uvm_pdpolicy_clockpro.c revision 1.15.26.1 1 /* $NetBSD: uvm_pdpolicy_clockpro.c,v 1.15.26.1 2011/06/06 09:10:24 jruoho Exp $ */
2
3 /*-
4 * Copyright (c)2005, 2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * CLOCK-Pro replacement policy:
31 * http://www.cs.wm.edu/hpcs/WWW/HTML/publications/abs05-3.html
32 *
33 * approximation of the list of non-resident pages using hash:
34 * http://linux-mm.org/ClockProApproximation
35 */
36
37 /* #define CLOCKPRO_DEBUG */
38
39 #if defined(PDSIM)
40
41 #include "pdsim.h"
42
43 #else /* defined(PDSIM) */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_pdpolicy_clockpro.c,v 1.15.26.1 2011/06/06 09:10:24 jruoho Exp $");
47
48 #include "opt_ddb.h"
49
50 #include <sys/param.h>
51 #include <sys/proc.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/hash.h>
55
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pdpolicy.h>
58 #include <uvm/uvm_pdpolicy_impl.h>
59
60 #if ((__STDC_VERSION__ - 0) >= 199901L)
61 #define DPRINTF(...) /* nothing */
62 #define WARN(...) printf(__VA_ARGS__)
63 #else /* ((__STDC_VERSION__ - 0) >= 199901L) */
64 #define DPRINTF(a...) /* nothing */ /* GCC */
65 #define WARN(a...) printf(a)
66 #endif /* ((__STDC_VERSION__ - 0) >= 199901L) */
67
68 #define dump(a) /* nothing */
69
70 #undef USEONCE2
71 #define LISTQ
72 #undef ADAPTIVE
73
74 #endif /* defined(PDSIM) */
75
76 #if !defined(CLOCKPRO_COLDPCT)
77 #define CLOCKPRO_COLDPCT 10
78 #endif /* !defined(CLOCKPRO_COLDPCT) */
79
80 #define CLOCKPRO_COLDPCTMAX 90
81
82 #if !defined(CLOCKPRO_HASHFACTOR)
83 #define CLOCKPRO_HASHFACTOR 2
84 #endif /* !defined(CLOCKPRO_HASHFACTOR) */
85
86 #define CLOCKPRO_NEWQMIN ((1024 * 1024) >> PAGE_SHIFT) /* XXX */
87
88 int clockpro_hashfactor = CLOCKPRO_HASHFACTOR;
89
90 PDPOL_EVCNT_DEFINE(nresrecordobj)
91 PDPOL_EVCNT_DEFINE(nresrecordanon)
92 PDPOL_EVCNT_DEFINE(nreslookupobj)
93 PDPOL_EVCNT_DEFINE(nreslookupanon)
94 PDPOL_EVCNT_DEFINE(nresfoundobj)
95 PDPOL_EVCNT_DEFINE(nresfoundanon)
96 PDPOL_EVCNT_DEFINE(nresanonfree)
97 PDPOL_EVCNT_DEFINE(nresconflict)
98 PDPOL_EVCNT_DEFINE(nresoverwritten)
99 PDPOL_EVCNT_DEFINE(nreshandhot)
100
101 PDPOL_EVCNT_DEFINE(hhottakeover)
102 PDPOL_EVCNT_DEFINE(hhotref)
103 PDPOL_EVCNT_DEFINE(hhotunref)
104 PDPOL_EVCNT_DEFINE(hhotcold)
105 PDPOL_EVCNT_DEFINE(hhotcoldtest)
106
107 PDPOL_EVCNT_DEFINE(hcoldtakeover)
108 PDPOL_EVCNT_DEFINE(hcoldref)
109 PDPOL_EVCNT_DEFINE(hcoldunref)
110 PDPOL_EVCNT_DEFINE(hcoldreftest)
111 PDPOL_EVCNT_DEFINE(hcoldunreftest)
112 PDPOL_EVCNT_DEFINE(hcoldunreftestspeculative)
113 PDPOL_EVCNT_DEFINE(hcoldhot)
114
115 PDPOL_EVCNT_DEFINE(speculativeenqueue)
116 PDPOL_EVCNT_DEFINE(speculativehit1)
117 PDPOL_EVCNT_DEFINE(speculativehit2)
118 PDPOL_EVCNT_DEFINE(speculativemiss)
119
120 #define PQ_REFERENCED PQ_PRIVATE1
121 #define PQ_HOT PQ_PRIVATE2
122 #define PQ_TEST PQ_PRIVATE3
123 #define PQ_INITIALREF PQ_PRIVATE4
124 #if PQ_PRIVATE6 != PQ_PRIVATE5 * 2 || PQ_PRIVATE7 != PQ_PRIVATE6 * 2
125 #error PQ_PRIVATE
126 #endif
127 #define PQ_QMASK (PQ_PRIVATE5|PQ_PRIVATE6|PQ_PRIVATE7)
128 #define PQ_QFACTOR PQ_PRIVATE5
129 #define PQ_SPECULATIVE PQ_PRIVATE8
130
131 #define CLOCKPRO_NOQUEUE 0
132 #define CLOCKPRO_NEWQ 1 /* small queue to clear initial ref. */
133 #if defined(LISTQ)
134 #define CLOCKPRO_COLDQ 2
135 #define CLOCKPRO_HOTQ 3
136 #else /* defined(LISTQ) */
137 #define CLOCKPRO_COLDQ (2 + coldqidx) /* XXX */
138 #define CLOCKPRO_HOTQ (3 - coldqidx) /* XXX */
139 #endif /* defined(LISTQ) */
140 #define CLOCKPRO_LISTQ 4
141 #define CLOCKPRO_NQUEUE 4
142
143 static inline void
144 clockpro_setq(struct vm_page *pg, int qidx)
145 {
146 KASSERT(qidx >= CLOCKPRO_NOQUEUE);
147 KASSERT(qidx <= CLOCKPRO_NQUEUE);
148
149 pg->pqflags = (pg->pqflags & ~PQ_QMASK) | (qidx * PQ_QFACTOR);
150 }
151
152 static inline int
153 clockpro_getq(struct vm_page *pg)
154 {
155 int qidx;
156
157 qidx = (pg->pqflags & PQ_QMASK) / PQ_QFACTOR;
158 KASSERT(qidx >= CLOCKPRO_NOQUEUE);
159 KASSERT(qidx <= CLOCKPRO_NQUEUE);
160 return qidx;
161 }
162
163 typedef struct {
164 struct pglist q_q;
165 int q_len;
166 } pageq_t;
167
168 struct clockpro_state {
169 int s_npages;
170 int s_coldtarget;
171 int s_ncold;
172
173 int s_newqlenmax;
174 pageq_t s_q[CLOCKPRO_NQUEUE];
175
176 struct uvm_pctparam s_coldtargetpct;
177 };
178
179 static pageq_t *
180 clockpro_queue(struct clockpro_state *s, int qidx)
181 {
182
183 KASSERT(CLOCKPRO_NOQUEUE < qidx);
184 KASSERT(qidx <= CLOCKPRO_NQUEUE);
185
186 return &s->s_q[qidx - 1];
187 }
188
189 #if !defined(LISTQ)
190
191 static int coldqidx;
192
193 static void
194 clockpro_switchqueue(void)
195 {
196
197 coldqidx = 1 - coldqidx;
198 }
199
200 #endif /* !defined(LISTQ) */
201
202 static struct clockpro_state clockpro;
203 static struct clockpro_scanstate {
204 int ss_nscanned;
205 } scanstate;
206
207 /* ---------------------------------------- */
208
209 static void
210 pageq_init(pageq_t *q)
211 {
212
213 TAILQ_INIT(&q->q_q);
214 q->q_len = 0;
215 }
216
217 static int
218 pageq_len(const pageq_t *q)
219 {
220
221 return q->q_len;
222 }
223
224 static struct vm_page *
225 pageq_first(const pageq_t *q)
226 {
227
228 return TAILQ_FIRST(&q->q_q);
229 }
230
231 static void
232 pageq_insert_tail(pageq_t *q, struct vm_page *pg)
233 {
234
235 TAILQ_INSERT_TAIL(&q->q_q, pg, pageq.queue);
236 q->q_len++;
237 }
238
239 #if defined(LISTQ)
240 static void
241 pageq_insert_head(pageq_t *q, struct vm_page *pg)
242 {
243
244 TAILQ_INSERT_HEAD(&q->q_q, pg, pageq.queue);
245 q->q_len++;
246 }
247 #endif
248
249 static void
250 pageq_remove(pageq_t *q, struct vm_page *pg)
251 {
252
253 #if 1
254 KASSERT(clockpro_queue(&clockpro, clockpro_getq(pg)) == q);
255 #endif
256 KASSERT(q->q_len > 0);
257 TAILQ_REMOVE(&q->q_q, pg, pageq.queue);
258 q->q_len--;
259 }
260
261 static struct vm_page *
262 pageq_remove_head(pageq_t *q)
263 {
264 struct vm_page *pg;
265
266 pg = TAILQ_FIRST(&q->q_q);
267 if (pg == NULL) {
268 KASSERT(q->q_len == 0);
269 return NULL;
270 }
271 pageq_remove(q, pg);
272 return pg;
273 }
274
275 /* ---------------------------------------- */
276
277 static void
278 clockpro_insert_tail(struct clockpro_state *s, int qidx, struct vm_page *pg)
279 {
280 pageq_t *q = clockpro_queue(s, qidx);
281
282 clockpro_setq(pg, qidx);
283 pageq_insert_tail(q, pg);
284 }
285
286 #if defined(LISTQ)
287 static void
288 clockpro_insert_head(struct clockpro_state *s, int qidx, struct vm_page *pg)
289 {
290 pageq_t *q = clockpro_queue(s, qidx);
291
292 clockpro_setq(pg, qidx);
293 pageq_insert_head(q, pg);
294 }
295
296 #endif
297 /* ---------------------------------------- */
298
299 typedef uint32_t nonres_cookie_t;
300 #define NONRES_COOKIE_INVAL 0
301
302 typedef uintptr_t objid_t;
303
304 /*
305 * XXX maybe these hash functions need reconsideration,
306 * given that hash distribution is critical here.
307 */
308
309 static uint32_t
310 pageidentityhash1(objid_t obj, off_t idx)
311 {
312 uint32_t hash = HASH32_BUF_INIT;
313
314 #if 1
315 hash = hash32_buf(&idx, sizeof(idx), hash);
316 hash = hash32_buf(&obj, sizeof(obj), hash);
317 #else
318 hash = hash32_buf(&obj, sizeof(obj), hash);
319 hash = hash32_buf(&idx, sizeof(idx), hash);
320 #endif
321 return hash;
322 }
323
324 static uint32_t
325 pageidentityhash2(objid_t obj, off_t idx)
326 {
327 uint32_t hash = HASH32_BUF_INIT;
328
329 hash = hash32_buf(&obj, sizeof(obj), hash);
330 hash = hash32_buf(&idx, sizeof(idx), hash);
331 return hash;
332 }
333
334 static nonres_cookie_t
335 calccookie(objid_t obj, off_t idx)
336 {
337 uint32_t hash = pageidentityhash2(obj, idx);
338 nonres_cookie_t cookie = hash;
339
340 if (__predict_false(cookie == NONRES_COOKIE_INVAL)) {
341 cookie++; /* XXX */
342 }
343 return cookie;
344 }
345
346 #define BUCKETSIZE 14
347 struct bucket {
348 int cycle;
349 int cur;
350 nonres_cookie_t pages[BUCKETSIZE];
351 };
352 static int cycle_target;
353 static int cycle_target_frac;
354
355 static struct bucket static_bucket;
356 static struct bucket *buckets = &static_bucket;
357 static size_t hashsize = 1;
358
359 static int coldadj;
360 #define COLDTARGET_ADJ(d) coldadj += (d)
361
362 #if defined(PDSIM)
363
364 static void *
365 clockpro_hashalloc(int n)
366 {
367 size_t allocsz = sizeof(*buckets) * n;
368
369 return malloc(allocsz);
370 }
371
372 static void
373 clockpro_hashfree(void *p, int n)
374 {
375
376 free(p);
377 }
378
379 #else /* defined(PDSIM) */
380
381 static void *
382 clockpro_hashalloc(int n)
383 {
384 size_t allocsz = round_page(sizeof(*buckets) * n);
385
386 return (void *)uvm_km_alloc(kernel_map, allocsz, 0, UVM_KMF_WIRED);
387 }
388
389 static void
390 clockpro_hashfree(void *p, int n)
391 {
392 size_t allocsz = round_page(sizeof(*buckets) * n);
393
394 uvm_km_free(kernel_map, (vaddr_t)p, allocsz, UVM_KMF_WIRED);
395 }
396
397 #endif /* defined(PDSIM) */
398
399 static void
400 clockpro_hashinit(uint64_t n)
401 {
402 struct bucket *newbuckets;
403 struct bucket *oldbuckets;
404 size_t sz;
405 size_t oldsz;
406 int i;
407
408 sz = howmany(n, BUCKETSIZE);
409 sz *= clockpro_hashfactor;
410 newbuckets = clockpro_hashalloc(sz);
411 if (newbuckets == NULL) {
412 panic("%s: allocation failure", __func__);
413 }
414 for (i = 0; i < sz; i++) {
415 struct bucket *b = &newbuckets[i];
416 int j;
417
418 b->cycle = cycle_target;
419 b->cur = 0;
420 for (j = 0; j < BUCKETSIZE; j++) {
421 b->pages[j] = NONRES_COOKIE_INVAL;
422 }
423 }
424 /* XXX lock */
425 oldbuckets = buckets;
426 oldsz = hashsize;
427 buckets = newbuckets;
428 hashsize = sz;
429 /* XXX unlock */
430 if (oldbuckets != &static_bucket) {
431 clockpro_hashfree(oldbuckets, oldsz);
432 }
433 }
434
435 static struct bucket *
436 nonresident_getbucket(objid_t obj, off_t idx)
437 {
438 uint32_t hash;
439
440 hash = pageidentityhash1(obj, idx);
441 return &buckets[hash % hashsize];
442 }
443
444 static void
445 nonresident_rotate(struct bucket *b)
446 {
447 const int target = cycle_target;
448 const int cycle = b->cycle;
449 int cur;
450 int todo;
451
452 todo = target - cycle;
453 if (todo >= BUCKETSIZE * 2) {
454 todo = (todo % BUCKETSIZE) + BUCKETSIZE;
455 }
456 cur = b->cur;
457 while (todo > 0) {
458 if (b->pages[cur] != NONRES_COOKIE_INVAL) {
459 PDPOL_EVCNT_INCR(nreshandhot);
460 COLDTARGET_ADJ(-1);
461 }
462 b->pages[cur] = NONRES_COOKIE_INVAL;
463 cur++;
464 if (cur == BUCKETSIZE) {
465 cur = 0;
466 }
467 todo--;
468 }
469 b->cycle = target;
470 b->cur = cur;
471 }
472
473 static bool
474 nonresident_lookupremove(objid_t obj, off_t idx)
475 {
476 struct bucket *b = nonresident_getbucket(obj, idx);
477 nonres_cookie_t cookie = calccookie(obj, idx);
478 int i;
479
480 nonresident_rotate(b);
481 for (i = 0; i < BUCKETSIZE; i++) {
482 if (b->pages[i] == cookie) {
483 b->pages[i] = NONRES_COOKIE_INVAL;
484 return true;
485 }
486 }
487 return false;
488 }
489
490 static objid_t
491 pageobj(struct vm_page *pg)
492 {
493 const void *obj;
494
495 /*
496 * XXX object pointer is often freed and reused for unrelated object.
497 * for vnodes, it would be better to use something like
498 * a hash of fsid/fileid/generation.
499 */
500
501 obj = pg->uobject;
502 if (obj == NULL) {
503 obj = pg->uanon;
504 KASSERT(obj != NULL);
505 }
506 return (objid_t)obj;
507 }
508
509 static off_t
510 pageidx(struct vm_page *pg)
511 {
512
513 KASSERT((pg->offset & PAGE_MASK) == 0);
514 return pg->offset >> PAGE_SHIFT;
515 }
516
517 static bool
518 nonresident_pagelookupremove(struct vm_page *pg)
519 {
520 bool found = nonresident_lookupremove(pageobj(pg), pageidx(pg));
521
522 if (pg->uobject) {
523 PDPOL_EVCNT_INCR(nreslookupobj);
524 } else {
525 PDPOL_EVCNT_INCR(nreslookupanon);
526 }
527 if (found) {
528 if (pg->uobject) {
529 PDPOL_EVCNT_INCR(nresfoundobj);
530 } else {
531 PDPOL_EVCNT_INCR(nresfoundanon);
532 }
533 }
534 return found;
535 }
536
537 static void
538 nonresident_pagerecord(struct vm_page *pg)
539 {
540 objid_t obj = pageobj(pg);
541 off_t idx = pageidx(pg);
542 struct bucket *b = nonresident_getbucket(obj, idx);
543 nonres_cookie_t cookie = calccookie(obj, idx);
544
545 #if defined(DEBUG)
546 int i;
547
548 for (i = 0; i < BUCKETSIZE; i++) {
549 if (b->pages[i] == cookie) {
550 PDPOL_EVCNT_INCR(nresconflict);
551 }
552 }
553 #endif /* defined(DEBUG) */
554
555 if (pg->uobject) {
556 PDPOL_EVCNT_INCR(nresrecordobj);
557 } else {
558 PDPOL_EVCNT_INCR(nresrecordanon);
559 }
560 nonresident_rotate(b);
561 if (b->pages[b->cur] != NONRES_COOKIE_INVAL) {
562 PDPOL_EVCNT_INCR(nresoverwritten);
563 COLDTARGET_ADJ(-1);
564 }
565 b->pages[b->cur] = cookie;
566 b->cur = (b->cur + 1) % BUCKETSIZE;
567 }
568
569 /* ---------------------------------------- */
570
571 #if defined(CLOCKPRO_DEBUG)
572 static void
573 check_sanity(void)
574 {
575 }
576 #else /* defined(CLOCKPRO_DEBUG) */
577 #define check_sanity() /* nothing */
578 #endif /* defined(CLOCKPRO_DEBUG) */
579
580 static void
581 clockpro_reinit(void)
582 {
583
584 clockpro_hashinit(uvmexp.npages);
585 }
586
587 static void
588 clockpro_init(void)
589 {
590 struct clockpro_state *s = &clockpro;
591 int i;
592
593 for (i = 0; i < CLOCKPRO_NQUEUE; i++) {
594 pageq_init(&s->s_q[i]);
595 }
596 s->s_newqlenmax = 1;
597 s->s_coldtarget = 1;
598 uvm_pctparam_init(&s->s_coldtargetpct, CLOCKPRO_COLDPCT, NULL);
599 }
600
601 static void
602 clockpro_tune(void)
603 {
604 struct clockpro_state *s = &clockpro;
605 int coldtarget;
606
607 #if defined(ADAPTIVE)
608 int coldmax = s->s_npages * CLOCKPRO_COLDPCTMAX / 100;
609 int coldmin = 1;
610
611 coldtarget = s->s_coldtarget;
612 if (coldtarget + coldadj < coldmin) {
613 coldadj = coldmin - coldtarget;
614 } else if (coldtarget + coldadj > coldmax) {
615 coldadj = coldmax - coldtarget;
616 }
617 coldtarget += coldadj;
618 #else /* defined(ADAPTIVE) */
619 coldtarget = UVM_PCTPARAM_APPLY(&s->s_coldtargetpct, s->s_npages);
620 if (coldtarget < 1) {
621 coldtarget = 1;
622 }
623 #endif /* defined(ADAPTIVE) */
624
625 s->s_coldtarget = coldtarget;
626 s->s_newqlenmax = coldtarget / 4;
627 if (s->s_newqlenmax < CLOCKPRO_NEWQMIN) {
628 s->s_newqlenmax = CLOCKPRO_NEWQMIN;
629 }
630 }
631
632 static void
633 clockpro_movereferencebit(struct vm_page *pg)
634 {
635 bool referenced;
636
637 referenced = pmap_clear_reference(pg);
638 if (referenced) {
639 pg->pqflags |= PQ_REFERENCED;
640 }
641 }
642
643 static void
644 clockpro_clearreferencebit(struct vm_page *pg)
645 {
646
647 clockpro_movereferencebit(pg);
648 pg->pqflags &= ~PQ_REFERENCED;
649 }
650
651 static void
652 clockpro___newqrotate(int len)
653 {
654 struct clockpro_state * const s = &clockpro;
655 pageq_t * const newq = clockpro_queue(s, CLOCKPRO_NEWQ);
656 struct vm_page *pg;
657
658 while (pageq_len(newq) > len) {
659 pg = pageq_remove_head(newq);
660 KASSERT(pg != NULL);
661 KASSERT(clockpro_getq(pg) == CLOCKPRO_NEWQ);
662 if ((pg->pqflags & PQ_INITIALREF) != 0) {
663 clockpro_clearreferencebit(pg);
664 pg->pqflags &= ~PQ_INITIALREF;
665 }
666 /* place at the list head */
667 clockpro_insert_tail(s, CLOCKPRO_COLDQ, pg);
668 }
669 }
670
671 static void
672 clockpro_newqrotate(void)
673 {
674 struct clockpro_state * const s = &clockpro;
675
676 check_sanity();
677 clockpro___newqrotate(s->s_newqlenmax);
678 check_sanity();
679 }
680
681 static void
682 clockpro_newqflush(int n)
683 {
684
685 check_sanity();
686 clockpro___newqrotate(n);
687 check_sanity();
688 }
689
690 static void
691 clockpro_newqflushone(void)
692 {
693 struct clockpro_state * const s = &clockpro;
694
695 clockpro_newqflush(
696 MAX(pageq_len(clockpro_queue(s, CLOCKPRO_NEWQ)) - 1, 0));
697 }
698
699 /*
700 * our "tail" is called "list-head" in the paper.
701 */
702
703 static void
704 clockpro___enqueuetail(struct vm_page *pg)
705 {
706 struct clockpro_state * const s = &clockpro;
707
708 KASSERT(clockpro_getq(pg) == CLOCKPRO_NOQUEUE);
709
710 check_sanity();
711 #if !defined(USEONCE2)
712 clockpro_insert_tail(s, CLOCKPRO_NEWQ, pg);
713 clockpro_newqrotate();
714 #else /* !defined(USEONCE2) */
715 #if defined(LISTQ)
716 KASSERT((pg->pqflags & PQ_REFERENCED) == 0);
717 #endif /* defined(LISTQ) */
718 clockpro_insert_tail(s, CLOCKPRO_COLDQ, pg);
719 #endif /* !defined(USEONCE2) */
720 check_sanity();
721 }
722
723 static void
724 clockpro_pageenqueue(struct vm_page *pg)
725 {
726 struct clockpro_state * const s = &clockpro;
727 bool hot;
728 bool speculative = (pg->pqflags & PQ_SPECULATIVE) != 0; /* XXX */
729
730 KASSERT((~pg->pqflags & (PQ_INITIALREF|PQ_SPECULATIVE)) != 0);
731 KASSERT(mutex_owned(&uvm_pageqlock));
732 check_sanity();
733 KASSERT(clockpro_getq(pg) == CLOCKPRO_NOQUEUE);
734 s->s_npages++;
735 pg->pqflags &= ~(PQ_HOT|PQ_TEST);
736 if (speculative) {
737 hot = false;
738 PDPOL_EVCNT_INCR(speculativeenqueue);
739 } else {
740 hot = nonresident_pagelookupremove(pg);
741 if (hot) {
742 COLDTARGET_ADJ(1);
743 }
744 }
745
746 /*
747 * consider mmap'ed file:
748 *
749 * - read-ahead enqueues a page.
750 *
751 * - on the following read-ahead hit, the fault handler activates it.
752 *
753 * - finally, the userland code which caused the above fault
754 * actually accesses the page. it makes its reference bit set.
755 *
756 * we want to count the above as a single access, rather than
757 * three accesses with short reuse distances.
758 */
759
760 #if defined(USEONCE2)
761 pg->pqflags &= ~PQ_INITIALREF;
762 if (hot) {
763 pg->pqflags |= PQ_TEST;
764 }
765 s->s_ncold++;
766 clockpro_clearreferencebit(pg);
767 clockpro___enqueuetail(pg);
768 #else /* defined(USEONCE2) */
769 if (speculative) {
770 s->s_ncold++;
771 } else if (hot) {
772 pg->pqflags |= PQ_HOT;
773 } else {
774 pg->pqflags |= PQ_TEST;
775 s->s_ncold++;
776 }
777 clockpro___enqueuetail(pg);
778 #endif /* defined(USEONCE2) */
779 KASSERT(s->s_ncold <= s->s_npages);
780 }
781
782 static pageq_t *
783 clockpro_pagequeue(struct vm_page *pg)
784 {
785 struct clockpro_state * const s = &clockpro;
786 int qidx;
787
788 qidx = clockpro_getq(pg);
789 KASSERT(qidx != CLOCKPRO_NOQUEUE);
790
791 return clockpro_queue(s, qidx);
792 }
793
794 static void
795 clockpro_pagedequeue(struct vm_page *pg)
796 {
797 struct clockpro_state * const s = &clockpro;
798 pageq_t *q;
799
800 KASSERT(s->s_npages > 0);
801 check_sanity();
802 q = clockpro_pagequeue(pg);
803 pageq_remove(q, pg);
804 check_sanity();
805 clockpro_setq(pg, CLOCKPRO_NOQUEUE);
806 if ((pg->pqflags & PQ_HOT) == 0) {
807 KASSERT(s->s_ncold > 0);
808 s->s_ncold--;
809 }
810 KASSERT(s->s_npages > 0);
811 s->s_npages--;
812 check_sanity();
813 }
814
815 static void
816 clockpro_pagerequeue(struct vm_page *pg)
817 {
818 struct clockpro_state * const s = &clockpro;
819 int qidx;
820
821 qidx = clockpro_getq(pg);
822 KASSERT(qidx == CLOCKPRO_HOTQ || qidx == CLOCKPRO_COLDQ);
823 pageq_remove(clockpro_queue(s, qidx), pg);
824 check_sanity();
825 clockpro_setq(pg, CLOCKPRO_NOQUEUE);
826
827 clockpro___enqueuetail(pg);
828 }
829
830 static void
831 handhot_endtest(struct vm_page *pg)
832 {
833
834 KASSERT((pg->pqflags & PQ_HOT) == 0);
835 if ((pg->pqflags & PQ_TEST) != 0) {
836 PDPOL_EVCNT_INCR(hhotcoldtest);
837 COLDTARGET_ADJ(-1);
838 pg->pqflags &= ~PQ_TEST;
839 } else {
840 PDPOL_EVCNT_INCR(hhotcold);
841 }
842 }
843
844 static void
845 handhot_advance(void)
846 {
847 struct clockpro_state * const s = &clockpro;
848 struct vm_page *pg;
849 pageq_t *hotq;
850 int hotqlen;
851
852 clockpro_tune();
853
854 dump("hot called");
855 if (s->s_ncold >= s->s_coldtarget) {
856 return;
857 }
858 hotq = clockpro_queue(s, CLOCKPRO_HOTQ);
859 again:
860 pg = pageq_first(hotq);
861 if (pg == NULL) {
862 DPRINTF("%s: HHOT TAKEOVER\n", __func__);
863 dump("hhottakeover");
864 PDPOL_EVCNT_INCR(hhottakeover);
865 #if defined(LISTQ)
866 while (/* CONSTCOND */ 1) {
867 pageq_t *coldq = clockpro_queue(s, CLOCKPRO_COLDQ);
868
869 pg = pageq_first(coldq);
870 if (pg == NULL) {
871 clockpro_newqflushone();
872 pg = pageq_first(coldq);
873 if (pg == NULL) {
874 WARN("hhot: no page?\n");
875 return;
876 }
877 }
878 KASSERT(clockpro_pagequeue(pg) == coldq);
879 pageq_remove(coldq, pg);
880 check_sanity();
881 if ((pg->pqflags & PQ_HOT) == 0) {
882 handhot_endtest(pg);
883 clockpro_insert_tail(s, CLOCKPRO_LISTQ, pg);
884 } else {
885 clockpro_insert_head(s, CLOCKPRO_HOTQ, pg);
886 break;
887 }
888 }
889 #else /* defined(LISTQ) */
890 clockpro_newqflush(0); /* XXX XXX */
891 clockpro_switchqueue();
892 hotq = clockpro_queue(s, CLOCKPRO_HOTQ);
893 goto again;
894 #endif /* defined(LISTQ) */
895 }
896
897 KASSERT(clockpro_pagequeue(pg) == hotq);
898
899 /*
900 * terminate test period of nonresident pages by cycling them.
901 */
902
903 cycle_target_frac += BUCKETSIZE;
904 hotqlen = pageq_len(hotq);
905 while (cycle_target_frac >= hotqlen) {
906 cycle_target++;
907 cycle_target_frac -= hotqlen;
908 }
909
910 if ((pg->pqflags & PQ_HOT) == 0) {
911 #if defined(LISTQ)
912 panic("cold page in hotq: %p", pg);
913 #else /* defined(LISTQ) */
914 handhot_endtest(pg);
915 goto next;
916 #endif /* defined(LISTQ) */
917 }
918 KASSERT((pg->pqflags & PQ_TEST) == 0);
919 KASSERT((pg->pqflags & PQ_INITIALREF) == 0);
920 KASSERT((pg->pqflags & PQ_SPECULATIVE) == 0);
921
922 /*
923 * once we met our target,
924 * stop at a hot page so that no cold pages in test period
925 * have larger recency than any hot pages.
926 */
927
928 if (s->s_ncold >= s->s_coldtarget) {
929 dump("hot done");
930 return;
931 }
932 clockpro_movereferencebit(pg);
933 if ((pg->pqflags & PQ_REFERENCED) == 0) {
934 PDPOL_EVCNT_INCR(hhotunref);
935 uvmexp.pddeact++;
936 pg->pqflags &= ~PQ_HOT;
937 clockpro.s_ncold++;
938 KASSERT(s->s_ncold <= s->s_npages);
939 } else {
940 PDPOL_EVCNT_INCR(hhotref);
941 }
942 pg->pqflags &= ~PQ_REFERENCED;
943 #if !defined(LISTQ)
944 next:
945 #endif /* !defined(LISTQ) */
946 clockpro_pagerequeue(pg);
947 dump("hot");
948 goto again;
949 }
950
951 static struct vm_page *
952 handcold_advance(void)
953 {
954 struct clockpro_state * const s = &clockpro;
955 struct vm_page *pg;
956
957 for (;;) {
958 #if defined(LISTQ)
959 pageq_t *listq = clockpro_queue(s, CLOCKPRO_LISTQ);
960 #endif /* defined(LISTQ) */
961 pageq_t *coldq;
962
963 clockpro_newqrotate();
964 handhot_advance();
965 #if defined(LISTQ)
966 pg = pageq_first(listq);
967 if (pg != NULL) {
968 KASSERT(clockpro_getq(pg) == CLOCKPRO_LISTQ);
969 KASSERT((pg->pqflags & PQ_TEST) == 0);
970 KASSERT((pg->pqflags & PQ_HOT) == 0);
971 KASSERT((pg->pqflags & PQ_INITIALREF) == 0);
972 pageq_remove(listq, pg);
973 check_sanity();
974 clockpro_insert_head(s, CLOCKPRO_COLDQ, pg); /* XXX */
975 goto gotcold;
976 }
977 #endif /* defined(LISTQ) */
978 check_sanity();
979 coldq = clockpro_queue(s, CLOCKPRO_COLDQ);
980 pg = pageq_first(coldq);
981 if (pg == NULL) {
982 clockpro_newqflushone();
983 pg = pageq_first(coldq);
984 }
985 if (pg == NULL) {
986 DPRINTF("%s: HCOLD TAKEOVER\n", __func__);
987 dump("hcoldtakeover");
988 PDPOL_EVCNT_INCR(hcoldtakeover);
989 KASSERT(
990 pageq_len(clockpro_queue(s, CLOCKPRO_NEWQ)) == 0);
991 #if defined(LISTQ)
992 KASSERT(
993 pageq_len(clockpro_queue(s, CLOCKPRO_HOTQ)) == 0);
994 #else /* defined(LISTQ) */
995 clockpro_switchqueue();
996 coldq = clockpro_queue(s, CLOCKPRO_COLDQ);
997 pg = pageq_first(coldq);
998 #endif /* defined(LISTQ) */
999 }
1000 if (pg == NULL) {
1001 WARN("hcold: no page?\n");
1002 return NULL;
1003 }
1004 KASSERT((pg->pqflags & PQ_INITIALREF) == 0);
1005 if ((pg->pqflags & PQ_HOT) != 0) {
1006 PDPOL_EVCNT_INCR(hcoldhot);
1007 pageq_remove(coldq, pg);
1008 clockpro_insert_tail(s, CLOCKPRO_HOTQ, pg);
1009 check_sanity();
1010 KASSERT((pg->pqflags & PQ_TEST) == 0);
1011 uvmexp.pdscans++;
1012 continue;
1013 }
1014 #if defined(LISTQ)
1015 gotcold:
1016 #endif /* defined(LISTQ) */
1017 KASSERT((pg->pqflags & PQ_HOT) == 0);
1018 uvmexp.pdscans++;
1019 clockpro_movereferencebit(pg);
1020 if ((pg->pqflags & PQ_SPECULATIVE) != 0) {
1021 KASSERT((pg->pqflags & PQ_TEST) == 0);
1022 if ((pg->pqflags & PQ_REFERENCED) != 0) {
1023 PDPOL_EVCNT_INCR(speculativehit2);
1024 pg->pqflags &= ~(PQ_SPECULATIVE|PQ_REFERENCED);
1025 clockpro_pagedequeue(pg);
1026 clockpro_pageenqueue(pg);
1027 continue;
1028 }
1029 PDPOL_EVCNT_INCR(speculativemiss);
1030 }
1031 switch (pg->pqflags & (PQ_REFERENCED|PQ_TEST)) {
1032 case PQ_TEST:
1033 PDPOL_EVCNT_INCR(hcoldunreftest);
1034 nonresident_pagerecord(pg);
1035 goto gotit;
1036 case 0:
1037 PDPOL_EVCNT_INCR(hcoldunref);
1038 gotit:
1039 KASSERT(s->s_ncold > 0);
1040 clockpro_pagerequeue(pg); /* XXX */
1041 dump("cold done");
1042 /* XXX "pg" is still in queue */
1043 handhot_advance();
1044 goto done;
1045
1046 case PQ_REFERENCED|PQ_TEST:
1047 PDPOL_EVCNT_INCR(hcoldreftest);
1048 s->s_ncold--;
1049 COLDTARGET_ADJ(1);
1050 pg->pqflags |= PQ_HOT;
1051 pg->pqflags &= ~PQ_TEST;
1052 break;
1053
1054 case PQ_REFERENCED:
1055 PDPOL_EVCNT_INCR(hcoldref);
1056 pg->pqflags |= PQ_TEST;
1057 break;
1058 }
1059 pg->pqflags &= ~PQ_REFERENCED;
1060 uvmexp.pdreact++;
1061 /* move to the list head */
1062 clockpro_pagerequeue(pg);
1063 dump("cold");
1064 }
1065 done:;
1066 return pg;
1067 }
1068
1069 void
1070 uvmpdpol_pageactivate(struct vm_page *pg)
1071 {
1072
1073 if (!uvmpdpol_pageisqueued_p(pg)) {
1074 KASSERT((pg->pqflags & PQ_SPECULATIVE) == 0);
1075 pg->pqflags |= PQ_INITIALREF;
1076 clockpro_pageenqueue(pg);
1077 } else if ((pg->pqflags & PQ_SPECULATIVE)) {
1078 PDPOL_EVCNT_INCR(speculativehit1);
1079 pg->pqflags &= ~PQ_SPECULATIVE;
1080 pg->pqflags |= PQ_INITIALREF;
1081 clockpro_pagedequeue(pg);
1082 clockpro_pageenqueue(pg);
1083 }
1084 pg->pqflags |= PQ_REFERENCED;
1085 }
1086
1087 void
1088 uvmpdpol_pagedeactivate(struct vm_page *pg)
1089 {
1090
1091 clockpro_clearreferencebit(pg);
1092 }
1093
1094 void
1095 uvmpdpol_pagedequeue(struct vm_page *pg)
1096 {
1097
1098 if (!uvmpdpol_pageisqueued_p(pg)) {
1099 return;
1100 }
1101 clockpro_pagedequeue(pg);
1102 pg->pqflags &= ~(PQ_INITIALREF|PQ_SPECULATIVE);
1103 }
1104
1105 void
1106 uvmpdpol_pageenqueue(struct vm_page *pg)
1107 {
1108
1109 #if 1
1110 if (uvmpdpol_pageisqueued_p(pg)) {
1111 return;
1112 }
1113 clockpro_clearreferencebit(pg);
1114 pg->pqflags |= PQ_SPECULATIVE;
1115 clockpro_pageenqueue(pg);
1116 #else
1117 uvmpdpol_pageactivate(pg);
1118 #endif
1119 }
1120
1121 void
1122 uvmpdpol_anfree(struct vm_anon *an)
1123 {
1124
1125 KASSERT(an->an_page == NULL);
1126 if (nonresident_lookupremove((objid_t)an, 0)) {
1127 PDPOL_EVCNT_INCR(nresanonfree);
1128 }
1129 }
1130
1131 void
1132 uvmpdpol_init(void)
1133 {
1134
1135 clockpro_init();
1136 }
1137
1138 void
1139 uvmpdpol_reinit(void)
1140 {
1141
1142 clockpro_reinit();
1143 }
1144
1145 void
1146 uvmpdpol_estimatepageable(int *active, int *inactive)
1147 {
1148 struct clockpro_state * const s = &clockpro;
1149
1150 if (active) {
1151 *active = s->s_npages - s->s_ncold;
1152 }
1153 if (inactive) {
1154 *inactive = s->s_ncold;
1155 }
1156 }
1157
1158 bool
1159 uvmpdpol_pageisqueued_p(struct vm_page *pg)
1160 {
1161
1162 return clockpro_getq(pg) != CLOCKPRO_NOQUEUE;
1163 }
1164
1165 void
1166 uvmpdpol_scaninit(void)
1167 {
1168 struct clockpro_scanstate * const ss = &scanstate;
1169
1170 ss->ss_nscanned = 0;
1171 }
1172
1173 struct vm_page *
1174 uvmpdpol_selectvictim(void)
1175 {
1176 struct clockpro_state * const s = &clockpro;
1177 struct clockpro_scanstate * const ss = &scanstate;
1178 struct vm_page *pg;
1179
1180 if (ss->ss_nscanned > s->s_npages) {
1181 DPRINTF("scan too much\n");
1182 return NULL;
1183 }
1184 pg = handcold_advance();
1185 ss->ss_nscanned++;
1186 return pg;
1187 }
1188
1189 static void
1190 clockpro_dropswap(pageq_t *q, int *todo)
1191 {
1192 struct vm_page *pg;
1193
1194 TAILQ_FOREACH_REVERSE(pg, &q->q_q, pglist, pageq.queue) {
1195 if (*todo <= 0) {
1196 break;
1197 }
1198 if ((pg->pqflags & PQ_HOT) == 0) {
1199 continue;
1200 }
1201 if ((pg->pqflags & PQ_SWAPBACKED) == 0) {
1202 continue;
1203 }
1204 if (uvmpd_trydropswap(pg)) {
1205 (*todo)--;
1206 }
1207 }
1208 }
1209
1210 void
1211 uvmpdpol_balancequeue(int swap_shortage)
1212 {
1213 struct clockpro_state * const s = &clockpro;
1214 int todo = swap_shortage;
1215
1216 if (todo == 0) {
1217 return;
1218 }
1219
1220 /*
1221 * reclaim swap slots from hot pages
1222 */
1223
1224 DPRINTF("%s: swap_shortage=%d\n", __func__, swap_shortage);
1225
1226 clockpro_dropswap(clockpro_queue(s, CLOCKPRO_NEWQ), &todo);
1227 clockpro_dropswap(clockpro_queue(s, CLOCKPRO_COLDQ), &todo);
1228 clockpro_dropswap(clockpro_queue(s, CLOCKPRO_HOTQ), &todo);
1229
1230 DPRINTF("%s: done=%d\n", __func__, swap_shortage - todo);
1231 }
1232
1233 bool
1234 uvmpdpol_needsscan_p(void)
1235 {
1236 struct clockpro_state * const s = &clockpro;
1237
1238 if (s->s_ncold < s->s_coldtarget) {
1239 return true;
1240 }
1241 return false;
1242 }
1243
1244 void
1245 uvmpdpol_tune(void)
1246 {
1247
1248 clockpro_tune();
1249 }
1250
1251 #if !defined(PDSIM)
1252
1253 #include <sys/sysctl.h> /* XXX SYSCTL_DESCR */
1254
1255 void
1256 uvmpdpol_sysctlsetup(void)
1257 {
1258 #if !defined(ADAPTIVE)
1259 struct clockpro_state * const s = &clockpro;
1260
1261 uvm_pctparam_createsysctlnode(&s->s_coldtargetpct, "coldtargetpct",
1262 SYSCTL_DESCR("Percentage cold target queue of the entire queue"));
1263 #endif /* !defined(ADAPTIVE) */
1264 }
1265
1266 #endif /* !defined(PDSIM) */
1267
1268 #if defined(DDB)
1269
1270 void clockpro_dump(void);
1271
1272 void
1273 clockpro_dump(void)
1274 {
1275 struct clockpro_state * const s = &clockpro;
1276
1277 struct vm_page *pg;
1278 int ncold, nhot, ntest, nspeculative, ninitialref, nref;
1279 int newqlen, coldqlen, hotqlen, listqlen;
1280
1281 newqlen = coldqlen = hotqlen = listqlen = 0;
1282 printf("npages=%d, ncold=%d, coldtarget=%d, newqlenmax=%d\n",
1283 s->s_npages, s->s_ncold, s->s_coldtarget, s->s_newqlenmax);
1284
1285 #define INITCOUNT() \
1286 ncold = nhot = ntest = nspeculative = ninitialref = nref = 0
1287
1288 #define COUNT(pg) \
1289 if ((pg->pqflags & PQ_HOT) != 0) { \
1290 nhot++; \
1291 } else { \
1292 ncold++; \
1293 if ((pg->pqflags & PQ_TEST) != 0) { \
1294 ntest++; \
1295 } \
1296 if ((pg->pqflags & PQ_SPECULATIVE) != 0) { \
1297 nspeculative++; \
1298 } \
1299 if ((pg->pqflags & PQ_INITIALREF) != 0) { \
1300 ninitialref++; \
1301 } else if ((pg->pqflags & PQ_REFERENCED) != 0 || \
1302 pmap_is_referenced(pg)) { \
1303 nref++; \
1304 } \
1305 }
1306
1307 #define PRINTCOUNT(name) \
1308 printf("%s hot=%d, cold=%d, test=%d, speculative=%d, initialref=%d, " \
1309 "nref=%d\n", \
1310 (name), nhot, ncold, ntest, nspeculative, ninitialref, nref)
1311
1312 INITCOUNT();
1313 TAILQ_FOREACH(pg, &clockpro_queue(s, CLOCKPRO_NEWQ)->q_q, pageq.queue) {
1314 if (clockpro_getq(pg) != CLOCKPRO_NEWQ) {
1315 printf("newq corrupt %p\n", pg);
1316 }
1317 COUNT(pg)
1318 newqlen++;
1319 }
1320 PRINTCOUNT("newq");
1321
1322 INITCOUNT();
1323 TAILQ_FOREACH(pg, &clockpro_queue(s, CLOCKPRO_COLDQ)->q_q, pageq.queue) {
1324 if (clockpro_getq(pg) != CLOCKPRO_COLDQ) {
1325 printf("coldq corrupt %p\n", pg);
1326 }
1327 COUNT(pg)
1328 coldqlen++;
1329 }
1330 PRINTCOUNT("coldq");
1331
1332 INITCOUNT();
1333 TAILQ_FOREACH(pg, &clockpro_queue(s, CLOCKPRO_HOTQ)->q_q, pageq.queue) {
1334 if (clockpro_getq(pg) != CLOCKPRO_HOTQ) {
1335 printf("hotq corrupt %p\n", pg);
1336 }
1337 #if defined(LISTQ)
1338 if ((pg->pqflags & PQ_HOT) == 0) {
1339 printf("cold page in hotq: %p\n", pg);
1340 }
1341 #endif /* defined(LISTQ) */
1342 COUNT(pg)
1343 hotqlen++;
1344 }
1345 PRINTCOUNT("hotq");
1346
1347 INITCOUNT();
1348 TAILQ_FOREACH(pg, &clockpro_queue(s, CLOCKPRO_LISTQ)->q_q, pageq.queue) {
1349 #if !defined(LISTQ)
1350 printf("listq %p\n", pg);
1351 #endif /* !defined(LISTQ) */
1352 if (clockpro_getq(pg) != CLOCKPRO_LISTQ) {
1353 printf("listq corrupt %p\n", pg);
1354 }
1355 COUNT(pg)
1356 listqlen++;
1357 }
1358 PRINTCOUNT("listq");
1359
1360 printf("newqlen=%d/%d, coldqlen=%d/%d, hotqlen=%d/%d, listqlen=%d/%d\n",
1361 newqlen, pageq_len(clockpro_queue(s, CLOCKPRO_NEWQ)),
1362 coldqlen, pageq_len(clockpro_queue(s, CLOCKPRO_COLDQ)),
1363 hotqlen, pageq_len(clockpro_queue(s, CLOCKPRO_HOTQ)),
1364 listqlen, pageq_len(clockpro_queue(s, CLOCKPRO_LISTQ)));
1365 }
1366
1367 #endif /* defined(DDB) */
1368
1369 #if defined(PDSIM)
1370 #if defined(DEBUG)
1371 static void
1372 pdsim_dumpq(int qidx)
1373 {
1374 struct clockpro_state * const s = &clockpro;
1375 pageq_t *q = clockpro_queue(s, qidx);
1376 struct vm_page *pg;
1377
1378 TAILQ_FOREACH(pg, &q->q_q, pageq.queue) {
1379 DPRINTF(" %" PRIu64 "%s%s%s%s%s%s",
1380 pg->offset >> PAGE_SHIFT,
1381 (pg->pqflags & PQ_HOT) ? "H" : "",
1382 (pg->pqflags & PQ_TEST) ? "T" : "",
1383 (pg->pqflags & PQ_REFERENCED) ? "R" : "",
1384 pmap_is_referenced(pg) ? "r" : "",
1385 (pg->pqflags & PQ_INITIALREF) ? "I" : "",
1386 (pg->pqflags & PQ_SPECULATIVE) ? "S" : ""
1387 );
1388 }
1389 }
1390 #endif /* defined(DEBUG) */
1391
1392 void
1393 pdsim_dump(const char *id)
1394 {
1395 #if defined(DEBUG)
1396 struct clockpro_state * const s = &clockpro;
1397
1398 DPRINTF(" %s L(", id);
1399 pdsim_dumpq(CLOCKPRO_LISTQ);
1400 DPRINTF(" ) H(");
1401 pdsim_dumpq(CLOCKPRO_HOTQ);
1402 DPRINTF(" ) C(");
1403 pdsim_dumpq(CLOCKPRO_COLDQ);
1404 DPRINTF(" ) N(");
1405 pdsim_dumpq(CLOCKPRO_NEWQ);
1406 DPRINTF(" ) ncold=%d/%d, coldadj=%d\n",
1407 s->s_ncold, s->s_coldtarget, coldadj);
1408 #endif /* defined(DEBUG) */
1409 }
1410 #endif /* defined(PDSIM) */
1411