Home | History | Annotate | Line # | Download | only in uvm
uvm_physseg.c revision 1.17.20.1
      1  1.17.20.1    martin /* $NetBSD: uvm_physseg.c,v 1.17.20.1 2024/01/15 14:15:54 martin Exp $ */
      2        1.1    cherry 
      3        1.1    cherry /*
      4        1.1    cherry  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5        1.1    cherry  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6        1.1    cherry  *
      7        1.1    cherry  * All rights reserved.
      8        1.1    cherry  *
      9        1.1    cherry  * This code is derived from software contributed to Berkeley by
     10        1.1    cherry  * The Mach Operating System project at Carnegie-Mellon University.
     11        1.1    cherry  *
     12        1.1    cherry  * Redistribution and use in source and binary forms, with or without
     13        1.1    cherry  * modification, are permitted provided that the following conditions
     14        1.1    cherry  * are met:
     15        1.1    cherry  * 1. Redistributions of source code must retain the above copyright
     16        1.1    cherry  *    notice, this list of conditions and the following disclaimer.
     17        1.1    cherry  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.1    cherry  *    notice, this list of conditions and the following disclaimer in the
     19        1.1    cherry  *    documentation and/or other materials provided with the distribution.
     20        1.1    cherry  * 3. Neither the name of the University nor the names of its contributors
     21        1.1    cherry  *    may be used to endorse or promote products derived from this software
     22        1.1    cherry  *    without specific prior written permission.
     23        1.1    cherry  *
     24        1.1    cherry  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25        1.1    cherry  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26        1.1    cherry  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27        1.1    cherry  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28        1.1    cherry  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29        1.1    cherry  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30        1.1    cherry  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31        1.1    cherry  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32        1.1    cherry  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33        1.1    cherry  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34        1.1    cherry  * SUCH DAMAGE.
     35        1.1    cherry  *
     36        1.1    cherry  *	@(#)vm_page.h   7.3 (Berkeley) 4/21/91
     37        1.1    cherry  * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
     38        1.1    cherry  *
     39        1.1    cherry  *
     40        1.1    cherry  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41        1.1    cherry  * All rights reserved.
     42        1.1    cherry  *
     43        1.1    cherry  * Permission to use, copy, modify and distribute this software and
     44        1.1    cherry  * its documentation is hereby granted, provided that both the copyright
     45        1.1    cherry  * notice and this permission notice appear in all copies of the
     46        1.1    cherry  * software, derivative works or modified versions, and any portions
     47        1.1    cherry  * thereof, and that both notices appear in supporting documentation.
     48        1.1    cherry  *
     49        1.1    cherry  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50        1.1    cherry  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51        1.1    cherry  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52        1.1    cherry  *
     53        1.1    cherry  * Carnegie Mellon requests users of this software to return to
     54        1.1    cherry  *
     55        1.1    cherry  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56        1.1    cherry  *  School of Computer Science
     57        1.1    cherry  *  Carnegie Mellon University
     58        1.1    cherry  *  Pittsburgh PA 15213-3890
     59        1.1    cherry  *
     60        1.1    cherry  * any improvements or extensions that they make and grant Carnegie the
     61        1.1    cherry  * rights to redistribute these changes.
     62        1.1    cherry  */
     63        1.1    cherry 
     64        1.1    cherry /*
     65        1.1    cherry  * Consolidated API from uvm_page.c and others.
     66        1.1    cherry  * Consolidated and designed by Cherry G. Mathew <cherry (at) zyx.in>
     67        1.1    cherry  * rbtree(3) backing implementation by:
     68        1.1    cherry  * Santhosh N. Raju <santhosh.raju (at) gmail.com>
     69        1.1    cherry  */
     70        1.1    cherry 
     71        1.1    cherry #ifdef _KERNEL_OPT
     72        1.1    cherry #include "opt_uvm.h"
     73        1.1    cherry #endif
     74        1.1    cherry 
     75        1.1    cherry #include <sys/param.h>
     76        1.1    cherry #include <sys/types.h>
     77        1.1    cherry #include <sys/extent.h>
     78        1.1    cherry #include <sys/kmem.h>
     79        1.1    cherry 
     80        1.1    cherry #include <uvm/uvm.h>
     81        1.1    cherry #include <uvm/uvm_page.h>
     82        1.1    cherry #include <uvm/uvm_param.h>
     83        1.1    cherry #include <uvm/uvm_pdpolicy.h>
     84        1.1    cherry #include <uvm/uvm_physseg.h>
     85        1.1    cherry 
     86        1.1    cherry /*
     87        1.1    cherry  * uvm_physseg: describes one segment of physical memory
     88        1.1    cherry  */
     89        1.1    cherry struct uvm_physseg {
     90       1.14        ad 	/* used during RB tree lookup for PHYS_TO_VM_PAGE(). */
     91        1.1    cherry 	struct  rb_node rb_node;	/* tree information */
     92        1.1    cherry 	paddr_t	start;			/* PF# of first page in segment */
     93        1.1    cherry 	paddr_t	end;			/* (PF# of last page in segment) + 1 */
     94       1.14        ad 	struct	vm_page *pgs;		/* vm_page structures (from start) */
     95       1.14        ad 
     96       1.14        ad 	/* less performance sensitive fields. */
     97        1.1    cherry 	paddr_t	avail_start;		/* PF# of first free page in segment */
     98        1.1    cherry 	paddr_t	avail_end;		/* (PF# of last free page in segment) +1  */
     99        1.1    cherry 	struct  extent *ext;		/* extent(9) structure to manage pgs[] */
    100        1.1    cherry 	int	free_list;		/* which free list they belong on */
    101  1.17.20.1    martin 	u_long	start_hint;		/* start looking for free pages here */
    102        1.1    cherry #ifdef __HAVE_PMAP_PHYSSEG
    103        1.1    cherry 	struct	pmap_physseg pmseg;	/* pmap specific (MD) data */
    104        1.1    cherry #endif
    105        1.1    cherry };
    106        1.1    cherry 
    107        1.1    cherry /*
    108        1.1    cherry  * These functions are reserved for uvm(9) internal use and are not
    109        1.1    cherry  * exported in the header file uvm_physseg.h
    110        1.1    cherry  *
    111        1.1    cherry  * Thus they are redefined here.
    112        1.1    cherry  */
    113        1.1    cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    114        1.1    cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    115        1.1    cherry 
    116        1.1    cherry /* returns a pgs array */
    117        1.1    cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    118        1.1    cherry 
    119        1.1    cherry #if defined(UVM_HOTPLUG) /* rbtree impementation */
    120        1.1    cherry 
    121        1.1    cherry #define		HANDLE_TO_PHYSSEG_NODE(h)	((struct uvm_physseg *)(h))
    122        1.1    cherry #define		PHYSSEG_NODE_TO_HANDLE(u)	((uvm_physseg_t)(u))
    123        1.1    cherry 
    124        1.1    cherry struct uvm_physseg_graph {
    125        1.1    cherry 	struct rb_tree rb_tree;		/* Tree for entries */
    126        1.1    cherry 	int            nentries;	/* Number of entries */
    127       1.14        ad } __aligned(COHERENCY_UNIT);
    128        1.1    cherry 
    129       1.14        ad static struct uvm_physseg_graph uvm_physseg_graph __read_mostly;
    130        1.1    cherry 
    131        1.1    cherry /*
    132        1.1    cherry  * Note on kmem(9) allocator usage:
    133        1.1    cherry  * We take the conservative approach that plug/unplug are allowed to
    134        1.1    cherry  * fail in high memory stress situations.
    135        1.1    cherry  *
    136        1.1    cherry  * We want to avoid re-entrant situations in which one plug/unplug
    137        1.1    cherry  * operation is waiting on a previous one to complete, since this
    138        1.1    cherry  * makes the design more complicated than necessary.
    139        1.1    cherry  *
    140        1.1    cherry  * We may review this and change its behaviour, once the use cases
    141        1.1    cherry  * become more obvious.
    142        1.1    cherry  */
    143        1.1    cherry 
    144        1.1    cherry /*
    145        1.1    cherry  * Special alloc()/free() functions for boot time support:
    146        1.1    cherry  * We assume that alloc() at boot time is only for new 'vm_physseg's
    147        1.1    cherry  * This allows us to use a static array for memory allocation at boot
    148        1.1    cherry  * time. Thus we avoid using kmem(9) which is not ready at this point
    149        1.1    cherry  * in boot.
    150        1.1    cherry  *
    151        1.1    cherry  * After kmem(9) is ready, we use it. We currently discard any free()s
    152        1.1    cherry  * to this static array, since the size is small enough to be a
    153        1.1    cherry  * trivial waste on all architectures we run on.
    154        1.1    cherry  */
    155        1.1    cherry 
    156        1.1    cherry static size_t nseg = 0;
    157        1.1    cherry static struct uvm_physseg uvm_physseg[VM_PHYSSEG_MAX];
    158        1.1    cherry 
    159        1.1    cherry static void *
    160        1.1    cherry uvm_physseg_alloc(size_t sz)
    161        1.1    cherry {
    162        1.1    cherry 	/*
    163        1.1    cherry 	 * During boot time, we only support allocating vm_physseg
    164        1.1    cherry 	 * entries from the static array.
    165        1.1    cherry 	 * We need to assert for this.
    166        1.1    cherry 	 */
    167        1.1    cherry 
    168        1.1    cherry 	if (__predict_false(uvm.page_init_done == false)) {
    169        1.1    cherry 		if (sz % sizeof(struct uvm_physseg))
    170        1.1    cherry 			panic("%s: tried to alloc size other than multiple"
    171        1.7       uwe 			    " of struct uvm_physseg at boot\n", __func__);
    172        1.1    cherry 
    173        1.1    cherry 		size_t n = sz / sizeof(struct uvm_physseg);
    174        1.1    cherry 		nseg += n;
    175        1.1    cherry 
    176        1.1    cherry 		KASSERT(nseg > 0 && nseg <= VM_PHYSSEG_MAX);
    177        1.1    cherry 
    178        1.1    cherry 		return &uvm_physseg[nseg - n];
    179        1.1    cherry 	}
    180        1.1    cherry 
    181        1.1    cherry 	return kmem_zalloc(sz, KM_NOSLEEP);
    182        1.1    cherry }
    183        1.1    cherry 
    184        1.1    cherry static void
    185        1.1    cherry uvm_physseg_free(void *p, size_t sz)
    186        1.1    cherry {
    187        1.1    cherry 	/*
    188        1.1    cherry 	 * This is a bit tricky. We do allow simulation of free()
    189        1.1    cherry 	 * during boot (for eg: when MD code is "steal"ing memory,
    190        1.1    cherry 	 * and the segment has been exhausted (and thus needs to be
    191        1.1    cherry 	 * free() - ed.
    192        1.1    cherry 	 * free() also complicates things because we leak the
    193        1.1    cherry 	 * free(). Therefore calling code can't assume that free()-ed
    194        1.1    cherry 	 * memory is available for alloc() again, at boot time.
    195        1.1    cherry 	 *
    196        1.1    cherry 	 * Thus we can't explicitly disallow free()s during
    197        1.1    cherry 	 * boot time. However, the same restriction for alloc()
    198        1.1    cherry 	 * applies to free(). We only allow uvm_physseg related free()s
    199        1.1    cherry 	 * via this function during boot time.
    200        1.1    cherry 	 */
    201        1.1    cherry 
    202        1.1    cherry 	if (__predict_false(uvm.page_init_done == false)) {
    203        1.1    cherry 		if (sz % sizeof(struct uvm_physseg))
    204        1.1    cherry 			panic("%s: tried to free size other than struct uvm_physseg"
    205        1.7       uwe 			    " at boot\n", __func__);
    206        1.1    cherry 
    207        1.1    cherry 	}
    208        1.1    cherry 
    209        1.1    cherry 	/*
    210        1.1    cherry 	 * Could have been in a single if(){} block - split for
    211        1.1    cherry 	 * clarity
    212        1.1    cherry 	 */
    213        1.1    cherry 
    214        1.1    cherry 	if ((struct uvm_physseg *)p >= uvm_physseg &&
    215        1.1    cherry 	    (struct uvm_physseg *)p < (uvm_physseg + VM_PHYSSEG_MAX)) {
    216        1.1    cherry 		if (sz % sizeof(struct uvm_physseg))
    217        1.1    cherry 			panic("%s: tried to free() other than struct uvm_physseg"
    218        1.7       uwe 			    " from static array\n", __func__);
    219        1.1    cherry 
    220        1.1    cherry 		if ((sz / sizeof(struct uvm_physseg)) >= VM_PHYSSEG_MAX)
    221        1.1    cherry 			panic("%s: tried to free() the entire static array!", __func__);
    222        1.1    cherry 		return; /* Nothing to free */
    223        1.1    cherry 	}
    224        1.1    cherry 
    225        1.1    cherry 	kmem_free(p, sz);
    226        1.1    cherry }
    227        1.1    cherry 
    228        1.1    cherry /* XXX: Multi page size */
    229        1.1    cherry bool
    230        1.1    cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
    231        1.1    cherry {
    232        1.1    cherry 	int preload;
    233        1.1    cherry 	size_t slabpages;
    234        1.1    cherry 	struct uvm_physseg *ps, *current_ps = NULL;
    235        1.1    cherry 	struct vm_page *slab = NULL, *pgs = NULL;
    236        1.1    cherry 
    237        1.1    cherry #ifdef DEBUG
    238        1.1    cherry 	paddr_t off;
    239        1.1    cherry 	uvm_physseg_t upm;
    240        1.1    cherry 	upm = uvm_physseg_find(pfn, &off);
    241        1.1    cherry 
    242        1.1    cherry 	ps = HANDLE_TO_PHYSSEG_NODE(upm);
    243        1.1    cherry 
    244        1.1    cherry 	if (ps != NULL) /* XXX; do we allow "update" plugs ? */
    245        1.1    cherry 		return false;
    246        1.1    cherry #endif
    247        1.1    cherry 
    248        1.1    cherry 	/*
    249        1.1    cherry 	 * do we have room?
    250        1.1    cherry 	 */
    251        1.1    cherry 
    252        1.1    cherry 	ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
    253        1.1    cherry 	if (ps == NULL) {
    254        1.1    cherry 		printf("uvm_page_physload: unable to load physical memory "
    255        1.1    cherry 		    "segment\n");
    256        1.1    cherry 		printf("\t%d segments allocated, ignoring 0x%"PRIxPADDR" -> 0x%"PRIxPADDR"\n",
    257        1.1    cherry 		    VM_PHYSSEG_MAX, pfn, pfn + pages + 1);
    258        1.1    cherry 		printf("\tincrease VM_PHYSSEG_MAX\n");
    259        1.1    cherry 		return false;
    260        1.1    cherry 	}
    261        1.1    cherry 
    262        1.1    cherry 	/* span init */
    263        1.1    cherry 	ps->start = pfn;
    264        1.1    cherry 	ps->end = pfn + pages;
    265        1.1    cherry 
    266        1.1    cherry 	/*
    267        1.1    cherry 	 * XXX: Ugly hack because uvmexp.npages accounts for only
    268        1.1    cherry 	 * those pages in the segment included below as well - this
    269        1.1    cherry 	 * should be legacy and removed.
    270        1.1    cherry 	 */
    271        1.1    cherry 
    272        1.1    cherry 	ps->avail_start = ps->start;
    273        1.1    cherry 	ps->avail_end = ps->end;
    274        1.1    cherry 
    275        1.1    cherry 	/*
    276        1.1    cherry 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    277        1.1    cherry 	 * called yet, so kmem is not available).
    278        1.1    cherry 	 */
    279        1.1    cherry 
    280        1.1    cherry 	preload = 1; /* We are going to assume it is a preload */
    281        1.1    cherry 
    282        1.1    cherry 	RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
    283        1.1    cherry 		/* If there are non NULL pages then we are not in a preload */
    284        1.1    cherry 		if (current_ps->pgs != NULL) {
    285        1.1    cherry 			preload = 0;
    286        1.1    cherry 			/* Try to scavenge from earlier unplug()s. */
    287        1.1    cherry 			pgs = uvm_physseg_seg_alloc_from_slab(current_ps, pages);
    288        1.1    cherry 
    289        1.1    cherry 			if (pgs != NULL) {
    290        1.1    cherry 				break;
    291        1.1    cherry 			}
    292        1.1    cherry 		}
    293        1.1    cherry 	}
    294        1.1    cherry 
    295        1.1    cherry 
    296        1.1    cherry 	/*
    297        1.1    cherry 	 * if VM is already running, attempt to kmem_alloc vm_page structures
    298        1.1    cherry 	 */
    299        1.1    cherry 
    300        1.1    cherry 	if (!preload) {
    301        1.1    cherry 		if (pgs == NULL) { /* Brand new */
    302        1.1    cherry 			/* Iteratively try alloc down from uvmexp.npages */
    303        1.1    cherry 			for (slabpages = (size_t) uvmexp.npages; slabpages >= pages; slabpages--) {
    304        1.1    cherry 				slab = kmem_zalloc(sizeof *pgs * (long unsigned int)slabpages, KM_NOSLEEP);
    305        1.1    cherry 				if (slab != NULL)
    306        1.1    cherry 					break;
    307        1.1    cherry 			}
    308        1.1    cherry 
    309        1.1    cherry 			if (slab == NULL) {
    310        1.1    cherry 				uvm_physseg_free(ps, sizeof(struct uvm_physseg));
    311        1.1    cherry 				return false;
    312        1.1    cherry 			}
    313        1.1    cherry 
    314        1.1    cherry 			uvm_physseg_seg_chomp_slab(ps, slab, (size_t) slabpages);
    315        1.1    cherry 			/* We allocate enough for this plug */
    316        1.1    cherry 			pgs = uvm_physseg_seg_alloc_from_slab(ps, pages);
    317        1.1    cherry 
    318        1.1    cherry 			if (pgs == NULL) {
    319        1.1    cherry 				printf("unable to uvm_physseg_seg_alloc_from_slab() from backend\n");
    320        1.1    cherry 				return false;
    321        1.1    cherry 			}
    322        1.1    cherry 		} else {
    323        1.1    cherry 			/* Reuse scavenged extent */
    324        1.1    cherry 			ps->ext = current_ps->ext;
    325        1.1    cherry 		}
    326        1.1    cherry 
    327        1.1    cherry 		physmem += pages;
    328        1.1    cherry 		uvmpdpol_reinit();
    329        1.1    cherry 	} else { /* Boot time - see uvm_page.c:uvm_page_init() */
    330        1.1    cherry 		pgs = NULL;
    331        1.1    cherry 		ps->pgs = pgs;
    332        1.1    cherry 	}
    333        1.1    cherry 
    334        1.1    cherry 	/*
    335        1.1    cherry 	 * now insert us in the proper place in uvm_physseg_graph.rb_tree
    336        1.1    cherry 	 */
    337        1.1    cherry 
    338        1.1    cherry 	current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
    339        1.1    cherry 	if (current_ps != ps) {
    340        1.1    cherry 		panic("uvm_page_physload: Duplicate address range detected!");
    341        1.1    cherry 	}
    342        1.1    cherry 	uvm_physseg_graph.nentries++;
    343        1.1    cherry 
    344        1.1    cherry 	/*
    345        1.1    cherry 	 * uvm_pagefree() requires the PHYS_TO_VM_PAGE(pgs[i]) on the
    346        1.1    cherry 	 * newly allocated pgs[] to return the correct value. This is
    347        1.1    cherry 	 * a bit of a chicken and egg problem, since it needs
    348        1.1    cherry 	 * uvm_physseg_find() to succeed. For this, the node needs to
    349        1.1    cherry 	 * be inserted *before* uvm_physseg_init_seg() happens.
    350        1.1    cherry 	 *
    351        1.1    cherry 	 * During boot, this happens anyway, since
    352        1.1    cherry 	 * uvm_physseg_init_seg() is called later on and separately
    353        1.1    cherry 	 * from uvm_page.c:uvm_page_init().
    354        1.1    cherry 	 * In the case of hotplug we need to ensure this.
    355        1.1    cherry 	 */
    356        1.1    cherry 
    357        1.1    cherry 	if (__predict_true(!preload))
    358        1.1    cherry 		uvm_physseg_init_seg(ps, pgs);
    359        1.1    cherry 
    360        1.1    cherry 	if (psp != NULL)
    361        1.1    cherry 		*psp = ps;
    362        1.1    cherry 
    363        1.1    cherry 	return true;
    364        1.1    cherry }
    365        1.1    cherry 
    366        1.1    cherry static int
    367        1.1    cherry uvm_physseg_compare_nodes(void *ctx, const void *nnode1, const void *nnode2)
    368        1.1    cherry {
    369        1.1    cherry 	const struct uvm_physseg *enode1 = nnode1;
    370        1.1    cherry 	const struct uvm_physseg *enode2 = nnode2;
    371        1.1    cherry 
    372        1.1    cherry 	KASSERT(enode1->start < enode2->start || enode1->start >= enode2->end);
    373        1.1    cherry 	KASSERT(enode2->start < enode1->start || enode2->start >= enode1->end);
    374        1.1    cherry 
    375        1.1    cherry 	if (enode1->start < enode2->start)
    376        1.1    cherry 		return -1;
    377        1.1    cherry 	if (enode1->start >= enode2->end)
    378        1.1    cherry 		return 1;
    379        1.1    cherry 	return 0;
    380        1.1    cherry }
    381        1.1    cherry 
    382        1.1    cherry static int
    383        1.1    cherry uvm_physseg_compare_key(void *ctx, const void *nnode, const void *pkey)
    384        1.1    cherry {
    385        1.1    cherry 	const struct uvm_physseg *enode = nnode;
    386        1.1    cherry 	const paddr_t pa = *(const paddr_t *) pkey;
    387        1.1    cherry 
    388        1.1    cherry 	if(enode->start <= pa && pa < enode->end)
    389        1.1    cherry 		return 0;
    390        1.1    cherry 	if (enode->start < pa)
    391        1.1    cherry 		return -1;
    392        1.1    cherry 	if (enode->end > pa)
    393        1.1    cherry 		return 1;
    394        1.1    cherry 
    395        1.1    cherry 	return 0;
    396        1.1    cherry }
    397        1.1    cherry 
    398        1.1    cherry static const rb_tree_ops_t uvm_physseg_tree_ops = {
    399        1.1    cherry 	.rbto_compare_nodes = uvm_physseg_compare_nodes,
    400        1.1    cherry 	.rbto_compare_key = uvm_physseg_compare_key,
    401        1.1    cherry 	.rbto_node_offset = offsetof(struct uvm_physseg, rb_node),
    402        1.1    cherry 	.rbto_context = NULL
    403        1.1    cherry };
    404        1.1    cherry 
    405        1.1    cherry /*
    406        1.1    cherry  * uvm_physseg_init: init the physmem
    407        1.1    cherry  *
    408        1.1    cherry  * => physmem unit should not be in use at this point
    409        1.1    cherry  */
    410        1.1    cherry 
    411        1.1    cherry void
    412        1.1    cherry uvm_physseg_init(void)
    413        1.1    cherry {
    414        1.1    cherry 	rb_tree_init(&(uvm_physseg_graph.rb_tree), &uvm_physseg_tree_ops);
    415        1.1    cherry 	uvm_physseg_graph.nentries = 0;
    416        1.1    cherry }
    417        1.1    cherry 
    418        1.1    cherry uvm_physseg_t
    419        1.1    cherry uvm_physseg_get_next(uvm_physseg_t upm)
    420        1.1    cherry {
    421        1.1    cherry 	/* next of invalid is invalid, not fatal */
    422        1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
    423        1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID;
    424        1.1    cherry 
    425        1.1    cherry 	return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
    426        1.1    cherry 	    RB_DIR_RIGHT);
    427        1.1    cherry }
    428        1.1    cherry 
    429        1.1    cherry uvm_physseg_t
    430        1.1    cherry uvm_physseg_get_prev(uvm_physseg_t upm)
    431        1.1    cherry {
    432        1.1    cherry 	/* prev of invalid is invalid, not fatal */
    433        1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
    434        1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID;
    435        1.1    cherry 
    436        1.1    cherry 	return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
    437        1.1    cherry 	    RB_DIR_LEFT);
    438        1.1    cherry }
    439        1.1    cherry 
    440        1.1    cherry uvm_physseg_t
    441        1.1    cherry uvm_physseg_get_last(void)
    442        1.1    cherry {
    443        1.1    cherry 	return (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
    444        1.1    cherry }
    445        1.1    cherry 
    446        1.1    cherry uvm_physseg_t
    447        1.1    cherry uvm_physseg_get_first(void)
    448        1.1    cherry {
    449        1.1    cherry 	return (uvm_physseg_t) RB_TREE_MIN(&(uvm_physseg_graph.rb_tree));
    450        1.1    cherry }
    451        1.1    cherry 
    452        1.1    cherry paddr_t
    453        1.1    cherry uvm_physseg_get_highest_frame(void)
    454        1.1    cherry {
    455        1.1    cherry 	struct uvm_physseg *ps =
    456        1.1    cherry 	    (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
    457        1.1    cherry 
    458        1.1    cherry 	return ps->end - 1;
    459        1.1    cherry }
    460        1.1    cherry 
    461        1.1    cherry /*
    462        1.1    cherry  * uvm_page_physunload: unload physical memory and return it to
    463        1.1    cherry  * caller.
    464        1.1    cherry  */
    465        1.1    cherry bool
    466        1.1    cherry uvm_page_physunload(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
    467        1.1    cherry {
    468        1.1    cherry 	struct uvm_physseg *seg;
    469        1.1    cherry 
    470        1.1    cherry 	if (__predict_true(uvm.page_init_done == true))
    471        1.1    cherry 		panic("%s: unload attempted after uvm_page_init()\n", __func__);
    472        1.1    cherry 
    473        1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
    474        1.1    cherry 
    475        1.1    cherry 	if (seg->free_list != freelist) {
    476        1.1    cherry 		return false;
    477        1.1    cherry 	}
    478        1.1    cherry 
    479        1.1    cherry 	/*
    480        1.1    cherry 	 * During cold boot, what we're about to unplug hasn't been
    481        1.1    cherry 	 * put on the uvm freelist, nor has uvmexp.npages been
    482        1.1    cherry 	 * updated. (This happens in uvm_page.c:uvm_page_init())
    483        1.1    cherry 	 *
    484        1.1    cherry 	 * For hotplug, we assume here that the pages being unloaded
    485        1.1    cherry 	 * here are completely out of sight of uvm (ie; not on any uvm
    486        1.1    cherry 	 * lists), and that  uvmexp.npages has been suitably
    487        1.1    cherry 	 * decremented before we're called.
    488        1.1    cherry 	 *
    489        1.1    cherry 	 * XXX: will avail_end == start if avail_start < avail_end?
    490        1.1    cherry 	 */
    491        1.1    cherry 
    492        1.1    cherry 	/* try from front */
    493        1.1    cherry 	if (seg->avail_start == seg->start &&
    494        1.1    cherry 	    seg->avail_start < seg->avail_end) {
    495        1.1    cherry 		*paddrp = ctob(seg->avail_start);
    496        1.1    cherry 		return uvm_physseg_unplug(seg->avail_start, 1);
    497        1.1    cherry 	}
    498        1.1    cherry 
    499        1.1    cherry 	/* try from rear */
    500        1.1    cherry 	if (seg->avail_end == seg->end &&
    501        1.1    cherry 	    seg->avail_start < seg->avail_end) {
    502        1.1    cherry 		*paddrp = ctob(seg->avail_end - 1);
    503        1.1    cherry 		return uvm_physseg_unplug(seg->avail_end - 1, 1);
    504        1.1    cherry 	}
    505        1.1    cherry 
    506        1.1    cherry 	return false;
    507        1.1    cherry }
    508        1.1    cherry 
    509        1.1    cherry bool
    510        1.1    cherry uvm_page_physunload_force(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
    511        1.1    cherry {
    512        1.1    cherry 	struct uvm_physseg *seg;
    513        1.1    cherry 
    514        1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
    515        1.1    cherry 
    516        1.1    cherry 	if (__predict_true(uvm.page_init_done == true))
    517        1.1    cherry 		panic("%s: unload attempted after uvm_page_init()\n", __func__);
    518        1.1    cherry 	/* any room in this bank? */
    519        1.1    cherry 	if (seg->avail_start >= seg->avail_end) {
    520        1.1    cherry 		return false; /* nope */
    521        1.1    cherry 	}
    522        1.1    cherry 
    523        1.1    cherry 	*paddrp = ctob(seg->avail_start);
    524        1.1    cherry 
    525        1.1    cherry 	/* Always unplug from front */
    526        1.1    cherry 	return uvm_physseg_unplug(seg->avail_start, 1);
    527        1.1    cherry }
    528        1.1    cherry 
    529        1.1    cherry 
    530        1.1    cherry /*
    531        1.1    cherry  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    532        1.1    cherry  */
    533        1.1    cherry uvm_physseg_t
    534        1.1    cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
    535        1.1    cherry {
    536        1.1    cherry 	struct uvm_physseg * ps = NULL;
    537        1.1    cherry 
    538        1.1    cherry 	ps = rb_tree_find_node(&(uvm_physseg_graph.rb_tree), &pframe);
    539        1.1    cherry 
    540        1.1    cherry 	if(ps != NULL && offp != NULL)
    541        1.1    cherry 		*offp = pframe - ps->start;
    542        1.1    cherry 
    543        1.1    cherry 	return ps;
    544        1.1    cherry }
    545        1.1    cherry 
    546        1.1    cherry #else  /* UVM_HOTPLUG */
    547        1.1    cherry 
    548        1.1    cherry /*
    549        1.1    cherry  * physical memory config is stored in vm_physmem.
    550        1.1    cherry  */
    551        1.1    cherry 
    552        1.1    cherry #define	VM_PHYSMEM_PTR(i)	(&vm_physmem[i])
    553        1.1    cherry #if VM_PHYSSEG_MAX == 1
    554        1.1    cherry #define VM_PHYSMEM_PTR_SWAP(i, j) /* impossible */
    555        1.1    cherry #else
    556        1.1    cherry #define VM_PHYSMEM_PTR_SWAP(i, j)					      \
    557        1.1    cherry 	do { vm_physmem[(i)] = vm_physmem[(j)]; } while (0)
    558        1.1    cherry #endif
    559        1.1    cherry 
    560        1.1    cherry #define		HANDLE_TO_PHYSSEG_NODE(h)	(VM_PHYSMEM_PTR((int)h))
    561        1.1    cherry #define		PHYSSEG_NODE_TO_HANDLE(u)	((int)((vsize_t) (u - vm_physmem) / sizeof(struct uvm_physseg)))
    562        1.1    cherry 
    563        1.1    cherry static struct uvm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    564        1.1    cherry static int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    565        1.1    cherry #define	vm_nphysmem	vm_nphysseg
    566        1.1    cherry 
    567        1.1    cherry void
    568        1.1    cherry uvm_physseg_init(void)
    569        1.1    cherry {
    570        1.1    cherry 	/* XXX: Provisioning for rb_tree related init(s) */
    571        1.1    cherry 	return;
    572        1.1    cherry }
    573        1.1    cherry 
    574        1.1    cherry int
    575        1.1    cherry uvm_physseg_get_next(uvm_physseg_t lcv)
    576        1.1    cherry {
    577        1.1    cherry 	/* next of invalid is invalid, not fatal */
    578        1.2    cherry 	if (uvm_physseg_valid_p(lcv) == false)
    579        1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID;
    580        1.1    cherry 
    581        1.1    cherry 	return (lcv + 1);
    582        1.1    cherry }
    583        1.1    cherry 
    584        1.1    cherry int
    585        1.1    cherry uvm_physseg_get_prev(uvm_physseg_t lcv)
    586        1.1    cherry {
    587        1.1    cherry 	/* prev of invalid is invalid, not fatal */
    588        1.2    cherry 	if (uvm_physseg_valid_p(lcv) == false)
    589        1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID;
    590        1.1    cherry 
    591        1.1    cherry 	return (lcv - 1);
    592        1.1    cherry }
    593        1.1    cherry 
    594        1.1    cherry int
    595        1.1    cherry uvm_physseg_get_last(void)
    596        1.1    cherry {
    597        1.1    cherry 	return (vm_nphysseg - 1);
    598        1.1    cherry }
    599        1.1    cherry 
    600        1.1    cherry int
    601        1.1    cherry uvm_physseg_get_first(void)
    602        1.1    cherry {
    603        1.1    cherry 	return 0;
    604        1.1    cherry }
    605        1.1    cherry 
    606        1.1    cherry paddr_t
    607        1.1    cherry uvm_physseg_get_highest_frame(void)
    608        1.1    cherry {
    609        1.1    cherry 	int lcv;
    610        1.1    cherry 	paddr_t last = 0;
    611        1.1    cherry 	struct uvm_physseg *ps;
    612        1.1    cherry 
    613        1.1    cherry 	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
    614        1.1    cherry 		ps = VM_PHYSMEM_PTR(lcv);
    615        1.1    cherry 		if (last < ps->end)
    616        1.1    cherry 			last = ps->end;
    617        1.1    cherry 	}
    618        1.1    cherry 
    619        1.1    cherry 	return last;
    620        1.1    cherry }
    621        1.1    cherry 
    622        1.1    cherry 
    623        1.1    cherry static struct vm_page *
    624        1.1    cherry uvm_post_preload_check(void)
    625        1.1    cherry {
    626        1.1    cherry 	int preload, lcv;
    627        1.1    cherry 
    628        1.1    cherry 	/*
    629        1.1    cherry 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    630        1.1    cherry 	 * called yet, so kmem is not available).
    631        1.1    cherry 	 */
    632        1.1    cherry 
    633        1.1    cherry 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    634        1.1    cherry 		if (VM_PHYSMEM_PTR(lcv)->pgs)
    635        1.1    cherry 			break;
    636        1.1    cherry 	}
    637        1.1    cherry 	preload = (lcv == vm_nphysmem);
    638        1.1    cherry 
    639        1.1    cherry 	/*
    640        1.1    cherry 	 * if VM is already running, attempt to kmem_alloc vm_page structures
    641        1.1    cherry 	 */
    642        1.1    cherry 
    643        1.1    cherry 	if (!preload) {
    644        1.1    cherry 		panic("Tried to add RAM after uvm_page_init");
    645        1.1    cherry 	}
    646        1.1    cherry 
    647        1.1    cherry 	return NULL;
    648        1.1    cherry }
    649        1.1    cherry 
    650        1.1    cherry /*
    651        1.1    cherry  * uvm_page_physunload: unload physical memory and return it to
    652        1.1    cherry  * caller.
    653        1.1    cherry  */
    654        1.1    cherry bool
    655        1.1    cherry uvm_page_physunload(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
    656        1.1    cherry {
    657        1.1    cherry 	int x;
    658        1.1    cherry 	struct uvm_physseg *seg;
    659        1.1    cherry 
    660        1.1    cherry 	uvm_post_preload_check();
    661        1.1    cherry 
    662        1.1    cherry 	seg = VM_PHYSMEM_PTR(psi);
    663        1.1    cherry 
    664        1.1    cherry 	if (seg->free_list != freelist) {
    665        1.1    cherry 		return false;
    666        1.1    cherry 	}
    667        1.1    cherry 
    668        1.1    cherry 	/* try from front */
    669        1.1    cherry 	if (seg->avail_start == seg->start &&
    670        1.1    cherry 	    seg->avail_start < seg->avail_end) {
    671        1.1    cherry 		*paddrp = ctob(seg->avail_start);
    672        1.1    cherry 		seg->avail_start++;
    673        1.1    cherry 		seg->start++;
    674        1.1    cherry 		/* nothing left?   nuke it */
    675        1.1    cherry 		if (seg->avail_start == seg->end) {
    676        1.1    cherry 			if (vm_nphysmem == 1)
    677        1.1    cherry 				panic("uvm_page_physget: out of memory!");
    678        1.1    cherry 			vm_nphysmem--;
    679        1.1    cherry 			for (x = psi ; x < vm_nphysmem ; x++)
    680        1.1    cherry 				/* structure copy */
    681        1.1    cherry 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    682        1.1    cherry 		}
    683        1.1    cherry 		return (true);
    684        1.1    cherry 	}
    685        1.1    cherry 
    686        1.1    cherry 	/* try from rear */
    687        1.1    cherry 	if (seg->avail_end == seg->end &&
    688        1.1    cherry 	    seg->avail_start < seg->avail_end) {
    689        1.1    cherry 		*paddrp = ctob(seg->avail_end - 1);
    690        1.1    cherry 		seg->avail_end--;
    691        1.1    cherry 		seg->end--;
    692        1.1    cherry 		/* nothing left?   nuke it */
    693        1.1    cherry 		if (seg->avail_end == seg->start) {
    694        1.1    cherry 			if (vm_nphysmem == 1)
    695        1.1    cherry 				panic("uvm_page_physget: out of memory!");
    696        1.1    cherry 			vm_nphysmem--;
    697        1.1    cherry 			for (x = psi ; x < vm_nphysmem ; x++)
    698        1.1    cherry 				/* structure copy */
    699        1.1    cherry 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    700        1.1    cherry 		}
    701        1.1    cherry 		return (true);
    702        1.1    cherry 	}
    703        1.1    cherry 
    704        1.1    cherry 	return false;
    705        1.1    cherry }
    706        1.1    cherry 
    707        1.1    cherry bool
    708        1.1    cherry uvm_page_physunload_force(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
    709        1.1    cherry {
    710        1.1    cherry 	int x;
    711        1.1    cherry 	struct uvm_physseg *seg;
    712        1.1    cherry 
    713        1.1    cherry 	uvm_post_preload_check();
    714        1.1    cherry 
    715        1.1    cherry 	seg = VM_PHYSMEM_PTR(psi);
    716        1.1    cherry 
    717        1.1    cherry 	/* any room in this bank? */
    718        1.1    cherry 	if (seg->avail_start >= seg->avail_end) {
    719        1.1    cherry 		return false; /* nope */
    720        1.1    cherry 	}
    721        1.1    cherry 
    722        1.1    cherry 	*paddrp = ctob(seg->avail_start);
    723        1.1    cherry 	seg->avail_start++;
    724        1.1    cherry 	/* truncate! */
    725        1.1    cherry 	seg->start = seg->avail_start;
    726        1.1    cherry 
    727        1.1    cherry 	/* nothing left?   nuke it */
    728        1.1    cherry 	if (seg->avail_start == seg->end) {
    729        1.1    cherry 		if (vm_nphysmem == 1)
    730        1.1    cherry 			panic("uvm_page_physget: out of memory!");
    731        1.1    cherry 		vm_nphysmem--;
    732        1.1    cherry 		for (x = psi ; x < vm_nphysmem ; x++)
    733        1.1    cherry 			/* structure copy */
    734        1.1    cherry 			VM_PHYSMEM_PTR_SWAP(x, x + 1);
    735        1.1    cherry 	}
    736        1.1    cherry 	return (true);
    737        1.1    cherry }
    738        1.1    cherry 
    739        1.1    cherry bool
    740        1.1    cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
    741        1.1    cherry {
    742        1.1    cherry 	int lcv;
    743        1.1    cherry 	struct vm_page *pgs;
    744        1.1    cherry 	struct uvm_physseg *ps;
    745        1.1    cherry 
    746        1.1    cherry #ifdef DEBUG
    747        1.1    cherry 	paddr_t off;
    748        1.1    cherry 	uvm_physseg_t upm;
    749        1.1    cherry 	upm = uvm_physseg_find(pfn, &off);
    750        1.1    cherry 
    751        1.2    cherry 	if (uvm_physseg_valid_p(upm)) /* XXX; do we allow "update" plugs ? */
    752        1.1    cherry 		return false;
    753        1.1    cherry #endif
    754        1.1    cherry 
    755        1.1    cherry 	paddr_t start = pfn;
    756        1.1    cherry 	paddr_t end = pfn + pages;
    757        1.1    cherry 	paddr_t avail_start = start;
    758        1.1    cherry 	paddr_t avail_end = end;
    759        1.1    cherry 
    760        1.1    cherry 	if (uvmexp.pagesize == 0)
    761        1.1    cherry 		panic("uvm_page_physload: page size not set!");
    762        1.1    cherry 
    763        1.1    cherry 	/*
    764        1.1    cherry 	 * do we have room?
    765        1.1    cherry 	 */
    766        1.1    cherry 
    767        1.1    cherry 	if (vm_nphysmem == VM_PHYSSEG_MAX) {
    768        1.1    cherry 		printf("uvm_page_physload: unable to load physical memory "
    769        1.1    cherry 		    "segment\n");
    770        1.1    cherry 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    771        1.1    cherry 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    772        1.1    cherry 		printf("\tincrease VM_PHYSSEG_MAX\n");
    773        1.1    cherry 		if (psp != NULL)
    774        1.1    cherry 			*psp = UVM_PHYSSEG_TYPE_INVALID_OVERFLOW;
    775        1.1    cherry 		return false;
    776        1.1    cherry 	}
    777        1.1    cherry 
    778        1.1    cherry 	/*
    779        1.1    cherry 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    780        1.1    cherry 	 * called yet, so kmem is not available).
    781        1.1    cherry 	 */
    782        1.1    cherry 	pgs = uvm_post_preload_check();
    783        1.1    cherry 
    784        1.1    cherry 	/*
    785        1.1    cherry 	 * now insert us in the proper place in vm_physmem[]
    786        1.1    cherry 	 */
    787        1.1    cherry 
    788        1.1    cherry #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    789        1.1    cherry 	/* random: put it at the end (easy!) */
    790        1.1    cherry 	ps = VM_PHYSMEM_PTR(vm_nphysmem);
    791        1.3    cherry 	lcv = vm_nphysmem;
    792        1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    793        1.1    cherry 	{
    794        1.1    cherry 		int x;
    795        1.1    cherry 		/* sort by address for binary search */
    796        1.1    cherry 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    797        1.1    cherry 			if (start < VM_PHYSMEM_PTR(lcv)->start)
    798        1.1    cherry 				break;
    799        1.1    cherry 		ps = VM_PHYSMEM_PTR(lcv);
    800        1.1    cherry 		/* move back other entries, if necessary ... */
    801        1.1    cherry 		for (x = vm_nphysmem ; x > lcv ; x--)
    802        1.1    cherry 			/* structure copy */
    803        1.1    cherry 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    804        1.1    cherry 	}
    805        1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    806        1.1    cherry 	{
    807        1.1    cherry 		int x;
    808        1.1    cherry 		/* sort by largest segment first */
    809        1.1    cherry 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    810        1.1    cherry 			if ((end - start) >
    811        1.1    cherry 			    (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
    812        1.1    cherry 				break;
    813        1.1    cherry 		ps = VM_PHYSMEM_PTR(lcv);
    814        1.1    cherry 		/* move back other entries, if necessary ... */
    815        1.1    cherry 		for (x = vm_nphysmem ; x > lcv ; x--)
    816        1.1    cherry 			/* structure copy */
    817        1.1    cherry 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    818        1.1    cherry 	}
    819        1.1    cherry #else
    820        1.1    cherry 	panic("uvm_page_physload: unknown physseg strategy selected!");
    821        1.1    cherry #endif
    822        1.1    cherry 
    823        1.1    cherry 	ps->start = start;
    824        1.1    cherry 	ps->end = end;
    825        1.1    cherry 	ps->avail_start = avail_start;
    826        1.1    cherry 	ps->avail_end = avail_end;
    827        1.1    cherry 
    828        1.1    cherry 	ps->pgs = pgs;
    829        1.1    cherry 
    830        1.1    cherry 	vm_nphysmem++;
    831        1.1    cherry 
    832        1.1    cherry 	if (psp != NULL)
    833        1.1    cherry 		*psp = lcv;
    834        1.1    cherry 
    835        1.1    cherry 	return true;
    836        1.1    cherry }
    837        1.1    cherry 
    838        1.1    cherry /*
    839        1.1    cherry  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
    840        1.1    cherry  */
    841        1.1    cherry 
    842        1.1    cherry #if VM_PHYSSEG_MAX == 1
    843        1.1    cherry static inline int vm_physseg_find_contig(struct uvm_physseg *, int, paddr_t, psize_t *);
    844        1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    845        1.1    cherry static inline int vm_physseg_find_bsearch(struct uvm_physseg *, int, paddr_t, psize_t *);
    846        1.1    cherry #else
    847        1.1    cherry static inline int vm_physseg_find_linear(struct uvm_physseg *, int, paddr_t, psize_t *);
    848        1.1    cherry #endif
    849        1.1    cherry 
    850        1.1    cherry /*
    851        1.1    cherry  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    852        1.1    cherry  */
    853        1.1    cherry int
    854        1.1    cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
    855        1.1    cherry {
    856        1.1    cherry 
    857        1.1    cherry #if VM_PHYSSEG_MAX == 1
    858        1.1    cherry 	return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
    859        1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    860        1.1    cherry 	return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
    861        1.1    cherry #else
    862        1.1    cherry 	return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
    863        1.1    cherry #endif
    864        1.1    cherry }
    865        1.1    cherry 
    866        1.1    cherry #if VM_PHYSSEG_MAX == 1
    867        1.1    cherry static inline int
    868        1.1    cherry vm_physseg_find_contig(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
    869        1.1    cherry {
    870        1.1    cherry 
    871        1.1    cherry 	/* 'contig' case */
    872        1.1    cherry 	if (pframe >= segs[0].start && pframe < segs[0].end) {
    873        1.1    cherry 		if (offp)
    874        1.1    cherry 			*offp = pframe - segs[0].start;
    875        1.1    cherry 		return(0);
    876        1.1    cherry 	}
    877        1.1    cherry 	return(-1);
    878        1.1    cherry }
    879        1.1    cherry 
    880        1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    881        1.1    cherry 
    882        1.1    cherry static inline int
    883        1.1    cherry vm_physseg_find_bsearch(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
    884        1.1    cherry {
    885        1.1    cherry 	/* binary search for it */
    886        1.1    cherry 	int	start, len, guess;
    887        1.1    cherry 
    888        1.1    cherry 	/*
    889        1.1    cherry 	 * if try is too large (thus target is less than try) we reduce
    890        1.1    cherry 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
    891        1.1    cherry 	 *
    892        1.1    cherry 	 * if the try is too small (thus target is greater than try) then
    893        1.1    cherry 	 * we set the new start to be (try + 1).   this means we need to
    894        1.1    cherry 	 * reduce the length to (round(len/2) - 1).
    895        1.1    cherry 	 *
    896        1.1    cherry 	 * note "adjust" below which takes advantage of the fact that
    897        1.1    cherry 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
    898        1.1    cherry 	 * for any value of len we may have
    899        1.1    cherry 	 */
    900        1.1    cherry 
    901        1.1    cherry 	for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
    902        1.1    cherry 		guess = start + (len / 2);	/* try in the middle */
    903        1.1    cherry 
    904        1.1    cherry 		/* start past our try? */
    905        1.1    cherry 		if (pframe >= segs[guess].start) {
    906        1.1    cherry 			/* was try correct? */
    907        1.1    cherry 			if (pframe < segs[guess].end) {
    908        1.1    cherry 				if (offp)
    909        1.1    cherry 					*offp = pframe - segs[guess].start;
    910        1.1    cherry 				return guess;            /* got it */
    911        1.1    cherry 			}
    912        1.1    cherry 			start = guess + 1;	/* next time, start here */
    913        1.1    cherry 			len--;			/* "adjust" */
    914        1.1    cherry 		} else {
    915        1.1    cherry 			/*
    916        1.1    cherry 			 * pframe before try, just reduce length of
    917        1.1    cherry 			 * region, done in "for" loop
    918        1.1    cherry 			 */
    919        1.1    cherry 		}
    920        1.1    cherry 	}
    921        1.1    cherry 	return(-1);
    922        1.1    cherry }
    923        1.1    cherry 
    924        1.1    cherry #else
    925        1.1    cherry 
    926        1.1    cherry static inline int
    927        1.1    cherry vm_physseg_find_linear(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
    928        1.1    cherry {
    929        1.1    cherry 	/* linear search for it */
    930        1.1    cherry 	int	lcv;
    931        1.1    cherry 
    932        1.1    cherry 	for (lcv = 0; lcv < nsegs; lcv++) {
    933        1.1    cherry 		if (pframe >= segs[lcv].start &&
    934        1.1    cherry 		    pframe < segs[lcv].end) {
    935        1.1    cherry 			if (offp)
    936        1.1    cherry 				*offp = pframe - segs[lcv].start;
    937        1.1    cherry 			return(lcv);		   /* got it */
    938        1.1    cherry 		}
    939        1.1    cherry 	}
    940        1.1    cherry 	return(-1);
    941        1.1    cherry }
    942        1.1    cherry #endif
    943        1.1    cherry #endif /* UVM_HOTPLUG */
    944        1.1    cherry 
    945        1.1    cherry bool
    946        1.2    cherry uvm_physseg_valid_p(uvm_physseg_t upm)
    947        1.1    cherry {
    948        1.1    cherry 	struct uvm_physseg *ps;
    949        1.1    cherry 
    950        1.1    cherry 	if (upm == UVM_PHYSSEG_TYPE_INVALID ||
    951        1.1    cherry 	    upm == UVM_PHYSSEG_TYPE_INVALID_EMPTY ||
    952        1.1    cherry 	    upm == UVM_PHYSSEG_TYPE_INVALID_OVERFLOW)
    953        1.1    cherry 		return false;
    954        1.1    cherry 
    955        1.1    cherry 	/*
    956        1.1    cherry 	 * This is the delicate init dance -
    957        1.1    cherry 	 * needs to go with the dance.
    958        1.1    cherry 	 */
    959        1.1    cherry 	if (uvm.page_init_done != true)
    960        1.1    cherry 		return true;
    961        1.1    cherry 
    962        1.1    cherry 	ps = HANDLE_TO_PHYSSEG_NODE(upm);
    963        1.1    cherry 
    964        1.1    cherry 	/* Extra checks needed only post uvm_page_init() */
    965        1.1    cherry 	if (ps->pgs == NULL)
    966        1.1    cherry 		return false;
    967        1.1    cherry 
    968        1.1    cherry 	/* XXX: etc. */
    969        1.1    cherry 
    970        1.1    cherry 	return true;
    971        1.1    cherry 
    972        1.1    cherry }
    973        1.1    cherry 
    974        1.1    cherry /*
    975        1.1    cherry  * Boot protocol dictates that these must be able to return partially
    976        1.1    cherry  * initialised segments.
    977        1.1    cherry  */
    978        1.1    cherry paddr_t
    979        1.1    cherry uvm_physseg_get_start(uvm_physseg_t upm)
    980        1.1    cherry {
    981        1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
    982        1.1    cherry 		return (paddr_t) -1;
    983        1.1    cherry 
    984        1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->start;
    985        1.1    cherry }
    986        1.1    cherry 
    987        1.1    cherry paddr_t
    988        1.1    cherry uvm_physseg_get_end(uvm_physseg_t upm)
    989        1.1    cherry {
    990        1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
    991        1.1    cherry 		return (paddr_t) -1;
    992        1.1    cherry 
    993        1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->end;
    994        1.1    cherry }
    995        1.1    cherry 
    996        1.1    cherry paddr_t
    997        1.1    cherry uvm_physseg_get_avail_start(uvm_physseg_t upm)
    998        1.1    cherry {
    999        1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
   1000        1.1    cherry 		return (paddr_t) -1;
   1001        1.1    cherry 
   1002        1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->avail_start;
   1003        1.1    cherry }
   1004        1.1    cherry 
   1005        1.6       rin #if defined(UVM_PHYSSEG_LEGACY)
   1006        1.4  christos void
   1007        1.4  christos uvm_physseg_set_avail_start(uvm_physseg_t upm, paddr_t avail_start)
   1008        1.4  christos {
   1009        1.5    cherry 	struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
   1010        1.5    cherry 
   1011        1.5    cherry #if defined(DIAGNOSTIC)
   1012        1.5    cherry 	paddr_t avail_end;
   1013        1.5    cherry 	avail_end = uvm_physseg_get_avail_end(upm);
   1014        1.4  christos 	KASSERT(uvm_physseg_valid_p(upm));
   1015        1.5    cherry 	KASSERT(avail_start < avail_end && avail_start >= ps->start);
   1016        1.5    cherry #endif
   1017        1.5    cherry 
   1018        1.5    cherry 	ps->avail_start = avail_start;
   1019        1.4  christos }
   1020       1.12        ad 
   1021       1.12        ad void
   1022       1.12        ad uvm_physseg_set_avail_end(uvm_physseg_t upm, paddr_t avail_end)
   1023        1.5    cherry {
   1024        1.5    cherry 	struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
   1025        1.5    cherry 
   1026        1.5    cherry #if defined(DIAGNOSTIC)
   1027        1.5    cherry 	paddr_t avail_start;
   1028        1.5    cherry 	avail_start = uvm_physseg_get_avail_start(upm);
   1029        1.5    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1030        1.5    cherry 	KASSERT(avail_end > avail_start && avail_end <= ps->end);
   1031        1.4  christos #endif
   1032        1.4  christos 
   1033        1.5    cherry 	ps->avail_end = avail_end;
   1034        1.5    cherry }
   1035        1.5    cherry 
   1036        1.6       rin #endif /* UVM_PHYSSEG_LEGACY */
   1037        1.5    cherry 
   1038        1.1    cherry paddr_t
   1039        1.1    cherry uvm_physseg_get_avail_end(uvm_physseg_t upm)
   1040        1.1    cherry {
   1041        1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
   1042        1.1    cherry 		return (paddr_t) -1;
   1043        1.1    cherry 
   1044        1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->avail_end;
   1045        1.1    cherry }
   1046        1.1    cherry 
   1047        1.1    cherry struct vm_page *
   1048        1.1    cherry uvm_physseg_get_pg(uvm_physseg_t upm, paddr_t idx)
   1049        1.1    cherry {
   1050        1.2    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1051        1.1    cherry 	return &HANDLE_TO_PHYSSEG_NODE(upm)->pgs[idx];
   1052        1.1    cherry }
   1053        1.1    cherry 
   1054        1.1    cherry #ifdef __HAVE_PMAP_PHYSSEG
   1055        1.1    cherry struct pmap_physseg *
   1056        1.1    cherry uvm_physseg_get_pmseg(uvm_physseg_t upm)
   1057        1.1    cherry {
   1058        1.2    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1059        1.1    cherry 	return &(HANDLE_TO_PHYSSEG_NODE(upm)->pmseg);
   1060        1.1    cherry }
   1061        1.1    cherry #endif
   1062        1.1    cherry 
   1063        1.1    cherry int
   1064        1.1    cherry uvm_physseg_get_free_list(uvm_physseg_t upm)
   1065        1.1    cherry {
   1066        1.2    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1067        1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->free_list;
   1068        1.1    cherry }
   1069        1.1    cherry 
   1070  1.17.20.1    martin u_long
   1071        1.1    cherry uvm_physseg_get_start_hint(uvm_physseg_t upm)
   1072        1.1    cherry {
   1073        1.2    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1074        1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->start_hint;
   1075        1.1    cherry }
   1076        1.1    cherry 
   1077        1.1    cherry bool
   1078  1.17.20.1    martin uvm_physseg_set_start_hint(uvm_physseg_t upm, u_long start_hint)
   1079        1.1    cherry {
   1080        1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
   1081        1.1    cherry 		return false;
   1082        1.1    cherry 
   1083        1.1    cherry 	HANDLE_TO_PHYSSEG_NODE(upm)->start_hint = start_hint;
   1084        1.1    cherry 	return true;
   1085        1.1    cherry }
   1086        1.1    cherry 
   1087        1.1    cherry void
   1088        1.1    cherry uvm_physseg_init_seg(uvm_physseg_t upm, struct vm_page *pgs)
   1089        1.1    cherry {
   1090        1.1    cherry 	psize_t i;
   1091        1.1    cherry 	psize_t n;
   1092        1.1    cherry 	paddr_t paddr;
   1093        1.1    cherry 	struct uvm_physseg *seg;
   1094       1.11        ad 	struct vm_page *pg;
   1095        1.1    cherry 
   1096        1.1    cherry 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID && pgs != NULL);
   1097        1.1    cherry 
   1098        1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1099        1.1    cherry 	KASSERT(seg != NULL);
   1100        1.1    cherry 	KASSERT(seg->pgs == NULL);
   1101        1.1    cherry 
   1102        1.1    cherry 	n = seg->end - seg->start;
   1103        1.1    cherry 	seg->pgs = pgs;
   1104        1.1    cherry 
   1105        1.1    cherry 	/* init and free vm_pages (we've already zeroed them) */
   1106        1.1    cherry 	paddr = ctob(seg->start);
   1107        1.1    cherry 	for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
   1108       1.13        ad 		pg = &seg->pgs[i];
   1109       1.13        ad 		pg->phys_addr = paddr;
   1110        1.1    cherry #ifdef __HAVE_VM_PAGE_MD
   1111       1.13        ad 		VM_MDPAGE_INIT(pg);
   1112        1.1    cherry #endif
   1113        1.1    cherry 		if (atop(paddr) >= seg->avail_start &&
   1114        1.1    cherry 		    atop(paddr) < seg->avail_end) {
   1115        1.1    cherry 			uvmexp.npages++;
   1116        1.1    cherry 			/* add page to free pool */
   1117       1.13        ad 			uvm_page_set_freelist(pg,
   1118       1.13        ad 			    uvm_page_lookup_freelist(pg));
   1119       1.11        ad 			/* Disable LOCKDEBUG: too many and too early. */
   1120       1.11        ad 			mutex_init(&pg->interlock, MUTEX_NODEBUG, IPL_NONE);
   1121       1.11        ad 			uvm_pagefree(pg);
   1122        1.1    cherry 		}
   1123        1.1    cherry 	}
   1124        1.1    cherry }
   1125        1.1    cherry 
   1126        1.1    cherry void
   1127        1.1    cherry uvm_physseg_seg_chomp_slab(uvm_physseg_t upm, struct vm_page *pgs, size_t n)
   1128        1.1    cherry {
   1129        1.1    cherry 	struct uvm_physseg *seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1130        1.1    cherry 
   1131        1.1    cherry 	/* max number of pre-boot unplug()s allowed */
   1132        1.1    cherry #define UVM_PHYSSEG_BOOT_UNPLUG_MAX VM_PHYSSEG_MAX
   1133        1.1    cherry 
   1134        1.1    cherry 	static char btslab_ex_storage[EXTENT_FIXED_STORAGE_SIZE(UVM_PHYSSEG_BOOT_UNPLUG_MAX)];
   1135        1.1    cherry 
   1136        1.1    cherry 	if (__predict_false(uvm.page_init_done == false)) {
   1137        1.1    cherry 		seg->ext = extent_create("Boot time slab", (u_long) pgs, (u_long) (pgs + n),
   1138        1.1    cherry 		    (void *)btslab_ex_storage, sizeof(btslab_ex_storage), 0);
   1139        1.1    cherry 	} else {
   1140        1.1    cherry 		seg->ext = extent_create("Hotplug slab", (u_long) pgs, (u_long) (pgs + n), NULL, 0, 0);
   1141        1.1    cherry 	}
   1142        1.1    cherry 
   1143        1.1    cherry 	KASSERT(seg->ext != NULL);
   1144        1.1    cherry 
   1145        1.1    cherry }
   1146        1.1    cherry 
   1147        1.1    cherry struct vm_page *
   1148        1.1    cherry uvm_physseg_seg_alloc_from_slab(uvm_physseg_t upm, size_t pages)
   1149        1.1    cherry {
   1150        1.1    cherry 	int err;
   1151        1.1    cherry 	struct uvm_physseg *seg;
   1152        1.1    cherry 	struct vm_page *pgs = NULL;
   1153        1.1    cherry 
   1154        1.9  christos 	KASSERT(pages > 0);
   1155        1.9  christos 
   1156        1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1157        1.1    cherry 
   1158        1.1    cherry 	if (__predict_false(seg->ext == NULL)) {
   1159        1.1    cherry 		/*
   1160        1.1    cherry 		 * This is a situation unique to boot time.
   1161        1.1    cherry 		 * It shouldn't happen at any point other than from
   1162        1.1    cherry 		 * the first uvm_page.c:uvm_page_init() call
   1163        1.1    cherry 		 * Since we're in a loop, we can get away with the
   1164        1.1    cherry 		 * below.
   1165        1.1    cherry 		 */
   1166        1.1    cherry 		KASSERT(uvm.page_init_done != true);
   1167        1.1    cherry 
   1168        1.9  christos 		uvm_physseg_t upmp = uvm_physseg_get_prev(upm);
   1169        1.9  christos 		KASSERT(upmp != UVM_PHYSSEG_TYPE_INVALID);
   1170        1.9  christos 
   1171        1.9  christos 		seg->ext = HANDLE_TO_PHYSSEG_NODE(upmp)->ext;
   1172        1.1    cherry 
   1173        1.1    cherry 		KASSERT(seg->ext != NULL);
   1174        1.1    cherry 	}
   1175        1.1    cherry 
   1176        1.1    cherry 	/* We allocate enough for this segment */
   1177        1.1    cherry 	err = extent_alloc(seg->ext, sizeof(*pgs) * pages, 1, 0, EX_BOUNDZERO, (u_long *)&pgs);
   1178        1.1    cherry 
   1179        1.1    cherry 	if (err != 0) {
   1180        1.1    cherry #ifdef DEBUG
   1181        1.1    cherry 		printf("%s: extent_alloc failed with error: %d \n",
   1182        1.1    cherry 		    __func__, err);
   1183        1.1    cherry #endif
   1184        1.1    cherry 	}
   1185        1.1    cherry 
   1186        1.1    cherry 	return pgs;
   1187        1.1    cherry }
   1188        1.1    cherry 
   1189        1.1    cherry /*
   1190        1.1    cherry  * uvm_page_physload: load physical memory into VM system
   1191        1.1    cherry  *
   1192        1.1    cherry  * => all args are PFs
   1193        1.1    cherry  * => all pages in start/end get vm_page structures
   1194        1.1    cherry  * => areas marked by avail_start/avail_end get added to the free page pool
   1195        1.1    cherry  * => we are limited to VM_PHYSSEG_MAX physical memory segments
   1196        1.1    cherry  */
   1197        1.1    cherry 
   1198        1.1    cherry uvm_physseg_t
   1199        1.1    cherry uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
   1200        1.1    cherry     paddr_t avail_end, int free_list)
   1201        1.1    cherry {
   1202        1.1    cherry 	struct uvm_physseg *ps;
   1203        1.1    cherry 	uvm_physseg_t upm;
   1204        1.1    cherry 
   1205        1.1    cherry 	if (__predict_true(uvm.page_init_done == true))
   1206        1.1    cherry 		panic("%s: unload attempted after uvm_page_init()\n", __func__);
   1207        1.1    cherry 	if (uvmexp.pagesize == 0)
   1208        1.1    cherry 		panic("uvm_page_physload: page size not set!");
   1209        1.1    cherry 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
   1210        1.1    cherry 		panic("uvm_page_physload: bad free list %d", free_list);
   1211        1.1    cherry 	if (start >= end)
   1212       1.17       rin 		panic("uvm_page_physload: start[%" PRIxPADDR "] >= end[%"
   1213       1.17       rin 		    PRIxPADDR "]", start, end);
   1214        1.1    cherry 
   1215        1.1    cherry 	if (uvm_physseg_plug(start, end - start, &upm) == false) {
   1216        1.1    cherry 		panic("uvm_physseg_plug() failed at boot.");
   1217        1.1    cherry 		/* NOTREACHED */
   1218        1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID; /* XXX: correct type */
   1219        1.1    cherry 	}
   1220        1.1    cherry 
   1221        1.1    cherry 	ps = HANDLE_TO_PHYSSEG_NODE(upm);
   1222        1.1    cherry 
   1223        1.1    cherry 	/* Legacy */
   1224        1.1    cherry 	ps->avail_start = avail_start;
   1225        1.1    cherry 	ps->avail_end = avail_end;
   1226        1.1    cherry 
   1227        1.1    cherry 	ps->free_list = free_list; /* XXX: */
   1228        1.1    cherry 
   1229        1.1    cherry 
   1230        1.1    cherry 	return upm;
   1231        1.1    cherry }
   1232        1.1    cherry 
   1233        1.1    cherry bool
   1234        1.1    cherry uvm_physseg_unplug(paddr_t pfn, size_t pages)
   1235        1.1    cherry {
   1236        1.1    cherry 	uvm_physseg_t upm;
   1237        1.8  riastrad 	paddr_t off = 0, start __diagused, end;
   1238        1.1    cherry 	struct uvm_physseg *seg;
   1239        1.1    cherry 
   1240        1.1    cherry 	upm = uvm_physseg_find(pfn, &off);
   1241        1.1    cherry 
   1242        1.2    cherry 	if (!uvm_physseg_valid_p(upm)) {
   1243        1.1    cherry 		printf("%s: Tried to unplug from unknown offset\n", __func__);
   1244        1.1    cherry 		return false;
   1245        1.1    cherry 	}
   1246        1.1    cherry 
   1247        1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1248        1.1    cherry 
   1249        1.1    cherry 	start = uvm_physseg_get_start(upm);
   1250        1.1    cherry 	end = uvm_physseg_get_end(upm);
   1251        1.1    cherry 
   1252        1.1    cherry 	if (end < (pfn + pages)) {
   1253        1.1    cherry 		printf("%s: Tried to unplug oversized span \n", __func__);
   1254        1.1    cherry 		return false;
   1255        1.1    cherry 	}
   1256        1.1    cherry 
   1257        1.1    cherry 	KASSERT(pfn == start + off); /* sanity */
   1258        1.1    cherry 
   1259        1.1    cherry 	if (__predict_true(uvm.page_init_done == true)) {
   1260        1.1    cherry 		/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1261        1.1    cherry 		if (extent_free(seg->ext, (u_long)(seg->pgs + off), sizeof(struct vm_page) * pages, EX_MALLOCOK | EX_NOWAIT) != 0)
   1262        1.1    cherry 			return false;
   1263        1.1    cherry 	}
   1264        1.1    cherry 
   1265        1.1    cherry 	if (off == 0 && (pfn + pages) == end) {
   1266        1.1    cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
   1267        1.1    cherry 		int segcount = 0;
   1268        1.1    cherry 		struct uvm_physseg *current_ps;
   1269        1.1    cherry 		/* Complete segment */
   1270        1.1    cherry 		if (uvm_physseg_graph.nentries == 1)
   1271        1.1    cherry 			panic("%s: out of memory!", __func__);
   1272        1.1    cherry 
   1273        1.1    cherry 		if (__predict_true(uvm.page_init_done == true)) {
   1274        1.1    cherry 			RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
   1275        1.1    cherry 				if (seg->ext == current_ps->ext)
   1276        1.1    cherry 					segcount++;
   1277        1.1    cherry 			}
   1278        1.1    cherry 			KASSERT(segcount > 0);
   1279        1.1    cherry 
   1280        1.1    cherry 			if (segcount == 1) {
   1281        1.1    cherry 				extent_destroy(seg->ext);
   1282        1.1    cherry 			}
   1283        1.1    cherry 
   1284        1.1    cherry 			/*
   1285        1.1    cherry 			 * We assume that the unplug will succeed from
   1286        1.1    cherry 			 *  this point onwards
   1287        1.1    cherry 			 */
   1288        1.1    cherry 			uvmexp.npages -= (int) pages;
   1289        1.1    cherry 		}
   1290        1.1    cherry 
   1291        1.1    cherry 		rb_tree_remove_node(&(uvm_physseg_graph.rb_tree), upm);
   1292        1.1    cherry 		memset(seg, 0, sizeof(struct uvm_physseg));
   1293        1.1    cherry 		uvm_physseg_free(seg, sizeof(struct uvm_physseg));
   1294        1.1    cherry 		uvm_physseg_graph.nentries--;
   1295        1.1    cherry #else /* UVM_HOTPLUG */
   1296        1.1    cherry 		int x;
   1297        1.1    cherry 		if (vm_nphysmem == 1)
   1298        1.1    cherry 			panic("uvm_page_physget: out of memory!");
   1299        1.1    cherry 		vm_nphysmem--;
   1300        1.1    cherry 		for (x = upm ; x < vm_nphysmem ; x++)
   1301        1.1    cherry 			/* structure copy */
   1302        1.1    cherry 			VM_PHYSMEM_PTR_SWAP(x, x + 1);
   1303        1.1    cherry #endif /* UVM_HOTPLUG */
   1304        1.1    cherry 		/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1305        1.1    cherry 		return true;
   1306        1.1    cherry 	}
   1307        1.1    cherry 
   1308        1.1    cherry 	if (off > 0 &&
   1309        1.1    cherry 	    (pfn + pages) < end) {
   1310        1.1    cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
   1311        1.1    cherry 		/* middle chunk - need a new segment */
   1312        1.1    cherry 		struct uvm_physseg *ps, *current_ps;
   1313        1.1    cherry 		ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
   1314        1.1    cherry 		if (ps == NULL) {
   1315        1.1    cherry 			printf("%s: Unable to allocated new fragment vm_physseg \n",
   1316        1.1    cherry 			    __func__);
   1317        1.1    cherry 			return false;
   1318        1.1    cherry 		}
   1319        1.1    cherry 
   1320        1.1    cherry 		/* Remove middle chunk */
   1321        1.1    cherry 		if (__predict_true(uvm.page_init_done == true)) {
   1322        1.1    cherry 			KASSERT(seg->ext != NULL);
   1323        1.1    cherry 			ps->ext = seg->ext;
   1324        1.1    cherry 
   1325        1.1    cherry 			/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1326        1.1    cherry 			/*
   1327        1.1    cherry 			 * We assume that the unplug will succeed from
   1328        1.1    cherry 			 *  this point onwards
   1329        1.1    cherry 			 */
   1330        1.1    cherry 			uvmexp.npages -= (int) pages;
   1331        1.1    cherry 		}
   1332        1.1    cherry 
   1333        1.1    cherry 		ps->start = pfn + pages;
   1334        1.1    cherry 		ps->avail_start = ps->start; /* XXX: Legacy */
   1335        1.1    cherry 
   1336        1.1    cherry 		ps->end = seg->end;
   1337        1.1    cherry 		ps->avail_end = ps->end; /* XXX: Legacy */
   1338        1.1    cherry 
   1339        1.1    cherry 		seg->end = pfn;
   1340        1.1    cherry 		seg->avail_end = seg->end; /* XXX: Legacy */
   1341        1.1    cherry 
   1342        1.1    cherry 
   1343        1.1    cherry 		/*
   1344        1.1    cherry 		 * The new pgs array points to the beginning of the
   1345        1.1    cherry 		 * tail fragment.
   1346        1.1    cherry 		 */
   1347        1.1    cherry 		if (__predict_true(uvm.page_init_done == true))
   1348        1.1    cherry 			ps->pgs = seg->pgs + off + pages;
   1349        1.1    cherry 
   1350        1.1    cherry 		current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
   1351        1.1    cherry 		if (current_ps != ps) {
   1352        1.1    cherry 			panic("uvm_page_physload: Duplicate address range detected!");
   1353        1.1    cherry 		}
   1354        1.1    cherry 		uvm_physseg_graph.nentries++;
   1355        1.1    cherry #else /* UVM_HOTPLUG */
   1356        1.1    cherry 		panic("%s: can't unplug() from the middle of a segment without"
   1357        1.7       uwe 		    " UVM_HOTPLUG\n",  __func__);
   1358        1.1    cherry 		/* NOTREACHED */
   1359        1.1    cherry #endif /* UVM_HOTPLUG */
   1360        1.1    cherry 		return true;
   1361        1.1    cherry 	}
   1362        1.1    cherry 
   1363        1.1    cherry 	if (off == 0 && (pfn + pages) < end) {
   1364        1.1    cherry 		/* Remove front chunk */
   1365        1.1    cherry 		if (__predict_true(uvm.page_init_done == true)) {
   1366        1.1    cherry 			/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1367        1.1    cherry 			/*
   1368        1.1    cherry 			 * We assume that the unplug will succeed from
   1369        1.1    cherry 			 *  this point onwards
   1370        1.1    cherry 			 */
   1371        1.1    cherry 			uvmexp.npages -= (int) pages;
   1372        1.1    cherry 		}
   1373        1.1    cherry 
   1374        1.1    cherry 		/* Truncate */
   1375        1.1    cherry 		seg->start = pfn + pages;
   1376        1.1    cherry 		seg->avail_start = seg->start; /* XXX: Legacy */
   1377        1.1    cherry 
   1378        1.1    cherry 		/*
   1379        1.1    cherry 		 * Move the pgs array start to the beginning of the
   1380        1.1    cherry 		 * tail end.
   1381        1.1    cherry 		 */
   1382        1.1    cherry 		if (__predict_true(uvm.page_init_done == true))
   1383        1.1    cherry 			seg->pgs += pages;
   1384        1.1    cherry 
   1385        1.1    cherry 		return true;
   1386        1.1    cherry 	}
   1387        1.1    cherry 
   1388        1.1    cherry 	if (off > 0 && (pfn + pages) == end) {
   1389        1.1    cherry 		/* back chunk */
   1390        1.1    cherry 
   1391        1.1    cherry 
   1392        1.1    cherry 		/* Truncate! */
   1393        1.1    cherry 		seg->end = pfn;
   1394        1.1    cherry 		seg->avail_end = seg->end; /* XXX: Legacy */
   1395        1.1    cherry 
   1396        1.1    cherry 		uvmexp.npages -= (int) pages;
   1397        1.1    cherry 
   1398        1.1    cherry 		return true;
   1399        1.1    cherry 	}
   1400        1.1    cherry 
   1401        1.1    cherry 	printf("%s: Tried to unplug unknown range \n", __func__);
   1402        1.1    cherry 
   1403        1.1    cherry 	return false;
   1404        1.1    cherry }
   1405