Home | History | Annotate | Line # | Download | only in uvm
uvm_pdpolicy_clock.c revision 1.42
      1  1.42   bouyer /*	$NetBSD: uvm_pdpolicy_clock.c,v 1.42 2025/05/20 10:22:27 bouyer Exp $	*/
      2   1.2     yamt /*	NetBSD: uvm_pdaemon.c,v 1.72 2006/01/05 10:47:33 yamt Exp $	*/
      3   1.2     yamt 
      4  1.28       ad /*-
      5  1.34       ad  * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
      6  1.28       ad  * All rights reserved.
      7  1.28       ad  *
      8  1.28       ad  * This code is derived from software contributed to The NetBSD Foundation
      9  1.28       ad  * by Andrew Doran.
     10  1.28       ad  *
     11  1.28       ad  * Redistribution and use in source and binary forms, with or without
     12  1.28       ad  * modification, are permitted provided that the following conditions
     13  1.28       ad  * are met:
     14  1.28       ad  * 1. Redistributions of source code must retain the above copyright
     15  1.28       ad  *    notice, this list of conditions and the following disclaimer.
     16  1.28       ad  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.28       ad  *    notice, this list of conditions and the following disclaimer in the
     18  1.28       ad  *    documentation and/or other materials provided with the distribution.
     19  1.28       ad  *
     20  1.28       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  1.28       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  1.28       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  1.28       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  1.28       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.28       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.28       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.28       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.28       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.28       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.28       ad  * POSSIBILITY OF SUCH DAMAGE.
     31  1.28       ad  */
     32  1.28       ad 
     33   1.2     yamt /*
     34   1.2     yamt  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     35   1.2     yamt  * Copyright (c) 1991, 1993, The Regents of the University of California.
     36   1.2     yamt  *
     37   1.2     yamt  * All rights reserved.
     38   1.2     yamt  *
     39   1.2     yamt  * This code is derived from software contributed to Berkeley by
     40   1.2     yamt  * The Mach Operating System project at Carnegie-Mellon University.
     41   1.2     yamt  *
     42   1.2     yamt  * Redistribution and use in source and binary forms, with or without
     43   1.2     yamt  * modification, are permitted provided that the following conditions
     44   1.2     yamt  * are met:
     45   1.2     yamt  * 1. Redistributions of source code must retain the above copyright
     46   1.2     yamt  *    notice, this list of conditions and the following disclaimer.
     47   1.2     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     48   1.2     yamt  *    notice, this list of conditions and the following disclaimer in the
     49   1.2     yamt  *    documentation and/or other materials provided with the distribution.
     50  1.13    chuck  * 3. Neither the name of the University nor the names of its contributors
     51   1.2     yamt  *    may be used to endorse or promote products derived from this software
     52   1.2     yamt  *    without specific prior written permission.
     53   1.2     yamt  *
     54   1.2     yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55   1.2     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56   1.2     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57   1.2     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58   1.2     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59   1.2     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60   1.2     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61   1.2     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62   1.2     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63   1.2     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64   1.2     yamt  * SUCH DAMAGE.
     65   1.2     yamt  *
     66   1.2     yamt  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     67   1.2     yamt  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     68   1.2     yamt  *
     69   1.2     yamt  *
     70   1.2     yamt  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     71   1.2     yamt  * All rights reserved.
     72   1.2     yamt  *
     73   1.2     yamt  * Permission to use, copy, modify and distribute this software and
     74   1.2     yamt  * its documentation is hereby granted, provided that both the copyright
     75   1.2     yamt  * notice and this permission notice appear in all copies of the
     76   1.2     yamt  * software, derivative works or modified versions, and any portions
     77   1.2     yamt  * thereof, and that both notices appear in supporting documentation.
     78   1.2     yamt  *
     79   1.2     yamt  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     80   1.2     yamt  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     81   1.2     yamt  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     82   1.2     yamt  *
     83   1.2     yamt  * Carnegie Mellon requests users of this software to return to
     84   1.2     yamt  *
     85   1.2     yamt  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     86   1.2     yamt  *  School of Computer Science
     87   1.2     yamt  *  Carnegie Mellon University
     88   1.2     yamt  *  Pittsburgh PA 15213-3890
     89   1.2     yamt  *
     90   1.2     yamt  * any improvements or extensions that they make and grant Carnegie the
     91   1.2     yamt  * rights to redistribute these changes.
     92   1.2     yamt  */
     93   1.2     yamt 
     94   1.2     yamt #if defined(PDSIM)
     95   1.2     yamt 
     96   1.2     yamt #include "pdsim.h"
     97   1.2     yamt 
     98   1.2     yamt #else /* defined(PDSIM) */
     99   1.2     yamt 
    100   1.2     yamt #include <sys/cdefs.h>
    101  1.42   bouyer __KERNEL_RCSID(0, "$NetBSD: uvm_pdpolicy_clock.c,v 1.42 2025/05/20 10:22:27 bouyer Exp $");
    102   1.2     yamt 
    103   1.2     yamt #include <sys/param.h>
    104   1.2     yamt #include <sys/proc.h>
    105   1.2     yamt #include <sys/systm.h>
    106   1.2     yamt #include <sys/kernel.h>
    107  1.28       ad #include <sys/kmem.h>
    108  1.29  mlelstv #include <sys/atomic.h>
    109   1.2     yamt 
    110   1.2     yamt #include <uvm/uvm.h>
    111   1.2     yamt #include <uvm/uvm_pdpolicy.h>
    112   1.2     yamt #include <uvm/uvm_pdpolicy_impl.h>
    113  1.18       ad #include <uvm/uvm_stat.h>
    114   1.2     yamt 
    115   1.2     yamt #endif /* defined(PDSIM) */
    116   1.2     yamt 
    117  1.28       ad /*
    118  1.28       ad  * per-CPU queue of pending page status changes.  128 entries makes for a
    119  1.28       ad  * 1kB queue on _LP64 and has been found to be a reasonable compromise that
    120  1.28       ad  * keeps lock contention events and wait times low, while not using too much
    121  1.28       ad  * memory nor allowing global state to fall too far behind.
    122  1.28       ad  */
    123  1.28       ad #if !defined(CLOCK_PDQ_SIZE)
    124  1.28       ad #define	CLOCK_PDQ_SIZE	128
    125  1.28       ad #endif /* !defined(CLOCK_PDQ_SIZE) */
    126  1.28       ad 
    127  1.28       ad #define PQ_INACTIVE	0x00000010	/* page is in inactive list */
    128  1.28       ad #define PQ_ACTIVE	0x00000020	/* page is in active list */
    129   1.2     yamt 
    130   1.2     yamt #if !defined(CLOCK_INACTIVEPCT)
    131   1.2     yamt #define	CLOCK_INACTIVEPCT	33
    132   1.2     yamt #endif /* !defined(CLOCK_INACTIVEPCT) */
    133   1.2     yamt 
    134   1.2     yamt struct uvmpdpol_globalstate {
    135  1.18       ad 	kmutex_t lock;			/* lock on state */
    136  1.18       ad 					/* <= compiler pads here */
    137  1.18       ad 	struct pglist s_activeq		/* allocated pages, in use */
    138  1.18       ad 	    __aligned(COHERENCY_UNIT);
    139   1.2     yamt 	struct pglist s_inactiveq;	/* pages between the clock hands */
    140   1.2     yamt 	int s_active;
    141   1.2     yamt 	int s_inactive;
    142   1.2     yamt 	int s_inactarg;
    143   1.2     yamt 	struct uvm_pctparam s_anonmin;
    144   1.2     yamt 	struct uvm_pctparam s_filemin;
    145   1.2     yamt 	struct uvm_pctparam s_execmin;
    146   1.2     yamt 	struct uvm_pctparam s_anonmax;
    147   1.2     yamt 	struct uvm_pctparam s_filemax;
    148   1.2     yamt 	struct uvm_pctparam s_execmax;
    149   1.2     yamt 	struct uvm_pctparam s_inactivepct;
    150   1.2     yamt };
    151   1.2     yamt 
    152   1.2     yamt struct uvmpdpol_scanstate {
    153   1.7  thorpej 	bool ss_anonreact, ss_filereact, ss_execreact;
    154  1.24       ad 	struct vm_page ss_marker;
    155   1.2     yamt };
    156   1.2     yamt 
    157  1.18       ad static void	uvmpdpol_pageactivate_locked(struct vm_page *);
    158  1.18       ad static void	uvmpdpol_pagedeactivate_locked(struct vm_page *);
    159  1.18       ad static void	uvmpdpol_pagedequeue_locked(struct vm_page *);
    160  1.28       ad static bool	uvmpdpol_pagerealize_locked(struct vm_page *);
    161  1.28       ad static struct uvm_cpu *uvmpdpol_flush(void);
    162  1.18       ad 
    163  1.18       ad static struct uvmpdpol_globalstate pdpol_state __cacheline_aligned;
    164   1.2     yamt static struct uvmpdpol_scanstate pdpol_scanstate;
    165   1.2     yamt 
    166   1.2     yamt PDPOL_EVCNT_DEFINE(reactexec)
    167   1.2     yamt PDPOL_EVCNT_DEFINE(reactfile)
    168   1.2     yamt PDPOL_EVCNT_DEFINE(reactanon)
    169   1.2     yamt 
    170   1.2     yamt static void
    171   1.2     yamt clock_tune(void)
    172   1.2     yamt {
    173   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    174   1.2     yamt 
    175   1.2     yamt 	s->s_inactarg = UVM_PCTPARAM_APPLY(&s->s_inactivepct,
    176   1.2     yamt 	    s->s_active + s->s_inactive);
    177   1.2     yamt 	if (s->s_inactarg <= uvmexp.freetarg) {
    178   1.2     yamt 		s->s_inactarg = uvmexp.freetarg + 1;
    179   1.2     yamt 	}
    180   1.2     yamt }
    181   1.2     yamt 
    182   1.2     yamt void
    183   1.2     yamt uvmpdpol_scaninit(void)
    184   1.2     yamt {
    185   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    186   1.2     yamt 	struct uvmpdpol_scanstate *ss = &pdpol_scanstate;
    187   1.2     yamt 	int t;
    188   1.7  thorpej 	bool anonunder, fileunder, execunder;
    189   1.7  thorpej 	bool anonover, fileover, execover;
    190   1.7  thorpej 	bool anonreact, filereact, execreact;
    191  1.20       ad 	int64_t freepg, anonpg, filepg, execpg;
    192   1.2     yamt 
    193   1.2     yamt 	/*
    194   1.2     yamt 	 * decide which types of pages we want to reactivate instead of freeing
    195   1.2     yamt 	 * to keep usage within the minimum and maximum usage limits.
    196  1.39       ad 	 * uvm_availmem() will sync the counters.
    197   1.2     yamt 	 */
    198   1.2     yamt 
    199  1.38       ad 	freepg = uvm_availmem(false);
    200  1.39       ad 	anonpg = cpu_count_get(CPU_COUNT_ANONCLEAN) +
    201  1.39       ad 	    cpu_count_get(CPU_COUNT_ANONDIRTY) +
    202  1.39       ad 	    cpu_count_get(CPU_COUNT_ANONUNKNOWN);
    203  1.20       ad 	execpg = cpu_count_get(CPU_COUNT_EXECPAGES);
    204  1.39       ad 	filepg = cpu_count_get(CPU_COUNT_FILECLEAN) +
    205  1.39       ad 	    cpu_count_get(CPU_COUNT_FILEDIRTY) +
    206  1.39       ad 	    cpu_count_get(CPU_COUNT_FILEUNKNOWN) -
    207  1.39       ad 	    execpg;
    208  1.20       ad 
    209  1.18       ad 	mutex_enter(&s->lock);
    210  1.20       ad 	t = s->s_active + s->s_inactive + freepg;
    211  1.20       ad 	anonunder = anonpg <= UVM_PCTPARAM_APPLY(&s->s_anonmin, t);
    212  1.20       ad 	fileunder = filepg <= UVM_PCTPARAM_APPLY(&s->s_filemin, t);
    213  1.20       ad 	execunder = execpg <= UVM_PCTPARAM_APPLY(&s->s_execmin, t);
    214  1.20       ad 	anonover = anonpg > UVM_PCTPARAM_APPLY(&s->s_anonmax, t);
    215  1.20       ad 	fileover = filepg > UVM_PCTPARAM_APPLY(&s->s_filemax, t);
    216  1.20       ad 	execover = execpg > UVM_PCTPARAM_APPLY(&s->s_execmax, t);
    217   1.2     yamt 	anonreact = anonunder || (!anonover && (fileover || execover));
    218   1.2     yamt 	filereact = fileunder || (!fileover && (anonover || execover));
    219   1.2     yamt 	execreact = execunder || (!execover && (anonover || fileover));
    220   1.2     yamt 	if (filereact && execreact && (anonreact || uvm_swapisfull())) {
    221   1.8  thorpej 		anonreact = filereact = execreact = false;
    222   1.2     yamt 	}
    223   1.2     yamt 	ss->ss_anonreact = anonreact;
    224   1.2     yamt 	ss->ss_filereact = filereact;
    225   1.2     yamt 	ss->ss_execreact = execreact;
    226  1.24       ad 	memset(&ss->ss_marker, 0, sizeof(ss->ss_marker));
    227  1.24       ad 	ss->ss_marker.flags = PG_MARKER;
    228  1.24       ad 	TAILQ_INSERT_HEAD(&pdpol_state.s_inactiveq, &ss->ss_marker, pdqueue);
    229  1.24       ad 	mutex_exit(&s->lock);
    230  1.24       ad }
    231  1.24       ad 
    232  1.24       ad void
    233  1.24       ad uvmpdpol_scanfini(void)
    234  1.24       ad {
    235  1.24       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    236  1.24       ad 	struct uvmpdpol_scanstate *ss = &pdpol_scanstate;
    237   1.2     yamt 
    238  1.24       ad 	mutex_enter(&s->lock);
    239  1.24       ad 	TAILQ_REMOVE(&pdpol_state.s_inactiveq, &ss->ss_marker, pdqueue);
    240  1.18       ad 	mutex_exit(&s->lock);
    241   1.2     yamt }
    242   1.2     yamt 
    243   1.2     yamt struct vm_page *
    244  1.33       ad uvmpdpol_selectvictim(krwlock_t **plock)
    245   1.2     yamt {
    246  1.18       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    247   1.2     yamt 	struct uvmpdpol_scanstate *ss = &pdpol_scanstate;
    248   1.2     yamt 	struct vm_page *pg;
    249  1.33       ad 	krwlock_t *lock;
    250   1.2     yamt 
    251  1.18       ad 	mutex_enter(&s->lock);
    252   1.2     yamt 	while (/* CONSTCOND */ 1) {
    253   1.2     yamt 		struct vm_anon *anon;
    254   1.2     yamt 		struct uvm_object *uobj;
    255   1.2     yamt 
    256  1.24       ad 		pg = TAILQ_NEXT(&ss->ss_marker, pdqueue);
    257   1.2     yamt 		if (pg == NULL) {
    258   1.2     yamt 			break;
    259   1.2     yamt 		}
    260  1.24       ad 		KASSERT((pg->flags & PG_MARKER) == 0);
    261   1.2     yamt 		uvmexp.pdscans++;
    262   1.2     yamt 
    263   1.2     yamt 		/*
    264  1.40   andvar 		 * acquire interlock to stabilize page identity.
    265  1.18       ad 		 * if we have caught the page in a state of flux
    266  1.28       ad 		 * deal with it and retry.
    267   1.2     yamt 		 */
    268  1.18       ad 		mutex_enter(&pg->interlock);
    269  1.28       ad 		if (uvmpdpol_pagerealize_locked(pg)) {
    270  1.28       ad 			mutex_exit(&pg->interlock);
    271  1.28       ad 			continue;
    272   1.2     yamt 		}
    273   1.2     yamt 
    274   1.2     yamt 		/*
    275  1.24       ad 		 * now prepare to move on to the next page.
    276  1.24       ad 		 */
    277  1.24       ad 		TAILQ_REMOVE(&pdpol_state.s_inactiveq, &ss->ss_marker,
    278  1.24       ad 		    pdqueue);
    279  1.24       ad 		TAILQ_INSERT_AFTER(&pdpol_state.s_inactiveq, pg,
    280  1.24       ad 		    &ss->ss_marker, pdqueue);
    281  1.24       ad 
    282  1.24       ad 		/*
    283   1.2     yamt 		 * enforce the minimum thresholds on different
    284   1.2     yamt 		 * types of memory usage.  if reusing the current
    285   1.2     yamt 		 * page would reduce that type of usage below its
    286   1.2     yamt 		 * minimum, reactivate the page instead and move
    287   1.2     yamt 		 * on to the next page.
    288   1.2     yamt 		 */
    289  1.18       ad 		anon = pg->uanon;
    290  1.18       ad 		uobj = pg->uobject;
    291   1.2     yamt 		if (uobj && UVM_OBJ_IS_VTEXT(uobj) && ss->ss_execreact) {
    292  1.28       ad 			uvmpdpol_pageactivate_locked(pg);
    293  1.18       ad 			mutex_exit(&pg->interlock);
    294   1.2     yamt 			PDPOL_EVCNT_INCR(reactexec);
    295   1.2     yamt 			continue;
    296   1.2     yamt 		}
    297   1.2     yamt 		if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    298   1.2     yamt 		    !UVM_OBJ_IS_VTEXT(uobj) && ss->ss_filereact) {
    299  1.28       ad 			uvmpdpol_pageactivate_locked(pg);
    300  1.18       ad 			mutex_exit(&pg->interlock);
    301   1.2     yamt 			PDPOL_EVCNT_INCR(reactfile);
    302   1.2     yamt 			continue;
    303   1.2     yamt 		}
    304   1.2     yamt 		if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && ss->ss_anonreact) {
    305  1.28       ad 			uvmpdpol_pageactivate_locked(pg);
    306  1.18       ad 			mutex_exit(&pg->interlock);
    307   1.2     yamt 			PDPOL_EVCNT_INCR(reactanon);
    308   1.2     yamt 			continue;
    309   1.2     yamt 		}
    310   1.2     yamt 
    311  1.18       ad 		/*
    312  1.18       ad 		 * try to lock the object that owns the page.
    313  1.18       ad 		 *
    314  1.18       ad 		 * with the page interlock held, we can drop s->lock, which
    315  1.18       ad 		 * could otherwise serve as a barrier to us getting the
    316  1.18       ad 		 * object locked, because the owner of the object's lock may
    317  1.18       ad 		 * be blocked on s->lock (i.e. a deadlock).
    318  1.18       ad 		 *
    319  1.18       ad 		 * whatever happens, uvmpd_trylockowner() will release the
    320  1.18       ad 		 * interlock.  with the interlock dropped we can then
    321  1.18       ad 		 * re-acquire our own lock.  the order is:
    322  1.18       ad 		 *
    323  1.18       ad 		 *	object -> pdpol -> interlock.
    324  1.18       ad 	         */
    325  1.18       ad 	        mutex_exit(&s->lock);
    326  1.18       ad         	lock = uvmpd_trylockowner(pg);
    327  1.18       ad         	/* pg->interlock now released */
    328  1.18       ad         	mutex_enter(&s->lock);
    329  1.18       ad 		if (lock == NULL) {
    330  1.18       ad 			/* didn't get it - try the next page. */
    331  1.18       ad 			continue;
    332  1.18       ad 		}
    333  1.18       ad 
    334  1.18       ad 		/*
    335  1.18       ad 		 * move referenced pages back to active queue and skip to
    336  1.18       ad 		 * next page.
    337  1.18       ad 		 */
    338  1.18       ad 		if (pmap_is_referenced(pg)) {
    339  1.28       ad 			mutex_enter(&pg->interlock);
    340  1.18       ad 			uvmpdpol_pageactivate_locked(pg);
    341  1.28       ad 			mutex_exit(&pg->interlock);
    342  1.18       ad 			uvmexp.pdreact++;
    343  1.33       ad 			rw_exit(lock);
    344  1.18       ad 			continue;
    345  1.18       ad 		}
    346  1.18       ad 
    347  1.18       ad 		/* we have a potential victim. */
    348  1.18       ad 		*plock = lock;
    349   1.2     yamt 		break;
    350   1.2     yamt 	}
    351  1.18       ad 	mutex_exit(&s->lock);
    352   1.2     yamt 	return pg;
    353   1.2     yamt }
    354   1.2     yamt 
    355   1.2     yamt void
    356   1.2     yamt uvmpdpol_balancequeue(int swap_shortage)
    357   1.2     yamt {
    358  1.18       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    359   1.2     yamt 	int inactive_shortage;
    360  1.24       ad 	struct vm_page *p, marker;
    361  1.33       ad 	krwlock_t *lock;
    362   1.2     yamt 
    363   1.2     yamt 	/*
    364   1.2     yamt 	 * we have done the scan to get free pages.   now we work on meeting
    365   1.2     yamt 	 * our inactive target.
    366   1.2     yamt 	 */
    367   1.2     yamt 
    368  1.24       ad 	memset(&marker, 0, sizeof(marker));
    369  1.24       ad 	marker.flags = PG_MARKER;
    370  1.24       ad 
    371  1.18       ad 	mutex_enter(&s->lock);
    372  1.24       ad 	TAILQ_INSERT_HEAD(&pdpol_state.s_activeq, &marker, pdqueue);
    373  1.24       ad 	for (;;) {
    374  1.24       ad 		inactive_shortage =
    375  1.24       ad 		    pdpol_state.s_inactarg - pdpol_state.s_inactive;
    376  1.24       ad 		if (inactive_shortage <= 0 && swap_shortage <= 0) {
    377  1.24       ad 			break;
    378   1.2     yamt 		}
    379  1.24       ad 		p = TAILQ_NEXT(&marker, pdqueue);
    380  1.24       ad 		if (p == NULL) {
    381  1.24       ad 			break;
    382  1.14    rmind 		}
    383  1.24       ad 		KASSERT((p->flags & PG_MARKER) == 0);
    384  1.14    rmind 
    385  1.18       ad 		/*
    386  1.40   andvar 		 * acquire interlock to stabilize page identity.
    387  1.18       ad 		 * if we have caught the page in a state of flux
    388  1.28       ad 		 * deal with it and retry.
    389  1.18       ad 		 */
    390  1.18       ad 		mutex_enter(&p->interlock);
    391  1.28       ad 		if (uvmpdpol_pagerealize_locked(p)) {
    392  1.28       ad 			mutex_exit(&p->interlock);
    393  1.28       ad 			continue;
    394  1.18       ad 		}
    395  1.24       ad 
    396  1.24       ad 		/*
    397  1.24       ad 		 * now prepare to move on to the next page.
    398  1.24       ad 		 */
    399  1.24       ad 		TAILQ_REMOVE(&pdpol_state.s_activeq, &marker, pdqueue);
    400  1.24       ad 		TAILQ_INSERT_AFTER(&pdpol_state.s_activeq, p, &marker,
    401  1.24       ad 		    pdqueue);
    402  1.24       ad 
    403  1.24       ad 		/*
    404  1.24       ad 		 * try to lock the object that owns the page.  see comments
    405  1.24       ad 		 * in uvmpdol_selectvictim().
    406  1.24       ad 	         */
    407  1.24       ad 	        mutex_exit(&s->lock);
    408  1.24       ad         	lock = uvmpd_trylockowner(p);
    409  1.24       ad         	/* p->interlock now released */
    410  1.24       ad         	mutex_enter(&s->lock);
    411  1.24       ad 		if (lock == NULL) {
    412  1.24       ad 			/* didn't get it - try the next page. */
    413  1.24       ad 			continue;
    414  1.24       ad 		}
    415  1.24       ad 
    416  1.24       ad 		/*
    417  1.24       ad 		 * if there's a shortage of swap slots, try to free it.
    418  1.24       ad 		 */
    419  1.24       ad 		if (swap_shortage > 0 && (p->flags & PG_SWAPBACKED) != 0 &&
    420  1.24       ad 		    (p->flags & PG_BUSY) == 0) {
    421  1.24       ad 			if (uvmpd_dropswap(p)) {
    422  1.24       ad 				swap_shortage--;
    423  1.24       ad 			}
    424  1.24       ad 		}
    425  1.24       ad 
    426  1.24       ad 		/*
    427  1.24       ad 		 * if there's a shortage of inactive pages, deactivate.
    428  1.24       ad 		 */
    429  1.24       ad 		if (inactive_shortage > 0) {
    430  1.28       ad 			pmap_clear_reference(p);
    431  1.28       ad 			mutex_enter(&p->interlock);
    432  1.18       ad 			uvmpdpol_pagedeactivate_locked(p);
    433  1.28       ad 			mutex_exit(&p->interlock);
    434   1.2     yamt 			uvmexp.pddeact++;
    435   1.2     yamt 			inactive_shortage--;
    436   1.2     yamt 		}
    437  1.33       ad 		rw_exit(lock);
    438   1.2     yamt 	}
    439  1.24       ad 	TAILQ_REMOVE(&pdpol_state.s_activeq, &marker, pdqueue);
    440  1.18       ad 	mutex_exit(&s->lock);
    441   1.2     yamt }
    442   1.2     yamt 
    443  1.18       ad static void
    444  1.18       ad uvmpdpol_pagedeactivate_locked(struct vm_page *pg)
    445   1.2     yamt {
    446  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    447   1.2     yamt 
    448  1.28       ad 	KASSERT(mutex_owned(&s->lock));
    449  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    450  1.28       ad 	KASSERT((pg->pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) !=
    451  1.28       ad 	    (PQ_INTENT_D | PQ_INTENT_SET));
    452  1.14    rmind 
    453   1.2     yamt 	if (pg->pqflags & PQ_ACTIVE) {
    454  1.23       ad 		TAILQ_REMOVE(&pdpol_state.s_activeq, pg, pdqueue);
    455   1.2     yamt 		KASSERT(pdpol_state.s_active > 0);
    456   1.2     yamt 		pdpol_state.s_active--;
    457   1.2     yamt 	}
    458   1.2     yamt 	if ((pg->pqflags & PQ_INACTIVE) == 0) {
    459   1.2     yamt 		KASSERT(pg->wire_count == 0);
    460  1.23       ad 		TAILQ_INSERT_TAIL(&pdpol_state.s_inactiveq, pg, pdqueue);
    461   1.2     yamt 		pdpol_state.s_inactive++;
    462   1.2     yamt 	}
    463  1.34       ad 	pg->pqflags &= ~(PQ_ACTIVE | PQ_INTENT_SET);
    464  1.34       ad 	pg->pqflags |= PQ_INACTIVE;
    465   1.2     yamt }
    466   1.2     yamt 
    467   1.2     yamt void
    468  1.18       ad uvmpdpol_pagedeactivate(struct vm_page *pg)
    469  1.18       ad {
    470  1.18       ad 
    471  1.35       ad 	KASSERT(uvm_page_owner_locked_p(pg, false));
    472  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    473  1.28       ad 
    474  1.28       ad 	/*
    475  1.28       ad 	 * we have to clear the reference bit now, as when it comes time to
    476  1.28       ad 	 * realize the intent we won't have the object locked any more.
    477  1.28       ad 	 */
    478  1.28       ad 	pmap_clear_reference(pg);
    479  1.28       ad 	uvmpdpol_set_intent(pg, PQ_INTENT_I);
    480  1.18       ad }
    481  1.18       ad 
    482  1.18       ad static void
    483  1.18       ad uvmpdpol_pageactivate_locked(struct vm_page *pg)
    484   1.2     yamt {
    485  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    486  1.28       ad 
    487  1.28       ad 	KASSERT(mutex_owned(&s->lock));
    488  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    489  1.28       ad 	KASSERT((pg->pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) !=
    490  1.28       ad 	    (PQ_INTENT_D | PQ_INTENT_SET));
    491   1.2     yamt 
    492  1.18       ad 	uvmpdpol_pagedequeue_locked(pg);
    493  1.23       ad 	TAILQ_INSERT_TAIL(&pdpol_state.s_activeq, pg, pdqueue);
    494   1.2     yamt 	pdpol_state.s_active++;
    495  1.34       ad 	pg->pqflags &= ~(PQ_INACTIVE | PQ_INTENT_SET);
    496  1.34       ad 	pg->pqflags |= PQ_ACTIVE;
    497   1.2     yamt }
    498   1.2     yamt 
    499   1.2     yamt void
    500  1.18       ad uvmpdpol_pageactivate(struct vm_page *pg)
    501  1.18       ad {
    502  1.28       ad 
    503  1.35       ad 	KASSERT(uvm_page_owner_locked_p(pg, false));
    504  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    505  1.18       ad 
    506  1.31       ad 	uvmpdpol_set_intent(pg, PQ_INTENT_A);
    507  1.18       ad }
    508  1.18       ad 
    509  1.18       ad static void
    510  1.18       ad uvmpdpol_pagedequeue_locked(struct vm_page *pg)
    511   1.2     yamt {
    512  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    513  1.28       ad 
    514  1.28       ad 	KASSERT(mutex_owned(&s->lock));
    515  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    516   1.2     yamt 
    517   1.2     yamt 	if (pg->pqflags & PQ_ACTIVE) {
    518  1.23       ad 		TAILQ_REMOVE(&pdpol_state.s_activeq, pg, pdqueue);
    519  1.28       ad 		KASSERT((pg->pqflags & PQ_INACTIVE) == 0);
    520   1.2     yamt 		KASSERT(pdpol_state.s_active > 0);
    521   1.2     yamt 		pdpol_state.s_active--;
    522   1.2     yamt 	} else if (pg->pqflags & PQ_INACTIVE) {
    523  1.23       ad 		TAILQ_REMOVE(&pdpol_state.s_inactiveq, pg, pdqueue);
    524   1.2     yamt 		KASSERT(pdpol_state.s_inactive > 0);
    525   1.2     yamt 		pdpol_state.s_inactive--;
    526   1.2     yamt 	}
    527  1.34       ad 	pg->pqflags &= ~(PQ_ACTIVE | PQ_INACTIVE | PQ_INTENT_SET);
    528   1.2     yamt }
    529   1.2     yamt 
    530   1.2     yamt void
    531  1.18       ad uvmpdpol_pagedequeue(struct vm_page *pg)
    532  1.18       ad {
    533  1.18       ad 
    534  1.33       ad 	KASSERT(uvm_page_owner_locked_p(pg, true));
    535  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    536  1.28       ad 
    537  1.28       ad 	uvmpdpol_set_intent(pg, PQ_INTENT_D);
    538  1.18       ad }
    539  1.18       ad 
    540  1.18       ad void
    541   1.2     yamt uvmpdpol_pageenqueue(struct vm_page *pg)
    542   1.2     yamt {
    543   1.2     yamt 
    544  1.35       ad 	KASSERT(uvm_page_owner_locked_p(pg, false));
    545  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    546  1.28       ad 
    547  1.28       ad 	uvmpdpol_set_intent(pg, PQ_INTENT_E);
    548   1.2     yamt }
    549   1.2     yamt 
    550   1.2     yamt void
    551   1.5     yamt uvmpdpol_anfree(struct vm_anon *an)
    552   1.2     yamt {
    553   1.2     yamt }
    554   1.2     yamt 
    555   1.7  thorpej bool
    556   1.2     yamt uvmpdpol_pageisqueued_p(struct vm_page *pg)
    557   1.2     yamt {
    558  1.28       ad 	uint32_t pqflags;
    559   1.2     yamt 
    560  1.28       ad 	/*
    561  1.28       ad 	 * if there's an intent set, we have to consider it.  otherwise,
    562  1.28       ad 	 * return the actual state.  we may be called unlocked for the
    563  1.28       ad 	 * purpose of assertions, which is safe due to the page lifecycle.
    564  1.28       ad 	 */
    565  1.28       ad 	pqflags = atomic_load_relaxed(&pg->pqflags);
    566  1.28       ad 	if ((pqflags & PQ_INTENT_SET) != 0) {
    567  1.28       ad 		return (pqflags & PQ_INTENT_MASK) != PQ_INTENT_D;
    568  1.28       ad 	} else {
    569  1.28       ad 		return (pqflags & (PQ_ACTIVE | PQ_INACTIVE)) != 0;
    570  1.28       ad 	}
    571   1.2     yamt }
    572   1.2     yamt 
    573  1.37       ad bool
    574  1.37       ad uvmpdpol_pageactivate_p(struct vm_page *pg)
    575  1.37       ad {
    576  1.37       ad 	uint32_t pqflags;
    577  1.37       ad 
    578  1.37       ad 	/* consider intent in preference to actual state. */
    579  1.37       ad 	pqflags = atomic_load_relaxed(&pg->pqflags);
    580  1.37       ad 	if ((pqflags & PQ_INTENT_SET) != 0) {
    581  1.37       ad 		pqflags &= PQ_INTENT_MASK;
    582  1.37       ad 		return pqflags != PQ_INTENT_A && pqflags != PQ_INTENT_E;
    583  1.37       ad 	} else {
    584  1.37       ad 		/*
    585  1.37       ad 		 * TODO: Enabling this may be too much of a big hammer,
    586  1.37       ad 		 * since we do get useful information from activations.
    587  1.37       ad 		 * Think about it more and maybe come up with a heuristic
    588  1.37       ad 		 * or something.
    589  1.37       ad 		 *
    590  1.37       ad 		 * return (pqflags & PQ_ACTIVE) == 0;
    591  1.37       ad 		 */
    592  1.37       ad 		return true;
    593  1.37       ad 	}
    594  1.37       ad }
    595  1.37       ad 
    596   1.2     yamt void
    597   1.2     yamt uvmpdpol_estimatepageable(int *active, int *inactive)
    598   1.2     yamt {
    599  1.18       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    600   1.2     yamt 
    601  1.32       ad 	/*
    602  1.32       ad 	 * Don't take any locks here.  This can be called from DDB, and in
    603  1.32       ad 	 * any case the numbers are stale the instant the lock is dropped,
    604  1.32       ad 	 * so it just doesn't matter.
    605  1.32       ad 	 */
    606   1.2     yamt 	if (active) {
    607  1.32       ad 		*active = s->s_active;
    608   1.2     yamt 	}
    609   1.2     yamt 	if (inactive) {
    610  1.32       ad 		*inactive = s->s_inactive;
    611   1.2     yamt 	}
    612   1.2     yamt }
    613   1.2     yamt 
    614   1.2     yamt #if !defined(PDSIM)
    615   1.2     yamt static int
    616   1.2     yamt min_check(struct uvm_pctparam *pct, int t)
    617   1.2     yamt {
    618   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    619   1.2     yamt 	int total = t;
    620   1.2     yamt 
    621   1.2     yamt 	if (pct != &s->s_anonmin) {
    622   1.2     yamt 		total += uvm_pctparam_get(&s->s_anonmin);
    623   1.2     yamt 	}
    624   1.2     yamt 	if (pct != &s->s_filemin) {
    625   1.2     yamt 		total += uvm_pctparam_get(&s->s_filemin);
    626   1.2     yamt 	}
    627   1.2     yamt 	if (pct != &s->s_execmin) {
    628   1.2     yamt 		total += uvm_pctparam_get(&s->s_execmin);
    629   1.2     yamt 	}
    630   1.2     yamt 	if (total > 95) {
    631   1.2     yamt 		return EINVAL;
    632   1.2     yamt 	}
    633   1.2     yamt 	return 0;
    634   1.2     yamt }
    635   1.2     yamt #endif /* !defined(PDSIM) */
    636   1.2     yamt 
    637   1.2     yamt void
    638   1.2     yamt uvmpdpol_init(void)
    639   1.2     yamt {
    640   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    641   1.2     yamt 
    642  1.18       ad 	mutex_init(&s->lock, MUTEX_DEFAULT, IPL_NONE);
    643   1.2     yamt 	TAILQ_INIT(&s->s_activeq);
    644   1.2     yamt 	TAILQ_INIT(&s->s_inactiveq);
    645   1.2     yamt 	uvm_pctparam_init(&s->s_inactivepct, CLOCK_INACTIVEPCT, NULL);
    646   1.2     yamt 	uvm_pctparam_init(&s->s_anonmin, 10, min_check);
    647   1.2     yamt 	uvm_pctparam_init(&s->s_filemin, 10, min_check);
    648   1.2     yamt 	uvm_pctparam_init(&s->s_execmin,  5, min_check);
    649   1.2     yamt 	uvm_pctparam_init(&s->s_anonmax, 80, NULL);
    650   1.2     yamt 	uvm_pctparam_init(&s->s_filemax, 50, NULL);
    651   1.2     yamt 	uvm_pctparam_init(&s->s_execmax, 30, NULL);
    652   1.2     yamt }
    653   1.2     yamt 
    654   1.2     yamt void
    655  1.28       ad uvmpdpol_init_cpu(struct uvm_cpu *ucpu)
    656  1.28       ad {
    657  1.28       ad 
    658  1.28       ad 	ucpu->pdq =
    659  1.28       ad 	    kmem_alloc(CLOCK_PDQ_SIZE * sizeof(struct vm_page *), KM_SLEEP);
    660  1.28       ad 	ucpu->pdqhead = CLOCK_PDQ_SIZE;
    661  1.28       ad 	ucpu->pdqtail = CLOCK_PDQ_SIZE;
    662  1.28       ad }
    663  1.28       ad 
    664  1.28       ad void
    665   1.2     yamt uvmpdpol_reinit(void)
    666   1.2     yamt {
    667   1.2     yamt }
    668   1.2     yamt 
    669   1.7  thorpej bool
    670   1.2     yamt uvmpdpol_needsscan_p(void)
    671   1.2     yamt {
    672   1.2     yamt 
    673  1.28       ad 	/*
    674  1.28       ad 	 * this must be an unlocked check: can be called from interrupt.
    675  1.28       ad 	 */
    676  1.17     para 	return pdpol_state.s_inactive < pdpol_state.s_inactarg;
    677   1.2     yamt }
    678   1.2     yamt 
    679   1.2     yamt void
    680   1.2     yamt uvmpdpol_tune(void)
    681   1.2     yamt {
    682  1.18       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    683   1.2     yamt 
    684  1.18       ad 	mutex_enter(&s->lock);
    685   1.2     yamt 	clock_tune();
    686  1.18       ad 	mutex_exit(&s->lock);
    687   1.2     yamt }
    688   1.2     yamt 
    689  1.28       ad /*
    690  1.30       ad  * uvmpdpol_pagerealize_locked: take the intended state set on a page and
    691  1.30       ad  * make it real.  return true if any work was done.
    692  1.28       ad  */
    693  1.28       ad static bool
    694  1.28       ad uvmpdpol_pagerealize_locked(struct vm_page *pg)
    695  1.28       ad {
    696  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    697  1.28       ad 
    698  1.28       ad 	KASSERT(mutex_owned(&s->lock));
    699  1.28       ad 	KASSERT(mutex_owned(&pg->interlock));
    700  1.28       ad 
    701  1.28       ad 	switch (pg->pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) {
    702  1.28       ad 	case PQ_INTENT_A | PQ_INTENT_SET:
    703  1.28       ad 	case PQ_INTENT_E | PQ_INTENT_SET:
    704  1.28       ad 		uvmpdpol_pageactivate_locked(pg);
    705  1.28       ad 		return true;
    706  1.28       ad 	case PQ_INTENT_I | PQ_INTENT_SET:
    707  1.28       ad 		uvmpdpol_pagedeactivate_locked(pg);
    708  1.28       ad 		return true;
    709  1.28       ad 	case PQ_INTENT_D | PQ_INTENT_SET:
    710  1.28       ad 		uvmpdpol_pagedequeue_locked(pg);
    711  1.28       ad 		return true;
    712  1.28       ad 	default:
    713  1.28       ad 		return false;
    714  1.28       ad 	}
    715  1.28       ad }
    716  1.28       ad 
    717  1.28       ad /*
    718  1.28       ad  * uvmpdpol_flush: return the current uvm_cpu with all of its pending
    719  1.28       ad  * updates flushed to the global queues.  this routine may block, and
    720  1.28       ad  * so can switch cpu.  the idea is to empty to queue on whatever cpu
    721  1.28       ad  * we finally end up on.
    722  1.41   bouyer  * Must be called at splsoftbio()
    723  1.28       ad  */
    724  1.28       ad static struct uvm_cpu *
    725  1.28       ad uvmpdpol_flush(void)
    726  1.28       ad {
    727  1.28       ad 	struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
    728  1.28       ad 	struct uvm_cpu *ucpu;
    729  1.28       ad 	struct vm_page *pg;
    730  1.28       ad 
    731  1.28       ad 	KASSERT(kpreempt_disabled());
    732  1.28       ad 
    733  1.28       ad 	mutex_enter(&s->lock);
    734  1.28       ad 	for (;;) {
    735  1.28       ad 		/*
    736  1.28       ad 		 * prefer scanning forwards (even though mutex_enter() is
    737  1.28       ad 		 * serializing) so as to not defeat any prefetch logic in
    738  1.28       ad 		 * the CPU.  that means elsewhere enqueuing backwards, like
    739  1.28       ad 		 * a stack, but not so important there as pages are being
    740  1.28       ad 		 * added singularly.
    741  1.28       ad 		 *
    742  1.28       ad 		 * prefetch the next "struct vm_page" while working on the
    743  1.28       ad 		 * current one.  this has a measurable and very positive
    744  1.28       ad 		 * effect in reducing the amount of time spent here under
    745  1.28       ad 		 * the global lock.
    746  1.28       ad 		 */
    747  1.28       ad 		ucpu = curcpu()->ci_data.cpu_uvm;
    748  1.28       ad 		KASSERT(ucpu->pdqhead <= ucpu->pdqtail);
    749  1.28       ad 		if (__predict_false(ucpu->pdqhead == ucpu->pdqtail)) {
    750  1.28       ad 			break;
    751  1.28       ad 		}
    752  1.28       ad 		pg = ucpu->pdq[ucpu->pdqhead++];
    753  1.28       ad 		if (__predict_true(ucpu->pdqhead != ucpu->pdqtail)) {
    754  1.28       ad 			__builtin_prefetch(ucpu->pdq[ucpu->pdqhead]);
    755  1.28       ad 		}
    756  1.28       ad 		mutex_enter(&pg->interlock);
    757  1.28       ad 		pg->pqflags &= ~PQ_INTENT_QUEUED;
    758  1.28       ad 		(void)uvmpdpol_pagerealize_locked(pg);
    759  1.28       ad 		mutex_exit(&pg->interlock);
    760  1.28       ad 	}
    761  1.28       ad 	mutex_exit(&s->lock);
    762  1.28       ad 	return ucpu;
    763  1.28       ad }
    764  1.28       ad 
    765  1.28       ad /*
    766  1.28       ad  * uvmpdpol_pagerealize: realize any intent set on the page.  in this
    767  1.28       ad  * implementation, that means putting the page on a per-CPU queue to be
    768  1.28       ad  * dealt with later.
    769  1.28       ad  */
    770  1.28       ad void
    771  1.28       ad uvmpdpol_pagerealize(struct vm_page *pg)
    772  1.28       ad {
    773  1.28       ad 	struct uvm_cpu *ucpu;
    774  1.41   bouyer 	int s;
    775  1.28       ad 
    776  1.28       ad 	/*
    777  1.28       ad 	 * drain the per per-CPU queue if full, then enter the page.
    778  1.28       ad 	 */
    779  1.41   bouyer 	s = splsoftbio();
    780  1.28       ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    781  1.41   bouyer 	while (__predict_false(ucpu->pdqhead == 0)) {
    782  1.28       ad 		ucpu = uvmpdpol_flush();
    783  1.28       ad 	}
    784  1.28       ad 	ucpu->pdq[--(ucpu->pdqhead)] = pg;
    785  1.41   bouyer 	splx(s);
    786  1.28       ad }
    787  1.28       ad 
    788  1.28       ad /*
    789  1.28       ad  * uvmpdpol_idle: called from the system idle loop.  periodically purge any
    790  1.28       ad  * pending updates back to the global queues.
    791  1.28       ad  */
    792  1.28       ad void
    793  1.28       ad uvmpdpol_idle(struct uvm_cpu *ucpu)
    794  1.28       ad {
    795  1.28       ad 	struct uvmpdpol_globalstate *s = &pdpol_state;
    796  1.28       ad 	struct vm_page *pg;
    797  1.41   bouyer 	int s_spl;
    798  1.28       ad 
    799  1.28       ad 	KASSERT(kpreempt_disabled());
    800  1.28       ad 
    801  1.28       ad 	/*
    802  1.28       ad 	 * if no pages in the queue, we have nothing to do.
    803  1.28       ad 	 */
    804  1.28       ad 	if (ucpu->pdqhead == ucpu->pdqtail) {
    805  1.36     maxv 		ucpu->pdqtime = getticks();
    806  1.28       ad 		return;
    807  1.28       ad 	}
    808  1.28       ad 
    809  1.28       ad 	/*
    810  1.28       ad 	 * don't do this more than ~8 times a second as it would needlessly
    811  1.28       ad 	 * exert pressure.
    812  1.28       ad 	 */
    813  1.36     maxv 	if (getticks() - ucpu->pdqtime < (hz >> 3)) {
    814  1.28       ad 		return;
    815  1.28       ad 	}
    816  1.28       ad 
    817  1.28       ad 	/*
    818  1.28       ad 	 * the idle LWP can't block, so we have to try for the lock.  if we
    819  1.28       ad 	 * get it, purge the per-CPU pending update queue.  continually
    820  1.28       ad 	 * check for a pending resched: in that case exit immediately.
    821  1.28       ad 	 */
    822  1.28       ad 	if (mutex_tryenter(&s->lock)) {
    823  1.41   bouyer 		s_spl = splsoftbio();
    824  1.28       ad 		while (ucpu->pdqhead != ucpu->pdqtail) {
    825  1.28       ad 			pg = ucpu->pdq[ucpu->pdqhead];
    826  1.28       ad 			if (!mutex_tryenter(&pg->interlock)) {
    827  1.28       ad 				break;
    828  1.28       ad 			}
    829  1.28       ad 			ucpu->pdqhead++;
    830  1.28       ad 			pg->pqflags &= ~PQ_INTENT_QUEUED;
    831  1.28       ad 			(void)uvmpdpol_pagerealize_locked(pg);
    832  1.28       ad 			mutex_exit(&pg->interlock);
    833  1.28       ad 			if (curcpu()->ci_want_resched) {
    834  1.28       ad 				break;
    835  1.28       ad 			}
    836  1.28       ad 		}
    837  1.28       ad 		if (ucpu->pdqhead == ucpu->pdqtail) {
    838  1.36     maxv 			ucpu->pdqtime = getticks();
    839  1.28       ad 		}
    840  1.41   bouyer 		splx(s_spl);
    841  1.28       ad 		mutex_exit(&s->lock);
    842  1.28       ad 	}
    843  1.28       ad }
    844  1.28       ad 
    845   1.2     yamt #if !defined(PDSIM)
    846   1.2     yamt 
    847   1.2     yamt #include <sys/sysctl.h>	/* XXX SYSCTL_DESCR */
    848   1.2     yamt 
    849   1.2     yamt void
    850   1.2     yamt uvmpdpol_sysctlsetup(void)
    851   1.2     yamt {
    852   1.2     yamt 	struct uvmpdpol_globalstate *s = &pdpol_state;
    853   1.2     yamt 
    854   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_anonmin, "anonmin",
    855   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory reserved "
    856   1.2     yamt 	    "for anonymous application data"));
    857   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_filemin, "filemin",
    858   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory reserved "
    859  1.11   martin 	    "for cached file data"));
    860   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_execmin, "execmin",
    861   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory reserved "
    862  1.11   martin 	    "for cached executable data"));
    863   1.2     yamt 
    864   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_anonmax, "anonmax",
    865   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory which will "
    866   1.2     yamt 	    "be reclaimed from other usage for "
    867   1.2     yamt 	    "anonymous application data"));
    868   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_filemax, "filemax",
    869   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory which will "
    870   1.2     yamt 	    "be reclaimed from other usage for cached "
    871   1.2     yamt 	    "file data"));
    872   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_execmax, "execmax",
    873   1.2     yamt 	    SYSCTL_DESCR("Percentage of physical memory which will "
    874   1.2     yamt 	    "be reclaimed from other usage for cached "
    875   1.2     yamt 	    "executable data"));
    876   1.2     yamt 
    877   1.2     yamt 	uvm_pctparam_createsysctlnode(&s->s_inactivepct, "inactivepct",
    878   1.2     yamt 	    SYSCTL_DESCR("Percentage of inactive queue of "
    879   1.2     yamt 	    "the entire (active + inactive) queue"));
    880   1.2     yamt }
    881   1.2     yamt 
    882   1.2     yamt #endif /* !defined(PDSIM) */
    883   1.2     yamt 
    884   1.2     yamt #if defined(PDSIM)
    885   1.2     yamt void
    886   1.2     yamt pdsim_dump(const char *id)
    887   1.2     yamt {
    888   1.2     yamt #if defined(DEBUG)
    889   1.2     yamt 	/* XXX */
    890   1.2     yamt #endif /* defined(DEBUG) */
    891   1.2     yamt }
    892   1.2     yamt #endif /* defined(PDSIM) */
    893