Home | History | Annotate | Line # | Download | only in uvm
      1  1.6  chs /*	$NetBSD: uvm_pgflcache.c,v 1.6 2020/10/18 18:31:31 chs Exp $	*/
      2  1.1   ad 
      3  1.1   ad /*-
      4  1.1   ad  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5  1.1   ad  * All rights reserved.
      6  1.1   ad  *
      7  1.1   ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1   ad  * by Andrew Doran.
      9  1.1   ad  *
     10  1.1   ad  * Redistribution and use in source and binary forms, with or without
     11  1.1   ad  * modification, are permitted provided that the following conditions
     12  1.1   ad  * are met:
     13  1.1   ad  * 1. Redistributions of source code must retain the above copyright
     14  1.1   ad  *    notice, this list of conditions and the following disclaimer.
     15  1.1   ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1   ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.1   ad  *    documentation and/or other materials provided with the distribution.
     18  1.1   ad  *
     19  1.1   ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1   ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1   ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1   ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1   ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1   ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1   ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1   ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1   ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1   ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1   ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1   ad  */
     31  1.1   ad 
     32  1.1   ad /*
     33  1.1   ad  * uvm_pgflcache.c: page freelist cache.
     34  1.1   ad  *
     35  1.1   ad  * This implements a tiny per-CPU cache of pages that sits between the main
     36  1.1   ad  * page allocator and the freelists.  By allocating and freeing pages in
     37  1.1   ad  * batch, it reduces freelist contention by an order of magnitude.
     38  1.1   ad  *
     39  1.1   ad  * The cache can be paused & resumed at runtime so that UVM_HOTPLUG,
     40  1.1   ad  * uvm_pglistalloc() and uvm_page_redim() can have a consistent view of the
     41  1.1   ad  * world.  On system with one CPU per physical package (e.g. a uniprocessor)
     42  1.1   ad  * the cache is not enabled.
     43  1.1   ad  */
     44  1.1   ad 
     45  1.1   ad #include <sys/cdefs.h>
     46  1.6  chs __KERNEL_RCSID(0, "$NetBSD: uvm_pgflcache.c,v 1.6 2020/10/18 18:31:31 chs Exp $");
     47  1.1   ad 
     48  1.1   ad #include "opt_uvm.h"
     49  1.1   ad #include "opt_multiprocessor.h"
     50  1.1   ad 
     51  1.1   ad #include <sys/param.h>
     52  1.1   ad #include <sys/systm.h>
     53  1.1   ad #include <sys/sched.h>
     54  1.1   ad #include <sys/kernel.h>
     55  1.1   ad #include <sys/vnode.h>
     56  1.1   ad #include <sys/proc.h>
     57  1.1   ad #include <sys/atomic.h>
     58  1.1   ad #include <sys/cpu.h>
     59  1.1   ad #include <sys/xcall.h>
     60  1.1   ad 
     61  1.1   ad #include <uvm/uvm.h>
     62  1.1   ad #include <uvm/uvm_pglist.h>
     63  1.1   ad #include <uvm/uvm_pgflcache.h>
     64  1.1   ad 
     65  1.1   ad /* There is no point doing any of this on a uniprocessor. */
     66  1.1   ad #ifdef MULTIPROCESSOR
     67  1.1   ad 
     68  1.1   ad /*
     69  1.1   ad  * MAXPGS - maximum pages per color, per bucket.
     70  1.1   ad  * FILLPGS - number of pages to allocate at once, per color, per bucket.
     71  1.1   ad  *
     72  1.1   ad  * Why the chosen values:
     73  1.1   ad  *
     74  1.1   ad  * (1) In 2019, an average Intel system has 4kB pages and 8x L2 cache
     75  1.1   ad  * colors.  We make the assumption that most of the time allocation activity
     76  1.1   ad  * will be centered around one UVM freelist, so most of the time there will
     77  1.1   ad  * be no more than 224kB worth of cached pages per-CPU.  That's tiny, but
     78  1.1   ad  * enough to hugely reduce contention on the freelist locks, and give us a
     79  1.1   ad  * small pool of pages which if we're very lucky may have some L1/L2 cache
     80  1.1   ad  * locality, and do so without subtracting too much from the L2/L3 cache
     81  1.1   ad  * benefits of having per-package free lists in the page allocator.
     82  1.1   ad  *
     83  1.1   ad  * (2) With the chosen values on _LP64, the data structure for each color
     84  1.1   ad  * takes up a single cache line (64 bytes) giving this very low overhead
     85  1.1   ad  * even in the "miss" case.
     86  1.1   ad  *
     87  1.1   ad  * (3) We don't want to cause too much pressure by hiding away memory that
     88  1.1   ad  * could otherwise be put to good use.
     89  1.1   ad  */
     90  1.1   ad #define	MAXPGS		7
     91  1.1   ad #define	FILLPGS		6
     92  1.1   ad 
     93  1.1   ad /* Variable size, according to # colors. */
     94  1.1   ad struct pgflcache {
     95  1.1   ad 	struct pccolor {
     96  1.1   ad 		intptr_t	count;
     97  1.1   ad 		struct vm_page	*pages[MAXPGS];
     98  1.1   ad 	} color[1];
     99  1.1   ad };
    100  1.1   ad 
    101  1.1   ad static kmutex_t		uvm_pgflcache_lock;
    102  1.1   ad static int		uvm_pgflcache_sem;
    103  1.1   ad 
    104  1.1   ad /*
    105  1.1   ad  * uvm_pgflcache_fill: fill specified freelist/color from global list
    106  1.1   ad  *
    107  1.1   ad  * => must be called at IPL_VM
    108  1.1   ad  * => must be called with given bucket lock held
    109  1.1   ad  * => must only fill from the correct bucket for this CPU
    110  1.1   ad  */
    111  1.1   ad 
    112  1.1   ad void
    113  1.1   ad uvm_pgflcache_fill(struct uvm_cpu *ucpu, int fl, int b, int c)
    114  1.1   ad {
    115  1.1   ad 	struct pgflbucket *pgb;
    116  1.1   ad 	struct pgflcache *pc;
    117  1.1   ad 	struct pccolor *pcc;
    118  1.1   ad 	struct pgflist *head;
    119  1.1   ad 	struct vm_page *pg;
    120  1.1   ad 	int count;
    121  1.1   ad 
    122  1.1   ad 	KASSERT(mutex_owned(&uvm_freelist_locks[b].lock));
    123  1.1   ad 	KASSERT(ucpu->pgflbucket == b);
    124  1.1   ad 
    125  1.1   ad 	/* If caching is off, then bail out. */
    126  1.1   ad 	if (__predict_false((pc = ucpu->pgflcache[fl]) == NULL)) {
    127  1.1   ad 		return;
    128  1.1   ad 	}
    129  1.1   ad 
    130  1.1   ad 	/* Fill only to the limit. */
    131  1.1   ad 	pcc = &pc->color[c];
    132  1.1   ad 	pgb = uvm.page_free[fl].pgfl_buckets[b];
    133  1.1   ad 	head = &pgb->pgb_colors[c];
    134  1.1   ad 	if (pcc->count >= FILLPGS) {
    135  1.1   ad 		return;
    136  1.1   ad 	}
    137  1.1   ad 
    138  1.1   ad 	/* Pull pages from the bucket until it's empty, or we are full. */
    139  1.1   ad 	count = pcc->count;
    140  1.1   ad 	pg = LIST_FIRST(head);
    141  1.1   ad 	while (__predict_true(pg != NULL && count < FILLPGS)) {
    142  1.1   ad 		KASSERT(pg->flags & PG_FREE);
    143  1.1   ad 		KASSERT(uvm_page_get_bucket(pg) == b);
    144  1.1   ad 		pcc->pages[count++] = pg;
    145  1.1   ad 		pg = LIST_NEXT(pg, pageq.list);
    146  1.1   ad 	}
    147  1.1   ad 
    148  1.1   ad 	/* Violate LIST abstraction to remove all pages at once. */
    149  1.1   ad 	head->lh_first = pg;
    150  1.1   ad 	if (__predict_true(pg != NULL)) {
    151  1.1   ad 		pg->pageq.list.le_prev = &head->lh_first;
    152  1.1   ad 	}
    153  1.1   ad 	pgb->pgb_nfree -= (count - pcc->count);
    154  1.6  chs 	CPU_COUNT(CPU_COUNT_FREEPAGES, -(count - pcc->count));
    155  1.1   ad 	pcc->count = count;
    156  1.1   ad }
    157  1.1   ad 
    158  1.1   ad /*
    159  1.1   ad  * uvm_pgflcache_spill: spill specified freelist/color to global list
    160  1.1   ad  *
    161  1.1   ad  * => must be called at IPL_VM
    162  1.1   ad  * => mark __noinline so we don't pull it into uvm_pgflcache_free()
    163  1.1   ad  */
    164  1.1   ad 
    165  1.1   ad static void __noinline
    166  1.1   ad uvm_pgflcache_spill(struct uvm_cpu *ucpu, int fl, int c)
    167  1.1   ad {
    168  1.1   ad 	struct pgflbucket *pgb;
    169  1.1   ad 	struct pgfreelist *pgfl;
    170  1.1   ad 	struct pgflcache *pc;
    171  1.1   ad 	struct pccolor *pcc;
    172  1.1   ad 	struct pgflist *head;
    173  1.1   ad 	kmutex_t *lock;
    174  1.1   ad 	int b, adj;
    175  1.1   ad 
    176  1.1   ad 	pc = ucpu->pgflcache[fl];
    177  1.1   ad 	pcc = &pc->color[c];
    178  1.1   ad 	pgfl = &uvm.page_free[fl];
    179  1.1   ad 	b = ucpu->pgflbucket;
    180  1.1   ad 	pgb = pgfl->pgfl_buckets[b];
    181  1.1   ad 	head = &pgb->pgb_colors[c];
    182  1.1   ad 	lock = &uvm_freelist_locks[b].lock;
    183  1.1   ad 
    184  1.1   ad 	mutex_spin_enter(lock);
    185  1.1   ad 	for (adj = pcc->count; pcc->count != 0;) {
    186  1.1   ad 		pcc->count--;
    187  1.1   ad 		KASSERT(pcc->pages[pcc->count] != NULL);
    188  1.1   ad 		KASSERT(pcc->pages[pcc->count]->flags & PG_FREE);
    189  1.1   ad 		LIST_INSERT_HEAD(head, pcc->pages[pcc->count], pageq.list);
    190  1.1   ad 	}
    191  1.1   ad 	pgb->pgb_nfree += adj;
    192  1.6  chs 	CPU_COUNT(CPU_COUNT_FREEPAGES, adj);
    193  1.1   ad 	mutex_spin_exit(lock);
    194  1.1   ad }
    195  1.1   ad 
    196  1.1   ad /*
    197  1.1   ad  * uvm_pgflcache_alloc: try to allocate a cached page.
    198  1.1   ad  *
    199  1.1   ad  * => must be called at IPL_VM
    200  1.1   ad  * => allocate only from the given freelist and given page color
    201  1.1   ad  */
    202  1.1   ad 
    203  1.1   ad struct vm_page *
    204  1.1   ad uvm_pgflcache_alloc(struct uvm_cpu *ucpu, int fl, int c)
    205  1.1   ad {
    206  1.1   ad 	struct pgflcache *pc;
    207  1.1   ad 	struct pccolor *pcc;
    208  1.1   ad 	struct vm_page *pg;
    209  1.1   ad 
    210  1.1   ad 	/* If caching is off, then bail out. */
    211  1.1   ad 	if (__predict_false((pc = ucpu->pgflcache[fl]) == NULL)) {
    212  1.1   ad 		return NULL;
    213  1.1   ad 	}
    214  1.1   ad 
    215  1.1   ad 	/* Very simple: if we have a page then return it. */
    216  1.1   ad 	pcc = &pc->color[c];
    217  1.1   ad 	if (__predict_false(pcc->count == 0)) {
    218  1.1   ad 		return NULL;
    219  1.1   ad 	}
    220  1.1   ad 	pg = pcc->pages[--(pcc->count)];
    221  1.1   ad 	KASSERT(pg != NULL);
    222  1.5   ad 	KASSERT(pg->flags == PG_FREE);
    223  1.1   ad 	KASSERT(uvm_page_get_freelist(pg) == fl);
    224  1.1   ad 	KASSERT(uvm_page_get_bucket(pg) == ucpu->pgflbucket);
    225  1.5   ad 	pg->flags = PG_BUSY | PG_CLEAN | PG_FAKE;
    226  1.1   ad 	return pg;
    227  1.1   ad }
    228  1.1   ad 
    229  1.1   ad /*
    230  1.1   ad  * uvm_pgflcache_free: cache a page, if possible.
    231  1.1   ad  *
    232  1.1   ad  * => must be called at IPL_VM
    233  1.1   ad  * => must only send pages for the correct bucket for this CPU
    234  1.1   ad  */
    235  1.1   ad 
    236  1.1   ad bool
    237  1.1   ad uvm_pgflcache_free(struct uvm_cpu *ucpu, struct vm_page *pg)
    238  1.1   ad {
    239  1.1   ad 	struct pgflcache *pc;
    240  1.1   ad 	struct pccolor *pcc;
    241  1.1   ad 	int fl, c;
    242  1.1   ad 
    243  1.1   ad 	KASSERT(uvm_page_get_bucket(pg) == ucpu->pgflbucket);
    244  1.1   ad 
    245  1.1   ad 	/* If caching is off, then bail out. */
    246  1.1   ad  	fl = uvm_page_get_freelist(pg);
    247  1.1   ad 	if (__predict_false((pc = ucpu->pgflcache[fl]) == NULL)) {
    248  1.1   ad 		return false;
    249  1.1   ad 	}
    250  1.1   ad 
    251  1.1   ad 	/* If the array is full spill it first, then add page to array. */
    252  1.1   ad 	c = VM_PGCOLOR(pg);
    253  1.1   ad 	pcc = &pc->color[c];
    254  1.1   ad 	KASSERT((pg->flags & PG_FREE) == 0);
    255  1.1   ad 	if (__predict_false(pcc->count == MAXPGS)) {
    256  1.1   ad 		uvm_pgflcache_spill(ucpu, fl, c);
    257  1.1   ad 	}
    258  1.5   ad 	pg->flags = PG_FREE;
    259  1.1   ad 	pcc->pages[pcc->count] = pg;
    260  1.1   ad 	pcc->count++;
    261  1.1   ad 	return true;
    262  1.1   ad }
    263  1.1   ad 
    264  1.1   ad /*
    265  1.1   ad  * uvm_pgflcache_init: allocate and initialize per-CPU data structures for
    266  1.1   ad  * the free page cache.  Don't set anything in motion - that's taken care
    267  1.1   ad  * of by uvm_pgflcache_resume().
    268  1.1   ad  */
    269  1.1   ad 
    270  1.1   ad static void
    271  1.1   ad uvm_pgflcache_init_cpu(struct cpu_info *ci)
    272  1.1   ad {
    273  1.1   ad 	struct uvm_cpu *ucpu;
    274  1.1   ad 	size_t sz;
    275  1.1   ad 
    276  1.1   ad 	ucpu = ci->ci_data.cpu_uvm;
    277  1.1   ad 	KASSERT(ucpu->pgflcachemem == NULL);
    278  1.1   ad 	KASSERT(ucpu->pgflcache[0] == NULL);
    279  1.1   ad 
    280  1.1   ad 	sz = offsetof(struct pgflcache, color[uvmexp.ncolors]);
    281  1.1   ad 	ucpu->pgflcachememsz =
    282  1.1   ad 	    (roundup2(sz * VM_NFREELIST, coherency_unit) + coherency_unit - 1);
    283  1.1   ad 	ucpu->pgflcachemem = kmem_zalloc(ucpu->pgflcachememsz, KM_SLEEP);
    284  1.1   ad }
    285  1.1   ad 
    286  1.1   ad /*
    287  1.1   ad  * uvm_pgflcache_fini_cpu: dump all cached pages back to global free list
    288  1.1   ad  * and shut down caching on the CPU.  Called on each CPU in the system via
    289  1.1   ad  * xcall.
    290  1.1   ad  */
    291  1.1   ad 
    292  1.1   ad static void
    293  1.1   ad uvm_pgflcache_fini_cpu(void *arg1 __unused, void *arg2 __unused)
    294  1.1   ad {
    295  1.1   ad 	struct uvm_cpu *ucpu;
    296  1.1   ad 	int fl, color, s;
    297  1.1   ad 
    298  1.1   ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    299  1.1   ad 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    300  1.1   ad 		s = splvm();
    301  1.1   ad 		for (color = 0; color < uvmexp.ncolors; color++) {
    302  1.1   ad 			uvm_pgflcache_spill(ucpu, fl, color);
    303  1.1   ad 		}
    304  1.1   ad 		ucpu->pgflcache[fl] = NULL;
    305  1.1   ad 		splx(s);
    306  1.1   ad 	}
    307  1.1   ad }
    308  1.1   ad 
    309  1.1   ad /*
    310  1.1   ad  * uvm_pgflcache_pause: pause operation of the caches
    311  1.1   ad  */
    312  1.1   ad 
    313  1.1   ad void
    314  1.1   ad uvm_pgflcache_pause(void)
    315  1.1   ad {
    316  1.1   ad 	uint64_t where;
    317  1.1   ad 
    318  1.1   ad 	/* First one in starts draining.  Everyone else waits. */
    319  1.1   ad 	mutex_enter(&uvm_pgflcache_lock);
    320  1.1   ad 	if (uvm_pgflcache_sem++ == 0) {
    321  1.4   ad 		where = xc_broadcast(XC_HIGHPRI, uvm_pgflcache_fini_cpu,
    322  1.4   ad 		    (void *)1, NULL);
    323  1.1   ad 		xc_wait(where);
    324  1.1   ad 	}
    325  1.1   ad 	mutex_exit(&uvm_pgflcache_lock);
    326  1.1   ad }
    327  1.1   ad 
    328  1.1   ad /*
    329  1.1   ad  * uvm_pgflcache_resume: resume operation of the caches
    330  1.1   ad  */
    331  1.1   ad 
    332  1.1   ad void
    333  1.1   ad uvm_pgflcache_resume(void)
    334  1.1   ad {
    335  1.1   ad 	CPU_INFO_ITERATOR cii;
    336  1.1   ad 	struct cpu_info *ci;
    337  1.1   ad 	struct uvm_cpu *ucpu;
    338  1.1   ad 	uintptr_t addr;
    339  1.1   ad 	size_t sz;
    340  1.1   ad 	int fl;
    341  1.1   ad 
    342  1.1   ad 	/* Last guy out takes care of business. */
    343  1.1   ad 	mutex_enter(&uvm_pgflcache_lock);
    344  1.1   ad 	KASSERT(uvm_pgflcache_sem > 0);
    345  1.1   ad 	if (uvm_pgflcache_sem-- > 1) {
    346  1.1   ad 		mutex_exit(&uvm_pgflcache_lock);
    347  1.1   ad 		return;
    348  1.1   ad 	}
    349  1.1   ad 
    350  1.1   ad 	/*
    351  1.1   ad 	 * Make sure dependant data structure updates are remotely visible.
    352  1.1   ad 	 * Essentially this functions as a global memory barrier.
    353  1.1   ad 	 */
    354  1.1   ad 	xc_barrier(XC_HIGHPRI);
    355  1.1   ad 
    356  1.1   ad 	/*
    357  1.1   ad 	 * Then set all of the pointers in place on each CPU.  As soon as
    358  1.1   ad 	 * each pointer is set, caching is operational in that dimension.
    359  1.1   ad 	 */
    360  1.1   ad 	sz = offsetof(struct pgflcache, color[uvmexp.ncolors]);
    361  1.1   ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    362  1.1   ad 		ucpu = ci->ci_data.cpu_uvm;
    363  1.1   ad 		addr = roundup2((uintptr_t)ucpu->pgflcachemem, coherency_unit);
    364  1.1   ad 		for (fl = 0; fl < VM_NFREELIST; fl++) {
    365  1.1   ad 			ucpu->pgflcache[fl] = (struct pgflcache *)addr;
    366  1.1   ad 			addr += sz;
    367  1.1   ad 		}
    368  1.1   ad 	}
    369  1.1   ad 	mutex_exit(&uvm_pgflcache_lock);
    370  1.1   ad }
    371  1.1   ad 
    372  1.1   ad /*
    373  1.1   ad  * uvm_pgflcache_start: start operation of the cache.
    374  1.1   ad  *
    375  1.1   ad  * => called once only, when init(8) is about to be started
    376  1.1   ad  */
    377  1.1   ad 
    378  1.1   ad void
    379  1.1   ad uvm_pgflcache_start(void)
    380  1.1   ad {
    381  1.1   ad 	CPU_INFO_ITERATOR cii;
    382  1.1   ad 	struct cpu_info *ci;
    383  1.1   ad 
    384  1.1   ad 	KASSERT(uvm_pgflcache_sem > 0);
    385  1.1   ad 
    386  1.1   ad 	/*
    387  1.1   ad 	 * There's not much point doing this if every CPU has its own
    388  1.1   ad 	 * bucket (and that includes the uniprocessor case).
    389  1.1   ad 	 */
    390  1.1   ad 	if (ncpu == uvm.bucketcount) {
    391  1.1   ad 		return;
    392  1.1   ad 	}
    393  1.1   ad 
    394  1.2   ad 	/* Create data structures for each CPU. */
    395  1.1   ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    396  1.1   ad 		uvm_pgflcache_init_cpu(ci);
    397  1.1   ad 	}
    398  1.1   ad 
    399  1.1   ad 	/* Kick it into action. */
    400  1.4   ad 	uvm_pgflcache_resume();
    401  1.1   ad }
    402  1.1   ad 
    403  1.1   ad /*
    404  1.1   ad  * uvm_pgflcache_init: set up data structures for the free page cache.
    405  1.1   ad  */
    406  1.1   ad 
    407  1.1   ad void
    408  1.1   ad uvm_pgflcache_init(void)
    409  1.1   ad {
    410  1.1   ad 
    411  1.1   ad 	uvm_pgflcache_sem = 1;
    412  1.1   ad 	mutex_init(&uvm_pgflcache_lock, MUTEX_DEFAULT, IPL_NONE);
    413  1.1   ad }
    414  1.1   ad 
    415  1.1   ad #else	/* MULTIPROCESSOR */
    416  1.1   ad 
    417  1.1   ad struct vm_page *
    418  1.1   ad uvm_pgflcache_alloc(struct uvm_cpu *ucpu, int fl, int c)
    419  1.1   ad {
    420  1.1   ad 
    421  1.1   ad 	return NULL;
    422  1.1   ad }
    423  1.1   ad 
    424  1.1   ad bool
    425  1.1   ad uvm_pgflcache_free(struct uvm_cpu *ucpu, struct vm_page *pg)
    426  1.1   ad {
    427  1.1   ad 
    428  1.1   ad 	return false;
    429  1.1   ad }
    430  1.1   ad 
    431  1.1   ad void
    432  1.1   ad uvm_pgflcache_fill(struct uvm_cpu *ucpu, int fl, int b, int c)
    433  1.1   ad {
    434  1.1   ad 
    435  1.1   ad }
    436  1.1   ad 
    437  1.1   ad void
    438  1.1   ad uvm_pgflcache_pause(void)
    439  1.1   ad {
    440  1.1   ad 
    441  1.1   ad }
    442  1.1   ad 
    443  1.1   ad void
    444  1.1   ad uvm_pgflcache_resume(void)
    445  1.1   ad {
    446  1.1   ad 
    447  1.1   ad }
    448  1.1   ad 
    449  1.1   ad void
    450  1.1   ad uvm_pgflcache_start(void)
    451  1.1   ad {
    452  1.1   ad 
    453  1.1   ad }
    454  1.1   ad 
    455  1.1   ad void
    456  1.1   ad uvm_pgflcache_init(void)
    457  1.1   ad {
    458  1.1   ad 
    459  1.1   ad }
    460  1.1   ad 
    461  1.1   ad #endif	/* MULTIPROCESSOR */
    462