol_pagedeactivate_locked(struct vm_page *);
    160  1.18       ad static void	uvmpdpol_pagedequeue_locked(struct vm_page *);
    161  1.28       ad static bool	uvmpdpol_pagerealize_locked(struct vm_page *);
    162  1.28       ad static struct uvm_cpu *uvmpdpol_flush(void);
    163  1.18       ad 
    164  1.18       ad static struct uvmpdpol_globalstate pdpol_state __cacheline_aligned;
    165   1.2     yamt static struct uvmpdpol_scanstate pdpol_scanstate;
    166   1.2     yamt 
    167   1.2     yamt PDPOL_EVCNT_DEFINE(reactexec)
    168   1.2     yamt PDPOL_EVCNT_DEFINE(reactfile)
    169   1.2     yamt PDPOL_EVCNT_DEFINE(reactanon)
    170   1.2     yamt 
    171   1.2     yamt static void
    172   1.2     yamt clock_tune(void)
    173   1.2     yamt {
    174   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    175   1.2     yamt 
    176   1.2     yamt 	s->s_inactarg = UVM_PCTPARAM_APPLY(&s->s_inactivepct,
    177   1.2     yamt 	    s->s_active + s->s_inactive);
    178   1.2     yamt 	if (s->s_inactarg <= uvmexp.freetarg) {
    179   1.2     yamt 		s->s_inactarg = uvmexp.freetarg + 1;
    180   1.2     yamt 	}
    181   1.2     yamt }
    182   1.2     yamt 
    183   1.2     yamt void
    184   1.2     yamt uvmpdpol_scaninit(void)
    185   1.2     yamt {
    186   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    187   1.2     yamt 	struct uvmpdpol_scanstate *ss = &pdpol_scanstate;
    188   1.2     yamt 	int t;
    189   1.7  thorpej 	bool anonunder, fileunder, execunder;
    190   1.7  thorpej 	bool anonover, fileover, execover;
    191   1.7  thorpej 	bool anonreact, filereact, execreact;
    192  1.20       ad 	int64_t freepg, anonpg, filepg, execpg;
    193   1.2     yamt 
    194   1.2     yamt 	/*
    195   1.2     yamt 	 * decide which types of pages we want to reactivate instead of freeing
    196   1.2     yamt 	 * to keep usage within the minimum and maximum usage limits.
    197   1.2     yamt 	 */
    198   1.2     yamt 
    199  1.20       ad 	cpu_count_sync_all();
    200  1.27       ad 	freepg = uvm_availmem();
    201  1.20       ad 	anonpg = cpu_count_get(CPU_COUNT_ANONPAGES);
    202  1.20       ad 	filepg = cpu_count_get(CPU_COUNT_FILEPAGES);
    203  1.20       ad 	execpg = cpu_count_get(CPU_COUNT_EXECPAGES);
    204  1.20       ad 
    205  1.18       ad 	mutex_enter(&s->lock);
    206  1.20       ad 	t = s->s_active + s->s_inactive + freepg;
    207  1.20       ad 	anonunder = anonpg <= UVM_PCTPARAM_APPLY(&s->s_anonmin, t);
    208  1.20       ad 	fileunder = filepg <= UVM_PCTPARAM_APPLY(&s->s_filemin, t);
    209  1.20       ad 	execunder = execpg <= UVM_PCTPARAM_APPLY(&s->s_execmin, t);
    210  1.20       ad 	anonover = anonpg > UVM_PCTPARAM_APPLY(&s->s_anonmax, t);
    211  1.20       ad 	fileover = filepg > UVM_PCTPARAM_APPLY(&s->s_filemax, t);
    212  1.20       ad 	execover = execpg > UVM_PCTPARAM_APPLY(&s->s_execmax, t);
    213   1.2     yamt 	anonreact = anonunder || (!anonover && (fileover || execover));
    214   1.2     yamt 	filereact = fileunder || (!fileover && (anonover || execover));
    215   1.2     yamt 	execreact = execunder || (!execover && (anonover || fileover));
    216   1.2     yamt 	if (filereact && execreact && (anonreact || uvm_swapisfull())) {
    217   1.8  thorpej 		anonreact = filereact = execreact = false;
    218   1.2     yamt 	}
    219   1.2     yamt 	ss->ss_anonreact = anonreact;
    220   1.2     yamt 	ss->ss_filereact = filereact;
    221   1.2     yamt 	ss->ss_execreact = execreact;
    222  1.24       ad 	memset(&ss->ss_marker, 0, sizeof(ss->ss_marker));
    223  1.24       ad 	ss->ss_marker.flags = PG_MARKER;
    224  1.24       ad 	TAILQ_INSERT_HEAD(&pdpol_state.s_inactiveq, &ss->ss_marker, pdqueue);
    225  1.24       ad 	mutex_exit(&s->lock);
    226  1.24       ad }
    227  1.24       ad 
    228  1.24       ad void
    229  1.24       ad uvmpdpol_scanfini(void)
    230  1.24       ad {
    231  1.24       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    232  1.24       ad 	struct uvmpdpol_scanstate *ss = &pdpol_scanstate;
    233   1.2     yamt 
    234  1.24       ad 	mutex_enter(&s->lock);
    235  1.24       ad 	TAILQ_REMOVE(&pdpol_state.s_inactiveq, &ss->ss_marker, pdqueue);
    236  1.18       ad 	mutex_exit(&s->lock);
    237   1.2     yamt }
    238   1.2     yamt 
    239   1.2     yamt struct vm_page *
    240  1.18       ad uvmpdpol_selectvictim(kmutex_t **plock)
    241   1.2     yamt {
    242  1.18       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    243   1.2     yamt 	struct uvmpdpol_scanstate *ss = &pdpol_scanstate;
    244   1.2     yamt 	struct vm_page *pg;
    245  1.14    rmind 	kmutex_t *lock;
    246   1.2     yamt 
    247  1.18       ad 	mutex_enter(&s->lock);
    248   1.2     yamt 	while (/* CONSTCOND */ 1) {
    249   1.2     yamt 		struct vm_anon *anon;
    250   1.2     yamt 		struct uvm_object *uobj;
    251   1.2     yamt 
    252  1.24       ad 		pg = TAILQ_NEXT(&ss->ss_marker, pdqueue);
    253   1.2     yamt 		if (pg == NULL) {
    254   1.2     yamt 			break;
    255   1.2     yamt 		}
    256  1.24       ad 		KASSERT((pg->flags & PG_MARKER) == 0);
    257   1.2     yamt 		uvmexp.pdscans++;
    258   1.2     yamt 
    259   1.2     yamt 		/*
    260  1.18       ad 		 * acquire interlock to stablize page identity.
    261  1.18       ad 		 * if we have caught the page in a state of flux
    262  1.28       ad 		 * deal with it and retry.
    263   1.2     yamt 		 */
    264  1.18       ad 		mutex_enter(&pg->interlock);
    265  1.28       ad 		if (uvmpdpol_pagerealize_locked(pg)) {
    266  1.28       ad 			mutex_exit(&pg->interlock);
    267  1.28       ad 			continue;
    268   1.2     yamt 		}
    269   1.2     yamt 
    270   1.2     yamt 		/*
    271  1.24       ad 		 * now prepare to move on to the next page.
    272  1.24       ad 		 */
    273  1.24       ad 		TAILQ_REMOVE(&pdpol_state.s_inactiveq, &ss->ss_marker,
    274  1.24       ad 		    pdqueue);
    275  1.24       ad 		TAILQ_INSERT_AFTER(&pdpol_state.s_inactiveq, pg,
    276  1.24       ad 		    &ss->ss_marker, pdqueue);
    277  1.24       ad 
    278  1.24       ad 		/*
    279   1.2     yamt 		 * enforce the minimum thresholds on different
    280   1.2     yamt 		 * types of memory usage.  if reusing the current
    281   1.2     yamt 		 * page would reduce that type of usage below its
    282   1.2     yamt 		 * minimum, reactivate the page instead and move
    283   1.2     yamt 		 * on to the next page.
    284   1.2     yamt 		 */
    285  1.18       ad 		anon = pg->uanon;
    286  1.18       ad 		uobj = pg->uobject;
    287   1.2     yamt 		if (uobj && UVM_OBJ_IS_VTEXT(uobj) && ss->ss_execreact) {
    288  1.28       ad 			uvmpdpol_pageactivate_locked(pg);
    289  1.18       ad 			mutex_exit(&pg->interlock);
    290   1.2     yamt 			PDPOL_EVCNT_INCR(reactexec);
    291   1.2     yamt 			continue;
    292   1.2     yamt 		}
    293   1.2     yamt 		if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    294   1.2     yamt 		    !UVM_OBJ_IS_VTEXT(uobj) && ss->ss_filereact) {
    295  1.28       ad 			uvmpdpol_pageactivate_locked(pg);
    296  1.18       ad 			mutex_exit(&pg->interlock);
    297   1.2     yamt 			PDPOL_EVCNT_INCR(reactfile);
    298   1.2     yamt 			continue;
    299   1.2     yamt 		}
    300   1.2     yamt 		if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && ss->ss_anonreact) {
    301  1.28       ad 			uvmpdpol_pageactivate_locked(pg);
    302  1.18       ad 			mutex_exit(&pg->interlock);
    303   1.2     yamt 			PDPOL_EVCNT_INCR(reactanon);
    304   1.2     yamt 			continue;
    305   1.2     yamt 		}
    306   1.2     yamt 
    307  1.18       ad 		/*
    308  1.18       ad 		 * try to lock the object that owns the page.
    309  1.18       ad 		 *
    310  1.18       ad 		 * with the page interlock held, we can drop s->lock, which
    311  1.18       ad 		 * could otherwise serve as a barrier to us getting the
    312  1.18       ad 		 * object locked, because the owner of the object's lock may
    313  1.18       ad 		 * be blocked on s->lock (i.e. a deadlock).
    314  1.18       ad 		 *
    315  1.18       ad 		 * whatever happens, uvmpd_trylockowner() will release the
    316  1.18       ad 		 * interlock.  with the interlock dropped we can then
    317  1.18       ad 		 * re-acquire our own lock.  the order is:
    318  1.18       ad 		 *
    319  1.18       ad 		 *	object -> pdpol -> interlock.
    320  1.18       ad 	         */
    321  1.18       ad 	        mutex_exit(&s->lock);
    322  1.18       ad         	lock = uvmpd_trylockowner(pg);
    323  1.18       ad         	/* pg->interlock now released */
    324  1.18       ad         	mutex_enter(&s->lock);
    325  1.18       ad 		if (lock == NULL) {
    326  1.18       ad 			/* didn't get it - try the next page. */
    327  1.18       ad 			continue;
    328  1.18       ad 		}
    329  1.18       ad 
    330  1.18       ad 		/*
    331  1.18       ad 		 * move referenced pages back to active queue and skip to
    332  1.18       ad 		 * next page.
    333  1.18       ad 		 */
    334  1.18       ad 		if (pmap_is_referenced(pg)) {
    335  1.28       ad 			mutex_enter(&pg->interlock);
    336  1.18       ad 			uvmpdpol_pageactivate_locked(pg);
    337  1.28       ad 			mutex_exit(&pg->interlock);
    338  1.18       ad 			uvmexp.pdreact++;
    339  1.18       ad 			mutex_exit(lock);
    340  1.18       ad 			continue;
    341  1.18       ad 		}
    342  1.18       ad 
    343  1.18       ad 		/* we have a potential victim. */
    344  1.18       ad 		*plock = lock;
    345   1.2     yamt 		break;
    346   1.2     yamt 	}
    347  1.18       ad 	mutex_exit(&s->lock);
    348   1.2     yamt 	return pg;
    349   1.2     yamt }
    350   1.2     yamt 
    351   1.2     yamt void
    352   1.2     yamt uvmpdpol_balancequeue(int swap_shortage)
    353   1.2     yamt {
    354  1.18       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    355   1.2     yamt 	int inactive_shortage;
    356  1.24       ad 	struct vm_page *p, marker;
    357  1.14    rmind 	kmutex_t *lock;
    358   1.2     yamt 
    359   1.2     yamt 	/*
    360   1.2     yamt 	 * we have done the scan to get free pages.   now we work on meeting
    361   1.2     yamt 	 * our inactive target.
    362   1.2     yamt 	 */
    363   1.2     yamt 
    364  1.24       ad 	memset(&marker, 0, sizeof(marker));
    365  1.24       ad 	marker.flags = PG_MARKER;
    366  1.24       ad 
    367  1.18       ad 	mutex_enter(&s->lock);
    368  1.24       ad 	TAILQ_INSERT_HEAD(&pdpol_state.s_activeq, &marker, pdqueue);
    369  1.24       ad 	for (;;) {
    370  1.24       ad 		inactive_shortage =
    371  1.24       ad 		    pdpol_state.s_inactarg - pdpol_state.s_inactive;
    372  1.24       ad 		if (inactive_shortage <= 0 && swap_shortage <= 0) {
    373  1.24       ad 			break;
    374   1.2     yamt 		}
    375  1.24       ad 		p = TAILQ_NEXT(&marker, pdqueue);
    376  1.24       ad 		if (p == NULL) {
    377  1.24       ad 			break;
    378  1.14    rmind 		}
    379  1.24       ad 		KASSERT((p->flags & PG_MARKER) == 0);
    380  1.14    rmind 
    381  1.18       ad 		/*
    382  1.18       ad 		 * acquire interlock to stablize page identity.
    383  1.18       ad 		 * if we have caught the page in a state of flux
    384  1.28       ad 		 * deal with it and retry.
    385  1.18       ad 		 */
    386  1.18       ad 		mutex_enter(&p->interlock);
    387  1.28       ad 		if (uvmpdpol_pagerealize_locked(p)) {
    388  1.28       ad 			mutex_exit(&p->interlock);
    389  1.28       ad 			continue;
    390  1.18       ad 		}
    391  1.24       ad 
    392  1.24       ad 		/*
    393  1.24       ad 		 * now prepare to move on to the next page.
    394  1.24       ad 		 */
    395  1.24       ad 		TAILQ_REMOVE(&pdpol_state.s_activeq, &marker, pdqueue);
    396  1.24       ad 		TAILQ_INSERT_AFTER(&pdpol_state.s_activeq, p, &marker,
    397  1.24       ad 		    pdqueue);
    398  1.24       ad 
    399  1.24       ad 		/*
    400  1.24       ad 		 * try to lock the object that owns the page.  see comments
    401  1.24       ad 		 * in uvmpdol_selectvictim().
    402  1.24       ad 	         */
    403  1.24       ad 	        mutex_exit(&s->lock);
    404  1.24       ad         	lock = uvmpd_trylockowner(p);
    405  1.24       ad         	/* p->interlock now released */
    406  1.24       ad         	mutex_enter(&s->lock);
    407  1.24       ad 		if (lock == NULL) {
    408  1.24       ad 			/* didn't get it - try the next page. */
    409  1.24       ad 			continue;
    410  1.24       ad 		}
    411  1.24       ad 
    412  1.24       ad 		/*
    413  1.24       ad 		 * if there's a shortage of swap slots, try to free it.
    414  1.24       ad 		 */
    415  1.24       ad 		if (swap_shortage > 0 && (p->flags & PG_SWAPBACKED) != 0 &&
    416  1.24       ad 		    (p->flags & PG_BUSY) == 0) {
    417  1.24       ad 			if (uvmpd_dropswap(p)) {
    418  1.24       ad 				swap_shortage--;
    419  1.24       ad 			}
    420  1.24       ad 		}
    421  1.24       ad 
    422  1.24       ad 		/*
    423  1.24       ad 		 * if there's a shortage of inactive pages, deactivate.
    424  1.24       ad 		 */
    425  1.24       ad 		if (inactive_shortage > 0) {
    426  1.28       ad 			pmap_clear_reference(p);
    427  1.28       ad 			mutex_enter(&p->interlock);
    428  1.18       ad 			uvmpdpol_pagedeactivate_locked(p);
    429  1.28       ad 			mutex_exit(&p->interlock);
    430   1.2     yamt 			uvmexp.pddeact++;
    431   1.2     yamt 			inactive_shortage--;
    432   1.2     yamt 		}
    433  1.24       ad 		mutex_exit(lock);
    434   1.2     yamt 	}
    435  1.24       ad 	TAILQ_REMOVE(&pdpol_state.s_activeq, &marker, pdqueue);
    436  1.18       ad 	mutex_exit(&s->lock);
    437   1.2     yamt }
    438   1.2     yamt 
    439  1.18       ad static void
    440  1.18       ad uvmpdpol_pagedeactivate_locked(struct vm_page *pg)
    441   1.2     yamt {
    442  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    443   1.2     yamt 
    444  1.28       ad 	KASSERT(mutex_owned(&s->lock));
    445  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    446  1.28       ad 	KASSERT((pg->pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) !=
    447  1.28       ad 	    (PQ_INTENT_D | PQ_INTENT_SET));
    448  1.14    rmind 
    449   1.2     yamt 	if (pg->pqflags & PQ_ACTIVE) {
    450  1.23       ad 		TAILQ_REMOVE(&pdpol_state.s_activeq, pg, pdqueue);
    451   1.2     yamt 		KASSERT(pdpol_state.s_active > 0);
    452   1.2     yamt 		pdpol_state.s_active--;
    453   1.2     yamt 	}
    454   1.2     yamt 	if ((pg->pqflags & PQ_INACTIVE) == 0) {
    455   1.2     yamt 		KASSERT(pg->wire_count == 0);
    456  1.23       ad 		TAILQ_INSERT_TAIL(&pdpol_state.s_inactiveq, pg, pdqueue);
    457   1.2     yamt 		pdpol_state.s_inactive++;
    458   1.2     yamt 	}
    459  1.28       ad 	pg->pqflags = (pg->pqflags & PQ_INTENT_QUEUED) | PQ_INACTIVE;
    460   1.2     yamt }
    461   1.2     yamt 
    462   1.2     yamt void
    463  1.18       ad uvmpdpol_pagedeactivate(struct vm_page *pg)
    464  1.18       ad {
    465  1.18       ad 
    466  1.28       ad 	KASSERT(uvm_page_owner_locked_p(pg));
    467  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    468  1.28       ad 
    469  1.28       ad 	/*
    470  1.28       ad 	 * we have to clear the reference bit now, as when it comes time to
    471  1.28       ad 	 * realize the intent we won't have the object locked any more.
    472  1.28       ad 	 */
    473  1.28       ad 	pmap_clear_reference(pg);
    474  1.28       ad 	uvmpdpol_set_intent(pg, PQ_INTENT_I);
    475  1.18       ad }
    476  1.18       ad 
    477  1.18       ad static void
    478  1.18       ad uvmpdpol_pageactivate_locked(struct vm_page *pg)
    479   1.2     yamt {
    480  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    481  1.28       ad 
    482  1.28       ad 	KASSERT(mutex_owned(&s->lock));
    483  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    484  1.28       ad 	KASSERT((pg->pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) !=
    485  1.28       ad 	    (PQ_INTENT_D | PQ_INTENT_SET));
    486   1.2     yamt 
    487  1.18       ad 	uvmpdpol_pagedequeue_locked(pg);
    488  1.23       ad 	TAILQ_INSERT_TAIL(&pdpol_state.s_activeq, pg, pdqueue);
    489   1.2     yamt 	pdpol_state.s_active++;
    490  1.28       ad 	pg->pqflags = (pg->pqflags & PQ_INTENT_QUEUED) | PQ_ACTIVE |
    491  1.28       ad 	    (hardclock_ticks & PQ_TIME);
    492   1.2     yamt }
    493   1.2     yamt 
    494   1.2     yamt void
    495  1.18       ad uvmpdpol_pageactivate(struct vm_page *pg)
    496  1.18       ad {
    497  1.28       ad 	uint32_t pqflags;
    498  1.28       ad 
    499  1.28       ad 	KASSERT(uvm_page_owner_locked_p(pg));
    500  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    501  1.18       ad 
    502  1.28       ad 	/*
    503  1.28       ad 	 * if there is any intent set on the page, or the page is not
    504  1.28       ad 	 * active, or the page was activated in the "distant" past, then
    505  1.28       ad 	 * it needs to be activated anew.
    506  1.28       ad 	 */
    507  1.28       ad 	pqflags = pg->pqflags;
    508  1.28       ad 	if ((pqflags & PQ_INTENT_SET) != 0 ||
    509  1.28       ad 	    (pqflags & PQ_ACTIVE) == 0 ||
    510  1.28       ad 	    ((hardclock_ticks & PQ_TIME) - (pqflags & PQ_TIME)) > hz) {
    511  1.28       ad 		uvmpdpol_set_intent(pg, PQ_INTENT_A);
    512  1.18       ad 	}
    513  1.18       ad }
    514  1.18       ad 
    515  1.18       ad static void
    516  1.18       ad uvmpdpol_pagedequeue_locked(struct vm_page *pg)
    517   1.2     yamt {
    518  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    519  1.28       ad 
    520  1.28       ad 	KASSERT(mutex_owned(&s->lock));
    521  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    522   1.2     yamt 
    523   1.2     yamt 	if (pg->pqflags & PQ_ACTIVE) {
    524  1.23       ad 		TAILQ_REMOVE(&pdpol_state.s_activeq, pg, pdqueue);
    525  1.28       ad 		KASSERT((pg->pqflags & PQ_INACTIVE) == 0);
    526   1.2     yamt 		KASSERT(pdpol_state.s_active > 0);
    527   1.2     yamt 		pdpol_state.s_active--;
    528   1.2     yamt 	} else if (pg->pqflags & PQ_INACTIVE) {
    529  1.23       ad 		TAILQ_REMOVE(&pdpol_state.s_inactiveq, pg, pdqueue);
    530   1.2     yamt 		KASSERT(pdpol_state.s_inactive > 0);
    531   1.2     yamt 		pdpol_state.s_inactive--;
    532   1.2     yamt 	}
    533  1.28       ad 	pg->pqflags &= PQ_INTENT_QUEUED;
    534   1.2     yamt }
    535   1.2     yamt 
    536   1.2     yamt void
    537  1.18       ad uvmpdpol_pagedequeue(struct vm_page *pg)
    538  1.18       ad {
    539  1.18       ad 
    540  1.28       ad 	KASSERT(uvm_page_owner_locked_p(pg));
    541  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    542  1.28       ad 
    543  1.28       ad 	uvmpdpol_set_intent(pg, PQ_INTENT_D);
    544  1.18       ad }
    545  1.18       ad 
    546  1.18       ad void
    547   1.2     yamt uvmpdpol_pageenqueue(struct vm_page *pg)
    548   1.2     yamt {
    549   1.2     yamt 
    550  1.28       ad 	KASSERT(uvm_page_owner_locked_p(pg));
    551  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    552  1.28       ad 
    553  1.28       ad 	uvmpdpol_set_intent(pg, PQ_INTENT_E);
    554   1.2     yamt }
    555   1.2     yamt 
    556   1.2     yamt void
    557   1.5     yamt uvmpdpol_anfree(struct vm_anon *an)
    558   1.2     yamt {
    559   1.2     yamt }
    560   1.2     yamt 
    561   1.7  thorpej bool
    562   1.2     yamt uvmpdpol_pageisqueued_p(struct vm_page *pg)
    563   1.2     yamt {
    564  1.28       ad 	uint32_t pqflags;
    565   1.2     yamt 
    566  1.28       ad 	/*
    567  1.28       ad 	 * if there's an intent set, we have to consider it.  otherwise,
    568  1.28       ad 	 * return the actual state.  we may be called unlocked for the
    569  1.28       ad 	 * purpose of assertions, which is safe due to the page lifecycle.
    570  1.28       ad 	 */
    571  1.28       ad 	pqflags = atomic_load_relaxed(&pg->pqflags);
    572  1.28       ad 	if ((pqflags & PQ_INTENT_SET) != 0) {
    573  1.28       ad 		return (pqflags & PQ_INTENT_MASK) != PQ_INTENT_D;
    574  1.28       ad 	} else {
    575  1.28       ad 		return (pqflags & (PQ_ACTIVE | PQ_INACTIVE)) != 0;
    576  1.28       ad 	}
    577   1.2     yamt }
    578   1.2     yamt 
    579   1.2     yamt void
    580   1.2     yamt uvmpdpol_estimatepageable(int *active, int *inactive)
    581   1.2     yamt {
    582  1.18       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    583   1.2     yamt 
    584  1.18       ad 	mutex_enter(&s->lock);
    585   1.2     yamt 	if (active) {
    586   1.2     yamt 		*active = pdpol_state.s_active;
    587   1.2     yamt 	}
    588   1.2     yamt 	if (inactive) {
    589   1.2     yamt 		*inactive = pdpol_state.s_inactive;
    590   1.2     yamt 	}
    591  1.18       ad 	mutex_exit(&s->lock);
    592   1.2     yamt }
    593   1.2     yamt 
    594   1.2     yamt #if !defined(PDSIM)
    595   1.2     yamt static int
    596   1.2     yamt min_check(struct uvm_pctparam *pct, int t)
    597   1.2     yamt {
    598   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    599   1.2     yamt 	int total = t;
    600   1.2     yamt 
    601   1.2     yamt 	if (pct != &s->s_anonmin) {
    602   1.2     yamt 		total += uvm_pctparam_get(&s->s_anonmin);
    603   1.2     yamt 	}
    604   1.2     yamt 	if (pct != &s->s_filemin) {
    605   1.2     yamt 		total += uvm_pctparam_get(&s->s_filemin);
    606   1.2     yamt 	}
    607   1.2     yamt 	if (pct != &s->s_execmin) {
    608   1.2     yamt 		total += uvm_pctparam_get(&s->s_execmin);
    609   1.2     yamt 	}
    610   1.2     yamt 	if (total > 95) {
    611   1.2     yamt 		return EINVAL;
    612   1.2     yamt 	}
    613   1.2     yamt 	return 0;
    614   1.2     yamt }
    615   1.2     yamt #endif /* !defined(PDSIM) */
    616   1.2     yamt 
    617   1.2     yamt void
    618   1.2     yamt uvmpdpol_init(void)
    619   1.2     yamt {
    620   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    621   1.2     yamt 
    622  1.18       ad 	mutex_init(&s->lock, MUTEX_DEFAULT, IPL_NONE);
    623   1.2     yamt 	TAILQ_INIT(&s->s_activeq);
    624   1.2     yamt 	TAILQ_INIT(&s->s_inactiveq);
    625   1.2     yamt 	uvm_pctparam_init(&s->s_inactivepct, CLOCK_INACTIVEPCT, NULL);
    626   1.2     yamt 	uvm_pctparam_init(&s->s_anonmin, 10, min_check);
    627   1.2     yamt 	uvm_pctparam_init(&s->s_filemin, 10, min_check);
    628   1.2     yamt 	uvm_pctparam_init(&s->s_execmin,  5, min_check);
    629   1.2     yamt 	uvm_pctparam_init(&s->s_anonmax, 80, NULL);
    630   1.2     yamt 	uvm_pctparam_init(&s->s_filemax, 50, NULL);
    631   1.2     yamt 	uvm_pctparam_init(&s->s_execmax, 30, NULL);
    632   1.2     yamt }
    633   1.2     yamt 
    634   1.2     yamt void
    635  1.28       ad uvmpdpol_init_cpu(struct uvm_cpu *ucpu)
    636  1.28       ad {
    637  1.28       ad 
    638  1.28       ad 	ucpu->pdq =
    639  1.28       ad 	    kmem_alloc(CLOCK_PDQ_SIZE * sizeof(struct vm_page *), KM_SLEEP);
    640  1.28       ad 	ucpu->pdqhead = CLOCK_PDQ_SIZE;
    641  1.28       ad 	ucpu->pdqtail = CLOCK_PDQ_SIZE;
    642  1.28       ad }
    643  1.28       ad 
    644  1.28       ad void
    645   1.2     yamt uvmpdpol_reinit(void)
    646   1.2     yamt {
    647   1.2     yamt }
    648   1.2     yamt 
    649   1.7  thorpej bool
    650   1.2     yamt uvmpdpol_needsscan_p(void)
    651   1.2     yamt {
    652   1.2     yamt 
    653  1.28       ad 	/*
    654  1.28       ad 	 * this must be an unlocked check: can be called from interrupt.
    655  1.28       ad 	 */
    656  1.17     para 	return pdpol_state.s_inactive < pdpol_state.s_inactarg;
    657   1.2     yamt }
    658   1.2     yamt 
    659   1.2     yamt void
    660   1.2     yamt uvmpdpol_tune(void)
    661   1.2     yamt {
    662  1.18       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    663   1.2     yamt 
    664  1.18       ad 	mutex_enter(&s->lock);
    665   1.2     yamt 	clock_tune();
    666  1.18       ad 	mutex_exit(&s->lock);
    667   1.2     yamt }
    668   1.2     yamt 
    669  1.28       ad /*
    670  1.28       ad  * uvmpdpol_pagerealize_locked: take the intended state set on an indivdual
    671  1.28       ad  * page and make it real.  return true if any work was done.
    672  1.28       ad  */
    673  1.28       ad static bool
    674  1.28       ad uvmpdpol_pagerealize_locked(struct vm_page *pg)
    675  1.28       ad {
    676  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    677  1.28       ad 
    678  1.28       ad 	KASSERT(mutex_owned(&s->lock));
    679  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    680  1.28       ad 
    681  1.28       ad 	switch (pg->pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) {
    682  1.28       ad 	case PQ_INTENT_A | PQ_INTENT_SET:
    683  1.28       ad 	case PQ_INTENT_E | PQ_INTENT_SET:
    684  1.28       ad 		uvmpdpol_pageactivate_locked(pg);
    685  1.28       ad 		return true;
    686  1.28       ad 	case PQ_INTENT_I | PQ_INTENT_SET:
    687  1.28       ad 		uvmpdpol_pagedeactivate_locked(pg);
    688  1.28       ad 		return true;
    689  1.28       ad 	case PQ_INTENT_D | PQ_INTENT_SET:
    690  1.28       ad 		uvmpdpol_pagedequeue_locked(pg);
    691  1.28       ad 		return true;
    692  1.28       ad 	default:
    693  1.28       ad 		return false;
    694  1.28       ad 	}
    695  1.28       ad }
    696  1.28       ad 
    697  1.28       ad /*
    698  1.28       ad  * uvmpdpol_flush: return the current uvm_cpu with all of its pending
    699  1.28       ad  * updates flushed to the global queues.  this routine may block, and
    700  1.28       ad  * so can switch cpu.  the idea is to empty to queue on whatever cpu
    701  1.28       ad  * we finally end up on.
    702  1.28       ad  */
    703  1.28       ad static struct uvm_cpu *
    704  1.28       ad uvmpdpol_flush(void)
    705  1.28       ad {
    706  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    707  1.28       ad 	struct uvm_cpu *ucpu;
    708  1.28       ad 	struct vm_page *pg;
    709  1.28       ad 
    710  1.28       ad 	KASSERT(kpreempt_disabled());
    711  1.28       ad 
    712  1.28       ad 	mutex_enter(&s->lock);
    713  1.28       ad 	for (;;) {
    714  1.28       ad 		/*
    715  1.28       ad 		 * prefer scanning forwards (even though mutex_enter() is
    716  1.28       ad 		 * serializing) so as to not defeat any prefetch logic in
    717  1.28       ad 		 * the CPU.  that means elsewhere enqueuing backwards, like
    718  1.28       ad 		 * a stack, but not so important there as pages are being
    719  1.28       ad 		 * added singularly.
    720  1.28       ad 		 *
    721  1.28       ad 		 * prefetch the next "struct vm_page" while working on the
    722  1.28       ad 		 * current one.  this has a measurable and very positive
    723  1.28       ad 		 * effect in reducing the amount of time spent here under
    724  1.28       ad 		 * the global lock.
    725  1.28       ad 		 */
    726  1.28       ad 		ucpu = curcpu()->ci_data.cpu_uvm;
    727  1.28       ad 		KASSERT(ucpu->pdqhead <= ucpu->pdqtail);
    728  1.28       ad 		if (__predict_false(ucpu->pdqhead == ucpu->pdqtail)) {
    729  1.28       ad 			break;
    730  1.28       ad 		}
    731  1.28       ad 		pg = ucpu->pdq[ucpu->pdqhead++];
    732  1.28       ad 		if (__predict_true(ucpu->pdqhead != ucpu->pdqtail)) {
    733  1.28       ad 			__builtin_prefetch(ucpu->pdq[ucpu->pdqhead]);
    734  1.28       ad 		}
    735  1.28       ad 		mutex_enter(&pg->interlock);
    736  1.28       ad 		pg->pqflags &= ~PQ_INTENT_QUEUED;
    737  1.28       ad 		(void)uvmpdpol_pagerealize_locked(pg);
    738  1.28       ad 		mutex_exit(&pg->interlock);
    739  1.28       ad 	}
    740  1.28       ad 	mutex_exit(&s->lock);
    741  1.28       ad 	return ucpu;
    742  1.28       ad }
    743  1.28       ad 
    744  1.28       ad /*
    745  1.28       ad  * uvmpdpol_pagerealize: realize any intent set on the page.  in this
    746  1.28       ad  * implementation, that means putting the page on a per-CPU queue to be
    747  1.28       ad  * dealt with later.
    748  1.28       ad  */
    749  1.28       ad void
    750  1.28       ad uvmpdpol_pagerealize(struct vm_page *pg)
    751  1.28       ad {
    752  1.28       ad 	struct uvm_cpu *ucpu;
    753  1.28       ad 
    754  1.28       ad 	/*
    755  1.28       ad 	 * drain the per per-CPU queue if full, then enter the page.
    756  1.28       ad 	 */
    757  1.28       ad 	kpreempt_disable();
    758  1.28       ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    759  1.28       ad 	if (__predict_false(ucpu->pdqhead == 0)) {
    760  1.28       ad 		ucpu = uvmpdpol_flush();
    761  1.28       ad 	}
    762  1.28       ad 	ucpu->pdq[--(ucpu->pdqhead)] = pg;
    763  1.28       ad 	kpreempt_enable();
    764  1.28       ad }
    765  1.28       ad 
    766  1.28       ad /*
    767  1.28       ad  * uvmpdpol_idle: called from the system idle loop.  periodically purge any
    768  1.28       ad  * pending updates back to the global queues.
    769  1.28       ad  */
    770  1.28       ad void
    771  1.28       ad uvmpdpol_idle(struct uvm_cpu *ucpu)
    772  1.28       ad {
    773  1.28       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    774  1.28       ad 	struct vm_page *pg;
    775  1.28       ad 
    776  1.28       ad 	KASSERT(kpreempt_disabled());
    777  1.28       ad 
    778  1.28       ad 	/*
    779  1.28       ad 	 * if no pages in the queue, we have nothing to do.
    780  1.28       ad 	 */
    781  1.28       ad 	if (ucpu->pdqhead == ucpu->pdqtail) {
    782  1.28       ad 		ucpu->pdqtime = hardclock_ticks;
    783  1.28       ad 		return;
    784  1.28       ad 	}
    785  1.28       ad 
    786  1.28       ad 	/*
    787  1.28       ad 	 * don't do this more than ~8 times a second as it would needlessly
    788  1.28       ad 	 * exert pressure.
    789  1.28       ad 	 */
    790  1.28       ad 	if (hardclock_ticks - ucpu->pdqtime < (hz >> 3)) {
    791  1.28       ad 		return;
    792  1.28       ad 	}
    793  1.28       ad 
    794  1.28       ad 	/*
    795  1.28       ad 	 * the idle LWP can't block, so we have to try for the lock.  if we
    796  1.28       ad 	 * get it, purge the per-CPU pending update queue.  continually
    797  1.28       ad 	 * check for a pending resched: in that case exit immediately.
    798  1.28       ad 	 */
    799  1.28       ad 	if (mutex_tryenter(&s->lock)) {
    800  1.28       ad 		while (ucpu->pdqhead != ucpu->pdqtail) {
    801  1.28       ad 			pg = ucpu->pdq[ucpu->pdqhead];
    802  1.28       ad 			if (!mutex_tryenter(&pg->interlock)) {
    803  1.28       ad 				break;
    804  1.28       ad 			}
    805  1.28       ad 			ucpu->pdqhead++;
    806  1.28       ad 			pg->pqflags &= ~PQ_INTENT_QUEUED;
    807  1.28       ad 			(void)uvmpdpol_pagerealize_locked(pg);
    808  1.28       ad 			mutex_exit(&pg->interlock);
    809  1.28       ad 			if (curcpu()->ci_want_resched) {
    810  1.28       ad 				break;
    811  1.28       ad 			}
    812  1.28       ad 		}
    813  1.28       ad 		if (ucpu->pdqhead == ucpu->pdqtail) {
    814  1.28       ad 			ucpu->pdqtime = hardclock_ticks;
    815  1.28       ad 		}
    816  1.28       ad 		mutex_exit(&s->lock);
    817  1.28       ad 	}
    818  1.28       ad }
    819  1.28       ad 
    820   1.2     yamt #if !defined(PDSIM)
    821   1.2     yamt 
    822   1.2     yamt #include <sys/sysctl.h>	/* XXX SYSCTL_DESCR */
    823   1.2     yamt 
    824   1.2     yamt void
    825   1.2     yamt uvmpdpol_sysctlsetup(void)
    826   1.2     yamt {
    827   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    828   1.2     yamt 
    829   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_anonmin, "anonmin",
    830   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory reserved "
    831   1.2     yamt 	    "for anonymous application data"));
    832   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_filemin, "filemin",
    833   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory reserved "
    834  1.11   martin 	    "for cached file data"));
    835   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_execmin, "execmin",
    836   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory reserved "
    837  1.11   martin 	    "for cached executable data"));
    838   1.2     yamt 
    839   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_anonmax, "anonmax",
    840   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory which will "
    841   1.2     yamt 	    "be reclaimed from other usage for "
    842   1.2     yamt 	    "anonymous application data"));
    843   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_filemax, "filemax",
    844   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory which will "
    845   1.2     yamt 	    "be reclaimed from other usage for cached "
    846   1.2     yamt 	    "file data"));
    847   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_execmax, "execmax",
    848   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory which will "
    849   1.2     yamt 	    "be reclaimed from other usage for cached "
    850   1.2     yamt 	    "executable data"));
    851   1.2     yamt 
    852   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_inactivepct, "inactivepct",
    853   1.2     yamt 	    SYSCTL_DESCR("Percentage of inactive queue of "
    854   1.2     yamt 	    "the entire (active + inactive) queue"));
    855   1.2     yamt }
    856   1.2     yamt 
    857   1.2     yamt #endif /* !defined(PDSIM) */
    858   1.2     yamt 
    859   1.2     yamt #if defined(PDSIM)
    860   1.2     yamt void
    861   1.2     yamt pdsim_dump(const char *id)
    862   1.2     yamt {
    863   1.2     yamt #if defined(DEBUG)
    864   1.2     yamt 	/* XXX */
    865   1.2     yamt #endif /* defined(DEBUG) */
    866   1.2     yamt }
    867   1.2     yamt #endif /* defined(PDSIM) */
    868