uvm_physseg.c revision 1.12 1 1.12 ad /* $NetBSD: uvm_physseg.c,v 1.12 2019/12/20 19:03:17 ad Exp $ */
2 1.1 cherry
3 1.1 cherry /*
4 1.1 cherry * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 cherry * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 cherry *
7 1.1 cherry * All rights reserved.
8 1.1 cherry *
9 1.1 cherry * This code is derived from software contributed to Berkeley by
10 1.1 cherry * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 cherry *
12 1.1 cherry * Redistribution and use in source and binary forms, with or without
13 1.1 cherry * modification, are permitted provided that the following conditions
14 1.1 cherry * are met:
15 1.1 cherry * 1. Redistributions of source code must retain the above copyright
16 1.1 cherry * notice, this list of conditions and the following disclaimer.
17 1.1 cherry * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 cherry * notice, this list of conditions and the following disclaimer in the
19 1.1 cherry * documentation and/or other materials provided with the distribution.
20 1.1 cherry * 3. Neither the name of the University nor the names of its contributors
21 1.1 cherry * may be used to endorse or promote products derived from this software
22 1.1 cherry * without specific prior written permission.
23 1.1 cherry *
24 1.1 cherry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cherry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cherry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cherry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cherry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cherry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cherry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cherry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cherry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cherry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cherry * SUCH DAMAGE.
35 1.1 cherry *
36 1.1 cherry * @(#)vm_page.h 7.3 (Berkeley) 4/21/91
37 1.1 cherry * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
38 1.1 cherry *
39 1.1 cherry *
40 1.1 cherry * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 cherry * All rights reserved.
42 1.1 cherry *
43 1.1 cherry * Permission to use, copy, modify and distribute this software and
44 1.1 cherry * its documentation is hereby granted, provided that both the copyright
45 1.1 cherry * notice and this permission notice appear in all copies of the
46 1.1 cherry * software, derivative works or modified versions, and any portions
47 1.1 cherry * thereof, and that both notices appear in supporting documentation.
48 1.1 cherry *
49 1.1 cherry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.1 cherry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 cherry * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.1 cherry *
53 1.1 cherry * Carnegie Mellon requests users of this software to return to
54 1.1 cherry *
55 1.1 cherry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 cherry * School of Computer Science
57 1.1 cherry * Carnegie Mellon University
58 1.1 cherry * Pittsburgh PA 15213-3890
59 1.1 cherry *
60 1.1 cherry * any improvements or extensions that they make and grant Carnegie the
61 1.1 cherry * rights to redistribute these changes.
62 1.1 cherry */
63 1.1 cherry
64 1.1 cherry /*
65 1.1 cherry * Consolidated API from uvm_page.c and others.
66 1.1 cherry * Consolidated and designed by Cherry G. Mathew <cherry (at) zyx.in>
67 1.1 cherry * rbtree(3) backing implementation by:
68 1.1 cherry * Santhosh N. Raju <santhosh.raju (at) gmail.com>
69 1.1 cherry */
70 1.1 cherry
71 1.1 cherry #ifdef _KERNEL_OPT
72 1.1 cherry #include "opt_uvm.h"
73 1.1 cherry #endif
74 1.1 cherry
75 1.1 cherry #include <sys/param.h>
76 1.1 cherry #include <sys/types.h>
77 1.1 cherry #include <sys/extent.h>
78 1.1 cherry #include <sys/kmem.h>
79 1.1 cherry
80 1.1 cherry #include <uvm/uvm.h>
81 1.1 cherry #include <uvm/uvm_page.h>
82 1.1 cherry #include <uvm/uvm_param.h>
83 1.1 cherry #include <uvm/uvm_pdpolicy.h>
84 1.1 cherry #include <uvm/uvm_physseg.h>
85 1.1 cherry
86 1.1 cherry /*
87 1.1 cherry * uvm_physseg: describes one segment of physical memory
88 1.1 cherry */
89 1.1 cherry struct uvm_physseg {
90 1.1 cherry struct rb_node rb_node; /* tree information */
91 1.1 cherry paddr_t start; /* PF# of first page in segment */
92 1.1 cherry paddr_t end; /* (PF# of last page in segment) + 1 */
93 1.1 cherry paddr_t avail_start; /* PF# of first free page in segment */
94 1.1 cherry paddr_t avail_end; /* (PF# of last free page in segment) +1 */
95 1.1 cherry struct vm_page *pgs; /* vm_page structures (from start) */
96 1.1 cherry struct extent *ext; /* extent(9) structure to manage pgs[] */
97 1.1 cherry int free_list; /* which free list they belong on */
98 1.1 cherry u_int start_hint; /* start looking for free pages here */
99 1.1 cherry /* protected by uvm_fpageqlock */
100 1.1 cherry #ifdef __HAVE_PMAP_PHYSSEG
101 1.1 cherry struct pmap_physseg pmseg; /* pmap specific (MD) data */
102 1.1 cherry #endif
103 1.1 cherry };
104 1.1 cherry
105 1.1 cherry /*
106 1.1 cherry * These functions are reserved for uvm(9) internal use and are not
107 1.1 cherry * exported in the header file uvm_physseg.h
108 1.1 cherry *
109 1.1 cherry * Thus they are redefined here.
110 1.1 cherry */
111 1.1 cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
112 1.1 cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
113 1.1 cherry
114 1.1 cherry /* returns a pgs array */
115 1.1 cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
116 1.1 cherry
117 1.1 cherry #if defined(UVM_HOTPLUG) /* rbtree impementation */
118 1.1 cherry
119 1.1 cherry #define HANDLE_TO_PHYSSEG_NODE(h) ((struct uvm_physseg *)(h))
120 1.1 cherry #define PHYSSEG_NODE_TO_HANDLE(u) ((uvm_physseg_t)(u))
121 1.1 cherry
122 1.1 cherry struct uvm_physseg_graph {
123 1.1 cherry struct rb_tree rb_tree; /* Tree for entries */
124 1.1 cherry int nentries; /* Number of entries */
125 1.1 cherry };
126 1.1 cherry
127 1.1 cherry static struct uvm_physseg_graph uvm_physseg_graph;
128 1.1 cherry
129 1.1 cherry /*
130 1.1 cherry * Note on kmem(9) allocator usage:
131 1.1 cherry * We take the conservative approach that plug/unplug are allowed to
132 1.1 cherry * fail in high memory stress situations.
133 1.1 cherry *
134 1.1 cherry * We want to avoid re-entrant situations in which one plug/unplug
135 1.1 cherry * operation is waiting on a previous one to complete, since this
136 1.1 cherry * makes the design more complicated than necessary.
137 1.1 cherry *
138 1.1 cherry * We may review this and change its behaviour, once the use cases
139 1.1 cherry * become more obvious.
140 1.1 cherry */
141 1.1 cherry
142 1.1 cherry /*
143 1.1 cherry * Special alloc()/free() functions for boot time support:
144 1.1 cherry * We assume that alloc() at boot time is only for new 'vm_physseg's
145 1.1 cherry * This allows us to use a static array for memory allocation at boot
146 1.1 cherry * time. Thus we avoid using kmem(9) which is not ready at this point
147 1.1 cherry * in boot.
148 1.1 cherry *
149 1.1 cherry * After kmem(9) is ready, we use it. We currently discard any free()s
150 1.1 cherry * to this static array, since the size is small enough to be a
151 1.1 cherry * trivial waste on all architectures we run on.
152 1.1 cherry */
153 1.1 cherry
154 1.1 cherry static size_t nseg = 0;
155 1.1 cherry static struct uvm_physseg uvm_physseg[VM_PHYSSEG_MAX];
156 1.1 cherry
157 1.1 cherry static void *
158 1.1 cherry uvm_physseg_alloc(size_t sz)
159 1.1 cherry {
160 1.1 cherry /*
161 1.1 cherry * During boot time, we only support allocating vm_physseg
162 1.1 cherry * entries from the static array.
163 1.1 cherry * We need to assert for this.
164 1.1 cherry */
165 1.1 cherry
166 1.1 cherry if (__predict_false(uvm.page_init_done == false)) {
167 1.1 cherry if (sz % sizeof(struct uvm_physseg))
168 1.1 cherry panic("%s: tried to alloc size other than multiple"
169 1.7 uwe " of struct uvm_physseg at boot\n", __func__);
170 1.1 cherry
171 1.1 cherry size_t n = sz / sizeof(struct uvm_physseg);
172 1.1 cherry nseg += n;
173 1.1 cherry
174 1.1 cherry KASSERT(nseg > 0 && nseg <= VM_PHYSSEG_MAX);
175 1.1 cherry
176 1.1 cherry return &uvm_physseg[nseg - n];
177 1.1 cherry }
178 1.1 cherry
179 1.1 cherry return kmem_zalloc(sz, KM_NOSLEEP);
180 1.1 cherry }
181 1.1 cherry
182 1.1 cherry static void
183 1.1 cherry uvm_physseg_free(void *p, size_t sz)
184 1.1 cherry {
185 1.1 cherry /*
186 1.1 cherry * This is a bit tricky. We do allow simulation of free()
187 1.1 cherry * during boot (for eg: when MD code is "steal"ing memory,
188 1.1 cherry * and the segment has been exhausted (and thus needs to be
189 1.1 cherry * free() - ed.
190 1.1 cherry * free() also complicates things because we leak the
191 1.1 cherry * free(). Therefore calling code can't assume that free()-ed
192 1.1 cherry * memory is available for alloc() again, at boot time.
193 1.1 cherry *
194 1.1 cherry * Thus we can't explicitly disallow free()s during
195 1.1 cherry * boot time. However, the same restriction for alloc()
196 1.1 cherry * applies to free(). We only allow uvm_physseg related free()s
197 1.1 cherry * via this function during boot time.
198 1.1 cherry */
199 1.1 cherry
200 1.1 cherry if (__predict_false(uvm.page_init_done == false)) {
201 1.1 cherry if (sz % sizeof(struct uvm_physseg))
202 1.1 cherry panic("%s: tried to free size other than struct uvm_physseg"
203 1.7 uwe " at boot\n", __func__);
204 1.1 cherry
205 1.1 cherry }
206 1.1 cherry
207 1.1 cherry /*
208 1.1 cherry * Could have been in a single if(){} block - split for
209 1.1 cherry * clarity
210 1.1 cherry */
211 1.1 cherry
212 1.1 cherry if ((struct uvm_physseg *)p >= uvm_physseg &&
213 1.1 cherry (struct uvm_physseg *)p < (uvm_physseg + VM_PHYSSEG_MAX)) {
214 1.1 cherry if (sz % sizeof(struct uvm_physseg))
215 1.1 cherry panic("%s: tried to free() other than struct uvm_physseg"
216 1.7 uwe " from static array\n", __func__);
217 1.1 cherry
218 1.1 cherry if ((sz / sizeof(struct uvm_physseg)) >= VM_PHYSSEG_MAX)
219 1.1 cherry panic("%s: tried to free() the entire static array!", __func__);
220 1.1 cherry return; /* Nothing to free */
221 1.1 cherry }
222 1.1 cherry
223 1.1 cherry kmem_free(p, sz);
224 1.1 cherry }
225 1.1 cherry
226 1.1 cherry /* XXX: Multi page size */
227 1.1 cherry bool
228 1.1 cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
229 1.1 cherry {
230 1.1 cherry int preload;
231 1.1 cherry size_t slabpages;
232 1.1 cherry struct uvm_physseg *ps, *current_ps = NULL;
233 1.1 cherry struct vm_page *slab = NULL, *pgs = NULL;
234 1.1 cherry
235 1.1 cherry #ifdef DEBUG
236 1.1 cherry paddr_t off;
237 1.1 cherry uvm_physseg_t upm;
238 1.1 cherry upm = uvm_physseg_find(pfn, &off);
239 1.1 cherry
240 1.1 cherry ps = HANDLE_TO_PHYSSEG_NODE(upm);
241 1.1 cherry
242 1.1 cherry if (ps != NULL) /* XXX; do we allow "update" plugs ? */
243 1.1 cherry return false;
244 1.1 cherry #endif
245 1.1 cherry
246 1.1 cherry /*
247 1.1 cherry * do we have room?
248 1.1 cherry */
249 1.1 cherry
250 1.1 cherry ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
251 1.1 cherry if (ps == NULL) {
252 1.1 cherry printf("uvm_page_physload: unable to load physical memory "
253 1.1 cherry "segment\n");
254 1.1 cherry printf("\t%d segments allocated, ignoring 0x%"PRIxPADDR" -> 0x%"PRIxPADDR"\n",
255 1.1 cherry VM_PHYSSEG_MAX, pfn, pfn + pages + 1);
256 1.1 cherry printf("\tincrease VM_PHYSSEG_MAX\n");
257 1.1 cherry return false;
258 1.1 cherry }
259 1.1 cherry
260 1.1 cherry /* span init */
261 1.1 cherry ps->start = pfn;
262 1.1 cherry ps->end = pfn + pages;
263 1.1 cherry
264 1.1 cherry /*
265 1.1 cherry * XXX: Ugly hack because uvmexp.npages accounts for only
266 1.1 cherry * those pages in the segment included below as well - this
267 1.1 cherry * should be legacy and removed.
268 1.1 cherry */
269 1.1 cherry
270 1.1 cherry ps->avail_start = ps->start;
271 1.1 cherry ps->avail_end = ps->end;
272 1.1 cherry
273 1.1 cherry /*
274 1.1 cherry * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
275 1.1 cherry * called yet, so kmem is not available).
276 1.1 cherry */
277 1.1 cherry
278 1.1 cherry preload = 1; /* We are going to assume it is a preload */
279 1.1 cherry
280 1.1 cherry RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
281 1.1 cherry /* If there are non NULL pages then we are not in a preload */
282 1.1 cherry if (current_ps->pgs != NULL) {
283 1.1 cherry preload = 0;
284 1.1 cherry /* Try to scavenge from earlier unplug()s. */
285 1.1 cherry pgs = uvm_physseg_seg_alloc_from_slab(current_ps, pages);
286 1.1 cherry
287 1.1 cherry if (pgs != NULL) {
288 1.1 cherry break;
289 1.1 cherry }
290 1.1 cherry }
291 1.1 cherry }
292 1.1 cherry
293 1.1 cherry
294 1.1 cherry /*
295 1.1 cherry * if VM is already running, attempt to kmem_alloc vm_page structures
296 1.1 cherry */
297 1.1 cherry
298 1.1 cherry if (!preload) {
299 1.1 cherry if (pgs == NULL) { /* Brand new */
300 1.1 cherry /* Iteratively try alloc down from uvmexp.npages */
301 1.1 cherry for (slabpages = (size_t) uvmexp.npages; slabpages >= pages; slabpages--) {
302 1.1 cherry slab = kmem_zalloc(sizeof *pgs * (long unsigned int)slabpages, KM_NOSLEEP);
303 1.1 cherry if (slab != NULL)
304 1.1 cherry break;
305 1.1 cherry }
306 1.1 cherry
307 1.1 cherry if (slab == NULL) {
308 1.1 cherry uvm_physseg_free(ps, sizeof(struct uvm_physseg));
309 1.1 cherry return false;
310 1.1 cherry }
311 1.1 cherry
312 1.1 cherry uvm_physseg_seg_chomp_slab(ps, slab, (size_t) slabpages);
313 1.1 cherry /* We allocate enough for this plug */
314 1.1 cherry pgs = uvm_physseg_seg_alloc_from_slab(ps, pages);
315 1.1 cherry
316 1.1 cherry if (pgs == NULL) {
317 1.1 cherry printf("unable to uvm_physseg_seg_alloc_from_slab() from backend\n");
318 1.1 cherry return false;
319 1.1 cherry }
320 1.1 cherry } else {
321 1.1 cherry /* Reuse scavenged extent */
322 1.1 cherry ps->ext = current_ps->ext;
323 1.1 cherry }
324 1.1 cherry
325 1.1 cherry physmem += pages;
326 1.1 cherry uvmpdpol_reinit();
327 1.1 cherry } else { /* Boot time - see uvm_page.c:uvm_page_init() */
328 1.1 cherry pgs = NULL;
329 1.1 cherry ps->pgs = pgs;
330 1.1 cherry }
331 1.1 cherry
332 1.1 cherry /*
333 1.1 cherry * now insert us in the proper place in uvm_physseg_graph.rb_tree
334 1.1 cherry */
335 1.1 cherry
336 1.1 cherry current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
337 1.1 cherry if (current_ps != ps) {
338 1.1 cherry panic("uvm_page_physload: Duplicate address range detected!");
339 1.1 cherry }
340 1.1 cherry uvm_physseg_graph.nentries++;
341 1.1 cherry
342 1.1 cherry /*
343 1.1 cherry * uvm_pagefree() requires the PHYS_TO_VM_PAGE(pgs[i]) on the
344 1.1 cherry * newly allocated pgs[] to return the correct value. This is
345 1.1 cherry * a bit of a chicken and egg problem, since it needs
346 1.1 cherry * uvm_physseg_find() to succeed. For this, the node needs to
347 1.1 cherry * be inserted *before* uvm_physseg_init_seg() happens.
348 1.1 cherry *
349 1.1 cherry * During boot, this happens anyway, since
350 1.1 cherry * uvm_physseg_init_seg() is called later on and separately
351 1.1 cherry * from uvm_page.c:uvm_page_init().
352 1.1 cherry * In the case of hotplug we need to ensure this.
353 1.1 cherry */
354 1.1 cherry
355 1.1 cherry if (__predict_true(!preload))
356 1.1 cherry uvm_physseg_init_seg(ps, pgs);
357 1.1 cherry
358 1.1 cherry if (psp != NULL)
359 1.1 cherry *psp = ps;
360 1.1 cherry
361 1.1 cherry return true;
362 1.1 cherry }
363 1.1 cherry
364 1.1 cherry static int
365 1.1 cherry uvm_physseg_compare_nodes(void *ctx, const void *nnode1, const void *nnode2)
366 1.1 cherry {
367 1.1 cherry const struct uvm_physseg *enode1 = nnode1;
368 1.1 cherry const struct uvm_physseg *enode2 = nnode2;
369 1.1 cherry
370 1.1 cherry KASSERT(enode1->start < enode2->start || enode1->start >= enode2->end);
371 1.1 cherry KASSERT(enode2->start < enode1->start || enode2->start >= enode1->end);
372 1.1 cherry
373 1.1 cherry if (enode1->start < enode2->start)
374 1.1 cherry return -1;
375 1.1 cherry if (enode1->start >= enode2->end)
376 1.1 cherry return 1;
377 1.1 cherry return 0;
378 1.1 cherry }
379 1.1 cherry
380 1.1 cherry static int
381 1.1 cherry uvm_physseg_compare_key(void *ctx, const void *nnode, const void *pkey)
382 1.1 cherry {
383 1.1 cherry const struct uvm_physseg *enode = nnode;
384 1.1 cherry const paddr_t pa = *(const paddr_t *) pkey;
385 1.1 cherry
386 1.1 cherry if(enode->start <= pa && pa < enode->end)
387 1.1 cherry return 0;
388 1.1 cherry if (enode->start < pa)
389 1.1 cherry return -1;
390 1.1 cherry if (enode->end > pa)
391 1.1 cherry return 1;
392 1.1 cherry
393 1.1 cherry return 0;
394 1.1 cherry }
395 1.1 cherry
396 1.1 cherry static const rb_tree_ops_t uvm_physseg_tree_ops = {
397 1.1 cherry .rbto_compare_nodes = uvm_physseg_compare_nodes,
398 1.1 cherry .rbto_compare_key = uvm_physseg_compare_key,
399 1.1 cherry .rbto_node_offset = offsetof(struct uvm_physseg, rb_node),
400 1.1 cherry .rbto_context = NULL
401 1.1 cherry };
402 1.1 cherry
403 1.1 cherry /*
404 1.1 cherry * uvm_physseg_init: init the physmem
405 1.1 cherry *
406 1.1 cherry * => physmem unit should not be in use at this point
407 1.1 cherry */
408 1.1 cherry
409 1.1 cherry void
410 1.1 cherry uvm_physseg_init(void)
411 1.1 cherry {
412 1.1 cherry rb_tree_init(&(uvm_physseg_graph.rb_tree), &uvm_physseg_tree_ops);
413 1.1 cherry uvm_physseg_graph.nentries = 0;
414 1.1 cherry }
415 1.1 cherry
416 1.1 cherry uvm_physseg_t
417 1.1 cherry uvm_physseg_get_next(uvm_physseg_t upm)
418 1.1 cherry {
419 1.1 cherry /* next of invalid is invalid, not fatal */
420 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
421 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
422 1.1 cherry
423 1.1 cherry return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
424 1.1 cherry RB_DIR_RIGHT);
425 1.1 cherry }
426 1.1 cherry
427 1.1 cherry uvm_physseg_t
428 1.1 cherry uvm_physseg_get_prev(uvm_physseg_t upm)
429 1.1 cherry {
430 1.1 cherry /* prev of invalid is invalid, not fatal */
431 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
432 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
433 1.1 cherry
434 1.1 cherry return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
435 1.1 cherry RB_DIR_LEFT);
436 1.1 cherry }
437 1.1 cherry
438 1.1 cherry uvm_physseg_t
439 1.1 cherry uvm_physseg_get_last(void)
440 1.1 cherry {
441 1.1 cherry return (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
442 1.1 cherry }
443 1.1 cherry
444 1.1 cherry uvm_physseg_t
445 1.1 cherry uvm_physseg_get_first(void)
446 1.1 cherry {
447 1.1 cherry return (uvm_physseg_t) RB_TREE_MIN(&(uvm_physseg_graph.rb_tree));
448 1.1 cherry }
449 1.1 cherry
450 1.1 cherry paddr_t
451 1.1 cherry uvm_physseg_get_highest_frame(void)
452 1.1 cherry {
453 1.1 cherry struct uvm_physseg *ps =
454 1.1 cherry (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
455 1.1 cherry
456 1.1 cherry return ps->end - 1;
457 1.1 cherry }
458 1.1 cherry
459 1.1 cherry /*
460 1.1 cherry * uvm_page_physunload: unload physical memory and return it to
461 1.1 cherry * caller.
462 1.1 cherry */
463 1.1 cherry bool
464 1.1 cherry uvm_page_physunload(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
465 1.1 cherry {
466 1.1 cherry struct uvm_physseg *seg;
467 1.1 cherry
468 1.1 cherry if (__predict_true(uvm.page_init_done == true))
469 1.1 cherry panic("%s: unload attempted after uvm_page_init()\n", __func__);
470 1.1 cherry
471 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
472 1.1 cherry
473 1.1 cherry if (seg->free_list != freelist) {
474 1.1 cherry return false;
475 1.1 cherry }
476 1.1 cherry
477 1.1 cherry /*
478 1.1 cherry * During cold boot, what we're about to unplug hasn't been
479 1.1 cherry * put on the uvm freelist, nor has uvmexp.npages been
480 1.1 cherry * updated. (This happens in uvm_page.c:uvm_page_init())
481 1.1 cherry *
482 1.1 cherry * For hotplug, we assume here that the pages being unloaded
483 1.1 cherry * here are completely out of sight of uvm (ie; not on any uvm
484 1.1 cherry * lists), and that uvmexp.npages has been suitably
485 1.1 cherry * decremented before we're called.
486 1.1 cherry *
487 1.1 cherry * XXX: will avail_end == start if avail_start < avail_end?
488 1.1 cherry */
489 1.1 cherry
490 1.1 cherry /* try from front */
491 1.1 cherry if (seg->avail_start == seg->start &&
492 1.1 cherry seg->avail_start < seg->avail_end) {
493 1.1 cherry *paddrp = ctob(seg->avail_start);
494 1.1 cherry return uvm_physseg_unplug(seg->avail_start, 1);
495 1.1 cherry }
496 1.1 cherry
497 1.1 cherry /* try from rear */
498 1.1 cherry if (seg->avail_end == seg->end &&
499 1.1 cherry seg->avail_start < seg->avail_end) {
500 1.1 cherry *paddrp = ctob(seg->avail_end - 1);
501 1.1 cherry return uvm_physseg_unplug(seg->avail_end - 1, 1);
502 1.1 cherry }
503 1.1 cherry
504 1.1 cherry return false;
505 1.1 cherry }
506 1.1 cherry
507 1.1 cherry bool
508 1.1 cherry uvm_page_physunload_force(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
509 1.1 cherry {
510 1.1 cherry struct uvm_physseg *seg;
511 1.1 cherry
512 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
513 1.1 cherry
514 1.1 cherry if (__predict_true(uvm.page_init_done == true))
515 1.1 cherry panic("%s: unload attempted after uvm_page_init()\n", __func__);
516 1.1 cherry /* any room in this bank? */
517 1.1 cherry if (seg->avail_start >= seg->avail_end) {
518 1.1 cherry return false; /* nope */
519 1.1 cherry }
520 1.1 cherry
521 1.1 cherry *paddrp = ctob(seg->avail_start);
522 1.1 cherry
523 1.1 cherry /* Always unplug from front */
524 1.1 cherry return uvm_physseg_unplug(seg->avail_start, 1);
525 1.1 cherry }
526 1.1 cherry
527 1.1 cherry
528 1.1 cherry /*
529 1.1 cherry * vm_physseg_find: find vm_physseg structure that belongs to a PA
530 1.1 cherry */
531 1.1 cherry uvm_physseg_t
532 1.1 cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
533 1.1 cherry {
534 1.1 cherry struct uvm_physseg * ps = NULL;
535 1.1 cherry
536 1.1 cherry ps = rb_tree_find_node(&(uvm_physseg_graph.rb_tree), &pframe);
537 1.1 cherry
538 1.1 cherry if(ps != NULL && offp != NULL)
539 1.1 cherry *offp = pframe - ps->start;
540 1.1 cherry
541 1.1 cherry return ps;
542 1.1 cherry }
543 1.1 cherry
544 1.1 cherry #else /* UVM_HOTPLUG */
545 1.1 cherry
546 1.1 cherry /*
547 1.1 cherry * physical memory config is stored in vm_physmem.
548 1.1 cherry */
549 1.1 cherry
550 1.1 cherry #define VM_PHYSMEM_PTR(i) (&vm_physmem[i])
551 1.1 cherry #if VM_PHYSSEG_MAX == 1
552 1.1 cherry #define VM_PHYSMEM_PTR_SWAP(i, j) /* impossible */
553 1.1 cherry #else
554 1.1 cherry #define VM_PHYSMEM_PTR_SWAP(i, j) \
555 1.1 cherry do { vm_physmem[(i)] = vm_physmem[(j)]; } while (0)
556 1.1 cherry #endif
557 1.1 cherry
558 1.1 cherry #define HANDLE_TO_PHYSSEG_NODE(h) (VM_PHYSMEM_PTR((int)h))
559 1.1 cherry #define PHYSSEG_NODE_TO_HANDLE(u) ((int)((vsize_t) (u - vm_physmem) / sizeof(struct uvm_physseg)))
560 1.1 cherry
561 1.1 cherry static struct uvm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
562 1.1 cherry static int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
563 1.1 cherry #define vm_nphysmem vm_nphysseg
564 1.1 cherry
565 1.1 cherry void
566 1.1 cherry uvm_physseg_init(void)
567 1.1 cherry {
568 1.1 cherry /* XXX: Provisioning for rb_tree related init(s) */
569 1.1 cherry return;
570 1.1 cherry }
571 1.1 cherry
572 1.1 cherry int
573 1.1 cherry uvm_physseg_get_next(uvm_physseg_t lcv)
574 1.1 cherry {
575 1.1 cherry /* next of invalid is invalid, not fatal */
576 1.2 cherry if (uvm_physseg_valid_p(lcv) == false)
577 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
578 1.1 cherry
579 1.1 cherry return (lcv + 1);
580 1.1 cherry }
581 1.1 cherry
582 1.1 cherry int
583 1.1 cherry uvm_physseg_get_prev(uvm_physseg_t lcv)
584 1.1 cherry {
585 1.1 cherry /* prev of invalid is invalid, not fatal */
586 1.2 cherry if (uvm_physseg_valid_p(lcv) == false)
587 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
588 1.1 cherry
589 1.1 cherry return (lcv - 1);
590 1.1 cherry }
591 1.1 cherry
592 1.1 cherry int
593 1.1 cherry uvm_physseg_get_last(void)
594 1.1 cherry {
595 1.1 cherry return (vm_nphysseg - 1);
596 1.1 cherry }
597 1.1 cherry
598 1.1 cherry int
599 1.1 cherry uvm_physseg_get_first(void)
600 1.1 cherry {
601 1.1 cherry return 0;
602 1.1 cherry }
603 1.1 cherry
604 1.1 cherry paddr_t
605 1.1 cherry uvm_physseg_get_highest_frame(void)
606 1.1 cherry {
607 1.1 cherry int lcv;
608 1.1 cherry paddr_t last = 0;
609 1.1 cherry struct uvm_physseg *ps;
610 1.1 cherry
611 1.1 cherry for (lcv = 0; lcv < vm_nphysseg; lcv++) {
612 1.1 cherry ps = VM_PHYSMEM_PTR(lcv);
613 1.1 cherry if (last < ps->end)
614 1.1 cherry last = ps->end;
615 1.1 cherry }
616 1.1 cherry
617 1.1 cherry return last;
618 1.1 cherry }
619 1.1 cherry
620 1.1 cherry
621 1.1 cherry static struct vm_page *
622 1.1 cherry uvm_post_preload_check(void)
623 1.1 cherry {
624 1.1 cherry int preload, lcv;
625 1.1 cherry
626 1.1 cherry /*
627 1.1 cherry * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
628 1.1 cherry * called yet, so kmem is not available).
629 1.1 cherry */
630 1.1 cherry
631 1.1 cherry for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
632 1.1 cherry if (VM_PHYSMEM_PTR(lcv)->pgs)
633 1.1 cherry break;
634 1.1 cherry }
635 1.1 cherry preload = (lcv == vm_nphysmem);
636 1.1 cherry
637 1.1 cherry /*
638 1.1 cherry * if VM is already running, attempt to kmem_alloc vm_page structures
639 1.1 cherry */
640 1.1 cherry
641 1.1 cherry if (!preload) {
642 1.1 cherry panic("Tried to add RAM after uvm_page_init");
643 1.1 cherry }
644 1.1 cherry
645 1.1 cherry return NULL;
646 1.1 cherry }
647 1.1 cherry
648 1.1 cherry /*
649 1.1 cherry * uvm_page_physunload: unload physical memory and return it to
650 1.1 cherry * caller.
651 1.1 cherry */
652 1.1 cherry bool
653 1.1 cherry uvm_page_physunload(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
654 1.1 cherry {
655 1.1 cherry int x;
656 1.1 cherry struct uvm_physseg *seg;
657 1.1 cherry
658 1.1 cherry uvm_post_preload_check();
659 1.1 cherry
660 1.1 cherry seg = VM_PHYSMEM_PTR(psi);
661 1.1 cherry
662 1.1 cherry if (seg->free_list != freelist) {
663 1.1 cherry return false;
664 1.1 cherry }
665 1.1 cherry
666 1.1 cherry /* try from front */
667 1.1 cherry if (seg->avail_start == seg->start &&
668 1.1 cherry seg->avail_start < seg->avail_end) {
669 1.1 cherry *paddrp = ctob(seg->avail_start);
670 1.1 cherry seg->avail_start++;
671 1.1 cherry seg->start++;
672 1.1 cherry /* nothing left? nuke it */
673 1.1 cherry if (seg->avail_start == seg->end) {
674 1.1 cherry if (vm_nphysmem == 1)
675 1.1 cherry panic("uvm_page_physget: out of memory!");
676 1.1 cherry vm_nphysmem--;
677 1.1 cherry for (x = psi ; x < vm_nphysmem ; x++)
678 1.1 cherry /* structure copy */
679 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
680 1.1 cherry }
681 1.1 cherry return (true);
682 1.1 cherry }
683 1.1 cherry
684 1.1 cherry /* try from rear */
685 1.1 cherry if (seg->avail_end == seg->end &&
686 1.1 cherry seg->avail_start < seg->avail_end) {
687 1.1 cherry *paddrp = ctob(seg->avail_end - 1);
688 1.1 cherry seg->avail_end--;
689 1.1 cherry seg->end--;
690 1.1 cherry /* nothing left? nuke it */
691 1.1 cherry if (seg->avail_end == seg->start) {
692 1.1 cherry if (vm_nphysmem == 1)
693 1.1 cherry panic("uvm_page_physget: out of memory!");
694 1.1 cherry vm_nphysmem--;
695 1.1 cherry for (x = psi ; x < vm_nphysmem ; x++)
696 1.1 cherry /* structure copy */
697 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
698 1.1 cherry }
699 1.1 cherry return (true);
700 1.1 cherry }
701 1.1 cherry
702 1.1 cherry return false;
703 1.1 cherry }
704 1.1 cherry
705 1.1 cherry bool
706 1.1 cherry uvm_page_physunload_force(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
707 1.1 cherry {
708 1.1 cherry int x;
709 1.1 cherry struct uvm_physseg *seg;
710 1.1 cherry
711 1.1 cherry uvm_post_preload_check();
712 1.1 cherry
713 1.1 cherry seg = VM_PHYSMEM_PTR(psi);
714 1.1 cherry
715 1.1 cherry /* any room in this bank? */
716 1.1 cherry if (seg->avail_start >= seg->avail_end) {
717 1.1 cherry return false; /* nope */
718 1.1 cherry }
719 1.1 cherry
720 1.1 cherry *paddrp = ctob(seg->avail_start);
721 1.1 cherry seg->avail_start++;
722 1.1 cherry /* truncate! */
723 1.1 cherry seg->start = seg->avail_start;
724 1.1 cherry
725 1.1 cherry /* nothing left? nuke it */
726 1.1 cherry if (seg->avail_start == seg->end) {
727 1.1 cherry if (vm_nphysmem == 1)
728 1.1 cherry panic("uvm_page_physget: out of memory!");
729 1.1 cherry vm_nphysmem--;
730 1.1 cherry for (x = psi ; x < vm_nphysmem ; x++)
731 1.1 cherry /* structure copy */
732 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
733 1.1 cherry }
734 1.1 cherry return (true);
735 1.1 cherry }
736 1.1 cherry
737 1.1 cherry bool
738 1.1 cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
739 1.1 cherry {
740 1.1 cherry int lcv;
741 1.1 cherry struct vm_page *pgs;
742 1.1 cherry struct uvm_physseg *ps;
743 1.1 cherry
744 1.1 cherry #ifdef DEBUG
745 1.1 cherry paddr_t off;
746 1.1 cherry uvm_physseg_t upm;
747 1.1 cherry upm = uvm_physseg_find(pfn, &off);
748 1.1 cherry
749 1.2 cherry if (uvm_physseg_valid_p(upm)) /* XXX; do we allow "update" plugs ? */
750 1.1 cherry return false;
751 1.1 cherry #endif
752 1.1 cherry
753 1.1 cherry paddr_t start = pfn;
754 1.1 cherry paddr_t end = pfn + pages;
755 1.1 cherry paddr_t avail_start = start;
756 1.1 cherry paddr_t avail_end = end;
757 1.1 cherry
758 1.1 cherry if (uvmexp.pagesize == 0)
759 1.1 cherry panic("uvm_page_physload: page size not set!");
760 1.1 cherry
761 1.1 cherry /*
762 1.1 cherry * do we have room?
763 1.1 cherry */
764 1.1 cherry
765 1.1 cherry if (vm_nphysmem == VM_PHYSSEG_MAX) {
766 1.1 cherry printf("uvm_page_physload: unable to load physical memory "
767 1.1 cherry "segment\n");
768 1.1 cherry printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
769 1.1 cherry VM_PHYSSEG_MAX, (long long)start, (long long)end);
770 1.1 cherry printf("\tincrease VM_PHYSSEG_MAX\n");
771 1.1 cherry if (psp != NULL)
772 1.1 cherry *psp = UVM_PHYSSEG_TYPE_INVALID_OVERFLOW;
773 1.1 cherry return false;
774 1.1 cherry }
775 1.1 cherry
776 1.1 cherry /*
777 1.1 cherry * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
778 1.1 cherry * called yet, so kmem is not available).
779 1.1 cherry */
780 1.1 cherry pgs = uvm_post_preload_check();
781 1.1 cherry
782 1.1 cherry /*
783 1.1 cherry * now insert us in the proper place in vm_physmem[]
784 1.1 cherry */
785 1.1 cherry
786 1.1 cherry #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
787 1.1 cherry /* random: put it at the end (easy!) */
788 1.1 cherry ps = VM_PHYSMEM_PTR(vm_nphysmem);
789 1.3 cherry lcv = vm_nphysmem;
790 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
791 1.1 cherry {
792 1.1 cherry int x;
793 1.1 cherry /* sort by address for binary search */
794 1.1 cherry for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
795 1.1 cherry if (start < VM_PHYSMEM_PTR(lcv)->start)
796 1.1 cherry break;
797 1.1 cherry ps = VM_PHYSMEM_PTR(lcv);
798 1.1 cherry /* move back other entries, if necessary ... */
799 1.1 cherry for (x = vm_nphysmem ; x > lcv ; x--)
800 1.1 cherry /* structure copy */
801 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x - 1);
802 1.1 cherry }
803 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
804 1.1 cherry {
805 1.1 cherry int x;
806 1.1 cherry /* sort by largest segment first */
807 1.1 cherry for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
808 1.1 cherry if ((end - start) >
809 1.1 cherry (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
810 1.1 cherry break;
811 1.1 cherry ps = VM_PHYSMEM_PTR(lcv);
812 1.1 cherry /* move back other entries, if necessary ... */
813 1.1 cherry for (x = vm_nphysmem ; x > lcv ; x--)
814 1.1 cherry /* structure copy */
815 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x - 1);
816 1.1 cherry }
817 1.1 cherry #else
818 1.1 cherry panic("uvm_page_physload: unknown physseg strategy selected!");
819 1.1 cherry #endif
820 1.1 cherry
821 1.1 cherry ps->start = start;
822 1.1 cherry ps->end = end;
823 1.1 cherry ps->avail_start = avail_start;
824 1.1 cherry ps->avail_end = avail_end;
825 1.1 cherry
826 1.1 cherry ps->pgs = pgs;
827 1.1 cherry
828 1.1 cherry vm_nphysmem++;
829 1.1 cherry
830 1.1 cherry if (psp != NULL)
831 1.1 cherry *psp = lcv;
832 1.1 cherry
833 1.1 cherry return true;
834 1.1 cherry }
835 1.1 cherry
836 1.1 cherry /*
837 1.1 cherry * when VM_PHYSSEG_MAX is 1, we can simplify these functions
838 1.1 cherry */
839 1.1 cherry
840 1.1 cherry #if VM_PHYSSEG_MAX == 1
841 1.1 cherry static inline int vm_physseg_find_contig(struct uvm_physseg *, int, paddr_t, psize_t *);
842 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
843 1.1 cherry static inline int vm_physseg_find_bsearch(struct uvm_physseg *, int, paddr_t, psize_t *);
844 1.1 cherry #else
845 1.1 cherry static inline int vm_physseg_find_linear(struct uvm_physseg *, int, paddr_t, psize_t *);
846 1.1 cherry #endif
847 1.1 cherry
848 1.1 cherry /*
849 1.1 cherry * vm_physseg_find: find vm_physseg structure that belongs to a PA
850 1.1 cherry */
851 1.1 cherry int
852 1.1 cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
853 1.1 cherry {
854 1.1 cherry
855 1.1 cherry #if VM_PHYSSEG_MAX == 1
856 1.1 cherry return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
857 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
858 1.1 cherry return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
859 1.1 cherry #else
860 1.1 cherry return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
861 1.1 cherry #endif
862 1.1 cherry }
863 1.1 cherry
864 1.1 cherry #if VM_PHYSSEG_MAX == 1
865 1.1 cherry static inline int
866 1.1 cherry vm_physseg_find_contig(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
867 1.1 cherry {
868 1.1 cherry
869 1.1 cherry /* 'contig' case */
870 1.1 cherry if (pframe >= segs[0].start && pframe < segs[0].end) {
871 1.1 cherry if (offp)
872 1.1 cherry *offp = pframe - segs[0].start;
873 1.1 cherry return(0);
874 1.1 cherry }
875 1.1 cherry return(-1);
876 1.1 cherry }
877 1.1 cherry
878 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
879 1.1 cherry
880 1.1 cherry static inline int
881 1.1 cherry vm_physseg_find_bsearch(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
882 1.1 cherry {
883 1.1 cherry /* binary search for it */
884 1.1 cherry int start, len, guess;
885 1.1 cherry
886 1.1 cherry /*
887 1.1 cherry * if try is too large (thus target is less than try) we reduce
888 1.1 cherry * the length to trunc(len/2) [i.e. everything smaller than "try"]
889 1.1 cherry *
890 1.1 cherry * if the try is too small (thus target is greater than try) then
891 1.1 cherry * we set the new start to be (try + 1). this means we need to
892 1.1 cherry * reduce the length to (round(len/2) - 1).
893 1.1 cherry *
894 1.1 cherry * note "adjust" below which takes advantage of the fact that
895 1.1 cherry * (round(len/2) - 1) == trunc((len - 1) / 2)
896 1.1 cherry * for any value of len we may have
897 1.1 cherry */
898 1.1 cherry
899 1.1 cherry for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
900 1.1 cherry guess = start + (len / 2); /* try in the middle */
901 1.1 cherry
902 1.1 cherry /* start past our try? */
903 1.1 cherry if (pframe >= segs[guess].start) {
904 1.1 cherry /* was try correct? */
905 1.1 cherry if (pframe < segs[guess].end) {
906 1.1 cherry if (offp)
907 1.1 cherry *offp = pframe - segs[guess].start;
908 1.1 cherry return guess; /* got it */
909 1.1 cherry }
910 1.1 cherry start = guess + 1; /* next time, start here */
911 1.1 cherry len--; /* "adjust" */
912 1.1 cherry } else {
913 1.1 cherry /*
914 1.1 cherry * pframe before try, just reduce length of
915 1.1 cherry * region, done in "for" loop
916 1.1 cherry */
917 1.1 cherry }
918 1.1 cherry }
919 1.1 cherry return(-1);
920 1.1 cherry }
921 1.1 cherry
922 1.1 cherry #else
923 1.1 cherry
924 1.1 cherry static inline int
925 1.1 cherry vm_physseg_find_linear(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
926 1.1 cherry {
927 1.1 cherry /* linear search for it */
928 1.1 cherry int lcv;
929 1.1 cherry
930 1.1 cherry for (lcv = 0; lcv < nsegs; lcv++) {
931 1.1 cherry if (pframe >= segs[lcv].start &&
932 1.1 cherry pframe < segs[lcv].end) {
933 1.1 cherry if (offp)
934 1.1 cherry *offp = pframe - segs[lcv].start;
935 1.1 cherry return(lcv); /* got it */
936 1.1 cherry }
937 1.1 cherry }
938 1.1 cherry return(-1);
939 1.1 cherry }
940 1.1 cherry #endif
941 1.1 cherry #endif /* UVM_HOTPLUG */
942 1.1 cherry
943 1.1 cherry bool
944 1.2 cherry uvm_physseg_valid_p(uvm_physseg_t upm)
945 1.1 cherry {
946 1.1 cherry struct uvm_physseg *ps;
947 1.1 cherry
948 1.1 cherry if (upm == UVM_PHYSSEG_TYPE_INVALID ||
949 1.1 cherry upm == UVM_PHYSSEG_TYPE_INVALID_EMPTY ||
950 1.1 cherry upm == UVM_PHYSSEG_TYPE_INVALID_OVERFLOW)
951 1.1 cherry return false;
952 1.1 cherry
953 1.1 cherry /*
954 1.1 cherry * This is the delicate init dance -
955 1.1 cherry * needs to go with the dance.
956 1.1 cherry */
957 1.1 cherry if (uvm.page_init_done != true)
958 1.1 cherry return true;
959 1.1 cherry
960 1.1 cherry ps = HANDLE_TO_PHYSSEG_NODE(upm);
961 1.1 cherry
962 1.1 cherry /* Extra checks needed only post uvm_page_init() */
963 1.1 cherry if (ps->pgs == NULL)
964 1.1 cherry return false;
965 1.1 cherry
966 1.1 cherry /* XXX: etc. */
967 1.1 cherry
968 1.1 cherry return true;
969 1.1 cherry
970 1.1 cherry }
971 1.1 cherry
972 1.1 cherry /*
973 1.1 cherry * Boot protocol dictates that these must be able to return partially
974 1.1 cherry * initialised segments.
975 1.1 cherry */
976 1.1 cherry paddr_t
977 1.1 cherry uvm_physseg_get_start(uvm_physseg_t upm)
978 1.1 cherry {
979 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
980 1.1 cherry return (paddr_t) -1;
981 1.1 cherry
982 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->start;
983 1.1 cherry }
984 1.1 cherry
985 1.1 cherry paddr_t
986 1.1 cherry uvm_physseg_get_end(uvm_physseg_t upm)
987 1.1 cherry {
988 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
989 1.1 cherry return (paddr_t) -1;
990 1.1 cherry
991 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->end;
992 1.1 cherry }
993 1.1 cherry
994 1.1 cherry paddr_t
995 1.1 cherry uvm_physseg_get_avail_start(uvm_physseg_t upm)
996 1.1 cherry {
997 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
998 1.1 cherry return (paddr_t) -1;
999 1.1 cherry
1000 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->avail_start;
1001 1.1 cherry }
1002 1.1 cherry
1003 1.6 rin #if defined(UVM_PHYSSEG_LEGACY)
1004 1.4 christos void
1005 1.4 christos uvm_physseg_set_avail_start(uvm_physseg_t upm, paddr_t avail_start)
1006 1.4 christos {
1007 1.5 cherry struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
1008 1.5 cherry
1009 1.5 cherry #if defined(DIAGNOSTIC)
1010 1.5 cherry paddr_t avail_end;
1011 1.5 cherry avail_end = uvm_physseg_get_avail_end(upm);
1012 1.4 christos KASSERT(uvm_physseg_valid_p(upm));
1013 1.5 cherry KASSERT(avail_start < avail_end && avail_start >= ps->start);
1014 1.5 cherry #endif
1015 1.5 cherry
1016 1.5 cherry ps->avail_start = avail_start;
1017 1.4 christos }
1018 1.12 ad
1019 1.12 ad void
1020 1.12 ad uvm_physseg_set_avail_end(uvm_physseg_t upm, paddr_t avail_end)
1021 1.5 cherry {
1022 1.5 cherry struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
1023 1.5 cherry
1024 1.5 cherry #if defined(DIAGNOSTIC)
1025 1.5 cherry paddr_t avail_start;
1026 1.5 cherry avail_start = uvm_physseg_get_avail_start(upm);
1027 1.5 cherry KASSERT(uvm_physseg_valid_p(upm));
1028 1.5 cherry KASSERT(avail_end > avail_start && avail_end <= ps->end);
1029 1.4 christos #endif
1030 1.4 christos
1031 1.5 cherry ps->avail_end = avail_end;
1032 1.5 cherry }
1033 1.5 cherry
1034 1.6 rin #endif /* UVM_PHYSSEG_LEGACY */
1035 1.5 cherry
1036 1.1 cherry paddr_t
1037 1.1 cherry uvm_physseg_get_avail_end(uvm_physseg_t upm)
1038 1.1 cherry {
1039 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
1040 1.1 cherry return (paddr_t) -1;
1041 1.1 cherry
1042 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->avail_end;
1043 1.1 cherry }
1044 1.1 cherry
1045 1.1 cherry struct vm_page *
1046 1.1 cherry uvm_physseg_get_pg(uvm_physseg_t upm, paddr_t idx)
1047 1.1 cherry {
1048 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1049 1.1 cherry return &HANDLE_TO_PHYSSEG_NODE(upm)->pgs[idx];
1050 1.1 cherry }
1051 1.1 cherry
1052 1.1 cherry #ifdef __HAVE_PMAP_PHYSSEG
1053 1.1 cherry struct pmap_physseg *
1054 1.1 cherry uvm_physseg_get_pmseg(uvm_physseg_t upm)
1055 1.1 cherry {
1056 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1057 1.1 cherry return &(HANDLE_TO_PHYSSEG_NODE(upm)->pmseg);
1058 1.1 cherry }
1059 1.1 cherry #endif
1060 1.1 cherry
1061 1.1 cherry int
1062 1.1 cherry uvm_physseg_get_free_list(uvm_physseg_t upm)
1063 1.1 cherry {
1064 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1065 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->free_list;
1066 1.1 cherry }
1067 1.1 cherry
1068 1.1 cherry u_int
1069 1.1 cherry uvm_physseg_get_start_hint(uvm_physseg_t upm)
1070 1.1 cherry {
1071 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1072 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->start_hint;
1073 1.1 cherry }
1074 1.1 cherry
1075 1.1 cherry bool
1076 1.1 cherry uvm_physseg_set_start_hint(uvm_physseg_t upm, u_int start_hint)
1077 1.1 cherry {
1078 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
1079 1.1 cherry return false;
1080 1.1 cherry
1081 1.1 cherry HANDLE_TO_PHYSSEG_NODE(upm)->start_hint = start_hint;
1082 1.1 cherry return true;
1083 1.1 cherry }
1084 1.1 cherry
1085 1.1 cherry void
1086 1.1 cherry uvm_physseg_init_seg(uvm_physseg_t upm, struct vm_page *pgs)
1087 1.1 cherry {
1088 1.1 cherry psize_t i;
1089 1.1 cherry psize_t n;
1090 1.1 cherry paddr_t paddr;
1091 1.1 cherry struct uvm_physseg *seg;
1092 1.11 ad struct vm_page *pg;
1093 1.1 cherry
1094 1.1 cherry KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID && pgs != NULL);
1095 1.1 cherry
1096 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
1097 1.1 cherry KASSERT(seg != NULL);
1098 1.1 cherry KASSERT(seg->pgs == NULL);
1099 1.1 cherry
1100 1.1 cherry n = seg->end - seg->start;
1101 1.1 cherry seg->pgs = pgs;
1102 1.1 cherry
1103 1.1 cherry /* init and free vm_pages (we've already zeroed them) */
1104 1.1 cherry paddr = ctob(seg->start);
1105 1.1 cherry for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
1106 1.1 cherry seg->pgs[i].phys_addr = paddr;
1107 1.1 cherry #ifdef __HAVE_VM_PAGE_MD
1108 1.1 cherry VM_MDPAGE_INIT(&seg->pgs[i]);
1109 1.1 cherry #endif
1110 1.1 cherry if (atop(paddr) >= seg->avail_start &&
1111 1.1 cherry atop(paddr) < seg->avail_end) {
1112 1.1 cherry uvmexp.npages++;
1113 1.1 cherry /* add page to free pool */
1114 1.11 ad pg = &seg->pgs[i];
1115 1.11 ad /* Disable LOCKDEBUG: too many and too early. */
1116 1.11 ad mutex_init(&pg->interlock, MUTEX_NODEBUG, IPL_NONE);
1117 1.11 ad uvm_pagefree(pg);
1118 1.1 cherry }
1119 1.1 cherry }
1120 1.1 cherry }
1121 1.1 cherry
1122 1.1 cherry void
1123 1.1 cherry uvm_physseg_seg_chomp_slab(uvm_physseg_t upm, struct vm_page *pgs, size_t n)
1124 1.1 cherry {
1125 1.1 cherry struct uvm_physseg *seg = HANDLE_TO_PHYSSEG_NODE(upm);
1126 1.1 cherry
1127 1.1 cherry /* max number of pre-boot unplug()s allowed */
1128 1.1 cherry #define UVM_PHYSSEG_BOOT_UNPLUG_MAX VM_PHYSSEG_MAX
1129 1.1 cherry
1130 1.1 cherry static char btslab_ex_storage[EXTENT_FIXED_STORAGE_SIZE(UVM_PHYSSEG_BOOT_UNPLUG_MAX)];
1131 1.1 cherry
1132 1.1 cherry if (__predict_false(uvm.page_init_done == false)) {
1133 1.1 cherry seg->ext = extent_create("Boot time slab", (u_long) pgs, (u_long) (pgs + n),
1134 1.1 cherry (void *)btslab_ex_storage, sizeof(btslab_ex_storage), 0);
1135 1.1 cherry } else {
1136 1.1 cherry seg->ext = extent_create("Hotplug slab", (u_long) pgs, (u_long) (pgs + n), NULL, 0, 0);
1137 1.1 cherry }
1138 1.1 cherry
1139 1.1 cherry KASSERT(seg->ext != NULL);
1140 1.1 cherry
1141 1.1 cherry }
1142 1.1 cherry
1143 1.1 cherry struct vm_page *
1144 1.1 cherry uvm_physseg_seg_alloc_from_slab(uvm_physseg_t upm, size_t pages)
1145 1.1 cherry {
1146 1.1 cherry int err;
1147 1.1 cherry struct uvm_physseg *seg;
1148 1.1 cherry struct vm_page *pgs = NULL;
1149 1.1 cherry
1150 1.9 christos KASSERT(pages > 0);
1151 1.9 christos
1152 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
1153 1.1 cherry
1154 1.1 cherry if (__predict_false(seg->ext == NULL)) {
1155 1.1 cherry /*
1156 1.1 cherry * This is a situation unique to boot time.
1157 1.1 cherry * It shouldn't happen at any point other than from
1158 1.1 cherry * the first uvm_page.c:uvm_page_init() call
1159 1.1 cherry * Since we're in a loop, we can get away with the
1160 1.1 cherry * below.
1161 1.1 cherry */
1162 1.1 cherry KASSERT(uvm.page_init_done != true);
1163 1.1 cherry
1164 1.9 christos uvm_physseg_t upmp = uvm_physseg_get_prev(upm);
1165 1.9 christos KASSERT(upmp != UVM_PHYSSEG_TYPE_INVALID);
1166 1.9 christos
1167 1.9 christos seg->ext = HANDLE_TO_PHYSSEG_NODE(upmp)->ext;
1168 1.1 cherry
1169 1.1 cherry KASSERT(seg->ext != NULL);
1170 1.1 cherry }
1171 1.1 cherry
1172 1.1 cherry /* We allocate enough for this segment */
1173 1.1 cherry err = extent_alloc(seg->ext, sizeof(*pgs) * pages, 1, 0, EX_BOUNDZERO, (u_long *)&pgs);
1174 1.1 cherry
1175 1.1 cherry if (err != 0) {
1176 1.1 cherry #ifdef DEBUG
1177 1.1 cherry printf("%s: extent_alloc failed with error: %d \n",
1178 1.1 cherry __func__, err);
1179 1.1 cherry #endif
1180 1.1 cherry }
1181 1.1 cherry
1182 1.1 cherry return pgs;
1183 1.1 cherry }
1184 1.1 cherry
1185 1.1 cherry /*
1186 1.1 cherry * uvm_page_physload: load physical memory into VM system
1187 1.1 cherry *
1188 1.1 cherry * => all args are PFs
1189 1.1 cherry * => all pages in start/end get vm_page structures
1190 1.1 cherry * => areas marked by avail_start/avail_end get added to the free page pool
1191 1.1 cherry * => we are limited to VM_PHYSSEG_MAX physical memory segments
1192 1.1 cherry */
1193 1.1 cherry
1194 1.1 cherry uvm_physseg_t
1195 1.1 cherry uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
1196 1.1 cherry paddr_t avail_end, int free_list)
1197 1.1 cherry {
1198 1.1 cherry struct uvm_physseg *ps;
1199 1.1 cherry uvm_physseg_t upm;
1200 1.1 cherry
1201 1.1 cherry if (__predict_true(uvm.page_init_done == true))
1202 1.1 cherry panic("%s: unload attempted after uvm_page_init()\n", __func__);
1203 1.1 cherry if (uvmexp.pagesize == 0)
1204 1.1 cherry panic("uvm_page_physload: page size not set!");
1205 1.1 cherry if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
1206 1.1 cherry panic("uvm_page_physload: bad free list %d", free_list);
1207 1.1 cherry if (start >= end)
1208 1.1 cherry panic("uvm_page_physload: start >= end");
1209 1.1 cherry
1210 1.1 cherry if (uvm_physseg_plug(start, end - start, &upm) == false) {
1211 1.1 cherry panic("uvm_physseg_plug() failed at boot.");
1212 1.1 cherry /* NOTREACHED */
1213 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID; /* XXX: correct type */
1214 1.1 cherry }
1215 1.1 cherry
1216 1.1 cherry ps = HANDLE_TO_PHYSSEG_NODE(upm);
1217 1.1 cherry
1218 1.1 cherry /* Legacy */
1219 1.1 cherry ps->avail_start = avail_start;
1220 1.1 cherry ps->avail_end = avail_end;
1221 1.1 cherry
1222 1.1 cherry ps->free_list = free_list; /* XXX: */
1223 1.1 cherry
1224 1.1 cherry
1225 1.1 cherry return upm;
1226 1.1 cherry }
1227 1.1 cherry
1228 1.1 cherry bool
1229 1.1 cherry uvm_physseg_unplug(paddr_t pfn, size_t pages)
1230 1.1 cherry {
1231 1.1 cherry uvm_physseg_t upm;
1232 1.8 riastrad paddr_t off = 0, start __diagused, end;
1233 1.1 cherry struct uvm_physseg *seg;
1234 1.1 cherry
1235 1.1 cherry upm = uvm_physseg_find(pfn, &off);
1236 1.1 cherry
1237 1.2 cherry if (!uvm_physseg_valid_p(upm)) {
1238 1.1 cherry printf("%s: Tried to unplug from unknown offset\n", __func__);
1239 1.1 cherry return false;
1240 1.1 cherry }
1241 1.1 cherry
1242 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
1243 1.1 cherry
1244 1.1 cherry start = uvm_physseg_get_start(upm);
1245 1.1 cherry end = uvm_physseg_get_end(upm);
1246 1.1 cherry
1247 1.1 cherry if (end < (pfn + pages)) {
1248 1.1 cherry printf("%s: Tried to unplug oversized span \n", __func__);
1249 1.1 cherry return false;
1250 1.1 cherry }
1251 1.1 cherry
1252 1.1 cherry KASSERT(pfn == start + off); /* sanity */
1253 1.1 cherry
1254 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1255 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1256 1.1 cherry if (extent_free(seg->ext, (u_long)(seg->pgs + off), sizeof(struct vm_page) * pages, EX_MALLOCOK | EX_NOWAIT) != 0)
1257 1.1 cherry return false;
1258 1.1 cherry }
1259 1.1 cherry
1260 1.1 cherry if (off == 0 && (pfn + pages) == end) {
1261 1.1 cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
1262 1.1 cherry int segcount = 0;
1263 1.1 cherry struct uvm_physseg *current_ps;
1264 1.1 cherry /* Complete segment */
1265 1.1 cherry if (uvm_physseg_graph.nentries == 1)
1266 1.1 cherry panic("%s: out of memory!", __func__);
1267 1.1 cherry
1268 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1269 1.1 cherry RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
1270 1.1 cherry if (seg->ext == current_ps->ext)
1271 1.1 cherry segcount++;
1272 1.1 cherry }
1273 1.1 cherry KASSERT(segcount > 0);
1274 1.1 cherry
1275 1.1 cherry if (segcount == 1) {
1276 1.1 cherry extent_destroy(seg->ext);
1277 1.1 cherry }
1278 1.1 cherry
1279 1.1 cherry /*
1280 1.1 cherry * We assume that the unplug will succeed from
1281 1.1 cherry * this point onwards
1282 1.1 cherry */
1283 1.1 cherry uvmexp.npages -= (int) pages;
1284 1.1 cherry }
1285 1.1 cherry
1286 1.1 cherry rb_tree_remove_node(&(uvm_physseg_graph.rb_tree), upm);
1287 1.1 cherry memset(seg, 0, sizeof(struct uvm_physseg));
1288 1.1 cherry uvm_physseg_free(seg, sizeof(struct uvm_physseg));
1289 1.1 cherry uvm_physseg_graph.nentries--;
1290 1.1 cherry #else /* UVM_HOTPLUG */
1291 1.1 cherry int x;
1292 1.1 cherry if (vm_nphysmem == 1)
1293 1.1 cherry panic("uvm_page_physget: out of memory!");
1294 1.1 cherry vm_nphysmem--;
1295 1.1 cherry for (x = upm ; x < vm_nphysmem ; x++)
1296 1.1 cherry /* structure copy */
1297 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
1298 1.1 cherry #endif /* UVM_HOTPLUG */
1299 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1300 1.1 cherry return true;
1301 1.1 cherry }
1302 1.1 cherry
1303 1.1 cherry if (off > 0 &&
1304 1.1 cherry (pfn + pages) < end) {
1305 1.1 cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
1306 1.1 cherry /* middle chunk - need a new segment */
1307 1.1 cherry struct uvm_physseg *ps, *current_ps;
1308 1.1 cherry ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
1309 1.1 cherry if (ps == NULL) {
1310 1.1 cherry printf("%s: Unable to allocated new fragment vm_physseg \n",
1311 1.1 cherry __func__);
1312 1.1 cherry return false;
1313 1.1 cherry }
1314 1.1 cherry
1315 1.1 cherry /* Remove middle chunk */
1316 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1317 1.1 cherry KASSERT(seg->ext != NULL);
1318 1.1 cherry ps->ext = seg->ext;
1319 1.1 cherry
1320 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1321 1.1 cherry /*
1322 1.1 cherry * We assume that the unplug will succeed from
1323 1.1 cherry * this point onwards
1324 1.1 cherry */
1325 1.1 cherry uvmexp.npages -= (int) pages;
1326 1.1 cherry }
1327 1.1 cherry
1328 1.1 cherry ps->start = pfn + pages;
1329 1.1 cherry ps->avail_start = ps->start; /* XXX: Legacy */
1330 1.1 cherry
1331 1.1 cherry ps->end = seg->end;
1332 1.1 cherry ps->avail_end = ps->end; /* XXX: Legacy */
1333 1.1 cherry
1334 1.1 cherry seg->end = pfn;
1335 1.1 cherry seg->avail_end = seg->end; /* XXX: Legacy */
1336 1.1 cherry
1337 1.1 cherry
1338 1.1 cherry /*
1339 1.1 cherry * The new pgs array points to the beginning of the
1340 1.1 cherry * tail fragment.
1341 1.1 cherry */
1342 1.1 cherry if (__predict_true(uvm.page_init_done == true))
1343 1.1 cherry ps->pgs = seg->pgs + off + pages;
1344 1.1 cherry
1345 1.1 cherry current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
1346 1.1 cherry if (current_ps != ps) {
1347 1.1 cherry panic("uvm_page_physload: Duplicate address range detected!");
1348 1.1 cherry }
1349 1.1 cherry uvm_physseg_graph.nentries++;
1350 1.1 cherry #else /* UVM_HOTPLUG */
1351 1.1 cherry panic("%s: can't unplug() from the middle of a segment without"
1352 1.7 uwe " UVM_HOTPLUG\n", __func__);
1353 1.1 cherry /* NOTREACHED */
1354 1.1 cherry #endif /* UVM_HOTPLUG */
1355 1.1 cherry return true;
1356 1.1 cherry }
1357 1.1 cherry
1358 1.1 cherry if (off == 0 && (pfn + pages) < end) {
1359 1.1 cherry /* Remove front chunk */
1360 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1361 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1362 1.1 cherry /*
1363 1.1 cherry * We assume that the unplug will succeed from
1364 1.1 cherry * this point onwards
1365 1.1 cherry */
1366 1.1 cherry uvmexp.npages -= (int) pages;
1367 1.1 cherry }
1368 1.1 cherry
1369 1.1 cherry /* Truncate */
1370 1.1 cherry seg->start = pfn + pages;
1371 1.1 cherry seg->avail_start = seg->start; /* XXX: Legacy */
1372 1.1 cherry
1373 1.1 cherry /*
1374 1.1 cherry * Move the pgs array start to the beginning of the
1375 1.1 cherry * tail end.
1376 1.1 cherry */
1377 1.1 cherry if (__predict_true(uvm.page_init_done == true))
1378 1.1 cherry seg->pgs += pages;
1379 1.1 cherry
1380 1.1 cherry return true;
1381 1.1 cherry }
1382 1.1 cherry
1383 1.1 cherry if (off > 0 && (pfn + pages) == end) {
1384 1.1 cherry /* back chunk */
1385 1.1 cherry
1386 1.1 cherry
1387 1.1 cherry /* Truncate! */
1388 1.1 cherry seg->end = pfn;
1389 1.1 cherry seg->avail_end = seg->end; /* XXX: Legacy */
1390 1.1 cherry
1391 1.1 cherry uvmexp.npages -= (int) pages;
1392 1.1 cherry
1393 1.1 cherry return true;
1394 1.1 cherry }
1395 1.1 cherry
1396 1.1 cherry printf("%s: Tried to unplug unknown range \n", __func__);
1397 1.1 cherry
1398 1.1 cherry return false;
1399 1.1 cherry }
1400