Home | History | Annotate | Line # | Download | only in uvm
uvm_physseg.c revision 1.7
      1  1.7       uwe /* $NetBSD: uvm_physseg.c,v 1.7 2017/02/02 21:22:08 uwe Exp $ */
      2  1.1    cherry 
      3  1.1    cherry /*
      4  1.1    cherry  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.1    cherry  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  1.1    cherry  *
      7  1.1    cherry  * All rights reserved.
      8  1.1    cherry  *
      9  1.1    cherry  * This code is derived from software contributed to Berkeley by
     10  1.1    cherry  * The Mach Operating System project at Carnegie-Mellon University.
     11  1.1    cherry  *
     12  1.1    cherry  * Redistribution and use in source and binary forms, with or without
     13  1.1    cherry  * modification, are permitted provided that the following conditions
     14  1.1    cherry  * are met:
     15  1.1    cherry  * 1. Redistributions of source code must retain the above copyright
     16  1.1    cherry  *    notice, this list of conditions and the following disclaimer.
     17  1.1    cherry  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.1    cherry  *    notice, this list of conditions and the following disclaimer in the
     19  1.1    cherry  *    documentation and/or other materials provided with the distribution.
     20  1.1    cherry  * 3. Neither the name of the University nor the names of its contributors
     21  1.1    cherry  *    may be used to endorse or promote products derived from this software
     22  1.1    cherry  *    without specific prior written permission.
     23  1.1    cherry  *
     24  1.1    cherry  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  1.1    cherry  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  1.1    cherry  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  1.1    cherry  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  1.1    cherry  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  1.1    cherry  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  1.1    cherry  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  1.1    cherry  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  1.1    cherry  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  1.1    cherry  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  1.1    cherry  * SUCH DAMAGE.
     35  1.1    cherry  *
     36  1.1    cherry  *	@(#)vm_page.h   7.3 (Berkeley) 4/21/91
     37  1.1    cherry  * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
     38  1.1    cherry  *
     39  1.1    cherry  *
     40  1.1    cherry  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  1.1    cherry  * All rights reserved.
     42  1.1    cherry  *
     43  1.1    cherry  * Permission to use, copy, modify and distribute this software and
     44  1.1    cherry  * its documentation is hereby granted, provided that both the copyright
     45  1.1    cherry  * notice and this permission notice appear in all copies of the
     46  1.1    cherry  * software, derivative works or modified versions, and any portions
     47  1.1    cherry  * thereof, and that both notices appear in supporting documentation.
     48  1.1    cherry  *
     49  1.1    cherry  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  1.1    cherry  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  1.1    cherry  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  1.1    cherry  *
     53  1.1    cherry  * Carnegie Mellon requests users of this software to return to
     54  1.1    cherry  *
     55  1.1    cherry  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  1.1    cherry  *  School of Computer Science
     57  1.1    cherry  *  Carnegie Mellon University
     58  1.1    cherry  *  Pittsburgh PA 15213-3890
     59  1.1    cherry  *
     60  1.1    cherry  * any improvements or extensions that they make and grant Carnegie the
     61  1.1    cherry  * rights to redistribute these changes.
     62  1.1    cherry  */
     63  1.1    cherry 
     64  1.1    cherry /*
     65  1.1    cherry  * Consolidated API from uvm_page.c and others.
     66  1.1    cherry  * Consolidated and designed by Cherry G. Mathew <cherry (at) zyx.in>
     67  1.1    cherry  * rbtree(3) backing implementation by:
     68  1.1    cherry  * Santhosh N. Raju <santhosh.raju (at) gmail.com>
     69  1.1    cherry  */
     70  1.1    cherry 
     71  1.1    cherry #ifdef _KERNEL_OPT
     72  1.1    cherry #include "opt_uvm.h"
     73  1.1    cherry #endif
     74  1.1    cherry 
     75  1.1    cherry #include <sys/param.h>
     76  1.1    cherry #include <sys/types.h>
     77  1.1    cherry #include <sys/extent.h>
     78  1.1    cherry #include <sys/kmem.h>
     79  1.1    cherry 
     80  1.1    cherry #include <uvm/uvm.h>
     81  1.1    cherry #include <uvm/uvm_page.h>
     82  1.1    cherry #include <uvm/uvm_param.h>
     83  1.1    cherry #include <uvm/uvm_pdpolicy.h>
     84  1.1    cherry #include <uvm/uvm_physseg.h>
     85  1.1    cherry 
     86  1.1    cherry /*
     87  1.1    cherry  * uvm_physseg: describes one segment of physical memory
     88  1.1    cherry  */
     89  1.1    cherry struct uvm_physseg {
     90  1.1    cherry 	struct  rb_node rb_node;	/* tree information */
     91  1.1    cherry 	paddr_t	start;			/* PF# of first page in segment */
     92  1.1    cherry 	paddr_t	end;			/* (PF# of last page in segment) + 1 */
     93  1.1    cherry 	paddr_t	avail_start;		/* PF# of first free page in segment */
     94  1.1    cherry 	paddr_t	avail_end;		/* (PF# of last free page in segment) +1  */
     95  1.1    cherry 	struct	vm_page *pgs;		/* vm_page structures (from start) */
     96  1.1    cherry 	struct  extent *ext;		/* extent(9) structure to manage pgs[] */
     97  1.1    cherry 	int	free_list;		/* which free list they belong on */
     98  1.1    cherry 	u_int	start_hint;		/* start looking for free pages here */
     99  1.1    cherry 					/* protected by uvm_fpageqlock */
    100  1.1    cherry #ifdef __HAVE_PMAP_PHYSSEG
    101  1.1    cherry 	struct	pmap_physseg pmseg;	/* pmap specific (MD) data */
    102  1.1    cherry #endif
    103  1.1    cherry };
    104  1.1    cherry 
    105  1.1    cherry /*
    106  1.1    cherry  * These functions are reserved for uvm(9) internal use and are not
    107  1.1    cherry  * exported in the header file uvm_physseg.h
    108  1.1    cherry  *
    109  1.1    cherry  * Thus they are redefined here.
    110  1.1    cherry  */
    111  1.1    cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    112  1.1    cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    113  1.1    cherry 
    114  1.1    cherry /* returns a pgs array */
    115  1.1    cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    116  1.1    cherry 
    117  1.1    cherry #if defined(UVM_HOTPLUG) /* rbtree impementation */
    118  1.1    cherry 
    119  1.1    cherry #define		HANDLE_TO_PHYSSEG_NODE(h)	((struct uvm_physseg *)(h))
    120  1.1    cherry #define		PHYSSEG_NODE_TO_HANDLE(u)	((uvm_physseg_t)(u))
    121  1.1    cherry 
    122  1.1    cherry struct uvm_physseg_graph {
    123  1.1    cherry 	struct rb_tree rb_tree;		/* Tree for entries */
    124  1.1    cherry 	int            nentries;	/* Number of entries */
    125  1.1    cherry };
    126  1.1    cherry 
    127  1.1    cherry static struct uvm_physseg_graph uvm_physseg_graph;
    128  1.1    cherry 
    129  1.1    cherry /*
    130  1.1    cherry  * Note on kmem(9) allocator usage:
    131  1.1    cherry  * We take the conservative approach that plug/unplug are allowed to
    132  1.1    cherry  * fail in high memory stress situations.
    133  1.1    cherry  *
    134  1.1    cherry  * We want to avoid re-entrant situations in which one plug/unplug
    135  1.1    cherry  * operation is waiting on a previous one to complete, since this
    136  1.1    cherry  * makes the design more complicated than necessary.
    137  1.1    cherry  *
    138  1.1    cherry  * We may review this and change its behaviour, once the use cases
    139  1.1    cherry  * become more obvious.
    140  1.1    cherry  */
    141  1.1    cherry 
    142  1.1    cherry /*
    143  1.1    cherry  * Special alloc()/free() functions for boot time support:
    144  1.1    cherry  * We assume that alloc() at boot time is only for new 'vm_physseg's
    145  1.1    cherry  * This allows us to use a static array for memory allocation at boot
    146  1.1    cherry  * time. Thus we avoid using kmem(9) which is not ready at this point
    147  1.1    cherry  * in boot.
    148  1.1    cherry  *
    149  1.1    cherry  * After kmem(9) is ready, we use it. We currently discard any free()s
    150  1.1    cherry  * to this static array, since the size is small enough to be a
    151  1.1    cherry  * trivial waste on all architectures we run on.
    152  1.1    cherry  */
    153  1.1    cherry 
    154  1.1    cherry static size_t nseg = 0;
    155  1.1    cherry static struct uvm_physseg uvm_physseg[VM_PHYSSEG_MAX];
    156  1.1    cherry 
    157  1.1    cherry static void *
    158  1.1    cherry uvm_physseg_alloc(size_t sz)
    159  1.1    cherry {
    160  1.1    cherry 	/*
    161  1.1    cherry 	 * During boot time, we only support allocating vm_physseg
    162  1.1    cherry 	 * entries from the static array.
    163  1.1    cherry 	 * We need to assert for this.
    164  1.1    cherry 	 */
    165  1.1    cherry 
    166  1.1    cherry 	if (__predict_false(uvm.page_init_done == false)) {
    167  1.1    cherry 		if (sz % sizeof(struct uvm_physseg))
    168  1.1    cherry 			panic("%s: tried to alloc size other than multiple"
    169  1.7       uwe 			    " of struct uvm_physseg at boot\n", __func__);
    170  1.1    cherry 
    171  1.1    cherry 		size_t n = sz / sizeof(struct uvm_physseg);
    172  1.1    cherry 		nseg += n;
    173  1.1    cherry 
    174  1.1    cherry 		KASSERT(nseg > 0 && nseg <= VM_PHYSSEG_MAX);
    175  1.1    cherry 
    176  1.1    cherry 		return &uvm_physseg[nseg - n];
    177  1.1    cherry 	}
    178  1.1    cherry 
    179  1.1    cherry 	return kmem_zalloc(sz, KM_NOSLEEP);
    180  1.1    cherry }
    181  1.1    cherry 
    182  1.1    cherry static void
    183  1.1    cherry uvm_physseg_free(void *p, size_t sz)
    184  1.1    cherry {
    185  1.1    cherry 	/*
    186  1.1    cherry 	 * This is a bit tricky. We do allow simulation of free()
    187  1.1    cherry 	 * during boot (for eg: when MD code is "steal"ing memory,
    188  1.1    cherry 	 * and the segment has been exhausted (and thus needs to be
    189  1.1    cherry 	 * free() - ed.
    190  1.1    cherry 	 * free() also complicates things because we leak the
    191  1.1    cherry 	 * free(). Therefore calling code can't assume that free()-ed
    192  1.1    cherry 	 * memory is available for alloc() again, at boot time.
    193  1.1    cherry 	 *
    194  1.1    cherry 	 * Thus we can't explicitly disallow free()s during
    195  1.1    cherry 	 * boot time. However, the same restriction for alloc()
    196  1.1    cherry 	 * applies to free(). We only allow uvm_physseg related free()s
    197  1.1    cherry 	 * via this function during boot time.
    198  1.1    cherry 	 */
    199  1.1    cherry 
    200  1.1    cherry 	if (__predict_false(uvm.page_init_done == false)) {
    201  1.1    cherry 		if (sz % sizeof(struct uvm_physseg))
    202  1.1    cherry 			panic("%s: tried to free size other than struct uvm_physseg"
    203  1.7       uwe 			    " at boot\n", __func__);
    204  1.1    cherry 
    205  1.1    cherry 	}
    206  1.1    cherry 
    207  1.1    cherry 	/*
    208  1.1    cherry 	 * Could have been in a single if(){} block - split for
    209  1.1    cherry 	 * clarity
    210  1.1    cherry 	 */
    211  1.1    cherry 
    212  1.1    cherry 	if ((struct uvm_physseg *)p >= uvm_physseg &&
    213  1.1    cherry 	    (struct uvm_physseg *)p < (uvm_physseg + VM_PHYSSEG_MAX)) {
    214  1.1    cherry 		if (sz % sizeof(struct uvm_physseg))
    215  1.1    cherry 			panic("%s: tried to free() other than struct uvm_physseg"
    216  1.7       uwe 			    " from static array\n", __func__);
    217  1.1    cherry 
    218  1.1    cherry 		if ((sz / sizeof(struct uvm_physseg)) >= VM_PHYSSEG_MAX)
    219  1.1    cherry 			panic("%s: tried to free() the entire static array!", __func__);
    220  1.1    cherry 		return; /* Nothing to free */
    221  1.1    cherry 	}
    222  1.1    cherry 
    223  1.1    cherry 	kmem_free(p, sz);
    224  1.1    cherry }
    225  1.1    cherry 
    226  1.1    cherry /* XXX: Multi page size */
    227  1.1    cherry bool
    228  1.1    cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
    229  1.1    cherry {
    230  1.1    cherry 	int preload;
    231  1.1    cherry 	size_t slabpages;
    232  1.1    cherry 	struct uvm_physseg *ps, *current_ps = NULL;
    233  1.1    cherry 	struct vm_page *slab = NULL, *pgs = NULL;
    234  1.1    cherry 
    235  1.1    cherry #ifdef DEBUG
    236  1.1    cherry 	paddr_t off;
    237  1.1    cherry 	uvm_physseg_t upm;
    238  1.1    cherry 	upm = uvm_physseg_find(pfn, &off);
    239  1.1    cherry 
    240  1.1    cherry 	ps = HANDLE_TO_PHYSSEG_NODE(upm);
    241  1.1    cherry 
    242  1.1    cherry 	if (ps != NULL) /* XXX; do we allow "update" plugs ? */
    243  1.1    cherry 		return false;
    244  1.1    cherry #endif
    245  1.1    cherry 
    246  1.1    cherry 	/*
    247  1.1    cherry 	 * do we have room?
    248  1.1    cherry 	 */
    249  1.1    cherry 
    250  1.1    cherry 	ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
    251  1.1    cherry 	if (ps == NULL) {
    252  1.1    cherry 		printf("uvm_page_physload: unable to load physical memory "
    253  1.1    cherry 		    "segment\n");
    254  1.1    cherry 		printf("\t%d segments allocated, ignoring 0x%"PRIxPADDR" -> 0x%"PRIxPADDR"\n",
    255  1.1    cherry 		    VM_PHYSSEG_MAX, pfn, pfn + pages + 1);
    256  1.1    cherry 		printf("\tincrease VM_PHYSSEG_MAX\n");
    257  1.1    cherry 		return false;
    258  1.1    cherry 	}
    259  1.1    cherry 
    260  1.1    cherry 	/* span init */
    261  1.1    cherry 	ps->start = pfn;
    262  1.1    cherry 	ps->end = pfn + pages;
    263  1.1    cherry 
    264  1.1    cherry 	/*
    265  1.1    cherry 	 * XXX: Ugly hack because uvmexp.npages accounts for only
    266  1.1    cherry 	 * those pages in the segment included below as well - this
    267  1.1    cherry 	 * should be legacy and removed.
    268  1.1    cherry 	 */
    269  1.1    cherry 
    270  1.1    cherry 	ps->avail_start = ps->start;
    271  1.1    cherry 	ps->avail_end = ps->end;
    272  1.1    cherry 
    273  1.1    cherry 	/*
    274  1.1    cherry 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    275  1.1    cherry 	 * called yet, so kmem is not available).
    276  1.1    cherry 	 */
    277  1.1    cherry 
    278  1.1    cherry 	preload = 1; /* We are going to assume it is a preload */
    279  1.1    cherry 
    280  1.1    cherry 	RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
    281  1.1    cherry 		/* If there are non NULL pages then we are not in a preload */
    282  1.1    cherry 		if (current_ps->pgs != NULL) {
    283  1.1    cherry 			preload = 0;
    284  1.1    cherry 			/* Try to scavenge from earlier unplug()s. */
    285  1.1    cherry 			pgs = uvm_physseg_seg_alloc_from_slab(current_ps, pages);
    286  1.1    cherry 
    287  1.1    cherry 			if (pgs != NULL) {
    288  1.1    cherry 				break;
    289  1.1    cherry 			}
    290  1.1    cherry 		}
    291  1.1    cherry 	}
    292  1.1    cherry 
    293  1.1    cherry 
    294  1.1    cherry 	/*
    295  1.1    cherry 	 * if VM is already running, attempt to kmem_alloc vm_page structures
    296  1.1    cherry 	 */
    297  1.1    cherry 
    298  1.1    cherry 	if (!preload) {
    299  1.1    cherry 		if (pgs == NULL) { /* Brand new */
    300  1.1    cherry 			/* Iteratively try alloc down from uvmexp.npages */
    301  1.1    cherry 			for (slabpages = (size_t) uvmexp.npages; slabpages >= pages; slabpages--) {
    302  1.1    cherry 				slab = kmem_zalloc(sizeof *pgs * (long unsigned int)slabpages, KM_NOSLEEP);
    303  1.1    cherry 				if (slab != NULL)
    304  1.1    cherry 					break;
    305  1.1    cherry 			}
    306  1.1    cherry 
    307  1.1    cherry 			if (slab == NULL) {
    308  1.1    cherry 				uvm_physseg_free(ps, sizeof(struct uvm_physseg));
    309  1.1    cherry 				return false;
    310  1.1    cherry 			}
    311  1.1    cherry 
    312  1.1    cherry 			uvm_physseg_seg_chomp_slab(ps, slab, (size_t) slabpages);
    313  1.1    cherry 			/* We allocate enough for this plug */
    314  1.1    cherry 			pgs = uvm_physseg_seg_alloc_from_slab(ps, pages);
    315  1.1    cherry 
    316  1.1    cherry 			if (pgs == NULL) {
    317  1.1    cherry 				printf("unable to uvm_physseg_seg_alloc_from_slab() from backend\n");
    318  1.1    cherry 				return false;
    319  1.1    cherry 			}
    320  1.1    cherry 		} else {
    321  1.1    cherry 			/* Reuse scavenged extent */
    322  1.1    cherry 			ps->ext = current_ps->ext;
    323  1.1    cherry 		}
    324  1.1    cherry 
    325  1.1    cherry 		physmem += pages;
    326  1.1    cherry 		uvmpdpol_reinit();
    327  1.1    cherry 	} else { /* Boot time - see uvm_page.c:uvm_page_init() */
    328  1.1    cherry 		pgs = NULL;
    329  1.1    cherry 		ps->pgs = pgs;
    330  1.1    cherry 	}
    331  1.1    cherry 
    332  1.1    cherry 	/*
    333  1.1    cherry 	 * now insert us in the proper place in uvm_physseg_graph.rb_tree
    334  1.1    cherry 	 */
    335  1.1    cherry 
    336  1.1    cherry 	current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
    337  1.1    cherry 	if (current_ps != ps) {
    338  1.1    cherry 		panic("uvm_page_physload: Duplicate address range detected!");
    339  1.1    cherry 	}
    340  1.1    cherry 	uvm_physseg_graph.nentries++;
    341  1.1    cherry 
    342  1.1    cherry 	/*
    343  1.1    cherry 	 * uvm_pagefree() requires the PHYS_TO_VM_PAGE(pgs[i]) on the
    344  1.1    cherry 	 * newly allocated pgs[] to return the correct value. This is
    345  1.1    cherry 	 * a bit of a chicken and egg problem, since it needs
    346  1.1    cherry 	 * uvm_physseg_find() to succeed. For this, the node needs to
    347  1.1    cherry 	 * be inserted *before* uvm_physseg_init_seg() happens.
    348  1.1    cherry 	 *
    349  1.1    cherry 	 * During boot, this happens anyway, since
    350  1.1    cherry 	 * uvm_physseg_init_seg() is called later on and separately
    351  1.1    cherry 	 * from uvm_page.c:uvm_page_init().
    352  1.1    cherry 	 * In the case of hotplug we need to ensure this.
    353  1.1    cherry 	 */
    354  1.1    cherry 
    355  1.1    cherry 	if (__predict_true(!preload))
    356  1.1    cherry 		uvm_physseg_init_seg(ps, pgs);
    357  1.1    cherry 
    358  1.1    cherry 	if (psp != NULL)
    359  1.1    cherry 		*psp = ps;
    360  1.1    cherry 
    361  1.1    cherry 	return true;
    362  1.1    cherry }
    363  1.1    cherry 
    364  1.1    cherry static int
    365  1.1    cherry uvm_physseg_compare_nodes(void *ctx, const void *nnode1, const void *nnode2)
    366  1.1    cherry {
    367  1.1    cherry 	const struct uvm_physseg *enode1 = nnode1;
    368  1.1    cherry 	const struct uvm_physseg *enode2 = nnode2;
    369  1.1    cherry 
    370  1.1    cherry 	KASSERT(enode1->start < enode2->start || enode1->start >= enode2->end);
    371  1.1    cherry 	KASSERT(enode2->start < enode1->start || enode2->start >= enode1->end);
    372  1.1    cherry 
    373  1.1    cherry 	if (enode1->start < enode2->start)
    374  1.1    cherry 		return -1;
    375  1.1    cherry 	if (enode1->start >= enode2->end)
    376  1.1    cherry 		return 1;
    377  1.1    cherry 	return 0;
    378  1.1    cherry }
    379  1.1    cherry 
    380  1.1    cherry static int
    381  1.1    cherry uvm_physseg_compare_key(void *ctx, const void *nnode, const void *pkey)
    382  1.1    cherry {
    383  1.1    cherry 	const struct uvm_physseg *enode = nnode;
    384  1.1    cherry 	const paddr_t pa = *(const paddr_t *) pkey;
    385  1.1    cherry 
    386  1.1    cherry 	if(enode->start <= pa && pa < enode->end)
    387  1.1    cherry 		return 0;
    388  1.1    cherry 	if (enode->start < pa)
    389  1.1    cherry 		return -1;
    390  1.1    cherry 	if (enode->end > pa)
    391  1.1    cherry 		return 1;
    392  1.1    cherry 
    393  1.1    cherry 	return 0;
    394  1.1    cherry }
    395  1.1    cherry 
    396  1.1    cherry static const rb_tree_ops_t uvm_physseg_tree_ops = {
    397  1.1    cherry 	.rbto_compare_nodes = uvm_physseg_compare_nodes,
    398  1.1    cherry 	.rbto_compare_key = uvm_physseg_compare_key,
    399  1.1    cherry 	.rbto_node_offset = offsetof(struct uvm_physseg, rb_node),
    400  1.1    cherry 	.rbto_context = NULL
    401  1.1    cherry };
    402  1.1    cherry 
    403  1.1    cherry /*
    404  1.1    cherry  * uvm_physseg_init: init the physmem
    405  1.1    cherry  *
    406  1.1    cherry  * => physmem unit should not be in use at this point
    407  1.1    cherry  */
    408  1.1    cherry 
    409  1.1    cherry void
    410  1.1    cherry uvm_physseg_init(void)
    411  1.1    cherry {
    412  1.1    cherry 	rb_tree_init(&(uvm_physseg_graph.rb_tree), &uvm_physseg_tree_ops);
    413  1.1    cherry 	uvm_physseg_graph.nentries = 0;
    414  1.1    cherry }
    415  1.1    cherry 
    416  1.1    cherry uvm_physseg_t
    417  1.1    cherry uvm_physseg_get_next(uvm_physseg_t upm)
    418  1.1    cherry {
    419  1.1    cherry 	/* next of invalid is invalid, not fatal */
    420  1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
    421  1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID;
    422  1.1    cherry 
    423  1.1    cherry 	return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
    424  1.1    cherry 	    RB_DIR_RIGHT);
    425  1.1    cherry }
    426  1.1    cherry 
    427  1.1    cherry uvm_physseg_t
    428  1.1    cherry uvm_physseg_get_prev(uvm_physseg_t upm)
    429  1.1    cherry {
    430  1.1    cherry 	/* prev of invalid is invalid, not fatal */
    431  1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
    432  1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID;
    433  1.1    cherry 
    434  1.1    cherry 	return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
    435  1.1    cherry 	    RB_DIR_LEFT);
    436  1.1    cherry }
    437  1.1    cherry 
    438  1.1    cherry uvm_physseg_t
    439  1.1    cherry uvm_physseg_get_last(void)
    440  1.1    cherry {
    441  1.1    cherry 	return (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
    442  1.1    cherry }
    443  1.1    cherry 
    444  1.1    cherry uvm_physseg_t
    445  1.1    cherry uvm_physseg_get_first(void)
    446  1.1    cherry {
    447  1.1    cherry 	return (uvm_physseg_t) RB_TREE_MIN(&(uvm_physseg_graph.rb_tree));
    448  1.1    cherry }
    449  1.1    cherry 
    450  1.1    cherry paddr_t
    451  1.1    cherry uvm_physseg_get_highest_frame(void)
    452  1.1    cherry {
    453  1.1    cherry 	struct uvm_physseg *ps =
    454  1.1    cherry 	    (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
    455  1.1    cherry 
    456  1.1    cherry 	return ps->end - 1;
    457  1.1    cherry }
    458  1.1    cherry 
    459  1.1    cherry /*
    460  1.1    cherry  * uvm_page_physunload: unload physical memory and return it to
    461  1.1    cherry  * caller.
    462  1.1    cherry  */
    463  1.1    cherry bool
    464  1.1    cherry uvm_page_physunload(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
    465  1.1    cherry {
    466  1.1    cherry 	struct uvm_physseg *seg;
    467  1.1    cherry 
    468  1.1    cherry 	if (__predict_true(uvm.page_init_done == true))
    469  1.1    cherry 		panic("%s: unload attempted after uvm_page_init()\n", __func__);
    470  1.1    cherry 
    471  1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
    472  1.1    cherry 
    473  1.1    cherry 	if (seg->free_list != freelist) {
    474  1.1    cherry 		paddrp = NULL;
    475  1.1    cherry 		return false;
    476  1.1    cherry 	}
    477  1.1    cherry 
    478  1.1    cherry 	/*
    479  1.1    cherry 	 * During cold boot, what we're about to unplug hasn't been
    480  1.1    cherry 	 * put on the uvm freelist, nor has uvmexp.npages been
    481  1.1    cherry 	 * updated. (This happens in uvm_page.c:uvm_page_init())
    482  1.1    cherry 	 *
    483  1.1    cherry 	 * For hotplug, we assume here that the pages being unloaded
    484  1.1    cherry 	 * here are completely out of sight of uvm (ie; not on any uvm
    485  1.1    cherry 	 * lists), and that  uvmexp.npages has been suitably
    486  1.1    cherry 	 * decremented before we're called.
    487  1.1    cherry 	 *
    488  1.1    cherry 	 * XXX: will avail_end == start if avail_start < avail_end?
    489  1.1    cherry 	 */
    490  1.1    cherry 
    491  1.1    cherry 	/* try from front */
    492  1.1    cherry 	if (seg->avail_start == seg->start &&
    493  1.1    cherry 	    seg->avail_start < seg->avail_end) {
    494  1.1    cherry 		*paddrp = ctob(seg->avail_start);
    495  1.1    cherry 		return uvm_physseg_unplug(seg->avail_start, 1);
    496  1.1    cherry 	}
    497  1.1    cherry 
    498  1.1    cherry 	/* try from rear */
    499  1.1    cherry 	if (seg->avail_end == seg->end &&
    500  1.1    cherry 	    seg->avail_start < seg->avail_end) {
    501  1.1    cherry 		*paddrp = ctob(seg->avail_end - 1);
    502  1.1    cherry 		return uvm_physseg_unplug(seg->avail_end - 1, 1);
    503  1.1    cherry 	}
    504  1.1    cherry 
    505  1.1    cherry 	return false;
    506  1.1    cherry }
    507  1.1    cherry 
    508  1.1    cherry bool
    509  1.1    cherry uvm_page_physunload_force(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
    510  1.1    cherry {
    511  1.1    cherry 	struct uvm_physseg *seg;
    512  1.1    cherry 
    513  1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
    514  1.1    cherry 
    515  1.1    cherry 	if (__predict_true(uvm.page_init_done == true))
    516  1.1    cherry 		panic("%s: unload attempted after uvm_page_init()\n", __func__);
    517  1.1    cherry 	/* any room in this bank? */
    518  1.1    cherry 	if (seg->avail_start >= seg->avail_end) {
    519  1.1    cherry 		paddrp = NULL;
    520  1.1    cherry 		return false; /* nope */
    521  1.1    cherry 	}
    522  1.1    cherry 
    523  1.1    cherry 	*paddrp = ctob(seg->avail_start);
    524  1.1    cherry 
    525  1.1    cherry 	/* Always unplug from front */
    526  1.1    cherry 	return uvm_physseg_unplug(seg->avail_start, 1);
    527  1.1    cherry }
    528  1.1    cherry 
    529  1.1    cherry 
    530  1.1    cherry /*
    531  1.1    cherry  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    532  1.1    cherry  */
    533  1.1    cherry uvm_physseg_t
    534  1.1    cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
    535  1.1    cherry {
    536  1.1    cherry 	struct uvm_physseg * ps = NULL;
    537  1.1    cherry 
    538  1.1    cherry 	ps = rb_tree_find_node(&(uvm_physseg_graph.rb_tree), &pframe);
    539  1.1    cherry 
    540  1.1    cherry 	if(ps != NULL && offp != NULL)
    541  1.1    cherry 		*offp = pframe - ps->start;
    542  1.1    cherry 
    543  1.1    cherry 	return ps;
    544  1.1    cherry }
    545  1.1    cherry 
    546  1.1    cherry #else  /* UVM_HOTPLUG */
    547  1.1    cherry 
    548  1.1    cherry /*
    549  1.1    cherry  * physical memory config is stored in vm_physmem.
    550  1.1    cherry  */
    551  1.1    cherry 
    552  1.1    cherry #define	VM_PHYSMEM_PTR(i)	(&vm_physmem[i])
    553  1.1    cherry #if VM_PHYSSEG_MAX == 1
    554  1.1    cherry #define VM_PHYSMEM_PTR_SWAP(i, j) /* impossible */
    555  1.1    cherry #else
    556  1.1    cherry #define VM_PHYSMEM_PTR_SWAP(i, j)					      \
    557  1.1    cherry 	do { vm_physmem[(i)] = vm_physmem[(j)]; } while (0)
    558  1.1    cherry #endif
    559  1.1    cherry 
    560  1.1    cherry #define		HANDLE_TO_PHYSSEG_NODE(h)	(VM_PHYSMEM_PTR((int)h))
    561  1.1    cherry #define		PHYSSEG_NODE_TO_HANDLE(u)	((int)((vsize_t) (u - vm_physmem) / sizeof(struct uvm_physseg)))
    562  1.1    cherry 
    563  1.1    cherry static struct uvm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    564  1.1    cherry static int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    565  1.1    cherry #define	vm_nphysmem	vm_nphysseg
    566  1.1    cherry 
    567  1.1    cherry void
    568  1.1    cherry uvm_physseg_init(void)
    569  1.1    cherry {
    570  1.1    cherry 	/* XXX: Provisioning for rb_tree related init(s) */
    571  1.1    cherry 	return;
    572  1.1    cherry }
    573  1.1    cherry 
    574  1.1    cherry int
    575  1.1    cherry uvm_physseg_get_next(uvm_physseg_t lcv)
    576  1.1    cherry {
    577  1.1    cherry 	/* next of invalid is invalid, not fatal */
    578  1.2    cherry 	if (uvm_physseg_valid_p(lcv) == false)
    579  1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID;
    580  1.1    cherry 
    581  1.1    cherry 	return (lcv + 1);
    582  1.1    cherry }
    583  1.1    cherry 
    584  1.1    cherry int
    585  1.1    cherry uvm_physseg_get_prev(uvm_physseg_t lcv)
    586  1.1    cherry {
    587  1.1    cherry 	/* prev of invalid is invalid, not fatal */
    588  1.2    cherry 	if (uvm_physseg_valid_p(lcv) == false)
    589  1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID;
    590  1.1    cherry 
    591  1.1    cherry 	return (lcv - 1);
    592  1.1    cherry }
    593  1.1    cherry 
    594  1.1    cherry int
    595  1.1    cherry uvm_physseg_get_last(void)
    596  1.1    cherry {
    597  1.1    cherry 	return (vm_nphysseg - 1);
    598  1.1    cherry }
    599  1.1    cherry 
    600  1.1    cherry int
    601  1.1    cherry uvm_physseg_get_first(void)
    602  1.1    cherry {
    603  1.1    cherry 	return 0;
    604  1.1    cherry }
    605  1.1    cherry 
    606  1.1    cherry paddr_t
    607  1.1    cherry uvm_physseg_get_highest_frame(void)
    608  1.1    cherry {
    609  1.1    cherry 	int lcv;
    610  1.1    cherry 	paddr_t last = 0;
    611  1.1    cherry 	struct uvm_physseg *ps;
    612  1.1    cherry 
    613  1.1    cherry 	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
    614  1.1    cherry 		ps = VM_PHYSMEM_PTR(lcv);
    615  1.1    cherry 		if (last < ps->end)
    616  1.1    cherry 			last = ps->end;
    617  1.1    cherry 	}
    618  1.1    cherry 
    619  1.1    cherry 	return last;
    620  1.1    cherry }
    621  1.1    cherry 
    622  1.1    cherry 
    623  1.1    cherry static struct vm_page *
    624  1.1    cherry uvm_post_preload_check(void)
    625  1.1    cherry {
    626  1.1    cherry 	int preload, lcv;
    627  1.1    cherry 
    628  1.1    cherry 	/*
    629  1.1    cherry 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    630  1.1    cherry 	 * called yet, so kmem is not available).
    631  1.1    cherry 	 */
    632  1.1    cherry 
    633  1.1    cherry 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    634  1.1    cherry 		if (VM_PHYSMEM_PTR(lcv)->pgs)
    635  1.1    cherry 			break;
    636  1.1    cherry 	}
    637  1.1    cherry 	preload = (lcv == vm_nphysmem);
    638  1.1    cherry 
    639  1.1    cherry 	/*
    640  1.1    cherry 	 * if VM is already running, attempt to kmem_alloc vm_page structures
    641  1.1    cherry 	 */
    642  1.1    cherry 
    643  1.1    cherry 	if (!preload) {
    644  1.1    cherry 		panic("Tried to add RAM after uvm_page_init");
    645  1.1    cherry 	}
    646  1.1    cherry 
    647  1.1    cherry 	return NULL;
    648  1.1    cherry }
    649  1.1    cherry 
    650  1.1    cherry /*
    651  1.1    cherry  * uvm_page_physunload: unload physical memory and return it to
    652  1.1    cherry  * caller.
    653  1.1    cherry  */
    654  1.1    cherry bool
    655  1.1    cherry uvm_page_physunload(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
    656  1.1    cherry {
    657  1.1    cherry 	int x;
    658  1.1    cherry 	struct uvm_physseg *seg;
    659  1.1    cherry 
    660  1.1    cherry 	uvm_post_preload_check();
    661  1.1    cherry 
    662  1.1    cherry 	seg = VM_PHYSMEM_PTR(psi);
    663  1.1    cherry 
    664  1.1    cherry 	if (seg->free_list != freelist) {
    665  1.1    cherry 		paddrp = NULL;
    666  1.1    cherry 		return false;
    667  1.1    cherry 	}
    668  1.1    cherry 
    669  1.1    cherry 	/* try from front */
    670  1.1    cherry 	if (seg->avail_start == seg->start &&
    671  1.1    cherry 	    seg->avail_start < seg->avail_end) {
    672  1.1    cherry 		*paddrp = ctob(seg->avail_start);
    673  1.1    cherry 		seg->avail_start++;
    674  1.1    cherry 		seg->start++;
    675  1.1    cherry 		/* nothing left?   nuke it */
    676  1.1    cherry 		if (seg->avail_start == seg->end) {
    677  1.1    cherry 			if (vm_nphysmem == 1)
    678  1.1    cherry 				panic("uvm_page_physget: out of memory!");
    679  1.1    cherry 			vm_nphysmem--;
    680  1.1    cherry 			for (x = psi ; x < vm_nphysmem ; x++)
    681  1.1    cherry 				/* structure copy */
    682  1.1    cherry 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    683  1.1    cherry 		}
    684  1.1    cherry 		return (true);
    685  1.1    cherry 	}
    686  1.1    cherry 
    687  1.1    cherry 	/* try from rear */
    688  1.1    cherry 	if (seg->avail_end == seg->end &&
    689  1.1    cherry 	    seg->avail_start < seg->avail_end) {
    690  1.1    cherry 		*paddrp = ctob(seg->avail_end - 1);
    691  1.1    cherry 		seg->avail_end--;
    692  1.1    cherry 		seg->end--;
    693  1.1    cherry 		/* nothing left?   nuke it */
    694  1.1    cherry 		if (seg->avail_end == seg->start) {
    695  1.1    cherry 			if (vm_nphysmem == 1)
    696  1.1    cherry 				panic("uvm_page_physget: out of memory!");
    697  1.1    cherry 			vm_nphysmem--;
    698  1.1    cherry 			for (x = psi ; x < vm_nphysmem ; x++)
    699  1.1    cherry 				/* structure copy */
    700  1.1    cherry 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    701  1.1    cherry 		}
    702  1.1    cherry 		return (true);
    703  1.1    cherry 	}
    704  1.1    cherry 
    705  1.1    cherry 	return false;
    706  1.1    cherry }
    707  1.1    cherry 
    708  1.1    cherry bool
    709  1.1    cherry uvm_page_physunload_force(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
    710  1.1    cherry {
    711  1.1    cherry 	int x;
    712  1.1    cherry 	struct uvm_physseg *seg;
    713  1.1    cherry 
    714  1.1    cherry 	uvm_post_preload_check();
    715  1.1    cherry 
    716  1.1    cherry 	seg = VM_PHYSMEM_PTR(psi);
    717  1.1    cherry 
    718  1.1    cherry 	/* any room in this bank? */
    719  1.1    cherry 	if (seg->avail_start >= seg->avail_end) {
    720  1.1    cherry 		paddrp = NULL;
    721  1.1    cherry 		return false; /* nope */
    722  1.1    cherry 	}
    723  1.1    cherry 
    724  1.1    cherry 	*paddrp = ctob(seg->avail_start);
    725  1.1    cherry 	seg->avail_start++;
    726  1.1    cherry 	/* truncate! */
    727  1.1    cherry 	seg->start = seg->avail_start;
    728  1.1    cherry 
    729  1.1    cherry 	/* nothing left?   nuke it */
    730  1.1    cherry 	if (seg->avail_start == seg->end) {
    731  1.1    cherry 		if (vm_nphysmem == 1)
    732  1.1    cherry 			panic("uvm_page_physget: out of memory!");
    733  1.1    cherry 		vm_nphysmem--;
    734  1.1    cherry 		for (x = psi ; x < vm_nphysmem ; x++)
    735  1.1    cherry 			/* structure copy */
    736  1.1    cherry 			VM_PHYSMEM_PTR_SWAP(x, x + 1);
    737  1.1    cherry 	}
    738  1.1    cherry 	return (true);
    739  1.1    cherry }
    740  1.1    cherry 
    741  1.1    cherry bool
    742  1.1    cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
    743  1.1    cherry {
    744  1.1    cherry 	int lcv;
    745  1.1    cherry 	struct vm_page *pgs;
    746  1.1    cherry 	struct uvm_physseg *ps;
    747  1.1    cherry 
    748  1.1    cherry #ifdef DEBUG
    749  1.1    cherry 	paddr_t off;
    750  1.1    cherry 	uvm_physseg_t upm;
    751  1.1    cherry 	upm = uvm_physseg_find(pfn, &off);
    752  1.1    cherry 
    753  1.2    cherry 	if (uvm_physseg_valid_p(upm)) /* XXX; do we allow "update" plugs ? */
    754  1.1    cherry 		return false;
    755  1.1    cherry #endif
    756  1.1    cherry 
    757  1.1    cherry 	paddr_t start = pfn;
    758  1.1    cherry 	paddr_t end = pfn + pages;
    759  1.1    cherry 	paddr_t avail_start = start;
    760  1.1    cherry 	paddr_t avail_end = end;
    761  1.1    cherry 
    762  1.1    cherry 	if (uvmexp.pagesize == 0)
    763  1.1    cherry 		panic("uvm_page_physload: page size not set!");
    764  1.1    cherry 
    765  1.1    cherry 	/*
    766  1.1    cherry 	 * do we have room?
    767  1.1    cherry 	 */
    768  1.1    cherry 
    769  1.1    cherry 	if (vm_nphysmem == VM_PHYSSEG_MAX) {
    770  1.1    cherry 		printf("uvm_page_physload: unable to load physical memory "
    771  1.1    cherry 		    "segment\n");
    772  1.1    cherry 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    773  1.1    cherry 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    774  1.1    cherry 		printf("\tincrease VM_PHYSSEG_MAX\n");
    775  1.1    cherry 		if (psp != NULL)
    776  1.1    cherry 			*psp = UVM_PHYSSEG_TYPE_INVALID_OVERFLOW;
    777  1.1    cherry 		return false;
    778  1.1    cherry 	}
    779  1.1    cherry 
    780  1.1    cherry 	/*
    781  1.1    cherry 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    782  1.1    cherry 	 * called yet, so kmem is not available).
    783  1.1    cherry 	 */
    784  1.1    cherry 	pgs = uvm_post_preload_check();
    785  1.1    cherry 
    786  1.1    cherry 	/*
    787  1.1    cherry 	 * now insert us in the proper place in vm_physmem[]
    788  1.1    cherry 	 */
    789  1.1    cherry 
    790  1.1    cherry #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    791  1.1    cherry 	/* random: put it at the end (easy!) */
    792  1.1    cherry 	ps = VM_PHYSMEM_PTR(vm_nphysmem);
    793  1.3    cherry 	lcv = vm_nphysmem;
    794  1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    795  1.1    cherry 	{
    796  1.1    cherry 		int x;
    797  1.1    cherry 		/* sort by address for binary search */
    798  1.1    cherry 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    799  1.1    cherry 			if (start < VM_PHYSMEM_PTR(lcv)->start)
    800  1.1    cherry 				break;
    801  1.1    cherry 		ps = VM_PHYSMEM_PTR(lcv);
    802  1.1    cherry 		/* move back other entries, if necessary ... */
    803  1.1    cherry 		for (x = vm_nphysmem ; x > lcv ; x--)
    804  1.1    cherry 			/* structure copy */
    805  1.1    cherry 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    806  1.1    cherry 	}
    807  1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    808  1.1    cherry 	{
    809  1.1    cherry 		int x;
    810  1.1    cherry 		/* sort by largest segment first */
    811  1.1    cherry 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    812  1.1    cherry 			if ((end - start) >
    813  1.1    cherry 			    (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
    814  1.1    cherry 				break;
    815  1.1    cherry 		ps = VM_PHYSMEM_PTR(lcv);
    816  1.1    cherry 		/* move back other entries, if necessary ... */
    817  1.1    cherry 		for (x = vm_nphysmem ; x > lcv ; x--)
    818  1.1    cherry 			/* structure copy */
    819  1.1    cherry 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    820  1.1    cherry 	}
    821  1.1    cherry #else
    822  1.1    cherry 	panic("uvm_page_physload: unknown physseg strategy selected!");
    823  1.1    cherry #endif
    824  1.1    cherry 
    825  1.1    cherry 	ps->start = start;
    826  1.1    cherry 	ps->end = end;
    827  1.1    cherry 	ps->avail_start = avail_start;
    828  1.1    cherry 	ps->avail_end = avail_end;
    829  1.1    cherry 
    830  1.1    cherry 	ps->pgs = pgs;
    831  1.1    cherry 
    832  1.1    cherry 	vm_nphysmem++;
    833  1.1    cherry 
    834  1.1    cherry 	if (psp != NULL)
    835  1.1    cherry 		*psp = lcv;
    836  1.1    cherry 
    837  1.1    cherry 	return true;
    838  1.1    cherry }
    839  1.1    cherry 
    840  1.1    cherry /*
    841  1.1    cherry  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
    842  1.1    cherry  */
    843  1.1    cherry 
    844  1.1    cherry #if VM_PHYSSEG_MAX == 1
    845  1.1    cherry static inline int vm_physseg_find_contig(struct uvm_physseg *, int, paddr_t, psize_t *);
    846  1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    847  1.1    cherry static inline int vm_physseg_find_bsearch(struct uvm_physseg *, int, paddr_t, psize_t *);
    848  1.1    cherry #else
    849  1.1    cherry static inline int vm_physseg_find_linear(struct uvm_physseg *, int, paddr_t, psize_t *);
    850  1.1    cherry #endif
    851  1.1    cherry 
    852  1.1    cherry /*
    853  1.1    cherry  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    854  1.1    cherry  */
    855  1.1    cherry int
    856  1.1    cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
    857  1.1    cherry {
    858  1.1    cherry 
    859  1.1    cherry #if VM_PHYSSEG_MAX == 1
    860  1.1    cherry 	return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
    861  1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    862  1.1    cherry 	return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
    863  1.1    cherry #else
    864  1.1    cherry 	return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
    865  1.1    cherry #endif
    866  1.1    cherry }
    867  1.1    cherry 
    868  1.1    cherry #if VM_PHYSSEG_MAX == 1
    869  1.1    cherry static inline int
    870  1.1    cherry vm_physseg_find_contig(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
    871  1.1    cherry {
    872  1.1    cherry 
    873  1.1    cherry 	/* 'contig' case */
    874  1.1    cherry 	if (pframe >= segs[0].start && pframe < segs[0].end) {
    875  1.1    cherry 		if (offp)
    876  1.1    cherry 			*offp = pframe - segs[0].start;
    877  1.1    cherry 		return(0);
    878  1.1    cherry 	}
    879  1.1    cherry 	return(-1);
    880  1.1    cherry }
    881  1.1    cherry 
    882  1.1    cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    883  1.1    cherry 
    884  1.1    cherry static inline int
    885  1.1    cherry vm_physseg_find_bsearch(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
    886  1.1    cherry {
    887  1.1    cherry 	/* binary search for it */
    888  1.1    cherry 	int	start, len, guess;
    889  1.1    cherry 
    890  1.1    cherry 	/*
    891  1.1    cherry 	 * if try is too large (thus target is less than try) we reduce
    892  1.1    cherry 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
    893  1.1    cherry 	 *
    894  1.1    cherry 	 * if the try is too small (thus target is greater than try) then
    895  1.1    cherry 	 * we set the new start to be (try + 1).   this means we need to
    896  1.1    cherry 	 * reduce the length to (round(len/2) - 1).
    897  1.1    cherry 	 *
    898  1.1    cherry 	 * note "adjust" below which takes advantage of the fact that
    899  1.1    cherry 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
    900  1.1    cherry 	 * for any value of len we may have
    901  1.1    cherry 	 */
    902  1.1    cherry 
    903  1.1    cherry 	for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
    904  1.1    cherry 		guess = start + (len / 2);	/* try in the middle */
    905  1.1    cherry 
    906  1.1    cherry 		/* start past our try? */
    907  1.1    cherry 		if (pframe >= segs[guess].start) {
    908  1.1    cherry 			/* was try correct? */
    909  1.1    cherry 			if (pframe < segs[guess].end) {
    910  1.1    cherry 				if (offp)
    911  1.1    cherry 					*offp = pframe - segs[guess].start;
    912  1.1    cherry 				return guess;            /* got it */
    913  1.1    cherry 			}
    914  1.1    cherry 			start = guess + 1;	/* next time, start here */
    915  1.1    cherry 			len--;			/* "adjust" */
    916  1.1    cherry 		} else {
    917  1.1    cherry 			/*
    918  1.1    cherry 			 * pframe before try, just reduce length of
    919  1.1    cherry 			 * region, done in "for" loop
    920  1.1    cherry 			 */
    921  1.1    cherry 		}
    922  1.1    cherry 	}
    923  1.1    cherry 	return(-1);
    924  1.1    cherry }
    925  1.1    cherry 
    926  1.1    cherry #else
    927  1.1    cherry 
    928  1.1    cherry static inline int
    929  1.1    cherry vm_physseg_find_linear(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
    930  1.1    cherry {
    931  1.1    cherry 	/* linear search for it */
    932  1.1    cherry 	int	lcv;
    933  1.1    cherry 
    934  1.1    cherry 	for (lcv = 0; lcv < nsegs; lcv++) {
    935  1.1    cherry 		if (pframe >= segs[lcv].start &&
    936  1.1    cherry 		    pframe < segs[lcv].end) {
    937  1.1    cherry 			if (offp)
    938  1.1    cherry 				*offp = pframe - segs[lcv].start;
    939  1.1    cherry 			return(lcv);		   /* got it */
    940  1.1    cherry 		}
    941  1.1    cherry 	}
    942  1.1    cherry 	return(-1);
    943  1.1    cherry }
    944  1.1    cherry #endif
    945  1.1    cherry #endif /* UVM_HOTPLUG */
    946  1.1    cherry 
    947  1.1    cherry bool
    948  1.2    cherry uvm_physseg_valid_p(uvm_physseg_t upm)
    949  1.1    cherry {
    950  1.1    cherry 	struct uvm_physseg *ps;
    951  1.1    cherry 
    952  1.1    cherry 	if (upm == UVM_PHYSSEG_TYPE_INVALID ||
    953  1.1    cherry 	    upm == UVM_PHYSSEG_TYPE_INVALID_EMPTY ||
    954  1.1    cherry 	    upm == UVM_PHYSSEG_TYPE_INVALID_OVERFLOW)
    955  1.1    cherry 		return false;
    956  1.1    cherry 
    957  1.1    cherry 	/*
    958  1.1    cherry 	 * This is the delicate init dance -
    959  1.1    cherry 	 * needs to go with the dance.
    960  1.1    cherry 	 */
    961  1.1    cherry 	if (uvm.page_init_done != true)
    962  1.1    cherry 		return true;
    963  1.1    cherry 
    964  1.1    cherry 	ps = HANDLE_TO_PHYSSEG_NODE(upm);
    965  1.1    cherry 
    966  1.1    cherry 	/* Extra checks needed only post uvm_page_init() */
    967  1.1    cherry 	if (ps->pgs == NULL)
    968  1.1    cherry 		return false;
    969  1.1    cherry 
    970  1.1    cherry 	/* XXX: etc. */
    971  1.1    cherry 
    972  1.1    cherry 	return true;
    973  1.1    cherry 
    974  1.1    cherry }
    975  1.1    cherry 
    976  1.1    cherry /*
    977  1.1    cherry  * Boot protocol dictates that these must be able to return partially
    978  1.1    cherry  * initialised segments.
    979  1.1    cherry  */
    980  1.1    cherry paddr_t
    981  1.1    cherry uvm_physseg_get_start(uvm_physseg_t upm)
    982  1.1    cherry {
    983  1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
    984  1.1    cherry 		return (paddr_t) -1;
    985  1.1    cherry 
    986  1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->start;
    987  1.1    cherry }
    988  1.1    cherry 
    989  1.1    cherry paddr_t
    990  1.1    cherry uvm_physseg_get_end(uvm_physseg_t upm)
    991  1.1    cherry {
    992  1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
    993  1.1    cherry 		return (paddr_t) -1;
    994  1.1    cherry 
    995  1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->end;
    996  1.1    cherry }
    997  1.1    cherry 
    998  1.1    cherry paddr_t
    999  1.1    cherry uvm_physseg_get_avail_start(uvm_physseg_t upm)
   1000  1.1    cherry {
   1001  1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
   1002  1.1    cherry 		return (paddr_t) -1;
   1003  1.1    cherry 
   1004  1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->avail_start;
   1005  1.1    cherry }
   1006  1.1    cherry 
   1007  1.6       rin #if defined(UVM_PHYSSEG_LEGACY)
   1008  1.4  christos void
   1009  1.4  christos uvm_physseg_set_avail_start(uvm_physseg_t upm, paddr_t avail_start)
   1010  1.4  christos {
   1011  1.5    cherry 	struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
   1012  1.5    cherry 
   1013  1.5    cherry #if defined(DIAGNOSTIC)
   1014  1.5    cherry 	paddr_t avail_end;
   1015  1.5    cherry 	avail_end = uvm_physseg_get_avail_end(upm);
   1016  1.4  christos 	KASSERT(uvm_physseg_valid_p(upm));
   1017  1.5    cherry 	KASSERT(avail_start < avail_end && avail_start >= ps->start);
   1018  1.5    cherry #endif
   1019  1.5    cherry 
   1020  1.5    cherry 	ps->avail_start = avail_start;
   1021  1.4  christos }
   1022  1.5    cherry void uvm_physseg_set_avail_end(uvm_physseg_t upm, paddr_t avail_end)
   1023  1.5    cherry {
   1024  1.5    cherry 	struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
   1025  1.5    cherry 
   1026  1.5    cherry #if defined(DIAGNOSTIC)
   1027  1.5    cherry 	paddr_t avail_start;
   1028  1.5    cherry 	avail_start = uvm_physseg_get_avail_start(upm);
   1029  1.5    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1030  1.5    cherry 	KASSERT(avail_end > avail_start && avail_end <= ps->end);
   1031  1.4  christos #endif
   1032  1.4  christos 
   1033  1.5    cherry 	ps->avail_end = avail_end;
   1034  1.5    cherry }
   1035  1.5    cherry 
   1036  1.6       rin #endif /* UVM_PHYSSEG_LEGACY */
   1037  1.5    cherry 
   1038  1.1    cherry paddr_t
   1039  1.1    cherry uvm_physseg_get_avail_end(uvm_physseg_t upm)
   1040  1.1    cherry {
   1041  1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
   1042  1.1    cherry 		return (paddr_t) -1;
   1043  1.1    cherry 
   1044  1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->avail_end;
   1045  1.1    cherry }
   1046  1.1    cherry 
   1047  1.1    cherry struct vm_page *
   1048  1.1    cherry uvm_physseg_get_pg(uvm_physseg_t upm, paddr_t idx)
   1049  1.1    cherry {
   1050  1.2    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1051  1.1    cherry 	return &HANDLE_TO_PHYSSEG_NODE(upm)->pgs[idx];
   1052  1.1    cherry }
   1053  1.1    cherry 
   1054  1.1    cherry #ifdef __HAVE_PMAP_PHYSSEG
   1055  1.1    cherry struct pmap_physseg *
   1056  1.1    cherry uvm_physseg_get_pmseg(uvm_physseg_t upm)
   1057  1.1    cherry {
   1058  1.2    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1059  1.1    cherry 	return &(HANDLE_TO_PHYSSEG_NODE(upm)->pmseg);
   1060  1.1    cherry }
   1061  1.1    cherry #endif
   1062  1.1    cherry 
   1063  1.1    cherry int
   1064  1.1    cherry uvm_physseg_get_free_list(uvm_physseg_t upm)
   1065  1.1    cherry {
   1066  1.2    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1067  1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->free_list;
   1068  1.1    cherry }
   1069  1.1    cherry 
   1070  1.1    cherry u_int
   1071  1.1    cherry uvm_physseg_get_start_hint(uvm_physseg_t upm)
   1072  1.1    cherry {
   1073  1.2    cherry 	KASSERT(uvm_physseg_valid_p(upm));
   1074  1.1    cherry 	return HANDLE_TO_PHYSSEG_NODE(upm)->start_hint;
   1075  1.1    cherry }
   1076  1.1    cherry 
   1077  1.1    cherry bool
   1078  1.1    cherry uvm_physseg_set_start_hint(uvm_physseg_t upm, u_int start_hint)
   1079  1.1    cherry {
   1080  1.2    cherry 	if (uvm_physseg_valid_p(upm) == false)
   1081  1.1    cherry 		return false;
   1082  1.1    cherry 
   1083  1.1    cherry 	HANDLE_TO_PHYSSEG_NODE(upm)->start_hint = start_hint;
   1084  1.1    cherry 	return true;
   1085  1.1    cherry }
   1086  1.1    cherry 
   1087  1.1    cherry void
   1088  1.1    cherry uvm_physseg_init_seg(uvm_physseg_t upm, struct vm_page *pgs)
   1089  1.1    cherry {
   1090  1.1    cherry 	psize_t i;
   1091  1.1    cherry 	psize_t n;
   1092  1.1    cherry 	paddr_t paddr;
   1093  1.1    cherry 	struct uvm_physseg *seg;
   1094  1.1    cherry 
   1095  1.1    cherry 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID && pgs != NULL);
   1096  1.1    cherry 
   1097  1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1098  1.1    cherry 	KASSERT(seg != NULL);
   1099  1.1    cherry 	KASSERT(seg->pgs == NULL);
   1100  1.1    cherry 
   1101  1.1    cherry 	n = seg->end - seg->start;
   1102  1.1    cherry 	seg->pgs = pgs;
   1103  1.1    cherry 
   1104  1.1    cherry 	/* init and free vm_pages (we've already zeroed them) */
   1105  1.1    cherry 	paddr = ctob(seg->start);
   1106  1.1    cherry 	for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
   1107  1.1    cherry 		seg->pgs[i].phys_addr = paddr;
   1108  1.1    cherry #ifdef __HAVE_VM_PAGE_MD
   1109  1.1    cherry 		VM_MDPAGE_INIT(&seg->pgs[i]);
   1110  1.1    cherry #endif
   1111  1.1    cherry 		if (atop(paddr) >= seg->avail_start &&
   1112  1.1    cherry 		    atop(paddr) < seg->avail_end) {
   1113  1.1    cherry 			uvmexp.npages++;
   1114  1.1    cherry 			mutex_enter(&uvm_pageqlock);
   1115  1.1    cherry 			/* add page to free pool */
   1116  1.1    cherry 			uvm_pagefree(&seg->pgs[i]);
   1117  1.1    cherry 			mutex_exit(&uvm_pageqlock);
   1118  1.1    cherry 		}
   1119  1.1    cherry 	}
   1120  1.1    cherry }
   1121  1.1    cherry 
   1122  1.1    cherry void
   1123  1.1    cherry uvm_physseg_seg_chomp_slab(uvm_physseg_t upm, struct vm_page *pgs, size_t n)
   1124  1.1    cherry {
   1125  1.1    cherry 	struct uvm_physseg *seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1126  1.1    cherry 
   1127  1.1    cherry 	/* max number of pre-boot unplug()s allowed */
   1128  1.1    cherry #define UVM_PHYSSEG_BOOT_UNPLUG_MAX VM_PHYSSEG_MAX
   1129  1.1    cherry 
   1130  1.1    cherry 	static char btslab_ex_storage[EXTENT_FIXED_STORAGE_SIZE(UVM_PHYSSEG_BOOT_UNPLUG_MAX)];
   1131  1.1    cherry 
   1132  1.1    cherry 	if (__predict_false(uvm.page_init_done == false)) {
   1133  1.1    cherry 		seg->ext = extent_create("Boot time slab", (u_long) pgs, (u_long) (pgs + n),
   1134  1.1    cherry 		    (void *)btslab_ex_storage, sizeof(btslab_ex_storage), 0);
   1135  1.1    cherry 	} else {
   1136  1.1    cherry 		seg->ext = extent_create("Hotplug slab", (u_long) pgs, (u_long) (pgs + n), NULL, 0, 0);
   1137  1.1    cherry 	}
   1138  1.1    cherry 
   1139  1.1    cherry 	KASSERT(seg->ext != NULL);
   1140  1.1    cherry 
   1141  1.1    cherry }
   1142  1.1    cherry 
   1143  1.1    cherry struct vm_page *
   1144  1.1    cherry uvm_physseg_seg_alloc_from_slab(uvm_physseg_t upm, size_t pages)
   1145  1.1    cherry {
   1146  1.1    cherry 	int err;
   1147  1.1    cherry 	struct uvm_physseg *seg;
   1148  1.1    cherry 	struct vm_page *pgs = NULL;
   1149  1.1    cherry 
   1150  1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1151  1.1    cherry 
   1152  1.1    cherry 	KASSERT(pages > 0);
   1153  1.1    cherry 
   1154  1.1    cherry 	if (__predict_false(seg->ext == NULL)) {
   1155  1.1    cherry 		/*
   1156  1.1    cherry 		 * This is a situation unique to boot time.
   1157  1.1    cherry 		 * It shouldn't happen at any point other than from
   1158  1.1    cherry 		 * the first uvm_page.c:uvm_page_init() call
   1159  1.1    cherry 		 * Since we're in a loop, we can get away with the
   1160  1.1    cherry 		 * below.
   1161  1.1    cherry 		 */
   1162  1.1    cherry 		KASSERT(uvm.page_init_done != true);
   1163  1.1    cherry 
   1164  1.1    cherry 		seg->ext = HANDLE_TO_PHYSSEG_NODE(uvm_physseg_get_prev(upm))->ext;
   1165  1.1    cherry 
   1166  1.1    cherry 		KASSERT(seg->ext != NULL);
   1167  1.1    cherry 	}
   1168  1.1    cherry 
   1169  1.1    cherry 	/* We allocate enough for this segment */
   1170  1.1    cherry 	err = extent_alloc(seg->ext, sizeof(*pgs) * pages, 1, 0, EX_BOUNDZERO, (u_long *)&pgs);
   1171  1.1    cherry 
   1172  1.1    cherry 	if (err != 0) {
   1173  1.1    cherry #ifdef DEBUG
   1174  1.1    cherry 		printf("%s: extent_alloc failed with error: %d \n",
   1175  1.1    cherry 		    __func__, err);
   1176  1.1    cherry #endif
   1177  1.1    cherry 	}
   1178  1.1    cherry 
   1179  1.1    cherry 	return pgs;
   1180  1.1    cherry }
   1181  1.1    cherry 
   1182  1.1    cherry /*
   1183  1.1    cherry  * uvm_page_physload: load physical memory into VM system
   1184  1.1    cherry  *
   1185  1.1    cherry  * => all args are PFs
   1186  1.1    cherry  * => all pages in start/end get vm_page structures
   1187  1.1    cherry  * => areas marked by avail_start/avail_end get added to the free page pool
   1188  1.1    cherry  * => we are limited to VM_PHYSSEG_MAX physical memory segments
   1189  1.1    cherry  */
   1190  1.1    cherry 
   1191  1.1    cherry uvm_physseg_t
   1192  1.1    cherry uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
   1193  1.1    cherry     paddr_t avail_end, int free_list)
   1194  1.1    cherry {
   1195  1.1    cherry 	struct uvm_physseg *ps;
   1196  1.1    cherry 	uvm_physseg_t upm;
   1197  1.1    cherry 
   1198  1.1    cherry 	if (__predict_true(uvm.page_init_done == true))
   1199  1.1    cherry 		panic("%s: unload attempted after uvm_page_init()\n", __func__);
   1200  1.1    cherry 	if (uvmexp.pagesize == 0)
   1201  1.1    cherry 		panic("uvm_page_physload: page size not set!");
   1202  1.1    cherry 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
   1203  1.1    cherry 		panic("uvm_page_physload: bad free list %d", free_list);
   1204  1.1    cherry 	if (start >= end)
   1205  1.1    cherry 		panic("uvm_page_physload: start >= end");
   1206  1.1    cherry 
   1207  1.1    cherry 	if (uvm_physseg_plug(start, end - start, &upm) == false) {
   1208  1.1    cherry 		panic("uvm_physseg_plug() failed at boot.");
   1209  1.1    cherry 		/* NOTREACHED */
   1210  1.1    cherry 		return UVM_PHYSSEG_TYPE_INVALID; /* XXX: correct type */
   1211  1.1    cherry 	}
   1212  1.1    cherry 
   1213  1.1    cherry 	ps = HANDLE_TO_PHYSSEG_NODE(upm);
   1214  1.1    cherry 
   1215  1.1    cherry 	/* Legacy */
   1216  1.1    cherry 	ps->avail_start = avail_start;
   1217  1.1    cherry 	ps->avail_end = avail_end;
   1218  1.1    cherry 
   1219  1.1    cherry 	ps->free_list = free_list; /* XXX: */
   1220  1.1    cherry 
   1221  1.1    cherry 
   1222  1.1    cherry 	return upm;
   1223  1.1    cherry }
   1224  1.1    cherry 
   1225  1.1    cherry bool
   1226  1.1    cherry uvm_physseg_unplug(paddr_t pfn, size_t pages)
   1227  1.1    cherry {
   1228  1.1    cherry 	uvm_physseg_t upm;
   1229  1.1    cherry 	paddr_t off = 0, start, end;
   1230  1.1    cherry 	struct uvm_physseg *seg;
   1231  1.1    cherry 
   1232  1.1    cherry 	upm = uvm_physseg_find(pfn, &off);
   1233  1.1    cherry 
   1234  1.2    cherry 	if (!uvm_physseg_valid_p(upm)) {
   1235  1.1    cherry 		printf("%s: Tried to unplug from unknown offset\n", __func__);
   1236  1.1    cherry 		return false;
   1237  1.1    cherry 	}
   1238  1.1    cherry 
   1239  1.1    cherry 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1240  1.1    cherry 
   1241  1.1    cherry 	start = uvm_physseg_get_start(upm);
   1242  1.1    cherry 	end = uvm_physseg_get_end(upm);
   1243  1.1    cherry 
   1244  1.1    cherry 	if (end < (pfn + pages)) {
   1245  1.1    cherry 		printf("%s: Tried to unplug oversized span \n", __func__);
   1246  1.1    cherry 		return false;
   1247  1.1    cherry 	}
   1248  1.1    cherry 
   1249  1.1    cherry #ifndef DIAGNOSTIC
   1250  1.1    cherry 	(void) start;
   1251  1.1    cherry #endif
   1252  1.1    cherry 	KASSERT(pfn == start + off); /* sanity */
   1253  1.1    cherry 
   1254  1.1    cherry 	if (__predict_true(uvm.page_init_done == true)) {
   1255  1.1    cherry 		/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1256  1.1    cherry 		if (extent_free(seg->ext, (u_long)(seg->pgs + off), sizeof(struct vm_page) * pages, EX_MALLOCOK | EX_NOWAIT) != 0)
   1257  1.1    cherry 			return false;
   1258  1.1    cherry 	}
   1259  1.1    cherry 
   1260  1.1    cherry 	if (off == 0 && (pfn + pages) == end) {
   1261  1.1    cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
   1262  1.1    cherry 		int segcount = 0;
   1263  1.1    cherry 		struct uvm_physseg *current_ps;
   1264  1.1    cherry 		/* Complete segment */
   1265  1.1    cherry 		if (uvm_physseg_graph.nentries == 1)
   1266  1.1    cherry 			panic("%s: out of memory!", __func__);
   1267  1.1    cherry 
   1268  1.1    cherry 		if (__predict_true(uvm.page_init_done == true)) {
   1269  1.1    cherry 			RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
   1270  1.1    cherry 				if (seg->ext == current_ps->ext)
   1271  1.1    cherry 					segcount++;
   1272  1.1    cherry 			}
   1273  1.1    cherry 			KASSERT(segcount > 0);
   1274  1.1    cherry 
   1275  1.1    cherry 			if (segcount == 1) {
   1276  1.1    cherry 				extent_destroy(seg->ext);
   1277  1.1    cherry 			}
   1278  1.1    cherry 
   1279  1.1    cherry 			/*
   1280  1.1    cherry 			 * We assume that the unplug will succeed from
   1281  1.1    cherry 			 *  this point onwards
   1282  1.1    cherry 			 */
   1283  1.1    cherry 			uvmexp.npages -= (int) pages;
   1284  1.1    cherry 		}
   1285  1.1    cherry 
   1286  1.1    cherry 		rb_tree_remove_node(&(uvm_physseg_graph.rb_tree), upm);
   1287  1.1    cherry 		memset(seg, 0, sizeof(struct uvm_physseg));
   1288  1.1    cherry 		uvm_physseg_free(seg, sizeof(struct uvm_physseg));
   1289  1.1    cherry 		uvm_physseg_graph.nentries--;
   1290  1.1    cherry #else /* UVM_HOTPLUG */
   1291  1.1    cherry 		int x;
   1292  1.1    cherry 		if (vm_nphysmem == 1)
   1293  1.1    cherry 			panic("uvm_page_physget: out of memory!");
   1294  1.1    cherry 		vm_nphysmem--;
   1295  1.1    cherry 		for (x = upm ; x < vm_nphysmem ; x++)
   1296  1.1    cherry 			/* structure copy */
   1297  1.1    cherry 			VM_PHYSMEM_PTR_SWAP(x, x + 1);
   1298  1.1    cherry #endif /* UVM_HOTPLUG */
   1299  1.1    cherry 		/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1300  1.1    cherry 		return true;
   1301  1.1    cherry 	}
   1302  1.1    cherry 
   1303  1.1    cherry 	if (off > 0 &&
   1304  1.1    cherry 	    (pfn + pages) < end) {
   1305  1.1    cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
   1306  1.1    cherry 		/* middle chunk - need a new segment */
   1307  1.1    cherry 		struct uvm_physseg *ps, *current_ps;
   1308  1.1    cherry 		ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
   1309  1.1    cherry 		if (ps == NULL) {
   1310  1.1    cherry 			printf("%s: Unable to allocated new fragment vm_physseg \n",
   1311  1.1    cherry 			    __func__);
   1312  1.1    cherry 			return false;
   1313  1.1    cherry 		}
   1314  1.1    cherry 
   1315  1.1    cherry 		/* Remove middle chunk */
   1316  1.1    cherry 		if (__predict_true(uvm.page_init_done == true)) {
   1317  1.1    cherry 			KASSERT(seg->ext != NULL);
   1318  1.1    cherry 			ps->ext = seg->ext;
   1319  1.1    cherry 
   1320  1.1    cherry 			/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1321  1.1    cherry 			/*
   1322  1.1    cherry 			 * We assume that the unplug will succeed from
   1323  1.1    cherry 			 *  this point onwards
   1324  1.1    cherry 			 */
   1325  1.1    cherry 			uvmexp.npages -= (int) pages;
   1326  1.1    cherry 		}
   1327  1.1    cherry 
   1328  1.1    cherry 		ps->start = pfn + pages;
   1329  1.1    cherry 		ps->avail_start = ps->start; /* XXX: Legacy */
   1330  1.1    cherry 
   1331  1.1    cherry 		ps->end = seg->end;
   1332  1.1    cherry 		ps->avail_end = ps->end; /* XXX: Legacy */
   1333  1.1    cherry 
   1334  1.1    cherry 		seg->end = pfn;
   1335  1.1    cherry 		seg->avail_end = seg->end; /* XXX: Legacy */
   1336  1.1    cherry 
   1337  1.1    cherry 
   1338  1.1    cherry 		/*
   1339  1.1    cherry 		 * The new pgs array points to the beginning of the
   1340  1.1    cherry 		 * tail fragment.
   1341  1.1    cherry 		 */
   1342  1.1    cherry 		if (__predict_true(uvm.page_init_done == true))
   1343  1.1    cherry 			ps->pgs = seg->pgs + off + pages;
   1344  1.1    cherry 
   1345  1.1    cherry 		current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
   1346  1.1    cherry 		if (current_ps != ps) {
   1347  1.1    cherry 			panic("uvm_page_physload: Duplicate address range detected!");
   1348  1.1    cherry 		}
   1349  1.1    cherry 		uvm_physseg_graph.nentries++;
   1350  1.1    cherry #else /* UVM_HOTPLUG */
   1351  1.1    cherry 		panic("%s: can't unplug() from the middle of a segment without"
   1352  1.7       uwe 		    " UVM_HOTPLUG\n",  __func__);
   1353  1.1    cherry 		/* NOTREACHED */
   1354  1.1    cherry #endif /* UVM_HOTPLUG */
   1355  1.1    cherry 		return true;
   1356  1.1    cherry 	}
   1357  1.1    cherry 
   1358  1.1    cherry 	if (off == 0 && (pfn + pages) < end) {
   1359  1.1    cherry 		/* Remove front chunk */
   1360  1.1    cherry 		if (__predict_true(uvm.page_init_done == true)) {
   1361  1.1    cherry 			/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1362  1.1    cherry 			/*
   1363  1.1    cherry 			 * We assume that the unplug will succeed from
   1364  1.1    cherry 			 *  this point onwards
   1365  1.1    cherry 			 */
   1366  1.1    cherry 			uvmexp.npages -= (int) pages;
   1367  1.1    cherry 		}
   1368  1.1    cherry 
   1369  1.1    cherry 		/* Truncate */
   1370  1.1    cherry 		seg->start = pfn + pages;
   1371  1.1    cherry 		seg->avail_start = seg->start; /* XXX: Legacy */
   1372  1.1    cherry 
   1373  1.1    cherry 		/*
   1374  1.1    cherry 		 * Move the pgs array start to the beginning of the
   1375  1.1    cherry 		 * tail end.
   1376  1.1    cherry 		 */
   1377  1.1    cherry 		if (__predict_true(uvm.page_init_done == true))
   1378  1.1    cherry 			seg->pgs += pages;
   1379  1.1    cherry 
   1380  1.1    cherry 		return true;
   1381  1.1    cherry 	}
   1382  1.1    cherry 
   1383  1.1    cherry 	if (off > 0 && (pfn + pages) == end) {
   1384  1.1    cherry 		/* back chunk */
   1385  1.1    cherry 
   1386  1.1    cherry 
   1387  1.1    cherry 		/* Truncate! */
   1388  1.1    cherry 		seg->end = pfn;
   1389  1.1    cherry 		seg->avail_end = seg->end; /* XXX: Legacy */
   1390  1.1    cherry 
   1391  1.1    cherry 		uvmexp.npages -= (int) pages;
   1392  1.1    cherry 
   1393  1.1    cherry 		return true;
   1394  1.1    cherry 	}
   1395  1.1    cherry 
   1396  1.1    cherry 	printf("%s: Tried to unplug unknown range \n", __func__);
   1397  1.1    cherry 
   1398  1.1    cherry 	return false;
   1399  1.1    cherry }
   1400