uvm_physseg.c revision 1.13 1 1.13 ad /* $NetBSD: uvm_physseg.c,v 1.13 2019/12/21 14:41:44 ad Exp $ */
2 1.1 cherry
3 1.1 cherry /*
4 1.1 cherry * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 cherry * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 cherry *
7 1.1 cherry * All rights reserved.
8 1.1 cherry *
9 1.1 cherry * This code is derived from software contributed to Berkeley by
10 1.1 cherry * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 cherry *
12 1.1 cherry * Redistribution and use in source and binary forms, with or without
13 1.1 cherry * modification, are permitted provided that the following conditions
14 1.1 cherry * are met:
15 1.1 cherry * 1. Redistributions of source code must retain the above copyright
16 1.1 cherry * notice, this list of conditions and the following disclaimer.
17 1.1 cherry * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 cherry * notice, this list of conditions and the following disclaimer in the
19 1.1 cherry * documentation and/or other materials provided with the distribution.
20 1.1 cherry * 3. Neither the name of the University nor the names of its contributors
21 1.1 cherry * may be used to endorse or promote products derived from this software
22 1.1 cherry * without specific prior written permission.
23 1.1 cherry *
24 1.1 cherry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cherry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cherry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cherry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cherry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cherry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cherry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cherry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cherry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cherry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cherry * SUCH DAMAGE.
35 1.1 cherry *
36 1.1 cherry * @(#)vm_page.h 7.3 (Berkeley) 4/21/91
37 1.1 cherry * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
38 1.1 cherry *
39 1.1 cherry *
40 1.1 cherry * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 cherry * All rights reserved.
42 1.1 cherry *
43 1.1 cherry * Permission to use, copy, modify and distribute this software and
44 1.1 cherry * its documentation is hereby granted, provided that both the copyright
45 1.1 cherry * notice and this permission notice appear in all copies of the
46 1.1 cherry * software, derivative works or modified versions, and any portions
47 1.1 cherry * thereof, and that both notices appear in supporting documentation.
48 1.1 cherry *
49 1.1 cherry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.1 cherry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 cherry * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.1 cherry *
53 1.1 cherry * Carnegie Mellon requests users of this software to return to
54 1.1 cherry *
55 1.1 cherry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 cherry * School of Computer Science
57 1.1 cherry * Carnegie Mellon University
58 1.1 cherry * Pittsburgh PA 15213-3890
59 1.1 cherry *
60 1.1 cherry * any improvements or extensions that they make and grant Carnegie the
61 1.1 cherry * rights to redistribute these changes.
62 1.1 cherry */
63 1.1 cherry
64 1.1 cherry /*
65 1.1 cherry * Consolidated API from uvm_page.c and others.
66 1.1 cherry * Consolidated and designed by Cherry G. Mathew <cherry (at) zyx.in>
67 1.1 cherry * rbtree(3) backing implementation by:
68 1.1 cherry * Santhosh N. Raju <santhosh.raju (at) gmail.com>
69 1.1 cherry */
70 1.1 cherry
71 1.1 cherry #ifdef _KERNEL_OPT
72 1.1 cherry #include "opt_uvm.h"
73 1.1 cherry #endif
74 1.1 cherry
75 1.1 cherry #include <sys/param.h>
76 1.1 cherry #include <sys/types.h>
77 1.1 cherry #include <sys/extent.h>
78 1.1 cherry #include <sys/kmem.h>
79 1.1 cherry
80 1.1 cherry #include <uvm/uvm.h>
81 1.1 cherry #include <uvm/uvm_page.h>
82 1.1 cherry #include <uvm/uvm_param.h>
83 1.1 cherry #include <uvm/uvm_pdpolicy.h>
84 1.1 cherry #include <uvm/uvm_physseg.h>
85 1.1 cherry
86 1.1 cherry /*
87 1.1 cherry * uvm_physseg: describes one segment of physical memory
88 1.1 cherry */
89 1.1 cherry struct uvm_physseg {
90 1.1 cherry struct rb_node rb_node; /* tree information */
91 1.1 cherry paddr_t start; /* PF# of first page in segment */
92 1.1 cherry paddr_t end; /* (PF# of last page in segment) + 1 */
93 1.1 cherry paddr_t avail_start; /* PF# of first free page in segment */
94 1.1 cherry paddr_t avail_end; /* (PF# of last free page in segment) +1 */
95 1.1 cherry struct vm_page *pgs; /* vm_page structures (from start) */
96 1.1 cherry struct extent *ext; /* extent(9) structure to manage pgs[] */
97 1.1 cherry int free_list; /* which free list they belong on */
98 1.1 cherry u_int start_hint; /* start looking for free pages here */
99 1.1 cherry #ifdef __HAVE_PMAP_PHYSSEG
100 1.1 cherry struct pmap_physseg pmseg; /* pmap specific (MD) data */
101 1.1 cherry #endif
102 1.1 cherry };
103 1.1 cherry
104 1.1 cherry /*
105 1.1 cherry * These functions are reserved for uvm(9) internal use and are not
106 1.1 cherry * exported in the header file uvm_physseg.h
107 1.1 cherry *
108 1.1 cherry * Thus they are redefined here.
109 1.1 cherry */
110 1.1 cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
111 1.1 cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
112 1.1 cherry
113 1.1 cherry /* returns a pgs array */
114 1.1 cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
115 1.1 cherry
116 1.1 cherry #if defined(UVM_HOTPLUG) /* rbtree impementation */
117 1.1 cherry
118 1.1 cherry #define HANDLE_TO_PHYSSEG_NODE(h) ((struct uvm_physseg *)(h))
119 1.1 cherry #define PHYSSEG_NODE_TO_HANDLE(u) ((uvm_physseg_t)(u))
120 1.1 cherry
121 1.1 cherry struct uvm_physseg_graph {
122 1.1 cherry struct rb_tree rb_tree; /* Tree for entries */
123 1.1 cherry int nentries; /* Number of entries */
124 1.1 cherry };
125 1.1 cherry
126 1.1 cherry static struct uvm_physseg_graph uvm_physseg_graph;
127 1.1 cherry
128 1.1 cherry /*
129 1.1 cherry * Note on kmem(9) allocator usage:
130 1.1 cherry * We take the conservative approach that plug/unplug are allowed to
131 1.1 cherry * fail in high memory stress situations.
132 1.1 cherry *
133 1.1 cherry * We want to avoid re-entrant situations in which one plug/unplug
134 1.1 cherry * operation is waiting on a previous one to complete, since this
135 1.1 cherry * makes the design more complicated than necessary.
136 1.1 cherry *
137 1.1 cherry * We may review this and change its behaviour, once the use cases
138 1.1 cherry * become more obvious.
139 1.1 cherry */
140 1.1 cherry
141 1.1 cherry /*
142 1.1 cherry * Special alloc()/free() functions for boot time support:
143 1.1 cherry * We assume that alloc() at boot time is only for new 'vm_physseg's
144 1.1 cherry * This allows us to use a static array for memory allocation at boot
145 1.1 cherry * time. Thus we avoid using kmem(9) which is not ready at this point
146 1.1 cherry * in boot.
147 1.1 cherry *
148 1.1 cherry * After kmem(9) is ready, we use it. We currently discard any free()s
149 1.1 cherry * to this static array, since the size is small enough to be a
150 1.1 cherry * trivial waste on all architectures we run on.
151 1.1 cherry */
152 1.1 cherry
153 1.1 cherry static size_t nseg = 0;
154 1.1 cherry static struct uvm_physseg uvm_physseg[VM_PHYSSEG_MAX];
155 1.1 cherry
156 1.1 cherry static void *
157 1.1 cherry uvm_physseg_alloc(size_t sz)
158 1.1 cherry {
159 1.1 cherry /*
160 1.1 cherry * During boot time, we only support allocating vm_physseg
161 1.1 cherry * entries from the static array.
162 1.1 cherry * We need to assert for this.
163 1.1 cherry */
164 1.1 cherry
165 1.1 cherry if (__predict_false(uvm.page_init_done == false)) {
166 1.1 cherry if (sz % sizeof(struct uvm_physseg))
167 1.1 cherry panic("%s: tried to alloc size other than multiple"
168 1.7 uwe " of struct uvm_physseg at boot\n", __func__);
169 1.1 cherry
170 1.1 cherry size_t n = sz / sizeof(struct uvm_physseg);
171 1.1 cherry nseg += n;
172 1.1 cherry
173 1.1 cherry KASSERT(nseg > 0 && nseg <= VM_PHYSSEG_MAX);
174 1.1 cherry
175 1.1 cherry return &uvm_physseg[nseg - n];
176 1.1 cherry }
177 1.1 cherry
178 1.1 cherry return kmem_zalloc(sz, KM_NOSLEEP);
179 1.1 cherry }
180 1.1 cherry
181 1.1 cherry static void
182 1.1 cherry uvm_physseg_free(void *p, size_t sz)
183 1.1 cherry {
184 1.1 cherry /*
185 1.1 cherry * This is a bit tricky. We do allow simulation of free()
186 1.1 cherry * during boot (for eg: when MD code is "steal"ing memory,
187 1.1 cherry * and the segment has been exhausted (and thus needs to be
188 1.1 cherry * free() - ed.
189 1.1 cherry * free() also complicates things because we leak the
190 1.1 cherry * free(). Therefore calling code can't assume that free()-ed
191 1.1 cherry * memory is available for alloc() again, at boot time.
192 1.1 cherry *
193 1.1 cherry * Thus we can't explicitly disallow free()s during
194 1.1 cherry * boot time. However, the same restriction for alloc()
195 1.1 cherry * applies to free(). We only allow uvm_physseg related free()s
196 1.1 cherry * via this function during boot time.
197 1.1 cherry */
198 1.1 cherry
199 1.1 cherry if (__predict_false(uvm.page_init_done == false)) {
200 1.1 cherry if (sz % sizeof(struct uvm_physseg))
201 1.1 cherry panic("%s: tried to free size other than struct uvm_physseg"
202 1.7 uwe " at boot\n", __func__);
203 1.1 cherry
204 1.1 cherry }
205 1.1 cherry
206 1.1 cherry /*
207 1.1 cherry * Could have been in a single if(){} block - split for
208 1.1 cherry * clarity
209 1.1 cherry */
210 1.1 cherry
211 1.1 cherry if ((struct uvm_physseg *)p >= uvm_physseg &&
212 1.1 cherry (struct uvm_physseg *)p < (uvm_physseg + VM_PHYSSEG_MAX)) {
213 1.1 cherry if (sz % sizeof(struct uvm_physseg))
214 1.1 cherry panic("%s: tried to free() other than struct uvm_physseg"
215 1.7 uwe " from static array\n", __func__);
216 1.1 cherry
217 1.1 cherry if ((sz / sizeof(struct uvm_physseg)) >= VM_PHYSSEG_MAX)
218 1.1 cherry panic("%s: tried to free() the entire static array!", __func__);
219 1.1 cherry return; /* Nothing to free */
220 1.1 cherry }
221 1.1 cherry
222 1.1 cherry kmem_free(p, sz);
223 1.1 cherry }
224 1.1 cherry
225 1.1 cherry /* XXX: Multi page size */
226 1.1 cherry bool
227 1.1 cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
228 1.1 cherry {
229 1.1 cherry int preload;
230 1.1 cherry size_t slabpages;
231 1.1 cherry struct uvm_physseg *ps, *current_ps = NULL;
232 1.1 cherry struct vm_page *slab = NULL, *pgs = NULL;
233 1.1 cherry
234 1.1 cherry #ifdef DEBUG
235 1.1 cherry paddr_t off;
236 1.1 cherry uvm_physseg_t upm;
237 1.1 cherry upm = uvm_physseg_find(pfn, &off);
238 1.1 cherry
239 1.1 cherry ps = HANDLE_TO_PHYSSEG_NODE(upm);
240 1.1 cherry
241 1.1 cherry if (ps != NULL) /* XXX; do we allow "update" plugs ? */
242 1.1 cherry return false;
243 1.1 cherry #endif
244 1.1 cherry
245 1.1 cherry /*
246 1.1 cherry * do we have room?
247 1.1 cherry */
248 1.1 cherry
249 1.1 cherry ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
250 1.1 cherry if (ps == NULL) {
251 1.1 cherry printf("uvm_page_physload: unable to load physical memory "
252 1.1 cherry "segment\n");
253 1.1 cherry printf("\t%d segments allocated, ignoring 0x%"PRIxPADDR" -> 0x%"PRIxPADDR"\n",
254 1.1 cherry VM_PHYSSEG_MAX, pfn, pfn + pages + 1);
255 1.1 cherry printf("\tincrease VM_PHYSSEG_MAX\n");
256 1.1 cherry return false;
257 1.1 cherry }
258 1.1 cherry
259 1.1 cherry /* span init */
260 1.1 cherry ps->start = pfn;
261 1.1 cherry ps->end = pfn + pages;
262 1.1 cherry
263 1.1 cherry /*
264 1.1 cherry * XXX: Ugly hack because uvmexp.npages accounts for only
265 1.1 cherry * those pages in the segment included below as well - this
266 1.1 cherry * should be legacy and removed.
267 1.1 cherry */
268 1.1 cherry
269 1.1 cherry ps->avail_start = ps->start;
270 1.1 cherry ps->avail_end = ps->end;
271 1.1 cherry
272 1.1 cherry /*
273 1.1 cherry * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
274 1.1 cherry * called yet, so kmem is not available).
275 1.1 cherry */
276 1.1 cherry
277 1.1 cherry preload = 1; /* We are going to assume it is a preload */
278 1.1 cherry
279 1.1 cherry RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
280 1.1 cherry /* If there are non NULL pages then we are not in a preload */
281 1.1 cherry if (current_ps->pgs != NULL) {
282 1.1 cherry preload = 0;
283 1.1 cherry /* Try to scavenge from earlier unplug()s. */
284 1.1 cherry pgs = uvm_physseg_seg_alloc_from_slab(current_ps, pages);
285 1.1 cherry
286 1.1 cherry if (pgs != NULL) {
287 1.1 cherry break;
288 1.1 cherry }
289 1.1 cherry }
290 1.1 cherry }
291 1.1 cherry
292 1.1 cherry
293 1.1 cherry /*
294 1.1 cherry * if VM is already running, attempt to kmem_alloc vm_page structures
295 1.1 cherry */
296 1.1 cherry
297 1.1 cherry if (!preload) {
298 1.1 cherry if (pgs == NULL) { /* Brand new */
299 1.1 cherry /* Iteratively try alloc down from uvmexp.npages */
300 1.1 cherry for (slabpages = (size_t) uvmexp.npages; slabpages >= pages; slabpages--) {
301 1.1 cherry slab = kmem_zalloc(sizeof *pgs * (long unsigned int)slabpages, KM_NOSLEEP);
302 1.1 cherry if (slab != NULL)
303 1.1 cherry break;
304 1.1 cherry }
305 1.1 cherry
306 1.1 cherry if (slab == NULL) {
307 1.1 cherry uvm_physseg_free(ps, sizeof(struct uvm_physseg));
308 1.1 cherry return false;
309 1.1 cherry }
310 1.1 cherry
311 1.1 cherry uvm_physseg_seg_chomp_slab(ps, slab, (size_t) slabpages);
312 1.1 cherry /* We allocate enough for this plug */
313 1.1 cherry pgs = uvm_physseg_seg_alloc_from_slab(ps, pages);
314 1.1 cherry
315 1.1 cherry if (pgs == NULL) {
316 1.1 cherry printf("unable to uvm_physseg_seg_alloc_from_slab() from backend\n");
317 1.1 cherry return false;
318 1.1 cherry }
319 1.1 cherry } else {
320 1.1 cherry /* Reuse scavenged extent */
321 1.1 cherry ps->ext = current_ps->ext;
322 1.1 cherry }
323 1.1 cherry
324 1.1 cherry physmem += pages;
325 1.1 cherry uvmpdpol_reinit();
326 1.1 cherry } else { /* Boot time - see uvm_page.c:uvm_page_init() */
327 1.1 cherry pgs = NULL;
328 1.1 cherry ps->pgs = pgs;
329 1.1 cherry }
330 1.1 cherry
331 1.1 cherry /*
332 1.1 cherry * now insert us in the proper place in uvm_physseg_graph.rb_tree
333 1.1 cherry */
334 1.1 cherry
335 1.1 cherry current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
336 1.1 cherry if (current_ps != ps) {
337 1.1 cherry panic("uvm_page_physload: Duplicate address range detected!");
338 1.1 cherry }
339 1.1 cherry uvm_physseg_graph.nentries++;
340 1.1 cherry
341 1.1 cherry /*
342 1.1 cherry * uvm_pagefree() requires the PHYS_TO_VM_PAGE(pgs[i]) on the
343 1.1 cherry * newly allocated pgs[] to return the correct value. This is
344 1.1 cherry * a bit of a chicken and egg problem, since it needs
345 1.1 cherry * uvm_physseg_find() to succeed. For this, the node needs to
346 1.1 cherry * be inserted *before* uvm_physseg_init_seg() happens.
347 1.1 cherry *
348 1.1 cherry * During boot, this happens anyway, since
349 1.1 cherry * uvm_physseg_init_seg() is called later on and separately
350 1.1 cherry * from uvm_page.c:uvm_page_init().
351 1.1 cherry * In the case of hotplug we need to ensure this.
352 1.1 cherry */
353 1.1 cherry
354 1.1 cherry if (__predict_true(!preload))
355 1.1 cherry uvm_physseg_init_seg(ps, pgs);
356 1.1 cherry
357 1.1 cherry if (psp != NULL)
358 1.1 cherry *psp = ps;
359 1.1 cherry
360 1.1 cherry return true;
361 1.1 cherry }
362 1.1 cherry
363 1.1 cherry static int
364 1.1 cherry uvm_physseg_compare_nodes(void *ctx, const void *nnode1, const void *nnode2)
365 1.1 cherry {
366 1.1 cherry const struct uvm_physseg *enode1 = nnode1;
367 1.1 cherry const struct uvm_physseg *enode2 = nnode2;
368 1.1 cherry
369 1.1 cherry KASSERT(enode1->start < enode2->start || enode1->start >= enode2->end);
370 1.1 cherry KASSERT(enode2->start < enode1->start || enode2->start >= enode1->end);
371 1.1 cherry
372 1.1 cherry if (enode1->start < enode2->start)
373 1.1 cherry return -1;
374 1.1 cherry if (enode1->start >= enode2->end)
375 1.1 cherry return 1;
376 1.1 cherry return 0;
377 1.1 cherry }
378 1.1 cherry
379 1.1 cherry static int
380 1.1 cherry uvm_physseg_compare_key(void *ctx, const void *nnode, const void *pkey)
381 1.1 cherry {
382 1.1 cherry const struct uvm_physseg *enode = nnode;
383 1.1 cherry const paddr_t pa = *(const paddr_t *) pkey;
384 1.1 cherry
385 1.1 cherry if(enode->start <= pa && pa < enode->end)
386 1.1 cherry return 0;
387 1.1 cherry if (enode->start < pa)
388 1.1 cherry return -1;
389 1.1 cherry if (enode->end > pa)
390 1.1 cherry return 1;
391 1.1 cherry
392 1.1 cherry return 0;
393 1.1 cherry }
394 1.1 cherry
395 1.1 cherry static const rb_tree_ops_t uvm_physseg_tree_ops = {
396 1.1 cherry .rbto_compare_nodes = uvm_physseg_compare_nodes,
397 1.1 cherry .rbto_compare_key = uvm_physseg_compare_key,
398 1.1 cherry .rbto_node_offset = offsetof(struct uvm_physseg, rb_node),
399 1.1 cherry .rbto_context = NULL
400 1.1 cherry };
401 1.1 cherry
402 1.1 cherry /*
403 1.1 cherry * uvm_physseg_init: init the physmem
404 1.1 cherry *
405 1.1 cherry * => physmem unit should not be in use at this point
406 1.1 cherry */
407 1.1 cherry
408 1.1 cherry void
409 1.1 cherry uvm_physseg_init(void)
410 1.1 cherry {
411 1.1 cherry rb_tree_init(&(uvm_physseg_graph.rb_tree), &uvm_physseg_tree_ops);
412 1.1 cherry uvm_physseg_graph.nentries = 0;
413 1.1 cherry }
414 1.1 cherry
415 1.1 cherry uvm_physseg_t
416 1.1 cherry uvm_physseg_get_next(uvm_physseg_t upm)
417 1.1 cherry {
418 1.1 cherry /* next of invalid is invalid, not fatal */
419 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
420 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
421 1.1 cherry
422 1.1 cherry return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
423 1.1 cherry RB_DIR_RIGHT);
424 1.1 cherry }
425 1.1 cherry
426 1.1 cherry uvm_physseg_t
427 1.1 cherry uvm_physseg_get_prev(uvm_physseg_t upm)
428 1.1 cherry {
429 1.1 cherry /* prev of invalid is invalid, not fatal */
430 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
431 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
432 1.1 cherry
433 1.1 cherry return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
434 1.1 cherry RB_DIR_LEFT);
435 1.1 cherry }
436 1.1 cherry
437 1.1 cherry uvm_physseg_t
438 1.1 cherry uvm_physseg_get_last(void)
439 1.1 cherry {
440 1.1 cherry return (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
441 1.1 cherry }
442 1.1 cherry
443 1.1 cherry uvm_physseg_t
444 1.1 cherry uvm_physseg_get_first(void)
445 1.1 cherry {
446 1.1 cherry return (uvm_physseg_t) RB_TREE_MIN(&(uvm_physseg_graph.rb_tree));
447 1.1 cherry }
448 1.1 cherry
449 1.1 cherry paddr_t
450 1.1 cherry uvm_physseg_get_highest_frame(void)
451 1.1 cherry {
452 1.1 cherry struct uvm_physseg *ps =
453 1.1 cherry (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
454 1.1 cherry
455 1.1 cherry return ps->end - 1;
456 1.1 cherry }
457 1.1 cherry
458 1.1 cherry /*
459 1.1 cherry * uvm_page_physunload: unload physical memory and return it to
460 1.1 cherry * caller.
461 1.1 cherry */
462 1.1 cherry bool
463 1.1 cherry uvm_page_physunload(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
464 1.1 cherry {
465 1.1 cherry struct uvm_physseg *seg;
466 1.1 cherry
467 1.1 cherry if (__predict_true(uvm.page_init_done == true))
468 1.1 cherry panic("%s: unload attempted after uvm_page_init()\n", __func__);
469 1.1 cherry
470 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
471 1.1 cherry
472 1.1 cherry if (seg->free_list != freelist) {
473 1.1 cherry return false;
474 1.1 cherry }
475 1.1 cherry
476 1.1 cherry /*
477 1.1 cherry * During cold boot, what we're about to unplug hasn't been
478 1.1 cherry * put on the uvm freelist, nor has uvmexp.npages been
479 1.1 cherry * updated. (This happens in uvm_page.c:uvm_page_init())
480 1.1 cherry *
481 1.1 cherry * For hotplug, we assume here that the pages being unloaded
482 1.1 cherry * here are completely out of sight of uvm (ie; not on any uvm
483 1.1 cherry * lists), and that uvmexp.npages has been suitably
484 1.1 cherry * decremented before we're called.
485 1.1 cherry *
486 1.1 cherry * XXX: will avail_end == start if avail_start < avail_end?
487 1.1 cherry */
488 1.1 cherry
489 1.1 cherry /* try from front */
490 1.1 cherry if (seg->avail_start == seg->start &&
491 1.1 cherry seg->avail_start < seg->avail_end) {
492 1.1 cherry *paddrp = ctob(seg->avail_start);
493 1.1 cherry return uvm_physseg_unplug(seg->avail_start, 1);
494 1.1 cherry }
495 1.1 cherry
496 1.1 cherry /* try from rear */
497 1.1 cherry if (seg->avail_end == seg->end &&
498 1.1 cherry seg->avail_start < seg->avail_end) {
499 1.1 cherry *paddrp = ctob(seg->avail_end - 1);
500 1.1 cherry return uvm_physseg_unplug(seg->avail_end - 1, 1);
501 1.1 cherry }
502 1.1 cherry
503 1.1 cherry return false;
504 1.1 cherry }
505 1.1 cherry
506 1.1 cherry bool
507 1.1 cherry uvm_page_physunload_force(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
508 1.1 cherry {
509 1.1 cherry struct uvm_physseg *seg;
510 1.1 cherry
511 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
512 1.1 cherry
513 1.1 cherry if (__predict_true(uvm.page_init_done == true))
514 1.1 cherry panic("%s: unload attempted after uvm_page_init()\n", __func__);
515 1.1 cherry /* any room in this bank? */
516 1.1 cherry if (seg->avail_start >= seg->avail_end) {
517 1.1 cherry return false; /* nope */
518 1.1 cherry }
519 1.1 cherry
520 1.1 cherry *paddrp = ctob(seg->avail_start);
521 1.1 cherry
522 1.1 cherry /* Always unplug from front */
523 1.1 cherry return uvm_physseg_unplug(seg->avail_start, 1);
524 1.1 cherry }
525 1.1 cherry
526 1.1 cherry
527 1.1 cherry /*
528 1.1 cherry * vm_physseg_find: find vm_physseg structure that belongs to a PA
529 1.1 cherry */
530 1.1 cherry uvm_physseg_t
531 1.1 cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
532 1.1 cherry {
533 1.1 cherry struct uvm_physseg * ps = NULL;
534 1.1 cherry
535 1.1 cherry ps = rb_tree_find_node(&(uvm_physseg_graph.rb_tree), &pframe);
536 1.1 cherry
537 1.1 cherry if(ps != NULL && offp != NULL)
538 1.1 cherry *offp = pframe - ps->start;
539 1.1 cherry
540 1.1 cherry return ps;
541 1.1 cherry }
542 1.1 cherry
543 1.1 cherry #else /* UVM_HOTPLUG */
544 1.1 cherry
545 1.1 cherry /*
546 1.1 cherry * physical memory config is stored in vm_physmem.
547 1.1 cherry */
548 1.1 cherry
549 1.1 cherry #define VM_PHYSMEM_PTR(i) (&vm_physmem[i])
550 1.1 cherry #if VM_PHYSSEG_MAX == 1
551 1.1 cherry #define VM_PHYSMEM_PTR_SWAP(i, j) /* impossible */
552 1.1 cherry #else
553 1.1 cherry #define VM_PHYSMEM_PTR_SWAP(i, j) \
554 1.1 cherry do { vm_physmem[(i)] = vm_physmem[(j)]; } while (0)
555 1.1 cherry #endif
556 1.1 cherry
557 1.1 cherry #define HANDLE_TO_PHYSSEG_NODE(h) (VM_PHYSMEM_PTR((int)h))
558 1.1 cherry #define PHYSSEG_NODE_TO_HANDLE(u) ((int)((vsize_t) (u - vm_physmem) / sizeof(struct uvm_physseg)))
559 1.1 cherry
560 1.1 cherry static struct uvm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
561 1.1 cherry static int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
562 1.1 cherry #define vm_nphysmem vm_nphysseg
563 1.1 cherry
564 1.1 cherry void
565 1.1 cherry uvm_physseg_init(void)
566 1.1 cherry {
567 1.1 cherry /* XXX: Provisioning for rb_tree related init(s) */
568 1.1 cherry return;
569 1.1 cherry }
570 1.1 cherry
571 1.1 cherry int
572 1.1 cherry uvm_physseg_get_next(uvm_physseg_t lcv)
573 1.1 cherry {
574 1.1 cherry /* next of invalid is invalid, not fatal */
575 1.2 cherry if (uvm_physseg_valid_p(lcv) == false)
576 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
577 1.1 cherry
578 1.1 cherry return (lcv + 1);
579 1.1 cherry }
580 1.1 cherry
581 1.1 cherry int
582 1.1 cherry uvm_physseg_get_prev(uvm_physseg_t lcv)
583 1.1 cherry {
584 1.1 cherry /* prev of invalid is invalid, not fatal */
585 1.2 cherry if (uvm_physseg_valid_p(lcv) == false)
586 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
587 1.1 cherry
588 1.1 cherry return (lcv - 1);
589 1.1 cherry }
590 1.1 cherry
591 1.1 cherry int
592 1.1 cherry uvm_physseg_get_last(void)
593 1.1 cherry {
594 1.1 cherry return (vm_nphysseg - 1);
595 1.1 cherry }
596 1.1 cherry
597 1.1 cherry int
598 1.1 cherry uvm_physseg_get_first(void)
599 1.1 cherry {
600 1.1 cherry return 0;
601 1.1 cherry }
602 1.1 cherry
603 1.1 cherry paddr_t
604 1.1 cherry uvm_physseg_get_highest_frame(void)
605 1.1 cherry {
606 1.1 cherry int lcv;
607 1.1 cherry paddr_t last = 0;
608 1.1 cherry struct uvm_physseg *ps;
609 1.1 cherry
610 1.1 cherry for (lcv = 0; lcv < vm_nphysseg; lcv++) {
611 1.1 cherry ps = VM_PHYSMEM_PTR(lcv);
612 1.1 cherry if (last < ps->end)
613 1.1 cherry last = ps->end;
614 1.1 cherry }
615 1.1 cherry
616 1.1 cherry return last;
617 1.1 cherry }
618 1.1 cherry
619 1.1 cherry
620 1.1 cherry static struct vm_page *
621 1.1 cherry uvm_post_preload_check(void)
622 1.1 cherry {
623 1.1 cherry int preload, lcv;
624 1.1 cherry
625 1.1 cherry /*
626 1.1 cherry * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
627 1.1 cherry * called yet, so kmem is not available).
628 1.1 cherry */
629 1.1 cherry
630 1.1 cherry for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
631 1.1 cherry if (VM_PHYSMEM_PTR(lcv)->pgs)
632 1.1 cherry break;
633 1.1 cherry }
634 1.1 cherry preload = (lcv == vm_nphysmem);
635 1.1 cherry
636 1.1 cherry /*
637 1.1 cherry * if VM is already running, attempt to kmem_alloc vm_page structures
638 1.1 cherry */
639 1.1 cherry
640 1.1 cherry if (!preload) {
641 1.1 cherry panic("Tried to add RAM after uvm_page_init");
642 1.1 cherry }
643 1.1 cherry
644 1.1 cherry return NULL;
645 1.1 cherry }
646 1.1 cherry
647 1.1 cherry /*
648 1.1 cherry * uvm_page_physunload: unload physical memory and return it to
649 1.1 cherry * caller.
650 1.1 cherry */
651 1.1 cherry bool
652 1.1 cherry uvm_page_physunload(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
653 1.1 cherry {
654 1.1 cherry int x;
655 1.1 cherry struct uvm_physseg *seg;
656 1.1 cherry
657 1.1 cherry uvm_post_preload_check();
658 1.1 cherry
659 1.1 cherry seg = VM_PHYSMEM_PTR(psi);
660 1.1 cherry
661 1.1 cherry if (seg->free_list != freelist) {
662 1.1 cherry return false;
663 1.1 cherry }
664 1.1 cherry
665 1.1 cherry /* try from front */
666 1.1 cherry if (seg->avail_start == seg->start &&
667 1.1 cherry seg->avail_start < seg->avail_end) {
668 1.1 cherry *paddrp = ctob(seg->avail_start);
669 1.1 cherry seg->avail_start++;
670 1.1 cherry seg->start++;
671 1.1 cherry /* nothing left? nuke it */
672 1.1 cherry if (seg->avail_start == seg->end) {
673 1.1 cherry if (vm_nphysmem == 1)
674 1.1 cherry panic("uvm_page_physget: out of memory!");
675 1.1 cherry vm_nphysmem--;
676 1.1 cherry for (x = psi ; x < vm_nphysmem ; x++)
677 1.1 cherry /* structure copy */
678 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
679 1.1 cherry }
680 1.1 cherry return (true);
681 1.1 cherry }
682 1.1 cherry
683 1.1 cherry /* try from rear */
684 1.1 cherry if (seg->avail_end == seg->end &&
685 1.1 cherry seg->avail_start < seg->avail_end) {
686 1.1 cherry *paddrp = ctob(seg->avail_end - 1);
687 1.1 cherry seg->avail_end--;
688 1.1 cherry seg->end--;
689 1.1 cherry /* nothing left? nuke it */
690 1.1 cherry if (seg->avail_end == seg->start) {
691 1.1 cherry if (vm_nphysmem == 1)
692 1.1 cherry panic("uvm_page_physget: out of memory!");
693 1.1 cherry vm_nphysmem--;
694 1.1 cherry for (x = psi ; x < vm_nphysmem ; x++)
695 1.1 cherry /* structure copy */
696 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
697 1.1 cherry }
698 1.1 cherry return (true);
699 1.1 cherry }
700 1.1 cherry
701 1.1 cherry return false;
702 1.1 cherry }
703 1.1 cherry
704 1.1 cherry bool
705 1.1 cherry uvm_page_physunload_force(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
706 1.1 cherry {
707 1.1 cherry int x;
708 1.1 cherry struct uvm_physseg *seg;
709 1.1 cherry
710 1.1 cherry uvm_post_preload_check();
711 1.1 cherry
712 1.1 cherry seg = VM_PHYSMEM_PTR(psi);
713 1.1 cherry
714 1.1 cherry /* any room in this bank? */
715 1.1 cherry if (seg->avail_start >= seg->avail_end) {
716 1.1 cherry return false; /* nope */
717 1.1 cherry }
718 1.1 cherry
719 1.1 cherry *paddrp = ctob(seg->avail_start);
720 1.1 cherry seg->avail_start++;
721 1.1 cherry /* truncate! */
722 1.1 cherry seg->start = seg->avail_start;
723 1.1 cherry
724 1.1 cherry /* nothing left? nuke it */
725 1.1 cherry if (seg->avail_start == seg->end) {
726 1.1 cherry if (vm_nphysmem == 1)
727 1.1 cherry panic("uvm_page_physget: out of memory!");
728 1.1 cherry vm_nphysmem--;
729 1.1 cherry for (x = psi ; x < vm_nphysmem ; x++)
730 1.1 cherry /* structure copy */
731 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
732 1.1 cherry }
733 1.1 cherry return (true);
734 1.1 cherry }
735 1.1 cherry
736 1.1 cherry bool
737 1.1 cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
738 1.1 cherry {
739 1.1 cherry int lcv;
740 1.1 cherry struct vm_page *pgs;
741 1.1 cherry struct uvm_physseg *ps;
742 1.1 cherry
743 1.1 cherry #ifdef DEBUG
744 1.1 cherry paddr_t off;
745 1.1 cherry uvm_physseg_t upm;
746 1.1 cherry upm = uvm_physseg_find(pfn, &off);
747 1.1 cherry
748 1.2 cherry if (uvm_physseg_valid_p(upm)) /* XXX; do we allow "update" plugs ? */
749 1.1 cherry return false;
750 1.1 cherry #endif
751 1.1 cherry
752 1.1 cherry paddr_t start = pfn;
753 1.1 cherry paddr_t end = pfn + pages;
754 1.1 cherry paddr_t avail_start = start;
755 1.1 cherry paddr_t avail_end = end;
756 1.1 cherry
757 1.1 cherry if (uvmexp.pagesize == 0)
758 1.1 cherry panic("uvm_page_physload: page size not set!");
759 1.1 cherry
760 1.1 cherry /*
761 1.1 cherry * do we have room?
762 1.1 cherry */
763 1.1 cherry
764 1.1 cherry if (vm_nphysmem == VM_PHYSSEG_MAX) {
765 1.1 cherry printf("uvm_page_physload: unable to load physical memory "
766 1.1 cherry "segment\n");
767 1.1 cherry printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
768 1.1 cherry VM_PHYSSEG_MAX, (long long)start, (long long)end);
769 1.1 cherry printf("\tincrease VM_PHYSSEG_MAX\n");
770 1.1 cherry if (psp != NULL)
771 1.1 cherry *psp = UVM_PHYSSEG_TYPE_INVALID_OVERFLOW;
772 1.1 cherry return false;
773 1.1 cherry }
774 1.1 cherry
775 1.1 cherry /*
776 1.1 cherry * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
777 1.1 cherry * called yet, so kmem is not available).
778 1.1 cherry */
779 1.1 cherry pgs = uvm_post_preload_check();
780 1.1 cherry
781 1.1 cherry /*
782 1.1 cherry * now insert us in the proper place in vm_physmem[]
783 1.1 cherry */
784 1.1 cherry
785 1.1 cherry #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
786 1.1 cherry /* random: put it at the end (easy!) */
787 1.1 cherry ps = VM_PHYSMEM_PTR(vm_nphysmem);
788 1.3 cherry lcv = vm_nphysmem;
789 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
790 1.1 cherry {
791 1.1 cherry int x;
792 1.1 cherry /* sort by address for binary search */
793 1.1 cherry for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
794 1.1 cherry if (start < VM_PHYSMEM_PTR(lcv)->start)
795 1.1 cherry break;
796 1.1 cherry ps = VM_PHYSMEM_PTR(lcv);
797 1.1 cherry /* move back other entries, if necessary ... */
798 1.1 cherry for (x = vm_nphysmem ; x > lcv ; x--)
799 1.1 cherry /* structure copy */
800 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x - 1);
801 1.1 cherry }
802 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
803 1.1 cherry {
804 1.1 cherry int x;
805 1.1 cherry /* sort by largest segment first */
806 1.1 cherry for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
807 1.1 cherry if ((end - start) >
808 1.1 cherry (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
809 1.1 cherry break;
810 1.1 cherry ps = VM_PHYSMEM_PTR(lcv);
811 1.1 cherry /* move back other entries, if necessary ... */
812 1.1 cherry for (x = vm_nphysmem ; x > lcv ; x--)
813 1.1 cherry /* structure copy */
814 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x - 1);
815 1.1 cherry }
816 1.1 cherry #else
817 1.1 cherry panic("uvm_page_physload: unknown physseg strategy selected!");
818 1.1 cherry #endif
819 1.1 cherry
820 1.1 cherry ps->start = start;
821 1.1 cherry ps->end = end;
822 1.1 cherry ps->avail_start = avail_start;
823 1.1 cherry ps->avail_end = avail_end;
824 1.1 cherry
825 1.1 cherry ps->pgs = pgs;
826 1.1 cherry
827 1.1 cherry vm_nphysmem++;
828 1.1 cherry
829 1.1 cherry if (psp != NULL)
830 1.1 cherry *psp = lcv;
831 1.1 cherry
832 1.1 cherry return true;
833 1.1 cherry }
834 1.1 cherry
835 1.1 cherry /*
836 1.1 cherry * when VM_PHYSSEG_MAX is 1, we can simplify these functions
837 1.1 cherry */
838 1.1 cherry
839 1.1 cherry #if VM_PHYSSEG_MAX == 1
840 1.1 cherry static inline int vm_physseg_find_contig(struct uvm_physseg *, int, paddr_t, psize_t *);
841 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
842 1.1 cherry static inline int vm_physseg_find_bsearch(struct uvm_physseg *, int, paddr_t, psize_t *);
843 1.1 cherry #else
844 1.1 cherry static inline int vm_physseg_find_linear(struct uvm_physseg *, int, paddr_t, psize_t *);
845 1.1 cherry #endif
846 1.1 cherry
847 1.1 cherry /*
848 1.1 cherry * vm_physseg_find: find vm_physseg structure that belongs to a PA
849 1.1 cherry */
850 1.1 cherry int
851 1.1 cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
852 1.1 cherry {
853 1.1 cherry
854 1.1 cherry #if VM_PHYSSEG_MAX == 1
855 1.1 cherry return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
856 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
857 1.1 cherry return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
858 1.1 cherry #else
859 1.1 cherry return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
860 1.1 cherry #endif
861 1.1 cherry }
862 1.1 cherry
863 1.1 cherry #if VM_PHYSSEG_MAX == 1
864 1.1 cherry static inline int
865 1.1 cherry vm_physseg_find_contig(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
866 1.1 cherry {
867 1.1 cherry
868 1.1 cherry /* 'contig' case */
869 1.1 cherry if (pframe >= segs[0].start && pframe < segs[0].end) {
870 1.1 cherry if (offp)
871 1.1 cherry *offp = pframe - segs[0].start;
872 1.1 cherry return(0);
873 1.1 cherry }
874 1.1 cherry return(-1);
875 1.1 cherry }
876 1.1 cherry
877 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
878 1.1 cherry
879 1.1 cherry static inline int
880 1.1 cherry vm_physseg_find_bsearch(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
881 1.1 cherry {
882 1.1 cherry /* binary search for it */
883 1.1 cherry int start, len, guess;
884 1.1 cherry
885 1.1 cherry /*
886 1.1 cherry * if try is too large (thus target is less than try) we reduce
887 1.1 cherry * the length to trunc(len/2) [i.e. everything smaller than "try"]
888 1.1 cherry *
889 1.1 cherry * if the try is too small (thus target is greater than try) then
890 1.1 cherry * we set the new start to be (try + 1). this means we need to
891 1.1 cherry * reduce the length to (round(len/2) - 1).
892 1.1 cherry *
893 1.1 cherry * note "adjust" below which takes advantage of the fact that
894 1.1 cherry * (round(len/2) - 1) == trunc((len - 1) / 2)
895 1.1 cherry * for any value of len we may have
896 1.1 cherry */
897 1.1 cherry
898 1.1 cherry for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
899 1.1 cherry guess = start + (len / 2); /* try in the middle */
900 1.1 cherry
901 1.1 cherry /* start past our try? */
902 1.1 cherry if (pframe >= segs[guess].start) {
903 1.1 cherry /* was try correct? */
904 1.1 cherry if (pframe < segs[guess].end) {
905 1.1 cherry if (offp)
906 1.1 cherry *offp = pframe - segs[guess].start;
907 1.1 cherry return guess; /* got it */
908 1.1 cherry }
909 1.1 cherry start = guess + 1; /* next time, start here */
910 1.1 cherry len--; /* "adjust" */
911 1.1 cherry } else {
912 1.1 cherry /*
913 1.1 cherry * pframe before try, just reduce length of
914 1.1 cherry * region, done in "for" loop
915 1.1 cherry */
916 1.1 cherry }
917 1.1 cherry }
918 1.1 cherry return(-1);
919 1.1 cherry }
920 1.1 cherry
921 1.1 cherry #else
922 1.1 cherry
923 1.1 cherry static inline int
924 1.1 cherry vm_physseg_find_linear(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
925 1.1 cherry {
926 1.1 cherry /* linear search for it */
927 1.1 cherry int lcv;
928 1.1 cherry
929 1.1 cherry for (lcv = 0; lcv < nsegs; lcv++) {
930 1.1 cherry if (pframe >= segs[lcv].start &&
931 1.1 cherry pframe < segs[lcv].end) {
932 1.1 cherry if (offp)
933 1.1 cherry *offp = pframe - segs[lcv].start;
934 1.1 cherry return(lcv); /* got it */
935 1.1 cherry }
936 1.1 cherry }
937 1.1 cherry return(-1);
938 1.1 cherry }
939 1.1 cherry #endif
940 1.1 cherry #endif /* UVM_HOTPLUG */
941 1.1 cherry
942 1.1 cherry bool
943 1.2 cherry uvm_physseg_valid_p(uvm_physseg_t upm)
944 1.1 cherry {
945 1.1 cherry struct uvm_physseg *ps;
946 1.1 cherry
947 1.1 cherry if (upm == UVM_PHYSSEG_TYPE_INVALID ||
948 1.1 cherry upm == UVM_PHYSSEG_TYPE_INVALID_EMPTY ||
949 1.1 cherry upm == UVM_PHYSSEG_TYPE_INVALID_OVERFLOW)
950 1.1 cherry return false;
951 1.1 cherry
952 1.1 cherry /*
953 1.1 cherry * This is the delicate init dance -
954 1.1 cherry * needs to go with the dance.
955 1.1 cherry */
956 1.1 cherry if (uvm.page_init_done != true)
957 1.1 cherry return true;
958 1.1 cherry
959 1.1 cherry ps = HANDLE_TO_PHYSSEG_NODE(upm);
960 1.1 cherry
961 1.1 cherry /* Extra checks needed only post uvm_page_init() */
962 1.1 cherry if (ps->pgs == NULL)
963 1.1 cherry return false;
964 1.1 cherry
965 1.1 cherry /* XXX: etc. */
966 1.1 cherry
967 1.1 cherry return true;
968 1.1 cherry
969 1.1 cherry }
970 1.1 cherry
971 1.1 cherry /*
972 1.1 cherry * Boot protocol dictates that these must be able to return partially
973 1.1 cherry * initialised segments.
974 1.1 cherry */
975 1.1 cherry paddr_t
976 1.1 cherry uvm_physseg_get_start(uvm_physseg_t upm)
977 1.1 cherry {
978 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
979 1.1 cherry return (paddr_t) -1;
980 1.1 cherry
981 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->start;
982 1.1 cherry }
983 1.1 cherry
984 1.1 cherry paddr_t
985 1.1 cherry uvm_physseg_get_end(uvm_physseg_t upm)
986 1.1 cherry {
987 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
988 1.1 cherry return (paddr_t) -1;
989 1.1 cherry
990 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->end;
991 1.1 cherry }
992 1.1 cherry
993 1.1 cherry paddr_t
994 1.1 cherry uvm_physseg_get_avail_start(uvm_physseg_t upm)
995 1.1 cherry {
996 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
997 1.1 cherry return (paddr_t) -1;
998 1.1 cherry
999 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->avail_start;
1000 1.1 cherry }
1001 1.1 cherry
1002 1.6 rin #if defined(UVM_PHYSSEG_LEGACY)
1003 1.4 christos void
1004 1.4 christos uvm_physseg_set_avail_start(uvm_physseg_t upm, paddr_t avail_start)
1005 1.4 christos {
1006 1.5 cherry struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
1007 1.5 cherry
1008 1.5 cherry #if defined(DIAGNOSTIC)
1009 1.5 cherry paddr_t avail_end;
1010 1.5 cherry avail_end = uvm_physseg_get_avail_end(upm);
1011 1.4 christos KASSERT(uvm_physseg_valid_p(upm));
1012 1.5 cherry KASSERT(avail_start < avail_end && avail_start >= ps->start);
1013 1.5 cherry #endif
1014 1.5 cherry
1015 1.5 cherry ps->avail_start = avail_start;
1016 1.4 christos }
1017 1.12 ad
1018 1.12 ad void
1019 1.12 ad uvm_physseg_set_avail_end(uvm_physseg_t upm, paddr_t avail_end)
1020 1.5 cherry {
1021 1.5 cherry struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
1022 1.5 cherry
1023 1.5 cherry #if defined(DIAGNOSTIC)
1024 1.5 cherry paddr_t avail_start;
1025 1.5 cherry avail_start = uvm_physseg_get_avail_start(upm);
1026 1.5 cherry KASSERT(uvm_physseg_valid_p(upm));
1027 1.5 cherry KASSERT(avail_end > avail_start && avail_end <= ps->end);
1028 1.4 christos #endif
1029 1.4 christos
1030 1.5 cherry ps->avail_end = avail_end;
1031 1.5 cherry }
1032 1.5 cherry
1033 1.6 rin #endif /* UVM_PHYSSEG_LEGACY */
1034 1.5 cherry
1035 1.1 cherry paddr_t
1036 1.1 cherry uvm_physseg_get_avail_end(uvm_physseg_t upm)
1037 1.1 cherry {
1038 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
1039 1.1 cherry return (paddr_t) -1;
1040 1.1 cherry
1041 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->avail_end;
1042 1.1 cherry }
1043 1.1 cherry
1044 1.1 cherry struct vm_page *
1045 1.1 cherry uvm_physseg_get_pg(uvm_physseg_t upm, paddr_t idx)
1046 1.1 cherry {
1047 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1048 1.1 cherry return &HANDLE_TO_PHYSSEG_NODE(upm)->pgs[idx];
1049 1.1 cherry }
1050 1.1 cherry
1051 1.1 cherry #ifdef __HAVE_PMAP_PHYSSEG
1052 1.1 cherry struct pmap_physseg *
1053 1.1 cherry uvm_physseg_get_pmseg(uvm_physseg_t upm)
1054 1.1 cherry {
1055 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1056 1.1 cherry return &(HANDLE_TO_PHYSSEG_NODE(upm)->pmseg);
1057 1.1 cherry }
1058 1.1 cherry #endif
1059 1.1 cherry
1060 1.1 cherry int
1061 1.1 cherry uvm_physseg_get_free_list(uvm_physseg_t upm)
1062 1.1 cherry {
1063 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1064 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->free_list;
1065 1.1 cherry }
1066 1.1 cherry
1067 1.1 cherry u_int
1068 1.1 cherry uvm_physseg_get_start_hint(uvm_physseg_t upm)
1069 1.1 cherry {
1070 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1071 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->start_hint;
1072 1.1 cherry }
1073 1.1 cherry
1074 1.1 cherry bool
1075 1.1 cherry uvm_physseg_set_start_hint(uvm_physseg_t upm, u_int start_hint)
1076 1.1 cherry {
1077 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
1078 1.1 cherry return false;
1079 1.1 cherry
1080 1.1 cherry HANDLE_TO_PHYSSEG_NODE(upm)->start_hint = start_hint;
1081 1.1 cherry return true;
1082 1.1 cherry }
1083 1.1 cherry
1084 1.1 cherry void
1085 1.1 cherry uvm_physseg_init_seg(uvm_physseg_t upm, struct vm_page *pgs)
1086 1.1 cherry {
1087 1.1 cherry psize_t i;
1088 1.1 cherry psize_t n;
1089 1.1 cherry paddr_t paddr;
1090 1.1 cherry struct uvm_physseg *seg;
1091 1.11 ad struct vm_page *pg;
1092 1.1 cherry
1093 1.1 cherry KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID && pgs != NULL);
1094 1.1 cherry
1095 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
1096 1.1 cherry KASSERT(seg != NULL);
1097 1.1 cherry KASSERT(seg->pgs == NULL);
1098 1.1 cherry
1099 1.1 cherry n = seg->end - seg->start;
1100 1.1 cherry seg->pgs = pgs;
1101 1.1 cherry
1102 1.1 cherry /* init and free vm_pages (we've already zeroed them) */
1103 1.1 cherry paddr = ctob(seg->start);
1104 1.1 cherry for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
1105 1.13 ad pg = &seg->pgs[i];
1106 1.13 ad pg->phys_addr = paddr;
1107 1.1 cherry #ifdef __HAVE_VM_PAGE_MD
1108 1.13 ad VM_MDPAGE_INIT(pg);
1109 1.1 cherry #endif
1110 1.1 cherry if (atop(paddr) >= seg->avail_start &&
1111 1.1 cherry atop(paddr) < seg->avail_end) {
1112 1.1 cherry uvmexp.npages++;
1113 1.1 cherry /* add page to free pool */
1114 1.13 ad uvm_page_set_freelist(pg,
1115 1.13 ad uvm_page_lookup_freelist(pg));
1116 1.11 ad /* Disable LOCKDEBUG: too many and too early. */
1117 1.11 ad mutex_init(&pg->interlock, MUTEX_NODEBUG, IPL_NONE);
1118 1.11 ad uvm_pagefree(pg);
1119 1.1 cherry }
1120 1.1 cherry }
1121 1.1 cherry }
1122 1.1 cherry
1123 1.1 cherry void
1124 1.1 cherry uvm_physseg_seg_chomp_slab(uvm_physseg_t upm, struct vm_page *pgs, size_t n)
1125 1.1 cherry {
1126 1.1 cherry struct uvm_physseg *seg = HANDLE_TO_PHYSSEG_NODE(upm);
1127 1.1 cherry
1128 1.1 cherry /* max number of pre-boot unplug()s allowed */
1129 1.1 cherry #define UVM_PHYSSEG_BOOT_UNPLUG_MAX VM_PHYSSEG_MAX
1130 1.1 cherry
1131 1.1 cherry static char btslab_ex_storage[EXTENT_FIXED_STORAGE_SIZE(UVM_PHYSSEG_BOOT_UNPLUG_MAX)];
1132 1.1 cherry
1133 1.1 cherry if (__predict_false(uvm.page_init_done == false)) {
1134 1.1 cherry seg->ext = extent_create("Boot time slab", (u_long) pgs, (u_long) (pgs + n),
1135 1.1 cherry (void *)btslab_ex_storage, sizeof(btslab_ex_storage), 0);
1136 1.1 cherry } else {
1137 1.1 cherry seg->ext = extent_create("Hotplug slab", (u_long) pgs, (u_long) (pgs + n), NULL, 0, 0);
1138 1.1 cherry }
1139 1.1 cherry
1140 1.1 cherry KASSERT(seg->ext != NULL);
1141 1.1 cherry
1142 1.1 cherry }
1143 1.1 cherry
1144 1.1 cherry struct vm_page *
1145 1.1 cherry uvm_physseg_seg_alloc_from_slab(uvm_physseg_t upm, size_t pages)
1146 1.1 cherry {
1147 1.1 cherry int err;
1148 1.1 cherry struct uvm_physseg *seg;
1149 1.1 cherry struct vm_page *pgs = NULL;
1150 1.1 cherry
1151 1.9 christos KASSERT(pages > 0);
1152 1.9 christos
1153 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
1154 1.1 cherry
1155 1.1 cherry if (__predict_false(seg->ext == NULL)) {
1156 1.1 cherry /*
1157 1.1 cherry * This is a situation unique to boot time.
1158 1.1 cherry * It shouldn't happen at any point other than from
1159 1.1 cherry * the first uvm_page.c:uvm_page_init() call
1160 1.1 cherry * Since we're in a loop, we can get away with the
1161 1.1 cherry * below.
1162 1.1 cherry */
1163 1.1 cherry KASSERT(uvm.page_init_done != true);
1164 1.1 cherry
1165 1.9 christos uvm_physseg_t upmp = uvm_physseg_get_prev(upm);
1166 1.9 christos KASSERT(upmp != UVM_PHYSSEG_TYPE_INVALID);
1167 1.9 christos
1168 1.9 christos seg->ext = HANDLE_TO_PHYSSEG_NODE(upmp)->ext;
1169 1.1 cherry
1170 1.1 cherry KASSERT(seg->ext != NULL);
1171 1.1 cherry }
1172 1.1 cherry
1173 1.1 cherry /* We allocate enough for this segment */
1174 1.1 cherry err = extent_alloc(seg->ext, sizeof(*pgs) * pages, 1, 0, EX_BOUNDZERO, (u_long *)&pgs);
1175 1.1 cherry
1176 1.1 cherry if (err != 0) {
1177 1.1 cherry #ifdef DEBUG
1178 1.1 cherry printf("%s: extent_alloc failed with error: %d \n",
1179 1.1 cherry __func__, err);
1180 1.1 cherry #endif
1181 1.1 cherry }
1182 1.1 cherry
1183 1.1 cherry return pgs;
1184 1.1 cherry }
1185 1.1 cherry
1186 1.1 cherry /*
1187 1.1 cherry * uvm_page_physload: load physical memory into VM system
1188 1.1 cherry *
1189 1.1 cherry * => all args are PFs
1190 1.1 cherry * => all pages in start/end get vm_page structures
1191 1.1 cherry * => areas marked by avail_start/avail_end get added to the free page pool
1192 1.1 cherry * => we are limited to VM_PHYSSEG_MAX physical memory segments
1193 1.1 cherry */
1194 1.1 cherry
1195 1.1 cherry uvm_physseg_t
1196 1.1 cherry uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
1197 1.1 cherry paddr_t avail_end, int free_list)
1198 1.1 cherry {
1199 1.1 cherry struct uvm_physseg *ps;
1200 1.1 cherry uvm_physseg_t upm;
1201 1.1 cherry
1202 1.1 cherry if (__predict_true(uvm.page_init_done == true))
1203 1.1 cherry panic("%s: unload attempted after uvm_page_init()\n", __func__);
1204 1.1 cherry if (uvmexp.pagesize == 0)
1205 1.1 cherry panic("uvm_page_physload: page size not set!");
1206 1.1 cherry if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
1207 1.1 cherry panic("uvm_page_physload: bad free list %d", free_list);
1208 1.1 cherry if (start >= end)
1209 1.1 cherry panic("uvm_page_physload: start >= end");
1210 1.1 cherry
1211 1.1 cherry if (uvm_physseg_plug(start, end - start, &upm) == false) {
1212 1.1 cherry panic("uvm_physseg_plug() failed at boot.");
1213 1.1 cherry /* NOTREACHED */
1214 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID; /* XXX: correct type */
1215 1.1 cherry }
1216 1.1 cherry
1217 1.1 cherry ps = HANDLE_TO_PHYSSEG_NODE(upm);
1218 1.1 cherry
1219 1.1 cherry /* Legacy */
1220 1.1 cherry ps->avail_start = avail_start;
1221 1.1 cherry ps->avail_end = avail_end;
1222 1.1 cherry
1223 1.1 cherry ps->free_list = free_list; /* XXX: */
1224 1.1 cherry
1225 1.1 cherry
1226 1.1 cherry return upm;
1227 1.1 cherry }
1228 1.1 cherry
1229 1.1 cherry bool
1230 1.1 cherry uvm_physseg_unplug(paddr_t pfn, size_t pages)
1231 1.1 cherry {
1232 1.1 cherry uvm_physseg_t upm;
1233 1.8 riastrad paddr_t off = 0, start __diagused, end;
1234 1.1 cherry struct uvm_physseg *seg;
1235 1.1 cherry
1236 1.1 cherry upm = uvm_physseg_find(pfn, &off);
1237 1.1 cherry
1238 1.2 cherry if (!uvm_physseg_valid_p(upm)) {
1239 1.1 cherry printf("%s: Tried to unplug from unknown offset\n", __func__);
1240 1.1 cherry return false;
1241 1.1 cherry }
1242 1.1 cherry
1243 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
1244 1.1 cherry
1245 1.1 cherry start = uvm_physseg_get_start(upm);
1246 1.1 cherry end = uvm_physseg_get_end(upm);
1247 1.1 cherry
1248 1.1 cherry if (end < (pfn + pages)) {
1249 1.1 cherry printf("%s: Tried to unplug oversized span \n", __func__);
1250 1.1 cherry return false;
1251 1.1 cherry }
1252 1.1 cherry
1253 1.1 cherry KASSERT(pfn == start + off); /* sanity */
1254 1.1 cherry
1255 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1256 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1257 1.1 cherry if (extent_free(seg->ext, (u_long)(seg->pgs + off), sizeof(struct vm_page) * pages, EX_MALLOCOK | EX_NOWAIT) != 0)
1258 1.1 cherry return false;
1259 1.1 cherry }
1260 1.1 cherry
1261 1.1 cherry if (off == 0 && (pfn + pages) == end) {
1262 1.1 cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
1263 1.1 cherry int segcount = 0;
1264 1.1 cherry struct uvm_physseg *current_ps;
1265 1.1 cherry /* Complete segment */
1266 1.1 cherry if (uvm_physseg_graph.nentries == 1)
1267 1.1 cherry panic("%s: out of memory!", __func__);
1268 1.1 cherry
1269 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1270 1.1 cherry RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
1271 1.1 cherry if (seg->ext == current_ps->ext)
1272 1.1 cherry segcount++;
1273 1.1 cherry }
1274 1.1 cherry KASSERT(segcount > 0);
1275 1.1 cherry
1276 1.1 cherry if (segcount == 1) {
1277 1.1 cherry extent_destroy(seg->ext);
1278 1.1 cherry }
1279 1.1 cherry
1280 1.1 cherry /*
1281 1.1 cherry * We assume that the unplug will succeed from
1282 1.1 cherry * this point onwards
1283 1.1 cherry */
1284 1.1 cherry uvmexp.npages -= (int) pages;
1285 1.1 cherry }
1286 1.1 cherry
1287 1.1 cherry rb_tree_remove_node(&(uvm_physseg_graph.rb_tree), upm);
1288 1.1 cherry memset(seg, 0, sizeof(struct uvm_physseg));
1289 1.1 cherry uvm_physseg_free(seg, sizeof(struct uvm_physseg));
1290 1.1 cherry uvm_physseg_graph.nentries--;
1291 1.1 cherry #else /* UVM_HOTPLUG */
1292 1.1 cherry int x;
1293 1.1 cherry if (vm_nphysmem == 1)
1294 1.1 cherry panic("uvm_page_physget: out of memory!");
1295 1.1 cherry vm_nphysmem--;
1296 1.1 cherry for (x = upm ; x < vm_nphysmem ; x++)
1297 1.1 cherry /* structure copy */
1298 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
1299 1.1 cherry #endif /* UVM_HOTPLUG */
1300 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1301 1.1 cherry return true;
1302 1.1 cherry }
1303 1.1 cherry
1304 1.1 cherry if (off > 0 &&
1305 1.1 cherry (pfn + pages) < end) {
1306 1.1 cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
1307 1.1 cherry /* middle chunk - need a new segment */
1308 1.1 cherry struct uvm_physseg *ps, *current_ps;
1309 1.1 cherry ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
1310 1.1 cherry if (ps == NULL) {
1311 1.1 cherry printf("%s: Unable to allocated new fragment vm_physseg \n",
1312 1.1 cherry __func__);
1313 1.1 cherry return false;
1314 1.1 cherry }
1315 1.1 cherry
1316 1.1 cherry /* Remove middle chunk */
1317 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1318 1.1 cherry KASSERT(seg->ext != NULL);
1319 1.1 cherry ps->ext = seg->ext;
1320 1.1 cherry
1321 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1322 1.1 cherry /*
1323 1.1 cherry * We assume that the unplug will succeed from
1324 1.1 cherry * this point onwards
1325 1.1 cherry */
1326 1.1 cherry uvmexp.npages -= (int) pages;
1327 1.1 cherry }
1328 1.1 cherry
1329 1.1 cherry ps->start = pfn + pages;
1330 1.1 cherry ps->avail_start = ps->start; /* XXX: Legacy */
1331 1.1 cherry
1332 1.1 cherry ps->end = seg->end;
1333 1.1 cherry ps->avail_end = ps->end; /* XXX: Legacy */
1334 1.1 cherry
1335 1.1 cherry seg->end = pfn;
1336 1.1 cherry seg->avail_end = seg->end; /* XXX: Legacy */
1337 1.1 cherry
1338 1.1 cherry
1339 1.1 cherry /*
1340 1.1 cherry * The new pgs array points to the beginning of the
1341 1.1 cherry * tail fragment.
1342 1.1 cherry */
1343 1.1 cherry if (__predict_true(uvm.page_init_done == true))
1344 1.1 cherry ps->pgs = seg->pgs + off + pages;
1345 1.1 cherry
1346 1.1 cherry current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
1347 1.1 cherry if (current_ps != ps) {
1348 1.1 cherry panic("uvm_page_physload: Duplicate address range detected!");
1349 1.1 cherry }
1350 1.1 cherry uvm_physseg_graph.nentries++;
1351 1.1 cherry #else /* UVM_HOTPLUG */
1352 1.1 cherry panic("%s: can't unplug() from the middle of a segment without"
1353 1.7 uwe " UVM_HOTPLUG\n", __func__);
1354 1.1 cherry /* NOTREACHED */
1355 1.1 cherry #endif /* UVM_HOTPLUG */
1356 1.1 cherry return true;
1357 1.1 cherry }
1358 1.1 cherry
1359 1.1 cherry if (off == 0 && (pfn + pages) < end) {
1360 1.1 cherry /* Remove front chunk */
1361 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1362 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1363 1.1 cherry /*
1364 1.1 cherry * We assume that the unplug will succeed from
1365 1.1 cherry * this point onwards
1366 1.1 cherry */
1367 1.1 cherry uvmexp.npages -= (int) pages;
1368 1.1 cherry }
1369 1.1 cherry
1370 1.1 cherry /* Truncate */
1371 1.1 cherry seg->start = pfn + pages;
1372 1.1 cherry seg->avail_start = seg->start; /* XXX: Legacy */
1373 1.1 cherry
1374 1.1 cherry /*
1375 1.1 cherry * Move the pgs array start to the beginning of the
1376 1.1 cherry * tail end.
1377 1.1 cherry */
1378 1.1 cherry if (__predict_true(uvm.page_init_done == true))
1379 1.1 cherry seg->pgs += pages;
1380 1.1 cherry
1381 1.1 cherry return true;
1382 1.1 cherry }
1383 1.1 cherry
1384 1.1 cherry if (off > 0 && (pfn + pages) == end) {
1385 1.1 cherry /* back chunk */
1386 1.1 cherry
1387 1.1 cherry
1388 1.1 cherry /* Truncate! */
1389 1.1 cherry seg->end = pfn;
1390 1.1 cherry seg->avail_end = seg->end; /* XXX: Legacy */
1391 1.1 cherry
1392 1.1 cherry uvmexp.npages -= (int) pages;
1393 1.1 cherry
1394 1.1 cherry return true;
1395 1.1 cherry }
1396 1.1 cherry
1397 1.1 cherry printf("%s: Tried to unplug unknown range \n", __func__);
1398 1.1 cherry
1399 1.1 cherry return false;
1400 1.1 cherry }
1401