uvm_pdpolicy_clock.c revision 1.31 1 /* $NetBSD: uvm_pdpolicy_clock.c,v 1.31 2020/01/21 20:37:06 ad Exp $ */
2 /* NetBSD: uvm_pdaemon.c,v 1.72 2006/01/05 10:47:33 yamt Exp $ */
3
4 /*-
5 * Copyright (c) 2019 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997 Charles D. Cranor and Washington University.
35 * Copyright (c) 1991, 1993, The Regents of the University of California.
36 *
37 * All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * The Mach Operating System project at Carnegie-Mellon University.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
67 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
68 *
69 *
70 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
71 * All rights reserved.
72 *
73 * Permission to use, copy, modify and distribute this software and
74 * its documentation is hereby granted, provided that both the copyright
75 * notice and this permission notice appear in all copies of the
76 * software, derivative works or modified versions, and any portions
77 * thereof, and that both notices appear in supporting documentation.
78 *
79 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
80 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
81 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
82 *
83 * Carnegie Mellon requests users of this software to return to
84 *
85 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
86 * School of Computer Science
87 * Carnegie Mellon University
88 * Pittsburgh PA 15213-3890
89 *
90 * any improvements or extensions that they make and grant Carnegie the
91 * rights to redistribute these changes.
92 */
93
94 #if defined(PDSIM)
95
96 #include "pdsim.h"
97
98 #else /* defined(PDSIM) */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: uvm_pdpolicy_clock.c,v 1.31 2020/01/21 20:37:06 ad Exp $");
102
103 #include <sys/param.h>
104 #include <sys/proc.h>
105 #include <sys/systm.h>
106 #include <sys/kernel.h>
107 #include <sys/kmem.h>
108 #include <sys/atomic.h>
109
110 #include <uvm/uvm.h>
111 #include <uvm/uvm_pdpolicy.h>
112 #include <uvm/uvm_pdpolicy_impl.h>
113 #include <uvm/uvm_stat.h>
114
115 #endif /* defined(PDSIM) */
116
117 /*
118 * per-CPU queue of pending page status changes. 128 entries makes for a
119 * 1kB queue on _LP64 and has been found to be a reasonable compromise that
120 * keeps lock contention events and wait times low, while not using too much
121 * memory nor allowing global state to fall too far behind.
122 */
123 #if !defined(CLOCK_PDQ_SIZE)
124 #define CLOCK_PDQ_SIZE 128
125 #endif /* !defined(CLOCK_PDQ_SIZE) */
126
127 #define PQ_INACTIVE 0x00000010 /* page is in inactive list */
128 #define PQ_ACTIVE 0x00000020 /* page is in active list */
129
130 #if !defined(CLOCK_INACTIVEPCT)
131 #define CLOCK_INACTIVEPCT 33
132 #endif /* !defined(CLOCK_INACTIVEPCT) */
133
134 struct uvmpdpol_globalstate {
135 kmutex_t lock; /* lock on state */
136 /* <= compiler pads here */
137 struct pglist s_activeq /* allocated pages, in use */
138 __aligned(COHERENCY_UNIT);
139 struct pglist s_inactiveq; /* pages between the clock hands */
140 int s_active;
141 int s_inactive;
142 int s_inactarg;
143 struct uvm_pctparam s_anonmin;
144 struct uvm_pctparam s_filemin;
145 struct uvm_pctparam s_execmin;
146 struct uvm_pctparam s_anonmax;
147 struct uvm_pctparam s_filemax;
148 struct uvm_pctparam s_execmax;
149 struct uvm_pctparam s_inactivepct;
150 };
151
152 struct uvmpdpol_scanstate {
153 bool ss_anonreact, ss_filereact, ss_execreact;
154 struct vm_page ss_marker;
155 };
156
157 static void uvmpdpol_pageactivate_locked(struct vm_page *);
158 static void uvmpdpol_pagedeactivate_locked(struct vm_page *);
159 static void uvmpdpol_pagedequeue_locked(struct vm_page *);
160 static bool uvmpdpol_pagerealize_locked(struct vm_page *);
161 static struct uvm_cpu *uvmpdpol_flush(void);
162
163 static struct uvmpdpol_globalstate pdpol_state __cacheline_aligned;
164 static struct uvmpdpol_scanstate pdpol_scanstate;
165
166 PDPOL_EVCNT_DEFINE(reactexec)
167 PDPOL_EVCNT_DEFINE(reactfile)
168 PDPOL_EVCNT_DEFINE(reactanon)
169
170 static void
171 clock_tune(void)
172 {
173 struct uvmpdpol_globalstate *s = &pdpol_state;
174
175 s->s_inactarg = UVM_PCTPARAM_APPLY(&s->s_inactivepct,
176 s->s_active + s->s_inactive);
177 if (s->s_inactarg <= uvmexp.freetarg) {
178 s->s_inactarg = uvmexp.freetarg + 1;
179 }
180 }
181
182 void
183 uvmpdpol_scaninit(void)
184 {
185 struct uvmpdpol_globalstate *s = &pdpol_state;
186 struct uvmpdpol_scanstate *ss = &pdpol_scanstate;
187 int t;
188 bool anonunder, fileunder, execunder;
189 bool anonover, fileover, execover;
190 bool anonreact, filereact, execreact;
191 int64_t freepg, anonpg, filepg, execpg;
192
193 /*
194 * decide which types of pages we want to reactivate instead of freeing
195 * to keep usage within the minimum and maximum usage limits.
196 */
197
198 cpu_count_sync_all();
199 freepg = uvm_availmem();
200 anonpg = cpu_count_get(CPU_COUNT_ANONPAGES);
201 filepg = cpu_count_get(CPU_COUNT_FILEPAGES);
202 execpg = cpu_count_get(CPU_COUNT_EXECPAGES);
203
204 mutex_enter(&s->lock);
205 t = s->s_active + s->s_inactive + freepg;
206 anonunder = anonpg <= UVM_PCTPARAM_APPLY(&s->s_anonmin, t);
207 fileunder = filepg <= UVM_PCTPARAM_APPLY(&s->s_filemin, t);
208 execunder = execpg <= UVM_PCTPARAM_APPLY(&s->s_execmin, t);
209 anonover = anonpg > UVM_PCTPARAM_APPLY(&s->s_anonmax, t);
210 fileover = filepg > UVM_PCTPARAM_APPLY(&s->s_filemax, t);
211 execover = execpg > UVM_PCTPARAM_APPLY(&s->s_execmax, t);
212 anonreact = anonunder || (!anonover && (fileover || execover));
213 filereact = fileunder || (!fileover && (anonover || execover));
214 execreact = execunder || (!execover && (anonover || fileover));
215 if (filereact && execreact && (anonreact || uvm_swapisfull())) {
216 anonreact = filereact = execreact = false;
217 }
218 ss->ss_anonreact = anonreact;
219 ss->ss_filereact = filereact;
220 ss->ss_execreact = execreact;
221 memset(&ss->ss_marker, 0, sizeof(ss->ss_marker));
222 ss->ss_marker.flags = PG_MARKER;
223 TAILQ_INSERT_HEAD(&pdpol_state.s_inactiveq, &ss->ss_marker, pdqueue);
224 mutex_exit(&s->lock);
225 }
226
227 void
228 uvmpdpol_scanfini(void)
229 {
230 struct uvmpdpol_globalstate *s = &pdpol_state;
231 struct uvmpdpol_scanstate *ss = &pdpol_scanstate;
232
233 mutex_enter(&s->lock);
234 TAILQ_REMOVE(&pdpol_state.s_inactiveq, &ss->ss_marker, pdqueue);
235 mutex_exit(&s->lock);
236 }
237
238 struct vm_page *
239 uvmpdpol_selectvictim(kmutex_t **plock)
240 {
241 struct uvmpdpol_globalstate *s = &pdpol_state;
242 struct uvmpdpol_scanstate *ss = &pdpol_scanstate;
243 struct vm_page *pg;
244 kmutex_t *lock;
245
246 mutex_enter(&s->lock);
247 while (/* CONSTCOND */ 1) {
248 struct vm_anon *anon;
249 struct uvm_object *uobj;
250
251 pg = TAILQ_NEXT(&ss->ss_marker, pdqueue);
252 if (pg == NULL) {
253 break;
254 }
255 KASSERT((pg->flags & PG_MARKER) == 0);
256 uvmexp.pdscans++;
257
258 /*
259 * acquire interlock to stablize page identity.
260 * if we have caught the page in a state of flux
261 * deal with it and retry.
262 */
263 mutex_enter(&pg->interlock);
264 if (uvmpdpol_pagerealize_locked(pg)) {
265 mutex_exit(&pg->interlock);
266 continue;
267 }
268
269 /*
270 * now prepare to move on to the next page.
271 */
272 TAILQ_REMOVE(&pdpol_state.s_inactiveq, &ss->ss_marker,
273 pdqueue);
274 TAILQ_INSERT_AFTER(&pdpol_state.s_inactiveq, pg,
275 &ss->ss_marker, pdqueue);
276
277 /*
278 * enforce the minimum thresholds on different
279 * types of memory usage. if reusing the current
280 * page would reduce that type of usage below its
281 * minimum, reactivate the page instead and move
282 * on to the next page.
283 */
284 anon = pg->uanon;
285 uobj = pg->uobject;
286 if (uobj && UVM_OBJ_IS_VTEXT(uobj) && ss->ss_execreact) {
287 uvmpdpol_pageactivate_locked(pg);
288 mutex_exit(&pg->interlock);
289 PDPOL_EVCNT_INCR(reactexec);
290 continue;
291 }
292 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
293 !UVM_OBJ_IS_VTEXT(uobj) && ss->ss_filereact) {
294 uvmpdpol_pageactivate_locked(pg);
295 mutex_exit(&pg->interlock);
296 PDPOL_EVCNT_INCR(reactfile);
297 continue;
298 }
299 if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && ss->ss_anonreact) {
300 uvmpdpol_pageactivate_locked(pg);
301 mutex_exit(&pg->interlock);
302 PDPOL_EVCNT_INCR(reactanon);
303 continue;
304 }
305
306 /*
307 * try to lock the object that owns the page.
308 *
309 * with the page interlock held, we can drop s->lock, which
310 * could otherwise serve as a barrier to us getting the
311 * object locked, because the owner of the object's lock may
312 * be blocked on s->lock (i.e. a deadlock).
313 *
314 * whatever happens, uvmpd_trylockowner() will release the
315 * interlock. with the interlock dropped we can then
316 * re-acquire our own lock. the order is:
317 *
318 * object -> pdpol -> interlock.
319 */
320 mutex_exit(&s->lock);
321 lock = uvmpd_trylockowner(pg);
322 /* pg->interlock now released */
323 mutex_enter(&s->lock);
324 if (lock == NULL) {
325 /* didn't get it - try the next page. */
326 continue;
327 }
328
329 /*
330 * move referenced pages back to active queue and skip to
331 * next page.
332 */
333 if (pmap_is_referenced(pg)) {
334 mutex_enter(&pg->interlock);
335 uvmpdpol_pageactivate_locked(pg);
336 mutex_exit(&pg->interlock);
337 uvmexp.pdreact++;
338 mutex_exit(lock);
339 continue;
340 }
341
342 /* we have a potential victim. */
343 *plock = lock;
344 break;
345 }
346 mutex_exit(&s->lock);
347 return pg;
348 }
349
350 void
351 uvmpdpol_balancequeue(int swap_shortage)
352 {
353 struct uvmpdpol_globalstate *s = &pdpol_state;
354 int inactive_shortage;
355 struct vm_page *p, marker;
356 kmutex_t *lock;
357
358 /*
359 * we have done the scan to get free pages. now we work on meeting
360 * our inactive target.
361 */
362
363 memset(&marker, 0, sizeof(marker));
364 marker.flags = PG_MARKER;
365
366 mutex_enter(&s->lock);
367 TAILQ_INSERT_HEAD(&pdpol_state.s_activeq, &marker, pdqueue);
368 for (;;) {
369 inactive_shortage =
370 pdpol_state.s_inactarg - pdpol_state.s_inactive;
371 if (inactive_shortage <= 0 && swap_shortage <= 0) {
372 break;
373 }
374 p = TAILQ_NEXT(&marker, pdqueue);
375 if (p == NULL) {
376 break;
377 }
378 KASSERT((p->flags & PG_MARKER) == 0);
379
380 /*
381 * acquire interlock to stablize page identity.
382 * if we have caught the page in a state of flux
383 * deal with it and retry.
384 */
385 mutex_enter(&p->interlock);
386 if (uvmpdpol_pagerealize_locked(p)) {
387 mutex_exit(&p->interlock);
388 continue;
389 }
390
391 /*
392 * now prepare to move on to the next page.
393 */
394 TAILQ_REMOVE(&pdpol_state.s_activeq, &marker, pdqueue);
395 TAILQ_INSERT_AFTER(&pdpol_state.s_activeq, p, &marker,
396 pdqueue);
397
398 /*
399 * try to lock the object that owns the page. see comments
400 * in uvmpdol_selectvictim().
401 */
402 mutex_exit(&s->lock);
403 lock = uvmpd_trylockowner(p);
404 /* p->interlock now released */
405 mutex_enter(&s->lock);
406 if (lock == NULL) {
407 /* didn't get it - try the next page. */
408 continue;
409 }
410
411 /*
412 * if there's a shortage of swap slots, try to free it.
413 */
414 if (swap_shortage > 0 && (p->flags & PG_SWAPBACKED) != 0 &&
415 (p->flags & PG_BUSY) == 0) {
416 if (uvmpd_dropswap(p)) {
417 swap_shortage--;
418 }
419 }
420
421 /*
422 * if there's a shortage of inactive pages, deactivate.
423 */
424 if (inactive_shortage > 0) {
425 pmap_clear_reference(p);
426 mutex_enter(&p->interlock);
427 uvmpdpol_pagedeactivate_locked(p);
428 mutex_exit(&p->interlock);
429 uvmexp.pddeact++;
430 inactive_shortage--;
431 }
432 mutex_exit(lock);
433 }
434 TAILQ_REMOVE(&pdpol_state.s_activeq, &marker, pdqueue);
435 mutex_exit(&s->lock);
436 }
437
438 static void
439 uvmpdpol_pagedeactivate_locked(struct vm_page *pg)
440 {
441 struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
442
443 KASSERT(mutex_owned(&s->lock));
444 KASSERT(mutex_owned(&pg->interlock));
445 KASSERT((pg->pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) !=
446 (PQ_INTENT_D | PQ_INTENT_SET));
447
448 if (pg->pqflags & PQ_ACTIVE) {
449 TAILQ_REMOVE(&pdpol_state.s_activeq, pg, pdqueue);
450 KASSERT(pdpol_state.s_active > 0);
451 pdpol_state.s_active--;
452 }
453 if ((pg->pqflags & PQ_INACTIVE) == 0) {
454 KASSERT(pg->wire_count == 0);
455 TAILQ_INSERT_TAIL(&pdpol_state.s_inactiveq, pg, pdqueue);
456 pdpol_state.s_inactive++;
457 }
458 pg->pqflags = (pg->pqflags & PQ_INTENT_QUEUED) | PQ_INACTIVE;
459 }
460
461 void
462 uvmpdpol_pagedeactivate(struct vm_page *pg)
463 {
464
465 KASSERT(uvm_page_owner_locked_p(pg));
466 KASSERT(mutex_owned(&pg->interlock));
467
468 /*
469 * we have to clear the reference bit now, as when it comes time to
470 * realize the intent we won't have the object locked any more.
471 */
472 pmap_clear_reference(pg);
473 uvmpdpol_set_intent(pg, PQ_INTENT_I);
474 }
475
476 static void
477 uvmpdpol_pageactivate_locked(struct vm_page *pg)
478 {
479 struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
480
481 KASSERT(mutex_owned(&s->lock));
482 KASSERT(mutex_owned(&pg->interlock));
483 KASSERT((pg->pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) !=
484 (PQ_INTENT_D | PQ_INTENT_SET));
485
486 uvmpdpol_pagedequeue_locked(pg);
487 TAILQ_INSERT_TAIL(&pdpol_state.s_activeq, pg, pdqueue);
488 pdpol_state.s_active++;
489 pg->pqflags = (pg->pqflags & PQ_INTENT_QUEUED) | PQ_ACTIVE;
490 }
491
492 void
493 uvmpdpol_pageactivate(struct vm_page *pg)
494 {
495
496 KASSERT(uvm_page_owner_locked_p(pg));
497 KASSERT(mutex_owned(&pg->interlock));
498
499 uvmpdpol_set_intent(pg, PQ_INTENT_A);
500 }
501
502 static void
503 uvmpdpol_pagedequeue_locked(struct vm_page *pg)
504 {
505 struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
506
507 KASSERT(mutex_owned(&s->lock));
508 KASSERT(mutex_owned(&pg->interlock));
509
510 if (pg->pqflags & PQ_ACTIVE) {
511 TAILQ_REMOVE(&pdpol_state.s_activeq, pg, pdqueue);
512 KASSERT((pg->pqflags & PQ_INACTIVE) == 0);
513 KASSERT(pdpol_state.s_active > 0);
514 pdpol_state.s_active--;
515 } else if (pg->pqflags & PQ_INACTIVE) {
516 TAILQ_REMOVE(&pdpol_state.s_inactiveq, pg, pdqueue);
517 KASSERT(pdpol_state.s_inactive > 0);
518 pdpol_state.s_inactive--;
519 }
520 pg->pqflags &= PQ_INTENT_QUEUED;
521 }
522
523 void
524 uvmpdpol_pagedequeue(struct vm_page *pg)
525 {
526
527 KASSERT(uvm_page_owner_locked_p(pg));
528 KASSERT(mutex_owned(&pg->interlock));
529
530 uvmpdpol_set_intent(pg, PQ_INTENT_D);
531 }
532
533 void
534 uvmpdpol_pageenqueue(struct vm_page *pg)
535 {
536
537 KASSERT(uvm_page_owner_locked_p(pg));
538 KASSERT(mutex_owned(&pg->interlock));
539
540 uvmpdpol_set_intent(pg, PQ_INTENT_E);
541 }
542
543 void
544 uvmpdpol_anfree(struct vm_anon *an)
545 {
546 }
547
548 bool
549 uvmpdpol_pageisqueued_p(struct vm_page *pg)
550 {
551 uint32_t pqflags;
552
553 /*
554 * if there's an intent set, we have to consider it. otherwise,
555 * return the actual state. we may be called unlocked for the
556 * purpose of assertions, which is safe due to the page lifecycle.
557 */
558 pqflags = atomic_load_relaxed(&pg->pqflags);
559 if ((pqflags & PQ_INTENT_SET) != 0) {
560 return (pqflags & PQ_INTENT_MASK) != PQ_INTENT_D;
561 } else {
562 return (pqflags & (PQ_ACTIVE | PQ_INACTIVE)) != 0;
563 }
564 }
565
566 void
567 uvmpdpol_estimatepageable(int *active, int *inactive)
568 {
569 struct uvmpdpol_globalstate *s = &pdpol_state;
570
571 mutex_enter(&s->lock);
572 if (active) {
573 *active = pdpol_state.s_active;
574 }
575 if (inactive) {
576 *inactive = pdpol_state.s_inactive;
577 }
578 mutex_exit(&s->lock);
579 }
580
581 #if !defined(PDSIM)
582 static int
583 min_check(struct uvm_pctparam *pct, int t)
584 {
585 struct uvmpdpol_globalstate *s = &pdpol_state;
586 int total = t;
587
588 if (pct != &s->s_anonmin) {
589 total += uvm_pctparam_get(&s->s_anonmin);
590 }
591 if (pct != &s->s_filemin) {
592 total += uvm_pctparam_get(&s->s_filemin);
593 }
594 if (pct != &s->s_execmin) {
595 total += uvm_pctparam_get(&s->s_execmin);
596 }
597 if (total > 95) {
598 return EINVAL;
599 }
600 return 0;
601 }
602 #endif /* !defined(PDSIM) */
603
604 void
605 uvmpdpol_init(void)
606 {
607 struct uvmpdpol_globalstate *s = &pdpol_state;
608
609 mutex_init(&s->lock, MUTEX_DEFAULT, IPL_NONE);
610 TAILQ_INIT(&s->s_activeq);
611 TAILQ_INIT(&s->s_inactiveq);
612 uvm_pctparam_init(&s->s_inactivepct, CLOCK_INACTIVEPCT, NULL);
613 uvm_pctparam_init(&s->s_anonmin, 10, min_check);
614 uvm_pctparam_init(&s->s_filemin, 10, min_check);
615 uvm_pctparam_init(&s->s_execmin, 5, min_check);
616 uvm_pctparam_init(&s->s_anonmax, 80, NULL);
617 uvm_pctparam_init(&s->s_filemax, 50, NULL);
618 uvm_pctparam_init(&s->s_execmax, 30, NULL);
619 }
620
621 void
622 uvmpdpol_init_cpu(struct uvm_cpu *ucpu)
623 {
624
625 ucpu->pdq =
626 kmem_alloc(CLOCK_PDQ_SIZE * sizeof(struct vm_page *), KM_SLEEP);
627 ucpu->pdqhead = CLOCK_PDQ_SIZE;
628 ucpu->pdqtail = CLOCK_PDQ_SIZE;
629 }
630
631 void
632 uvmpdpol_reinit(void)
633 {
634 }
635
636 bool
637 uvmpdpol_needsscan_p(void)
638 {
639
640 /*
641 * this must be an unlocked check: can be called from interrupt.
642 */
643 return pdpol_state.s_inactive < pdpol_state.s_inactarg;
644 }
645
646 void
647 uvmpdpol_tune(void)
648 {
649 struct uvmpdpol_globalstate *s = &pdpol_state;
650
651 mutex_enter(&s->lock);
652 clock_tune();
653 mutex_exit(&s->lock);
654 }
655
656 /*
657 * uvmpdpol_pagerealize_locked: take the intended state set on a page and
658 * make it real. return true if any work was done.
659 */
660 static bool
661 uvmpdpol_pagerealize_locked(struct vm_page *pg)
662 {
663 struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
664
665 KASSERT(mutex_owned(&s->lock));
666 KASSERT(mutex_owned(&pg->interlock));
667
668 switch (pg->pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) {
669 case PQ_INTENT_A | PQ_INTENT_SET:
670 case PQ_INTENT_E | PQ_INTENT_SET:
671 uvmpdpol_pageactivate_locked(pg);
672 return true;
673 case PQ_INTENT_I | PQ_INTENT_SET:
674 uvmpdpol_pagedeactivate_locked(pg);
675 return true;
676 case PQ_INTENT_D | PQ_INTENT_SET:
677 uvmpdpol_pagedequeue_locked(pg);
678 return true;
679 default:
680 return false;
681 }
682 }
683
684 /*
685 * uvmpdpol_flush: return the current uvm_cpu with all of its pending
686 * updates flushed to the global queues. this routine may block, and
687 * so can switch cpu. the idea is to empty to queue on whatever cpu
688 * we finally end up on.
689 */
690 static struct uvm_cpu *
691 uvmpdpol_flush(void)
692 {
693 struct uvmpdpol_globalstate *s __diagused = &pdpol_state;
694 struct uvm_cpu *ucpu;
695 struct vm_page *pg;
696
697 KASSERT(kpreempt_disabled());
698
699 mutex_enter(&s->lock);
700 for (;;) {
701 /*
702 * prefer scanning forwards (even though mutex_enter() is
703 * serializing) so as to not defeat any prefetch logic in
704 * the CPU. that means elsewhere enqueuing backwards, like
705 * a stack, but not so important there as pages are being
706 * added singularly.
707 *
708 * prefetch the next "struct vm_page" while working on the
709 * current one. this has a measurable and very positive
710 * effect in reducing the amount of time spent here under
711 * the global lock.
712 */
713 ucpu = curcpu()->ci_data.cpu_uvm;
714 KASSERT(ucpu->pdqhead <= ucpu->pdqtail);
715 if (__predict_false(ucpu->pdqhead == ucpu->pdqtail)) {
716 break;
717 }
718 pg = ucpu->pdq[ucpu->pdqhead++];
719 if (__predict_true(ucpu->pdqhead != ucpu->pdqtail)) {
720 __builtin_prefetch(ucpu->pdq[ucpu->pdqhead]);
721 }
722 mutex_enter(&pg->interlock);
723 pg->pqflags &= ~PQ_INTENT_QUEUED;
724 (void)uvmpdpol_pagerealize_locked(pg);
725 mutex_exit(&pg->interlock);
726 }
727 mutex_exit(&s->lock);
728 return ucpu;
729 }
730
731 /*
732 * uvmpdpol_pagerealize: realize any intent set on the page. in this
733 * implementation, that means putting the page on a per-CPU queue to be
734 * dealt with later.
735 */
736 void
737 uvmpdpol_pagerealize(struct vm_page *pg)
738 {
739 struct uvm_cpu *ucpu;
740
741 /*
742 * drain the per per-CPU queue if full, then enter the page.
743 */
744 kpreempt_disable();
745 ucpu = curcpu()->ci_data.cpu_uvm;
746 if (__predict_false(ucpu->pdqhead == 0)) {
747 ucpu = uvmpdpol_flush();
748 }
749 ucpu->pdq[--(ucpu->pdqhead)] = pg;
750 kpreempt_enable();
751 }
752
753 /*
754 * uvmpdpol_idle: called from the system idle loop. periodically purge any
755 * pending updates back to the global queues.
756 */
757 void
758 uvmpdpol_idle(struct uvm_cpu *ucpu)
759 {
760 struct uvmpdpol_globalstate *s = &pdpol_state;
761 struct vm_page *pg;
762
763 KASSERT(kpreempt_disabled());
764
765 /*
766 * if no pages in the queue, we have nothing to do.
767 */
768 if (ucpu->pdqhead == ucpu->pdqtail) {
769 ucpu->pdqtime = hardclock_ticks;
770 return;
771 }
772
773 /*
774 * don't do this more than ~8 times a second as it would needlessly
775 * exert pressure.
776 */
777 if (hardclock_ticks - ucpu->pdqtime < (hz >> 3)) {
778 return;
779 }
780
781 /*
782 * the idle LWP can't block, so we have to try for the lock. if we
783 * get it, purge the per-CPU pending update queue. continually
784 * check for a pending resched: in that case exit immediately.
785 */
786 if (mutex_tryenter(&s->lock)) {
787 while (ucpu->pdqhead != ucpu->pdqtail) {
788 pg = ucpu->pdq[ucpu->pdqhead];
789 if (!mutex_tryenter(&pg->interlock)) {
790 break;
791 }
792 ucpu->pdqhead++;
793 pg->pqflags &= ~PQ_INTENT_QUEUED;
794 (void)uvmpdpol_pagerealize_locked(pg);
795 mutex_exit(&pg->interlock);
796 if (curcpu()->ci_want_resched) {
797 break;
798 }
799 }
800 if (ucpu->pdqhead == ucpu->pdqtail) {
801 ucpu->pdqtime = hardclock_ticks;
802 }
803 mutex_exit(&s->lock);
804 }
805 }
806
807 #if !defined(PDSIM)
808
809 #include <sys/sysctl.h> /* XXX SYSCTL_DESCR */
810
811 void
812 uvmpdpol_sysctlsetup(void)
813 {
814 struct uvmpdpol_globalstate *s = &pdpol_state;
815
816 uvm_pctparam_createsysctlnode(&s->s_anonmin, "anonmin",
817 SYSCTL_DESCR("Percentage of physical memory reserved "
818 "for anonymous application data"));
819 uvm_pctparam_createsysctlnode(&s->s_filemin, "filemin",
820 SYSCTL_DESCR("Percentage of physical memory reserved "
821 "for cached file data"));
822 uvm_pctparam_createsysctlnode(&s->s_execmin, "execmin",
823 SYSCTL_DESCR("Percentage of physical memory reserved "
824 "for cached executable data"));
825
826 uvm_pctparam_createsysctlnode(&s->s_anonmax, "anonmax",
827 SYSCTL_DESCR("Percentage of physical memory which will "
828 "be reclaimed from other usage for "
829 "anonymous application data"));
830 uvm_pctparam_createsysctlnode(&s->s_filemax, "filemax",
831 SYSCTL_DESCR("Percentage of physical memory which will "
832 "be reclaimed from other usage for cached "
833 "file data"));
834 uvm_pctparam_createsysctlnode(&s->s_execmax, "execmax",
835 SYSCTL_DESCR("Percentage of physical memory which will "
836 "be reclaimed from other usage for cached "
837 "executable data"));
838
839 uvm_pctparam_createsysctlnode(&s->s_inactivepct, "inactivepct",
840 SYSCTL_DESCR("Percentage of inactive queue of "
841 "the entire (active + inactive) queue"));
842 }
843
844 #endif /* !defined(PDSIM) */
845
846 #if defined(PDSIM)
847 void
848 pdsim_dump(const char *id)
849 {
850 #if defined(DEBUG)
851 /* XXX */
852 #endif /* defined(DEBUG) */
853 }
854 #endif /* defined(PDSIM) */
855