Home | History | Annotate | Line # | Download | only in uvm
uvm_pgflcache.c revision 1.4.6.2
      1 /*	$NetBSD: uvm_pgflcache.c,v 1.4.6.2 2020/04/08 14:09:04 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * uvm_pgflcache.c: page freelist cache.
     34  *
     35  * This implements a tiny per-CPU cache of pages that sits between the main
     36  * page allocator and the freelists.  By allocating and freeing pages in
     37  * batch, it reduces freelist contention by an order of magnitude.
     38  *
     39  * The cache can be paused & resumed at runtime so that UVM_HOTPLUG,
     40  * uvm_pglistalloc() and uvm_page_redim() can have a consistent view of the
     41  * world.  On system with one CPU per physical package (e.g. a uniprocessor)
     42  * the cache is not enabled.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: uvm_pgflcache.c,v 1.4.6.2 2020/04/08 14:09:04 martin Exp $");
     47 
     48 #include "opt_uvm.h"
     49 #include "opt_multiprocessor.h"
     50 
     51 #include <sys/param.h>
     52 #include <sys/systm.h>
     53 #include <sys/sched.h>
     54 #include <sys/kernel.h>
     55 #include <sys/vnode.h>
     56 #include <sys/proc.h>
     57 #include <sys/atomic.h>
     58 #include <sys/cpu.h>
     59 #include <sys/xcall.h>
     60 
     61 #include <uvm/uvm.h>
     62 #include <uvm/uvm_pglist.h>
     63 #include <uvm/uvm_pgflcache.h>
     64 
     65 /* There is no point doing any of this on a uniprocessor. */
     66 #ifdef MULTIPROCESSOR
     67 
     68 /*
     69  * MAXPGS - maximum pages per color, per bucket.
     70  * FILLPGS - number of pages to allocate at once, per color, per bucket.
     71  *
     72  * Why the chosen values:
     73  *
     74  * (1) In 2019, an average Intel system has 4kB pages and 8x L2 cache
     75  * colors.  We make the assumption that most of the time allocation activity
     76  * will be centered around one UVM freelist, so most of the time there will
     77  * be no more than 224kB worth of cached pages per-CPU.  That's tiny, but
     78  * enough to hugely reduce contention on the freelist locks, and give us a
     79  * small pool of pages which if we're very lucky may have some L1/L2 cache
     80  * locality, and do so without subtracting too much from the L2/L3 cache
     81  * benefits of having per-package free lists in the page allocator.
     82  *
     83  * (2) With the chosen values on _LP64, the data structure for each color
     84  * takes up a single cache line (64 bytes) giving this very low overhead
     85  * even in the "miss" case.
     86  *
     87  * (3) We don't want to cause too much pressure by hiding away memory that
     88  * could otherwise be put to good use.
     89  */
     90 #define	MAXPGS		7
     91 #define	FILLPGS		6
     92 
     93 /* Variable size, according to # colors. */
     94 struct pgflcache {
     95 	struct pccolor {
     96 		intptr_t	count;
     97 		struct vm_page	*pages[MAXPGS];
     98 	} color[1];
     99 };
    100 
    101 static kmutex_t		uvm_pgflcache_lock;
    102 static int		uvm_pgflcache_sem;
    103 
    104 /*
    105  * uvm_pgflcache_fill: fill specified freelist/color from global list
    106  *
    107  * => must be called at IPL_VM
    108  * => must be called with given bucket lock held
    109  * => must only fill from the correct bucket for this CPU
    110  */
    111 
    112 void
    113 uvm_pgflcache_fill(struct uvm_cpu *ucpu, int fl, int b, int c)
    114 {
    115 	struct pgflbucket *pgb;
    116 	struct pgflcache *pc;
    117 	struct pccolor *pcc;
    118 	struct pgflist *head;
    119 	struct vm_page *pg;
    120 	int count;
    121 
    122 	KASSERT(mutex_owned(&uvm_freelist_locks[b].lock));
    123 	KASSERT(ucpu->pgflbucket == b);
    124 
    125 	/* If caching is off, then bail out. */
    126 	if (__predict_false((pc = ucpu->pgflcache[fl]) == NULL)) {
    127 		return;
    128 	}
    129 
    130 	/* Fill only to the limit. */
    131 	pcc = &pc->color[c];
    132 	pgb = uvm.page_free[fl].pgfl_buckets[b];
    133 	head = &pgb->pgb_colors[c];
    134 	if (pcc->count >= FILLPGS) {
    135 		return;
    136 	}
    137 
    138 	/* Pull pages from the bucket until it's empty, or we are full. */
    139 	count = pcc->count;
    140 	pg = LIST_FIRST(head);
    141 	while (__predict_true(pg != NULL && count < FILLPGS)) {
    142 		KASSERT(pg->flags & PG_FREE);
    143 		KASSERT(uvm_page_get_bucket(pg) == b);
    144 		pcc->pages[count++] = pg;
    145 		pg = LIST_NEXT(pg, pageq.list);
    146 	}
    147 
    148 	/* Violate LIST abstraction to remove all pages at once. */
    149 	head->lh_first = pg;
    150 	if (__predict_true(pg != NULL)) {
    151 		pg->pageq.list.le_prev = &head->lh_first;
    152 	}
    153 	pgb->pgb_nfree -= (count - pcc->count);
    154 	pcc->count = count;
    155 }
    156 
    157 /*
    158  * uvm_pgflcache_spill: spill specified freelist/color to global list
    159  *
    160  * => must be called at IPL_VM
    161  * => mark __noinline so we don't pull it into uvm_pgflcache_free()
    162  */
    163 
    164 static void __noinline
    165 uvm_pgflcache_spill(struct uvm_cpu *ucpu, int fl, int c)
    166 {
    167 	struct pgflbucket *pgb;
    168 	struct pgfreelist *pgfl;
    169 	struct pgflcache *pc;
    170 	struct pccolor *pcc;
    171 	struct pgflist *head;
    172 	kmutex_t *lock;
    173 	int b, adj;
    174 
    175 	pc = ucpu->pgflcache[fl];
    176 	pcc = &pc->color[c];
    177 	pgfl = &uvm.page_free[fl];
    178 	b = ucpu->pgflbucket;
    179 	pgb = pgfl->pgfl_buckets[b];
    180 	head = &pgb->pgb_colors[c];
    181 	lock = &uvm_freelist_locks[b].lock;
    182 
    183 	mutex_spin_enter(lock);
    184 	for (adj = pcc->count; pcc->count != 0;) {
    185 		pcc->count--;
    186 		KASSERT(pcc->pages[pcc->count] != NULL);
    187 		KASSERT(pcc->pages[pcc->count]->flags & PG_FREE);
    188 		LIST_INSERT_HEAD(head, pcc->pages[pcc->count], pageq.list);
    189 	}
    190 	pgb->pgb_nfree += adj;
    191 	mutex_spin_exit(lock);
    192 }
    193 
    194 /*
    195  * uvm_pgflcache_alloc: try to allocate a cached page.
    196  *
    197  * => must be called at IPL_VM
    198  * => allocate only from the given freelist and given page color
    199  */
    200 
    201 struct vm_page *
    202 uvm_pgflcache_alloc(struct uvm_cpu *ucpu, int fl, int c)
    203 {
    204 	struct pgflcache *pc;
    205 	struct pccolor *pcc;
    206 	struct vm_page *pg;
    207 
    208 	/* If caching is off, then bail out. */
    209 	if (__predict_false((pc = ucpu->pgflcache[fl]) == NULL)) {
    210 		return NULL;
    211 	}
    212 
    213 	/* Very simple: if we have a page then return it. */
    214 	pcc = &pc->color[c];
    215 	if (__predict_false(pcc->count == 0)) {
    216 		return NULL;
    217 	}
    218 	pg = pcc->pages[--(pcc->count)];
    219 	KASSERT(pg != NULL);
    220 	KASSERT(pg->flags & PG_FREE);
    221 	KASSERT(uvm_page_get_freelist(pg) == fl);
    222 	KASSERT(uvm_page_get_bucket(pg) == ucpu->pgflbucket);
    223 	pg->flags &= PG_ZERO;
    224 	return pg;
    225 }
    226 
    227 /*
    228  * uvm_pgflcache_free: cache a page, if possible.
    229  *
    230  * => must be called at IPL_VM
    231  * => must only send pages for the correct bucket for this CPU
    232  */
    233 
    234 bool
    235 uvm_pgflcache_free(struct uvm_cpu *ucpu, struct vm_page *pg)
    236 {
    237 	struct pgflcache *pc;
    238 	struct pccolor *pcc;
    239 	int fl, c;
    240 
    241 	KASSERT(uvm_page_get_bucket(pg) == ucpu->pgflbucket);
    242 
    243 	/* If caching is off, then bail out. */
    244  	fl = uvm_page_get_freelist(pg);
    245 	if (__predict_false((pc = ucpu->pgflcache[fl]) == NULL)) {
    246 		return false;
    247 	}
    248 
    249 	/* If the array is full spill it first, then add page to array. */
    250 	c = VM_PGCOLOR(pg);
    251 	pcc = &pc->color[c];
    252 	KASSERT((pg->flags & PG_FREE) == 0);
    253 	if (__predict_false(pcc->count == MAXPGS)) {
    254 		uvm_pgflcache_spill(ucpu, fl, c);
    255 	}
    256 	pg->flags = (pg->flags & PG_ZERO) | PG_FREE;
    257 	pcc->pages[pcc->count] = pg;
    258 	pcc->count++;
    259 	return true;
    260 }
    261 
    262 /*
    263  * uvm_pgflcache_init: allocate and initialize per-CPU data structures for
    264  * the free page cache.  Don't set anything in motion - that's taken care
    265  * of by uvm_pgflcache_resume().
    266  */
    267 
    268 static void
    269 uvm_pgflcache_init_cpu(struct cpu_info *ci)
    270 {
    271 	struct uvm_cpu *ucpu;
    272 	size_t sz;
    273 
    274 	ucpu = ci->ci_data.cpu_uvm;
    275 	KASSERT(ucpu->pgflcachemem == NULL);
    276 	KASSERT(ucpu->pgflcache[0] == NULL);
    277 
    278 	sz = offsetof(struct pgflcache, color[uvmexp.ncolors]);
    279 	ucpu->pgflcachememsz =
    280 	    (roundup2(sz * VM_NFREELIST, coherency_unit) + coherency_unit - 1);
    281 	ucpu->pgflcachemem = kmem_zalloc(ucpu->pgflcachememsz, KM_SLEEP);
    282 }
    283 
    284 /*
    285  * uvm_pgflcache_fini_cpu: dump all cached pages back to global free list
    286  * and shut down caching on the CPU.  Called on each CPU in the system via
    287  * xcall.
    288  */
    289 
    290 static void
    291 uvm_pgflcache_fini_cpu(void *arg1 __unused, void *arg2 __unused)
    292 {
    293 	struct uvm_cpu *ucpu;
    294 	int fl, color, s;
    295 
    296 	ucpu = curcpu()->ci_data.cpu_uvm;
    297 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    298 		s = splvm();
    299 		for (color = 0; color < uvmexp.ncolors; color++) {
    300 			uvm_pgflcache_spill(ucpu, fl, color);
    301 		}
    302 		ucpu->pgflcache[fl] = NULL;
    303 		splx(s);
    304 	}
    305 }
    306 
    307 /*
    308  * uvm_pgflcache_pause: pause operation of the caches
    309  */
    310 
    311 void
    312 uvm_pgflcache_pause(void)
    313 {
    314 	uint64_t where;
    315 
    316 	/* First one in starts draining.  Everyone else waits. */
    317 	mutex_enter(&uvm_pgflcache_lock);
    318 	if (uvm_pgflcache_sem++ == 0) {
    319 		where = xc_broadcast(XC_HIGHPRI, uvm_pgflcache_fini_cpu,
    320 		    (void *)1, NULL);
    321 		xc_wait(where);
    322 	}
    323 	mutex_exit(&uvm_pgflcache_lock);
    324 }
    325 
    326 /*
    327  * uvm_pgflcache_resume: resume operation of the caches
    328  */
    329 
    330 void
    331 uvm_pgflcache_resume(void)
    332 {
    333 	CPU_INFO_ITERATOR cii;
    334 	struct cpu_info *ci;
    335 	struct uvm_cpu *ucpu;
    336 	uintptr_t addr;
    337 	size_t sz;
    338 	int fl;
    339 
    340 	/* Last guy out takes care of business. */
    341 	mutex_enter(&uvm_pgflcache_lock);
    342 	KASSERT(uvm_pgflcache_sem > 0);
    343 	if (uvm_pgflcache_sem-- > 1) {
    344 		mutex_exit(&uvm_pgflcache_lock);
    345 		return;
    346 	}
    347 
    348 	/*
    349 	 * Make sure dependant data structure updates are remotely visible.
    350 	 * Essentially this functions as a global memory barrier.
    351 	 */
    352 	xc_barrier(XC_HIGHPRI);
    353 
    354 	/*
    355 	 * Then set all of the pointers in place on each CPU.  As soon as
    356 	 * each pointer is set, caching is operational in that dimension.
    357 	 */
    358 	sz = offsetof(struct pgflcache, color[uvmexp.ncolors]);
    359 	for (CPU_INFO_FOREACH(cii, ci)) {
    360 		ucpu = ci->ci_data.cpu_uvm;
    361 		addr = roundup2((uintptr_t)ucpu->pgflcachemem, coherency_unit);
    362 		for (fl = 0; fl < VM_NFREELIST; fl++) {
    363 			ucpu->pgflcache[fl] = (struct pgflcache *)addr;
    364 			addr += sz;
    365 		}
    366 	}
    367 	mutex_exit(&uvm_pgflcache_lock);
    368 }
    369 
    370 /*
    371  * uvm_pgflcache_start: start operation of the cache.
    372  *
    373  * => called once only, when init(8) is about to be started
    374  */
    375 
    376 void
    377 uvm_pgflcache_start(void)
    378 {
    379 	CPU_INFO_ITERATOR cii;
    380 	struct cpu_info *ci;
    381 
    382 	KASSERT(uvm_pgflcache_sem > 0);
    383 
    384 	/*
    385 	 * There's not much point doing this if every CPU has its own
    386 	 * bucket (and that includes the uniprocessor case).
    387 	 */
    388 	if (ncpu == uvm.bucketcount) {
    389 		return;
    390 	}
    391 
    392 	/* Create data structures for each CPU. */
    393 	for (CPU_INFO_FOREACH(cii, ci)) {
    394 		uvm_pgflcache_init_cpu(ci);
    395 	}
    396 
    397 	/* Kick it into action. */
    398 	uvm_pgflcache_resume();
    399 }
    400 
    401 /*
    402  * uvm_pgflcache_init: set up data structures for the free page cache.
    403  */
    404 
    405 void
    406 uvm_pgflcache_init(void)
    407 {
    408 
    409 	uvm_pgflcache_sem = 1;
    410 	mutex_init(&uvm_pgflcache_lock, MUTEX_DEFAULT, IPL_NONE);
    411 }
    412 
    413 #else	/* MULTIPROCESSOR */
    414 
    415 struct vm_page *
    416 uvm_pgflcache_alloc(struct uvm_cpu *ucpu, int fl, int c)
    417 {
    418 
    419 	return NULL;
    420 }
    421 
    422 bool
    423 uvm_pgflcache_free(struct uvm_cpu *ucpu, struct vm_page *pg)
    424 {
    425 
    426 	return false;
    427 }
    428 
    429 void
    430 uvm_pgflcache_fill(struct uvm_cpu *ucpu, int fl, int b, int c)
    431 {
    432 
    433 }
    434 
    435 void
    436 uvm_pgflcache_pause(void)
    437 {
    438 
    439 }
    440 
    441 void
    442 uvm_pgflcache_resume(void)
    443 {
    444 
    445 }
    446 
    447 void
    448 uvm_pgflcache_start(void)
    449 {
    450 
    451 }
    452 
    453 void
    454 uvm_pgflcache_init(void)
    455 {
    456 
    457 }
    458 
    459 #endif	/* MULTIPROCESSOR */
    460