uvm_pgflcache.c revision 1.6 1 1.6 chs /* $NetBSD: uvm_pgflcache.c,v 1.6 2020/10/18 18:31:31 chs Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.1 ad * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 ad * by Andrew Doran.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad */
31 1.1 ad
32 1.1 ad /*
33 1.1 ad * uvm_pgflcache.c: page freelist cache.
34 1.1 ad *
35 1.1 ad * This implements a tiny per-CPU cache of pages that sits between the main
36 1.1 ad * page allocator and the freelists. By allocating and freeing pages in
37 1.1 ad * batch, it reduces freelist contention by an order of magnitude.
38 1.1 ad *
39 1.1 ad * The cache can be paused & resumed at runtime so that UVM_HOTPLUG,
40 1.1 ad * uvm_pglistalloc() and uvm_page_redim() can have a consistent view of the
41 1.1 ad * world. On system with one CPU per physical package (e.g. a uniprocessor)
42 1.1 ad * the cache is not enabled.
43 1.1 ad */
44 1.1 ad
45 1.1 ad #include <sys/cdefs.h>
46 1.6 chs __KERNEL_RCSID(0, "$NetBSD: uvm_pgflcache.c,v 1.6 2020/10/18 18:31:31 chs Exp $");
47 1.1 ad
48 1.1 ad #include "opt_uvm.h"
49 1.1 ad #include "opt_multiprocessor.h"
50 1.1 ad
51 1.1 ad #include <sys/param.h>
52 1.1 ad #include <sys/systm.h>
53 1.1 ad #include <sys/sched.h>
54 1.1 ad #include <sys/kernel.h>
55 1.1 ad #include <sys/vnode.h>
56 1.1 ad #include <sys/proc.h>
57 1.1 ad #include <sys/atomic.h>
58 1.1 ad #include <sys/cpu.h>
59 1.1 ad #include <sys/xcall.h>
60 1.1 ad
61 1.1 ad #include <uvm/uvm.h>
62 1.1 ad #include <uvm/uvm_pglist.h>
63 1.1 ad #include <uvm/uvm_pgflcache.h>
64 1.1 ad
65 1.1 ad /* There is no point doing any of this on a uniprocessor. */
66 1.1 ad #ifdef MULTIPROCESSOR
67 1.1 ad
68 1.1 ad /*
69 1.1 ad * MAXPGS - maximum pages per color, per bucket.
70 1.1 ad * FILLPGS - number of pages to allocate at once, per color, per bucket.
71 1.1 ad *
72 1.1 ad * Why the chosen values:
73 1.1 ad *
74 1.1 ad * (1) In 2019, an average Intel system has 4kB pages and 8x L2 cache
75 1.1 ad * colors. We make the assumption that most of the time allocation activity
76 1.1 ad * will be centered around one UVM freelist, so most of the time there will
77 1.1 ad * be no more than 224kB worth of cached pages per-CPU. That's tiny, but
78 1.1 ad * enough to hugely reduce contention on the freelist locks, and give us a
79 1.1 ad * small pool of pages which if we're very lucky may have some L1/L2 cache
80 1.1 ad * locality, and do so without subtracting too much from the L2/L3 cache
81 1.1 ad * benefits of having per-package free lists in the page allocator.
82 1.1 ad *
83 1.1 ad * (2) With the chosen values on _LP64, the data structure for each color
84 1.1 ad * takes up a single cache line (64 bytes) giving this very low overhead
85 1.1 ad * even in the "miss" case.
86 1.1 ad *
87 1.1 ad * (3) We don't want to cause too much pressure by hiding away memory that
88 1.1 ad * could otherwise be put to good use.
89 1.1 ad */
90 1.1 ad #define MAXPGS 7
91 1.1 ad #define FILLPGS 6
92 1.1 ad
93 1.1 ad /* Variable size, according to # colors. */
94 1.1 ad struct pgflcache {
95 1.1 ad struct pccolor {
96 1.1 ad intptr_t count;
97 1.1 ad struct vm_page *pages[MAXPGS];
98 1.1 ad } color[1];
99 1.1 ad };
100 1.1 ad
101 1.1 ad static kmutex_t uvm_pgflcache_lock;
102 1.1 ad static int uvm_pgflcache_sem;
103 1.1 ad
104 1.1 ad /*
105 1.1 ad * uvm_pgflcache_fill: fill specified freelist/color from global list
106 1.1 ad *
107 1.1 ad * => must be called at IPL_VM
108 1.1 ad * => must be called with given bucket lock held
109 1.1 ad * => must only fill from the correct bucket for this CPU
110 1.1 ad */
111 1.1 ad
112 1.1 ad void
113 1.1 ad uvm_pgflcache_fill(struct uvm_cpu *ucpu, int fl, int b, int c)
114 1.1 ad {
115 1.1 ad struct pgflbucket *pgb;
116 1.1 ad struct pgflcache *pc;
117 1.1 ad struct pccolor *pcc;
118 1.1 ad struct pgflist *head;
119 1.1 ad struct vm_page *pg;
120 1.1 ad int count;
121 1.1 ad
122 1.1 ad KASSERT(mutex_owned(&uvm_freelist_locks[b].lock));
123 1.1 ad KASSERT(ucpu->pgflbucket == b);
124 1.1 ad
125 1.1 ad /* If caching is off, then bail out. */
126 1.1 ad if (__predict_false((pc = ucpu->pgflcache[fl]) == NULL)) {
127 1.1 ad return;
128 1.1 ad }
129 1.1 ad
130 1.1 ad /* Fill only to the limit. */
131 1.1 ad pcc = &pc->color[c];
132 1.1 ad pgb = uvm.page_free[fl].pgfl_buckets[b];
133 1.1 ad head = &pgb->pgb_colors[c];
134 1.1 ad if (pcc->count >= FILLPGS) {
135 1.1 ad return;
136 1.1 ad }
137 1.1 ad
138 1.1 ad /* Pull pages from the bucket until it's empty, or we are full. */
139 1.1 ad count = pcc->count;
140 1.1 ad pg = LIST_FIRST(head);
141 1.1 ad while (__predict_true(pg != NULL && count < FILLPGS)) {
142 1.1 ad KASSERT(pg->flags & PG_FREE);
143 1.1 ad KASSERT(uvm_page_get_bucket(pg) == b);
144 1.1 ad pcc->pages[count++] = pg;
145 1.1 ad pg = LIST_NEXT(pg, pageq.list);
146 1.1 ad }
147 1.1 ad
148 1.1 ad /* Violate LIST abstraction to remove all pages at once. */
149 1.1 ad head->lh_first = pg;
150 1.1 ad if (__predict_true(pg != NULL)) {
151 1.1 ad pg->pageq.list.le_prev = &head->lh_first;
152 1.1 ad }
153 1.1 ad pgb->pgb_nfree -= (count - pcc->count);
154 1.6 chs CPU_COUNT(CPU_COUNT_FREEPAGES, -(count - pcc->count));
155 1.1 ad pcc->count = count;
156 1.1 ad }
157 1.1 ad
158 1.1 ad /*
159 1.1 ad * uvm_pgflcache_spill: spill specified freelist/color to global list
160 1.1 ad *
161 1.1 ad * => must be called at IPL_VM
162 1.1 ad * => mark __noinline so we don't pull it into uvm_pgflcache_free()
163 1.1 ad */
164 1.1 ad
165 1.1 ad static void __noinline
166 1.1 ad uvm_pgflcache_spill(struct uvm_cpu *ucpu, int fl, int c)
167 1.1 ad {
168 1.1 ad struct pgflbucket *pgb;
169 1.1 ad struct pgfreelist *pgfl;
170 1.1 ad struct pgflcache *pc;
171 1.1 ad struct pccolor *pcc;
172 1.1 ad struct pgflist *head;
173 1.1 ad kmutex_t *lock;
174 1.1 ad int b, adj;
175 1.1 ad
176 1.1 ad pc = ucpu->pgflcache[fl];
177 1.1 ad pcc = &pc->color[c];
178 1.1 ad pgfl = &uvm.page_free[fl];
179 1.1 ad b = ucpu->pgflbucket;
180 1.1 ad pgb = pgfl->pgfl_buckets[b];
181 1.1 ad head = &pgb->pgb_colors[c];
182 1.1 ad lock = &uvm_freelist_locks[b].lock;
183 1.1 ad
184 1.1 ad mutex_spin_enter(lock);
185 1.1 ad for (adj = pcc->count; pcc->count != 0;) {
186 1.1 ad pcc->count--;
187 1.1 ad KASSERT(pcc->pages[pcc->count] != NULL);
188 1.1 ad KASSERT(pcc->pages[pcc->count]->flags & PG_FREE);
189 1.1 ad LIST_INSERT_HEAD(head, pcc->pages[pcc->count], pageq.list);
190 1.1 ad }
191 1.1 ad pgb->pgb_nfree += adj;
192 1.6 chs CPU_COUNT(CPU_COUNT_FREEPAGES, adj);
193 1.1 ad mutex_spin_exit(lock);
194 1.1 ad }
195 1.1 ad
196 1.1 ad /*
197 1.1 ad * uvm_pgflcache_alloc: try to allocate a cached page.
198 1.1 ad *
199 1.1 ad * => must be called at IPL_VM
200 1.1 ad * => allocate only from the given freelist and given page color
201 1.1 ad */
202 1.1 ad
203 1.1 ad struct vm_page *
204 1.1 ad uvm_pgflcache_alloc(struct uvm_cpu *ucpu, int fl, int c)
205 1.1 ad {
206 1.1 ad struct pgflcache *pc;
207 1.1 ad struct pccolor *pcc;
208 1.1 ad struct vm_page *pg;
209 1.1 ad
210 1.1 ad /* If caching is off, then bail out. */
211 1.1 ad if (__predict_false((pc = ucpu->pgflcache[fl]) == NULL)) {
212 1.1 ad return NULL;
213 1.1 ad }
214 1.1 ad
215 1.1 ad /* Very simple: if we have a page then return it. */
216 1.1 ad pcc = &pc->color[c];
217 1.1 ad if (__predict_false(pcc->count == 0)) {
218 1.1 ad return NULL;
219 1.1 ad }
220 1.1 ad pg = pcc->pages[--(pcc->count)];
221 1.1 ad KASSERT(pg != NULL);
222 1.5 ad KASSERT(pg->flags == PG_FREE);
223 1.1 ad KASSERT(uvm_page_get_freelist(pg) == fl);
224 1.1 ad KASSERT(uvm_page_get_bucket(pg) == ucpu->pgflbucket);
225 1.5 ad pg->flags = PG_BUSY | PG_CLEAN | PG_FAKE;
226 1.1 ad return pg;
227 1.1 ad }
228 1.1 ad
229 1.1 ad /*
230 1.1 ad * uvm_pgflcache_free: cache a page, if possible.
231 1.1 ad *
232 1.1 ad * => must be called at IPL_VM
233 1.1 ad * => must only send pages for the correct bucket for this CPU
234 1.1 ad */
235 1.1 ad
236 1.1 ad bool
237 1.1 ad uvm_pgflcache_free(struct uvm_cpu *ucpu, struct vm_page *pg)
238 1.1 ad {
239 1.1 ad struct pgflcache *pc;
240 1.1 ad struct pccolor *pcc;
241 1.1 ad int fl, c;
242 1.1 ad
243 1.1 ad KASSERT(uvm_page_get_bucket(pg) == ucpu->pgflbucket);
244 1.1 ad
245 1.1 ad /* If caching is off, then bail out. */
246 1.1 ad fl = uvm_page_get_freelist(pg);
247 1.1 ad if (__predict_false((pc = ucpu->pgflcache[fl]) == NULL)) {
248 1.1 ad return false;
249 1.1 ad }
250 1.1 ad
251 1.1 ad /* If the array is full spill it first, then add page to array. */
252 1.1 ad c = VM_PGCOLOR(pg);
253 1.1 ad pcc = &pc->color[c];
254 1.1 ad KASSERT((pg->flags & PG_FREE) == 0);
255 1.1 ad if (__predict_false(pcc->count == MAXPGS)) {
256 1.1 ad uvm_pgflcache_spill(ucpu, fl, c);
257 1.1 ad }
258 1.5 ad pg->flags = PG_FREE;
259 1.1 ad pcc->pages[pcc->count] = pg;
260 1.1 ad pcc->count++;
261 1.1 ad return true;
262 1.1 ad }
263 1.1 ad
264 1.1 ad /*
265 1.1 ad * uvm_pgflcache_init: allocate and initialize per-CPU data structures for
266 1.1 ad * the free page cache. Don't set anything in motion - that's taken care
267 1.1 ad * of by uvm_pgflcache_resume().
268 1.1 ad */
269 1.1 ad
270 1.1 ad static void
271 1.1 ad uvm_pgflcache_init_cpu(struct cpu_info *ci)
272 1.1 ad {
273 1.1 ad struct uvm_cpu *ucpu;
274 1.1 ad size_t sz;
275 1.1 ad
276 1.1 ad ucpu = ci->ci_data.cpu_uvm;
277 1.1 ad KASSERT(ucpu->pgflcachemem == NULL);
278 1.1 ad KASSERT(ucpu->pgflcache[0] == NULL);
279 1.1 ad
280 1.1 ad sz = offsetof(struct pgflcache, color[uvmexp.ncolors]);
281 1.1 ad ucpu->pgflcachememsz =
282 1.1 ad (roundup2(sz * VM_NFREELIST, coherency_unit) + coherency_unit - 1);
283 1.1 ad ucpu->pgflcachemem = kmem_zalloc(ucpu->pgflcachememsz, KM_SLEEP);
284 1.1 ad }
285 1.1 ad
286 1.1 ad /*
287 1.1 ad * uvm_pgflcache_fini_cpu: dump all cached pages back to global free list
288 1.1 ad * and shut down caching on the CPU. Called on each CPU in the system via
289 1.1 ad * xcall.
290 1.1 ad */
291 1.1 ad
292 1.1 ad static void
293 1.1 ad uvm_pgflcache_fini_cpu(void *arg1 __unused, void *arg2 __unused)
294 1.1 ad {
295 1.1 ad struct uvm_cpu *ucpu;
296 1.1 ad int fl, color, s;
297 1.1 ad
298 1.1 ad ucpu = curcpu()->ci_data.cpu_uvm;
299 1.1 ad for (fl = 0; fl < VM_NFREELIST; fl++) {
300 1.1 ad s = splvm();
301 1.1 ad for (color = 0; color < uvmexp.ncolors; color++) {
302 1.1 ad uvm_pgflcache_spill(ucpu, fl, color);
303 1.1 ad }
304 1.1 ad ucpu->pgflcache[fl] = NULL;
305 1.1 ad splx(s);
306 1.1 ad }
307 1.1 ad }
308 1.1 ad
309 1.1 ad /*
310 1.1 ad * uvm_pgflcache_pause: pause operation of the caches
311 1.1 ad */
312 1.1 ad
313 1.1 ad void
314 1.1 ad uvm_pgflcache_pause(void)
315 1.1 ad {
316 1.1 ad uint64_t where;
317 1.1 ad
318 1.1 ad /* First one in starts draining. Everyone else waits. */
319 1.1 ad mutex_enter(&uvm_pgflcache_lock);
320 1.1 ad if (uvm_pgflcache_sem++ == 0) {
321 1.4 ad where = xc_broadcast(XC_HIGHPRI, uvm_pgflcache_fini_cpu,
322 1.4 ad (void *)1, NULL);
323 1.1 ad xc_wait(where);
324 1.1 ad }
325 1.1 ad mutex_exit(&uvm_pgflcache_lock);
326 1.1 ad }
327 1.1 ad
328 1.1 ad /*
329 1.1 ad * uvm_pgflcache_resume: resume operation of the caches
330 1.1 ad */
331 1.1 ad
332 1.1 ad void
333 1.1 ad uvm_pgflcache_resume(void)
334 1.1 ad {
335 1.1 ad CPU_INFO_ITERATOR cii;
336 1.1 ad struct cpu_info *ci;
337 1.1 ad struct uvm_cpu *ucpu;
338 1.1 ad uintptr_t addr;
339 1.1 ad size_t sz;
340 1.1 ad int fl;
341 1.1 ad
342 1.1 ad /* Last guy out takes care of business. */
343 1.1 ad mutex_enter(&uvm_pgflcache_lock);
344 1.1 ad KASSERT(uvm_pgflcache_sem > 0);
345 1.1 ad if (uvm_pgflcache_sem-- > 1) {
346 1.1 ad mutex_exit(&uvm_pgflcache_lock);
347 1.1 ad return;
348 1.1 ad }
349 1.1 ad
350 1.1 ad /*
351 1.1 ad * Make sure dependant data structure updates are remotely visible.
352 1.1 ad * Essentially this functions as a global memory barrier.
353 1.1 ad */
354 1.1 ad xc_barrier(XC_HIGHPRI);
355 1.1 ad
356 1.1 ad /*
357 1.1 ad * Then set all of the pointers in place on each CPU. As soon as
358 1.1 ad * each pointer is set, caching is operational in that dimension.
359 1.1 ad */
360 1.1 ad sz = offsetof(struct pgflcache, color[uvmexp.ncolors]);
361 1.1 ad for (CPU_INFO_FOREACH(cii, ci)) {
362 1.1 ad ucpu = ci->ci_data.cpu_uvm;
363 1.1 ad addr = roundup2((uintptr_t)ucpu->pgflcachemem, coherency_unit);
364 1.1 ad for (fl = 0; fl < VM_NFREELIST; fl++) {
365 1.1 ad ucpu->pgflcache[fl] = (struct pgflcache *)addr;
366 1.1 ad addr += sz;
367 1.1 ad }
368 1.1 ad }
369 1.1 ad mutex_exit(&uvm_pgflcache_lock);
370 1.1 ad }
371 1.1 ad
372 1.1 ad /*
373 1.1 ad * uvm_pgflcache_start: start operation of the cache.
374 1.1 ad *
375 1.1 ad * => called once only, when init(8) is about to be started
376 1.1 ad */
377 1.1 ad
378 1.1 ad void
379 1.1 ad uvm_pgflcache_start(void)
380 1.1 ad {
381 1.1 ad CPU_INFO_ITERATOR cii;
382 1.1 ad struct cpu_info *ci;
383 1.1 ad
384 1.1 ad KASSERT(uvm_pgflcache_sem > 0);
385 1.1 ad
386 1.1 ad /*
387 1.1 ad * There's not much point doing this if every CPU has its own
388 1.1 ad * bucket (and that includes the uniprocessor case).
389 1.1 ad */
390 1.1 ad if (ncpu == uvm.bucketcount) {
391 1.1 ad return;
392 1.1 ad }
393 1.1 ad
394 1.2 ad /* Create data structures for each CPU. */
395 1.1 ad for (CPU_INFO_FOREACH(cii, ci)) {
396 1.1 ad uvm_pgflcache_init_cpu(ci);
397 1.1 ad }
398 1.1 ad
399 1.1 ad /* Kick it into action. */
400 1.4 ad uvm_pgflcache_resume();
401 1.1 ad }
402 1.1 ad
403 1.1 ad /*
404 1.1 ad * uvm_pgflcache_init: set up data structures for the free page cache.
405 1.1 ad */
406 1.1 ad
407 1.1 ad void
408 1.1 ad uvm_pgflcache_init(void)
409 1.1 ad {
410 1.1 ad
411 1.1 ad uvm_pgflcache_sem = 1;
412 1.1 ad mutex_init(&uvm_pgflcache_lock, MUTEX_DEFAULT, IPL_NONE);
413 1.1 ad }
414 1.1 ad
415 1.1 ad #else /* MULTIPROCESSOR */
416 1.1 ad
417 1.1 ad struct vm_page *
418 1.1 ad uvm_pgflcache_alloc(struct uvm_cpu *ucpu, int fl, int c)
419 1.1 ad {
420 1.1 ad
421 1.1 ad return NULL;
422 1.1 ad }
423 1.1 ad
424 1.1 ad bool
425 1.1 ad uvm_pgflcache_free(struct uvm_cpu *ucpu, struct vm_page *pg)
426 1.1 ad {
427 1.1 ad
428 1.1 ad return false;
429 1.1 ad }
430 1.1 ad
431 1.1 ad void
432 1.1 ad uvm_pgflcache_fill(struct uvm_cpu *ucpu, int fl, int b, int c)
433 1.1 ad {
434 1.1 ad
435 1.1 ad }
436 1.1 ad
437 1.1 ad void
438 1.1 ad uvm_pgflcache_pause(void)
439 1.1 ad {
440 1.1 ad
441 1.1 ad }
442 1.1 ad
443 1.1 ad void
444 1.1 ad uvm_pgflcache_resume(void)
445 1.1 ad {
446 1.1 ad
447 1.1 ad }
448 1.1 ad
449 1.1 ad void
450 1.1 ad uvm_pgflcache_start(void)
451 1.1 ad {
452 1.1 ad
453 1.1 ad }
454 1.1 ad
455 1.1 ad void
456 1.1 ad uvm_pgflcache_init(void)
457 1.1 ad {
458 1.1 ad
459 1.1 ad }
460 1.1 ad
461 1.1 ad #endif /* MULTIPROCESSOR */
462