uvm_physseg.c revision 1.9.4.1 1 1.9.4.1 martin /* $NetBSD: uvm_physseg.c,v 1.9.4.1 2020/04/08 14:09:05 martin Exp $ */
2 1.1 cherry
3 1.1 cherry /*
4 1.1 cherry * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 cherry * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 cherry *
7 1.1 cherry * All rights reserved.
8 1.1 cherry *
9 1.1 cherry * This code is derived from software contributed to Berkeley by
10 1.1 cherry * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 cherry *
12 1.1 cherry * Redistribution and use in source and binary forms, with or without
13 1.1 cherry * modification, are permitted provided that the following conditions
14 1.1 cherry * are met:
15 1.1 cherry * 1. Redistributions of source code must retain the above copyright
16 1.1 cherry * notice, this list of conditions and the following disclaimer.
17 1.1 cherry * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 cherry * notice, this list of conditions and the following disclaimer in the
19 1.1 cherry * documentation and/or other materials provided with the distribution.
20 1.1 cherry * 3. Neither the name of the University nor the names of its contributors
21 1.1 cherry * may be used to endorse or promote products derived from this software
22 1.1 cherry * without specific prior written permission.
23 1.1 cherry *
24 1.1 cherry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cherry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cherry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cherry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cherry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cherry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cherry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cherry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cherry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cherry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cherry * SUCH DAMAGE.
35 1.1 cherry *
36 1.1 cherry * @(#)vm_page.h 7.3 (Berkeley) 4/21/91
37 1.1 cherry * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
38 1.1 cherry *
39 1.1 cherry *
40 1.1 cherry * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 cherry * All rights reserved.
42 1.1 cherry *
43 1.1 cherry * Permission to use, copy, modify and distribute this software and
44 1.1 cherry * its documentation is hereby granted, provided that both the copyright
45 1.1 cherry * notice and this permission notice appear in all copies of the
46 1.1 cherry * software, derivative works or modified versions, and any portions
47 1.1 cherry * thereof, and that both notices appear in supporting documentation.
48 1.1 cherry *
49 1.1 cherry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.1 cherry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 cherry * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.1 cherry *
53 1.1 cherry * Carnegie Mellon requests users of this software to return to
54 1.1 cherry *
55 1.1 cherry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 cherry * School of Computer Science
57 1.1 cherry * Carnegie Mellon University
58 1.1 cherry * Pittsburgh PA 15213-3890
59 1.1 cherry *
60 1.1 cherry * any improvements or extensions that they make and grant Carnegie the
61 1.1 cherry * rights to redistribute these changes.
62 1.1 cherry */
63 1.1 cherry
64 1.1 cherry /*
65 1.1 cherry * Consolidated API from uvm_page.c and others.
66 1.1 cherry * Consolidated and designed by Cherry G. Mathew <cherry (at) zyx.in>
67 1.1 cherry * rbtree(3) backing implementation by:
68 1.1 cherry * Santhosh N. Raju <santhosh.raju (at) gmail.com>
69 1.1 cherry */
70 1.1 cherry
71 1.1 cherry #ifdef _KERNEL_OPT
72 1.1 cherry #include "opt_uvm.h"
73 1.1 cherry #endif
74 1.1 cherry
75 1.1 cherry #include <sys/param.h>
76 1.1 cherry #include <sys/types.h>
77 1.1 cherry #include <sys/extent.h>
78 1.1 cherry #include <sys/kmem.h>
79 1.1 cherry
80 1.1 cherry #include <uvm/uvm.h>
81 1.1 cherry #include <uvm/uvm_page.h>
82 1.1 cherry #include <uvm/uvm_param.h>
83 1.1 cherry #include <uvm/uvm_pdpolicy.h>
84 1.1 cherry #include <uvm/uvm_physseg.h>
85 1.1 cherry
86 1.1 cherry /*
87 1.1 cherry * uvm_physseg: describes one segment of physical memory
88 1.1 cherry */
89 1.1 cherry struct uvm_physseg {
90 1.9.4.1 martin /* used during RB tree lookup for PHYS_TO_VM_PAGE(). */
91 1.1 cherry struct rb_node rb_node; /* tree information */
92 1.1 cherry paddr_t start; /* PF# of first page in segment */
93 1.1 cherry paddr_t end; /* (PF# of last page in segment) + 1 */
94 1.9.4.1 martin struct vm_page *pgs; /* vm_page structures (from start) */
95 1.9.4.1 martin
96 1.9.4.1 martin /* less performance sensitive fields. */
97 1.1 cherry paddr_t avail_start; /* PF# of first free page in segment */
98 1.1 cherry paddr_t avail_end; /* (PF# of last free page in segment) +1 */
99 1.1 cherry struct extent *ext; /* extent(9) structure to manage pgs[] */
100 1.1 cherry int free_list; /* which free list they belong on */
101 1.1 cherry u_int start_hint; /* start looking for free pages here */
102 1.1 cherry #ifdef __HAVE_PMAP_PHYSSEG
103 1.1 cherry struct pmap_physseg pmseg; /* pmap specific (MD) data */
104 1.1 cherry #endif
105 1.1 cherry };
106 1.1 cherry
107 1.1 cherry /*
108 1.1 cherry * These functions are reserved for uvm(9) internal use and are not
109 1.1 cherry * exported in the header file uvm_physseg.h
110 1.1 cherry *
111 1.1 cherry * Thus they are redefined here.
112 1.1 cherry */
113 1.1 cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
114 1.1 cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
115 1.1 cherry
116 1.1 cherry /* returns a pgs array */
117 1.1 cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
118 1.1 cherry
119 1.1 cherry #if defined(UVM_HOTPLUG) /* rbtree impementation */
120 1.1 cherry
121 1.1 cherry #define HANDLE_TO_PHYSSEG_NODE(h) ((struct uvm_physseg *)(h))
122 1.1 cherry #define PHYSSEG_NODE_TO_HANDLE(u) ((uvm_physseg_t)(u))
123 1.1 cherry
124 1.1 cherry struct uvm_physseg_graph {
125 1.1 cherry struct rb_tree rb_tree; /* Tree for entries */
126 1.1 cherry int nentries; /* Number of entries */
127 1.9.4.1 martin } __aligned(COHERENCY_UNIT);
128 1.1 cherry
129 1.9.4.1 martin static struct uvm_physseg_graph uvm_physseg_graph __read_mostly;
130 1.1 cherry
131 1.1 cherry /*
132 1.1 cherry * Note on kmem(9) allocator usage:
133 1.1 cherry * We take the conservative approach that plug/unplug are allowed to
134 1.1 cherry * fail in high memory stress situations.
135 1.1 cherry *
136 1.1 cherry * We want to avoid re-entrant situations in which one plug/unplug
137 1.1 cherry * operation is waiting on a previous one to complete, since this
138 1.1 cherry * makes the design more complicated than necessary.
139 1.1 cherry *
140 1.1 cherry * We may review this and change its behaviour, once the use cases
141 1.1 cherry * become more obvious.
142 1.1 cherry */
143 1.1 cherry
144 1.1 cherry /*
145 1.1 cherry * Special alloc()/free() functions for boot time support:
146 1.1 cherry * We assume that alloc() at boot time is only for new 'vm_physseg's
147 1.1 cherry * This allows us to use a static array for memory allocation at boot
148 1.1 cherry * time. Thus we avoid using kmem(9) which is not ready at this point
149 1.1 cherry * in boot.
150 1.1 cherry *
151 1.1 cherry * After kmem(9) is ready, we use it. We currently discard any free()s
152 1.1 cherry * to this static array, since the size is small enough to be a
153 1.1 cherry * trivial waste on all architectures we run on.
154 1.1 cherry */
155 1.1 cherry
156 1.1 cherry static size_t nseg = 0;
157 1.1 cherry static struct uvm_physseg uvm_physseg[VM_PHYSSEG_MAX];
158 1.1 cherry
159 1.1 cherry static void *
160 1.1 cherry uvm_physseg_alloc(size_t sz)
161 1.1 cherry {
162 1.1 cherry /*
163 1.1 cherry * During boot time, we only support allocating vm_physseg
164 1.1 cherry * entries from the static array.
165 1.1 cherry * We need to assert for this.
166 1.1 cherry */
167 1.1 cherry
168 1.1 cherry if (__predict_false(uvm.page_init_done == false)) {
169 1.1 cherry if (sz % sizeof(struct uvm_physseg))
170 1.1 cherry panic("%s: tried to alloc size other than multiple"
171 1.7 uwe " of struct uvm_physseg at boot\n", __func__);
172 1.1 cherry
173 1.1 cherry size_t n = sz / sizeof(struct uvm_physseg);
174 1.1 cherry nseg += n;
175 1.1 cherry
176 1.1 cherry KASSERT(nseg > 0 && nseg <= VM_PHYSSEG_MAX);
177 1.1 cherry
178 1.1 cherry return &uvm_physseg[nseg - n];
179 1.1 cherry }
180 1.1 cherry
181 1.1 cherry return kmem_zalloc(sz, KM_NOSLEEP);
182 1.1 cherry }
183 1.1 cherry
184 1.1 cherry static void
185 1.1 cherry uvm_physseg_free(void *p, size_t sz)
186 1.1 cherry {
187 1.1 cherry /*
188 1.1 cherry * This is a bit tricky. We do allow simulation of free()
189 1.1 cherry * during boot (for eg: when MD code is "steal"ing memory,
190 1.1 cherry * and the segment has been exhausted (and thus needs to be
191 1.1 cherry * free() - ed.
192 1.1 cherry * free() also complicates things because we leak the
193 1.1 cherry * free(). Therefore calling code can't assume that free()-ed
194 1.1 cherry * memory is available for alloc() again, at boot time.
195 1.1 cherry *
196 1.1 cherry * Thus we can't explicitly disallow free()s during
197 1.1 cherry * boot time. However, the same restriction for alloc()
198 1.1 cherry * applies to free(). We only allow uvm_physseg related free()s
199 1.1 cherry * via this function during boot time.
200 1.1 cherry */
201 1.1 cherry
202 1.1 cherry if (__predict_false(uvm.page_init_done == false)) {
203 1.1 cherry if (sz % sizeof(struct uvm_physseg))
204 1.1 cherry panic("%s: tried to free size other than struct uvm_physseg"
205 1.7 uwe " at boot\n", __func__);
206 1.1 cherry
207 1.1 cherry }
208 1.1 cherry
209 1.1 cherry /*
210 1.1 cherry * Could have been in a single if(){} block - split for
211 1.1 cherry * clarity
212 1.1 cherry */
213 1.1 cherry
214 1.1 cherry if ((struct uvm_physseg *)p >= uvm_physseg &&
215 1.1 cherry (struct uvm_physseg *)p < (uvm_physseg + VM_PHYSSEG_MAX)) {
216 1.1 cherry if (sz % sizeof(struct uvm_physseg))
217 1.1 cherry panic("%s: tried to free() other than struct uvm_physseg"
218 1.7 uwe " from static array\n", __func__);
219 1.1 cherry
220 1.1 cherry if ((sz / sizeof(struct uvm_physseg)) >= VM_PHYSSEG_MAX)
221 1.1 cherry panic("%s: tried to free() the entire static array!", __func__);
222 1.1 cherry return; /* Nothing to free */
223 1.1 cherry }
224 1.1 cherry
225 1.1 cherry kmem_free(p, sz);
226 1.1 cherry }
227 1.1 cherry
228 1.1 cherry /* XXX: Multi page size */
229 1.1 cherry bool
230 1.1 cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
231 1.1 cherry {
232 1.1 cherry int preload;
233 1.1 cherry size_t slabpages;
234 1.1 cherry struct uvm_physseg *ps, *current_ps = NULL;
235 1.1 cherry struct vm_page *slab = NULL, *pgs = NULL;
236 1.1 cherry
237 1.1 cherry #ifdef DEBUG
238 1.1 cherry paddr_t off;
239 1.1 cherry uvm_physseg_t upm;
240 1.1 cherry upm = uvm_physseg_find(pfn, &off);
241 1.1 cherry
242 1.1 cherry ps = HANDLE_TO_PHYSSEG_NODE(upm);
243 1.1 cherry
244 1.1 cherry if (ps != NULL) /* XXX; do we allow "update" plugs ? */
245 1.1 cherry return false;
246 1.1 cherry #endif
247 1.1 cherry
248 1.1 cherry /*
249 1.1 cherry * do we have room?
250 1.1 cherry */
251 1.1 cherry
252 1.1 cherry ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
253 1.1 cherry if (ps == NULL) {
254 1.1 cherry printf("uvm_page_physload: unable to load physical memory "
255 1.1 cherry "segment\n");
256 1.1 cherry printf("\t%d segments allocated, ignoring 0x%"PRIxPADDR" -> 0x%"PRIxPADDR"\n",
257 1.1 cherry VM_PHYSSEG_MAX, pfn, pfn + pages + 1);
258 1.1 cherry printf("\tincrease VM_PHYSSEG_MAX\n");
259 1.1 cherry return false;
260 1.1 cherry }
261 1.1 cherry
262 1.1 cherry /* span init */
263 1.1 cherry ps->start = pfn;
264 1.1 cherry ps->end = pfn + pages;
265 1.1 cherry
266 1.1 cherry /*
267 1.1 cherry * XXX: Ugly hack because uvmexp.npages accounts for only
268 1.1 cherry * those pages in the segment included below as well - this
269 1.1 cherry * should be legacy and removed.
270 1.1 cherry */
271 1.1 cherry
272 1.1 cherry ps->avail_start = ps->start;
273 1.1 cherry ps->avail_end = ps->end;
274 1.1 cherry
275 1.1 cherry /*
276 1.1 cherry * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
277 1.1 cherry * called yet, so kmem is not available).
278 1.1 cherry */
279 1.1 cherry
280 1.1 cherry preload = 1; /* We are going to assume it is a preload */
281 1.1 cherry
282 1.1 cherry RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
283 1.1 cherry /* If there are non NULL pages then we are not in a preload */
284 1.1 cherry if (current_ps->pgs != NULL) {
285 1.1 cherry preload = 0;
286 1.1 cherry /* Try to scavenge from earlier unplug()s. */
287 1.1 cherry pgs = uvm_physseg_seg_alloc_from_slab(current_ps, pages);
288 1.1 cherry
289 1.1 cherry if (pgs != NULL) {
290 1.1 cherry break;
291 1.1 cherry }
292 1.1 cherry }
293 1.1 cherry }
294 1.1 cherry
295 1.1 cherry
296 1.1 cherry /*
297 1.1 cherry * if VM is already running, attempt to kmem_alloc vm_page structures
298 1.1 cherry */
299 1.1 cherry
300 1.1 cherry if (!preload) {
301 1.1 cherry if (pgs == NULL) { /* Brand new */
302 1.1 cherry /* Iteratively try alloc down from uvmexp.npages */
303 1.1 cherry for (slabpages = (size_t) uvmexp.npages; slabpages >= pages; slabpages--) {
304 1.1 cherry slab = kmem_zalloc(sizeof *pgs * (long unsigned int)slabpages, KM_NOSLEEP);
305 1.1 cherry if (slab != NULL)
306 1.1 cherry break;
307 1.1 cherry }
308 1.1 cherry
309 1.1 cherry if (slab == NULL) {
310 1.1 cherry uvm_physseg_free(ps, sizeof(struct uvm_physseg));
311 1.1 cherry return false;
312 1.1 cherry }
313 1.1 cherry
314 1.1 cherry uvm_physseg_seg_chomp_slab(ps, slab, (size_t) slabpages);
315 1.1 cherry /* We allocate enough for this plug */
316 1.1 cherry pgs = uvm_physseg_seg_alloc_from_slab(ps, pages);
317 1.1 cherry
318 1.1 cherry if (pgs == NULL) {
319 1.1 cherry printf("unable to uvm_physseg_seg_alloc_from_slab() from backend\n");
320 1.1 cherry return false;
321 1.1 cherry }
322 1.1 cherry } else {
323 1.1 cherry /* Reuse scavenged extent */
324 1.1 cherry ps->ext = current_ps->ext;
325 1.1 cherry }
326 1.1 cherry
327 1.1 cherry physmem += pages;
328 1.1 cherry uvmpdpol_reinit();
329 1.1 cherry } else { /* Boot time - see uvm_page.c:uvm_page_init() */
330 1.1 cherry pgs = NULL;
331 1.1 cherry ps->pgs = pgs;
332 1.1 cherry }
333 1.1 cherry
334 1.1 cherry /*
335 1.1 cherry * now insert us in the proper place in uvm_physseg_graph.rb_tree
336 1.1 cherry */
337 1.1 cherry
338 1.1 cherry current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
339 1.1 cherry if (current_ps != ps) {
340 1.1 cherry panic("uvm_page_physload: Duplicate address range detected!");
341 1.1 cherry }
342 1.1 cherry uvm_physseg_graph.nentries++;
343 1.1 cherry
344 1.1 cherry /*
345 1.1 cherry * uvm_pagefree() requires the PHYS_TO_VM_PAGE(pgs[i]) on the
346 1.1 cherry * newly allocated pgs[] to return the correct value. This is
347 1.1 cherry * a bit of a chicken and egg problem, since it needs
348 1.1 cherry * uvm_physseg_find() to succeed. For this, the node needs to
349 1.1 cherry * be inserted *before* uvm_physseg_init_seg() happens.
350 1.1 cherry *
351 1.1 cherry * During boot, this happens anyway, since
352 1.1 cherry * uvm_physseg_init_seg() is called later on and separately
353 1.1 cherry * from uvm_page.c:uvm_page_init().
354 1.1 cherry * In the case of hotplug we need to ensure this.
355 1.1 cherry */
356 1.1 cherry
357 1.1 cherry if (__predict_true(!preload))
358 1.1 cherry uvm_physseg_init_seg(ps, pgs);
359 1.1 cherry
360 1.1 cherry if (psp != NULL)
361 1.1 cherry *psp = ps;
362 1.1 cherry
363 1.1 cherry return true;
364 1.1 cherry }
365 1.1 cherry
366 1.1 cherry static int
367 1.1 cherry uvm_physseg_compare_nodes(void *ctx, const void *nnode1, const void *nnode2)
368 1.1 cherry {
369 1.1 cherry const struct uvm_physseg *enode1 = nnode1;
370 1.1 cherry const struct uvm_physseg *enode2 = nnode2;
371 1.1 cherry
372 1.1 cherry KASSERT(enode1->start < enode2->start || enode1->start >= enode2->end);
373 1.1 cherry KASSERT(enode2->start < enode1->start || enode2->start >= enode1->end);
374 1.1 cherry
375 1.1 cherry if (enode1->start < enode2->start)
376 1.1 cherry return -1;
377 1.1 cherry if (enode1->start >= enode2->end)
378 1.1 cherry return 1;
379 1.1 cherry return 0;
380 1.1 cherry }
381 1.1 cherry
382 1.1 cherry static int
383 1.1 cherry uvm_physseg_compare_key(void *ctx, const void *nnode, const void *pkey)
384 1.1 cherry {
385 1.1 cherry const struct uvm_physseg *enode = nnode;
386 1.1 cherry const paddr_t pa = *(const paddr_t *) pkey;
387 1.1 cherry
388 1.1 cherry if(enode->start <= pa && pa < enode->end)
389 1.1 cherry return 0;
390 1.1 cherry if (enode->start < pa)
391 1.1 cherry return -1;
392 1.1 cherry if (enode->end > pa)
393 1.1 cherry return 1;
394 1.1 cherry
395 1.1 cherry return 0;
396 1.1 cherry }
397 1.1 cherry
398 1.1 cherry static const rb_tree_ops_t uvm_physseg_tree_ops = {
399 1.1 cherry .rbto_compare_nodes = uvm_physseg_compare_nodes,
400 1.1 cherry .rbto_compare_key = uvm_physseg_compare_key,
401 1.1 cherry .rbto_node_offset = offsetof(struct uvm_physseg, rb_node),
402 1.1 cherry .rbto_context = NULL
403 1.1 cherry };
404 1.1 cherry
405 1.1 cherry /*
406 1.1 cherry * uvm_physseg_init: init the physmem
407 1.1 cherry *
408 1.1 cherry * => physmem unit should not be in use at this point
409 1.1 cherry */
410 1.1 cherry
411 1.1 cherry void
412 1.1 cherry uvm_physseg_init(void)
413 1.1 cherry {
414 1.1 cherry rb_tree_init(&(uvm_physseg_graph.rb_tree), &uvm_physseg_tree_ops);
415 1.1 cherry uvm_physseg_graph.nentries = 0;
416 1.1 cherry }
417 1.1 cherry
418 1.1 cherry uvm_physseg_t
419 1.1 cherry uvm_physseg_get_next(uvm_physseg_t upm)
420 1.1 cherry {
421 1.1 cherry /* next of invalid is invalid, not fatal */
422 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
423 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
424 1.1 cherry
425 1.1 cherry return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
426 1.1 cherry RB_DIR_RIGHT);
427 1.1 cherry }
428 1.1 cherry
429 1.1 cherry uvm_physseg_t
430 1.1 cherry uvm_physseg_get_prev(uvm_physseg_t upm)
431 1.1 cherry {
432 1.1 cherry /* prev of invalid is invalid, not fatal */
433 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
434 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
435 1.1 cherry
436 1.1 cherry return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
437 1.1 cherry RB_DIR_LEFT);
438 1.1 cherry }
439 1.1 cherry
440 1.1 cherry uvm_physseg_t
441 1.1 cherry uvm_physseg_get_last(void)
442 1.1 cherry {
443 1.1 cherry return (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
444 1.1 cherry }
445 1.1 cherry
446 1.1 cherry uvm_physseg_t
447 1.1 cherry uvm_physseg_get_first(void)
448 1.1 cherry {
449 1.1 cherry return (uvm_physseg_t) RB_TREE_MIN(&(uvm_physseg_graph.rb_tree));
450 1.1 cherry }
451 1.1 cherry
452 1.1 cherry paddr_t
453 1.1 cherry uvm_physseg_get_highest_frame(void)
454 1.1 cherry {
455 1.1 cherry struct uvm_physseg *ps =
456 1.1 cherry (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
457 1.1 cherry
458 1.1 cherry return ps->end - 1;
459 1.1 cherry }
460 1.1 cherry
461 1.1 cherry /*
462 1.1 cherry * uvm_page_physunload: unload physical memory and return it to
463 1.1 cherry * caller.
464 1.1 cherry */
465 1.1 cherry bool
466 1.1 cherry uvm_page_physunload(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
467 1.1 cherry {
468 1.1 cherry struct uvm_physseg *seg;
469 1.1 cherry
470 1.1 cherry if (__predict_true(uvm.page_init_done == true))
471 1.1 cherry panic("%s: unload attempted after uvm_page_init()\n", __func__);
472 1.1 cherry
473 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
474 1.1 cherry
475 1.1 cherry if (seg->free_list != freelist) {
476 1.1 cherry paddrp = NULL;
477 1.1 cherry return false;
478 1.1 cherry }
479 1.1 cherry
480 1.1 cherry /*
481 1.1 cherry * During cold boot, what we're about to unplug hasn't been
482 1.1 cherry * put on the uvm freelist, nor has uvmexp.npages been
483 1.1 cherry * updated. (This happens in uvm_page.c:uvm_page_init())
484 1.1 cherry *
485 1.1 cherry * For hotplug, we assume here that the pages being unloaded
486 1.1 cherry * here are completely out of sight of uvm (ie; not on any uvm
487 1.1 cherry * lists), and that uvmexp.npages has been suitably
488 1.1 cherry * decremented before we're called.
489 1.1 cherry *
490 1.1 cherry * XXX: will avail_end == start if avail_start < avail_end?
491 1.1 cherry */
492 1.1 cherry
493 1.1 cherry /* try from front */
494 1.1 cherry if (seg->avail_start == seg->start &&
495 1.1 cherry seg->avail_start < seg->avail_end) {
496 1.1 cherry *paddrp = ctob(seg->avail_start);
497 1.1 cherry return uvm_physseg_unplug(seg->avail_start, 1);
498 1.1 cherry }
499 1.1 cherry
500 1.1 cherry /* try from rear */
501 1.1 cherry if (seg->avail_end == seg->end &&
502 1.1 cherry seg->avail_start < seg->avail_end) {
503 1.1 cherry *paddrp = ctob(seg->avail_end - 1);
504 1.1 cherry return uvm_physseg_unplug(seg->avail_end - 1, 1);
505 1.1 cherry }
506 1.1 cherry
507 1.1 cherry return false;
508 1.1 cherry }
509 1.1 cherry
510 1.1 cherry bool
511 1.1 cherry uvm_page_physunload_force(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
512 1.1 cherry {
513 1.1 cherry struct uvm_physseg *seg;
514 1.1 cherry
515 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
516 1.1 cherry
517 1.1 cherry if (__predict_true(uvm.page_init_done == true))
518 1.1 cherry panic("%s: unload attempted after uvm_page_init()\n", __func__);
519 1.1 cherry /* any room in this bank? */
520 1.1 cherry if (seg->avail_start >= seg->avail_end) {
521 1.1 cherry paddrp = NULL;
522 1.1 cherry return false; /* nope */
523 1.1 cherry }
524 1.1 cherry
525 1.1 cherry *paddrp = ctob(seg->avail_start);
526 1.1 cherry
527 1.1 cherry /* Always unplug from front */
528 1.1 cherry return uvm_physseg_unplug(seg->avail_start, 1);
529 1.1 cherry }
530 1.1 cherry
531 1.1 cherry
532 1.1 cherry /*
533 1.1 cherry * vm_physseg_find: find vm_physseg structure that belongs to a PA
534 1.1 cherry */
535 1.1 cherry uvm_physseg_t
536 1.1 cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
537 1.1 cherry {
538 1.1 cherry struct uvm_physseg * ps = NULL;
539 1.1 cherry
540 1.1 cherry ps = rb_tree_find_node(&(uvm_physseg_graph.rb_tree), &pframe);
541 1.1 cherry
542 1.1 cherry if(ps != NULL && offp != NULL)
543 1.1 cherry *offp = pframe - ps->start;
544 1.1 cherry
545 1.1 cherry return ps;
546 1.1 cherry }
547 1.1 cherry
548 1.1 cherry #else /* UVM_HOTPLUG */
549 1.1 cherry
550 1.1 cherry /*
551 1.1 cherry * physical memory config is stored in vm_physmem.
552 1.1 cherry */
553 1.1 cherry
554 1.1 cherry #define VM_PHYSMEM_PTR(i) (&vm_physmem[i])
555 1.1 cherry #if VM_PHYSSEG_MAX == 1
556 1.1 cherry #define VM_PHYSMEM_PTR_SWAP(i, j) /* impossible */
557 1.1 cherry #else
558 1.1 cherry #define VM_PHYSMEM_PTR_SWAP(i, j) \
559 1.1 cherry do { vm_physmem[(i)] = vm_physmem[(j)]; } while (0)
560 1.1 cherry #endif
561 1.1 cherry
562 1.1 cherry #define HANDLE_TO_PHYSSEG_NODE(h) (VM_PHYSMEM_PTR((int)h))
563 1.1 cherry #define PHYSSEG_NODE_TO_HANDLE(u) ((int)((vsize_t) (u - vm_physmem) / sizeof(struct uvm_physseg)))
564 1.1 cherry
565 1.1 cherry static struct uvm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
566 1.1 cherry static int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
567 1.1 cherry #define vm_nphysmem vm_nphysseg
568 1.1 cherry
569 1.1 cherry void
570 1.1 cherry uvm_physseg_init(void)
571 1.1 cherry {
572 1.1 cherry /* XXX: Provisioning for rb_tree related init(s) */
573 1.1 cherry return;
574 1.1 cherry }
575 1.1 cherry
576 1.1 cherry int
577 1.1 cherry uvm_physseg_get_next(uvm_physseg_t lcv)
578 1.1 cherry {
579 1.1 cherry /* next of invalid is invalid, not fatal */
580 1.2 cherry if (uvm_physseg_valid_p(lcv) == false)
581 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
582 1.1 cherry
583 1.1 cherry return (lcv + 1);
584 1.1 cherry }
585 1.1 cherry
586 1.1 cherry int
587 1.1 cherry uvm_physseg_get_prev(uvm_physseg_t lcv)
588 1.1 cherry {
589 1.1 cherry /* prev of invalid is invalid, not fatal */
590 1.2 cherry if (uvm_physseg_valid_p(lcv) == false)
591 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID;
592 1.1 cherry
593 1.1 cherry return (lcv - 1);
594 1.1 cherry }
595 1.1 cherry
596 1.1 cherry int
597 1.1 cherry uvm_physseg_get_last(void)
598 1.1 cherry {
599 1.1 cherry return (vm_nphysseg - 1);
600 1.1 cherry }
601 1.1 cherry
602 1.1 cherry int
603 1.1 cherry uvm_physseg_get_first(void)
604 1.1 cherry {
605 1.1 cherry return 0;
606 1.1 cherry }
607 1.1 cherry
608 1.1 cherry paddr_t
609 1.1 cherry uvm_physseg_get_highest_frame(void)
610 1.1 cherry {
611 1.1 cherry int lcv;
612 1.1 cherry paddr_t last = 0;
613 1.1 cherry struct uvm_physseg *ps;
614 1.1 cherry
615 1.1 cherry for (lcv = 0; lcv < vm_nphysseg; lcv++) {
616 1.1 cherry ps = VM_PHYSMEM_PTR(lcv);
617 1.1 cherry if (last < ps->end)
618 1.1 cherry last = ps->end;
619 1.1 cherry }
620 1.1 cherry
621 1.1 cherry return last;
622 1.1 cherry }
623 1.1 cherry
624 1.1 cherry
625 1.1 cherry static struct vm_page *
626 1.1 cherry uvm_post_preload_check(void)
627 1.1 cherry {
628 1.1 cherry int preload, lcv;
629 1.1 cherry
630 1.1 cherry /*
631 1.1 cherry * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
632 1.1 cherry * called yet, so kmem is not available).
633 1.1 cherry */
634 1.1 cherry
635 1.1 cherry for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
636 1.1 cherry if (VM_PHYSMEM_PTR(lcv)->pgs)
637 1.1 cherry break;
638 1.1 cherry }
639 1.1 cherry preload = (lcv == vm_nphysmem);
640 1.1 cherry
641 1.1 cherry /*
642 1.1 cherry * if VM is already running, attempt to kmem_alloc vm_page structures
643 1.1 cherry */
644 1.1 cherry
645 1.1 cherry if (!preload) {
646 1.1 cherry panic("Tried to add RAM after uvm_page_init");
647 1.1 cherry }
648 1.1 cherry
649 1.1 cherry return NULL;
650 1.1 cherry }
651 1.1 cherry
652 1.1 cherry /*
653 1.1 cherry * uvm_page_physunload: unload physical memory and return it to
654 1.1 cherry * caller.
655 1.1 cherry */
656 1.1 cherry bool
657 1.1 cherry uvm_page_physunload(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
658 1.1 cherry {
659 1.1 cherry int x;
660 1.1 cherry struct uvm_physseg *seg;
661 1.1 cherry
662 1.1 cherry uvm_post_preload_check();
663 1.1 cherry
664 1.1 cherry seg = VM_PHYSMEM_PTR(psi);
665 1.1 cherry
666 1.1 cherry if (seg->free_list != freelist) {
667 1.1 cherry paddrp = NULL;
668 1.1 cherry return false;
669 1.1 cherry }
670 1.1 cherry
671 1.1 cherry /* try from front */
672 1.1 cherry if (seg->avail_start == seg->start &&
673 1.1 cherry seg->avail_start < seg->avail_end) {
674 1.1 cherry *paddrp = ctob(seg->avail_start);
675 1.1 cherry seg->avail_start++;
676 1.1 cherry seg->start++;
677 1.1 cherry /* nothing left? nuke it */
678 1.1 cherry if (seg->avail_start == seg->end) {
679 1.1 cherry if (vm_nphysmem == 1)
680 1.1 cherry panic("uvm_page_physget: out of memory!");
681 1.1 cherry vm_nphysmem--;
682 1.1 cherry for (x = psi ; x < vm_nphysmem ; x++)
683 1.1 cherry /* structure copy */
684 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
685 1.1 cherry }
686 1.1 cherry return (true);
687 1.1 cherry }
688 1.1 cherry
689 1.1 cherry /* try from rear */
690 1.1 cherry if (seg->avail_end == seg->end &&
691 1.1 cherry seg->avail_start < seg->avail_end) {
692 1.1 cherry *paddrp = ctob(seg->avail_end - 1);
693 1.1 cherry seg->avail_end--;
694 1.1 cherry seg->end--;
695 1.1 cherry /* nothing left? nuke it */
696 1.1 cherry if (seg->avail_end == seg->start) {
697 1.1 cherry if (vm_nphysmem == 1)
698 1.1 cherry panic("uvm_page_physget: out of memory!");
699 1.1 cherry vm_nphysmem--;
700 1.1 cherry for (x = psi ; x < vm_nphysmem ; x++)
701 1.1 cherry /* structure copy */
702 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
703 1.1 cherry }
704 1.1 cherry return (true);
705 1.1 cherry }
706 1.1 cherry
707 1.1 cherry return false;
708 1.1 cherry }
709 1.1 cherry
710 1.1 cherry bool
711 1.1 cherry uvm_page_physunload_force(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
712 1.1 cherry {
713 1.1 cherry int x;
714 1.1 cherry struct uvm_physseg *seg;
715 1.1 cherry
716 1.1 cherry uvm_post_preload_check();
717 1.1 cherry
718 1.1 cherry seg = VM_PHYSMEM_PTR(psi);
719 1.1 cherry
720 1.1 cherry /* any room in this bank? */
721 1.1 cherry if (seg->avail_start >= seg->avail_end) {
722 1.1 cherry paddrp = NULL;
723 1.1 cherry return false; /* nope */
724 1.1 cherry }
725 1.1 cherry
726 1.1 cherry *paddrp = ctob(seg->avail_start);
727 1.1 cherry seg->avail_start++;
728 1.1 cherry /* truncate! */
729 1.1 cherry seg->start = seg->avail_start;
730 1.1 cherry
731 1.1 cherry /* nothing left? nuke it */
732 1.1 cherry if (seg->avail_start == seg->end) {
733 1.1 cherry if (vm_nphysmem == 1)
734 1.1 cherry panic("uvm_page_physget: out of memory!");
735 1.1 cherry vm_nphysmem--;
736 1.1 cherry for (x = psi ; x < vm_nphysmem ; x++)
737 1.1 cherry /* structure copy */
738 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
739 1.1 cherry }
740 1.1 cherry return (true);
741 1.1 cherry }
742 1.1 cherry
743 1.1 cherry bool
744 1.1 cherry uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
745 1.1 cherry {
746 1.1 cherry int lcv;
747 1.1 cherry struct vm_page *pgs;
748 1.1 cherry struct uvm_physseg *ps;
749 1.1 cherry
750 1.1 cherry #ifdef DEBUG
751 1.1 cherry paddr_t off;
752 1.1 cherry uvm_physseg_t upm;
753 1.1 cherry upm = uvm_physseg_find(pfn, &off);
754 1.1 cherry
755 1.2 cherry if (uvm_physseg_valid_p(upm)) /* XXX; do we allow "update" plugs ? */
756 1.1 cherry return false;
757 1.1 cherry #endif
758 1.1 cherry
759 1.1 cherry paddr_t start = pfn;
760 1.1 cherry paddr_t end = pfn + pages;
761 1.1 cherry paddr_t avail_start = start;
762 1.1 cherry paddr_t avail_end = end;
763 1.1 cherry
764 1.1 cherry if (uvmexp.pagesize == 0)
765 1.1 cherry panic("uvm_page_physload: page size not set!");
766 1.1 cherry
767 1.1 cherry /*
768 1.1 cherry * do we have room?
769 1.1 cherry */
770 1.1 cherry
771 1.1 cherry if (vm_nphysmem == VM_PHYSSEG_MAX) {
772 1.1 cherry printf("uvm_page_physload: unable to load physical memory "
773 1.1 cherry "segment\n");
774 1.1 cherry printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
775 1.1 cherry VM_PHYSSEG_MAX, (long long)start, (long long)end);
776 1.1 cherry printf("\tincrease VM_PHYSSEG_MAX\n");
777 1.1 cherry if (psp != NULL)
778 1.1 cherry *psp = UVM_PHYSSEG_TYPE_INVALID_OVERFLOW;
779 1.1 cherry return false;
780 1.1 cherry }
781 1.1 cherry
782 1.1 cherry /*
783 1.1 cherry * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
784 1.1 cherry * called yet, so kmem is not available).
785 1.1 cherry */
786 1.1 cherry pgs = uvm_post_preload_check();
787 1.1 cherry
788 1.1 cherry /*
789 1.1 cherry * now insert us in the proper place in vm_physmem[]
790 1.1 cherry */
791 1.1 cherry
792 1.1 cherry #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
793 1.1 cherry /* random: put it at the end (easy!) */
794 1.1 cherry ps = VM_PHYSMEM_PTR(vm_nphysmem);
795 1.3 cherry lcv = vm_nphysmem;
796 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
797 1.1 cherry {
798 1.1 cherry int x;
799 1.1 cherry /* sort by address for binary search */
800 1.1 cherry for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
801 1.1 cherry if (start < VM_PHYSMEM_PTR(lcv)->start)
802 1.1 cherry break;
803 1.1 cherry ps = VM_PHYSMEM_PTR(lcv);
804 1.1 cherry /* move back other entries, if necessary ... */
805 1.1 cherry for (x = vm_nphysmem ; x > lcv ; x--)
806 1.1 cherry /* structure copy */
807 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x - 1);
808 1.1 cherry }
809 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
810 1.1 cherry {
811 1.1 cherry int x;
812 1.1 cherry /* sort by largest segment first */
813 1.1 cherry for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
814 1.1 cherry if ((end - start) >
815 1.1 cherry (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
816 1.1 cherry break;
817 1.1 cherry ps = VM_PHYSMEM_PTR(lcv);
818 1.1 cherry /* move back other entries, if necessary ... */
819 1.1 cherry for (x = vm_nphysmem ; x > lcv ; x--)
820 1.1 cherry /* structure copy */
821 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x - 1);
822 1.1 cherry }
823 1.1 cherry #else
824 1.1 cherry panic("uvm_page_physload: unknown physseg strategy selected!");
825 1.1 cherry #endif
826 1.1 cherry
827 1.1 cherry ps->start = start;
828 1.1 cherry ps->end = end;
829 1.1 cherry ps->avail_start = avail_start;
830 1.1 cherry ps->avail_end = avail_end;
831 1.1 cherry
832 1.1 cherry ps->pgs = pgs;
833 1.1 cherry
834 1.1 cherry vm_nphysmem++;
835 1.1 cherry
836 1.1 cherry if (psp != NULL)
837 1.1 cherry *psp = lcv;
838 1.1 cherry
839 1.1 cherry return true;
840 1.1 cherry }
841 1.1 cherry
842 1.1 cherry /*
843 1.1 cherry * when VM_PHYSSEG_MAX is 1, we can simplify these functions
844 1.1 cherry */
845 1.1 cherry
846 1.1 cherry #if VM_PHYSSEG_MAX == 1
847 1.1 cherry static inline int vm_physseg_find_contig(struct uvm_physseg *, int, paddr_t, psize_t *);
848 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
849 1.1 cherry static inline int vm_physseg_find_bsearch(struct uvm_physseg *, int, paddr_t, psize_t *);
850 1.1 cherry #else
851 1.1 cherry static inline int vm_physseg_find_linear(struct uvm_physseg *, int, paddr_t, psize_t *);
852 1.1 cherry #endif
853 1.1 cherry
854 1.1 cherry /*
855 1.1 cherry * vm_physseg_find: find vm_physseg structure that belongs to a PA
856 1.1 cherry */
857 1.1 cherry int
858 1.1 cherry uvm_physseg_find(paddr_t pframe, psize_t *offp)
859 1.1 cherry {
860 1.1 cherry
861 1.1 cherry #if VM_PHYSSEG_MAX == 1
862 1.1 cherry return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
863 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
864 1.1 cherry return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
865 1.1 cherry #else
866 1.1 cherry return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
867 1.1 cherry #endif
868 1.1 cherry }
869 1.1 cherry
870 1.1 cherry #if VM_PHYSSEG_MAX == 1
871 1.1 cherry static inline int
872 1.1 cherry vm_physseg_find_contig(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
873 1.1 cherry {
874 1.1 cherry
875 1.1 cherry /* 'contig' case */
876 1.1 cherry if (pframe >= segs[0].start && pframe < segs[0].end) {
877 1.1 cherry if (offp)
878 1.1 cherry *offp = pframe - segs[0].start;
879 1.1 cherry return(0);
880 1.1 cherry }
881 1.1 cherry return(-1);
882 1.1 cherry }
883 1.1 cherry
884 1.1 cherry #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
885 1.1 cherry
886 1.1 cherry static inline int
887 1.1 cherry vm_physseg_find_bsearch(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
888 1.1 cherry {
889 1.1 cherry /* binary search for it */
890 1.1 cherry int start, len, guess;
891 1.1 cherry
892 1.1 cherry /*
893 1.1 cherry * if try is too large (thus target is less than try) we reduce
894 1.1 cherry * the length to trunc(len/2) [i.e. everything smaller than "try"]
895 1.1 cherry *
896 1.1 cherry * if the try is too small (thus target is greater than try) then
897 1.1 cherry * we set the new start to be (try + 1). this means we need to
898 1.1 cherry * reduce the length to (round(len/2) - 1).
899 1.1 cherry *
900 1.1 cherry * note "adjust" below which takes advantage of the fact that
901 1.1 cherry * (round(len/2) - 1) == trunc((len - 1) / 2)
902 1.1 cherry * for any value of len we may have
903 1.1 cherry */
904 1.1 cherry
905 1.1 cherry for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
906 1.1 cherry guess = start + (len / 2); /* try in the middle */
907 1.1 cherry
908 1.1 cherry /* start past our try? */
909 1.1 cherry if (pframe >= segs[guess].start) {
910 1.1 cherry /* was try correct? */
911 1.1 cherry if (pframe < segs[guess].end) {
912 1.1 cherry if (offp)
913 1.1 cherry *offp = pframe - segs[guess].start;
914 1.1 cherry return guess; /* got it */
915 1.1 cherry }
916 1.1 cherry start = guess + 1; /* next time, start here */
917 1.1 cherry len--; /* "adjust" */
918 1.1 cherry } else {
919 1.1 cherry /*
920 1.1 cherry * pframe before try, just reduce length of
921 1.1 cherry * region, done in "for" loop
922 1.1 cherry */
923 1.1 cherry }
924 1.1 cherry }
925 1.1 cherry return(-1);
926 1.1 cherry }
927 1.1 cherry
928 1.1 cherry #else
929 1.1 cherry
930 1.1 cherry static inline int
931 1.1 cherry vm_physseg_find_linear(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
932 1.1 cherry {
933 1.1 cherry /* linear search for it */
934 1.1 cherry int lcv;
935 1.1 cherry
936 1.1 cherry for (lcv = 0; lcv < nsegs; lcv++) {
937 1.1 cherry if (pframe >= segs[lcv].start &&
938 1.1 cherry pframe < segs[lcv].end) {
939 1.1 cherry if (offp)
940 1.1 cherry *offp = pframe - segs[lcv].start;
941 1.1 cherry return(lcv); /* got it */
942 1.1 cherry }
943 1.1 cherry }
944 1.1 cherry return(-1);
945 1.1 cherry }
946 1.1 cherry #endif
947 1.1 cherry #endif /* UVM_HOTPLUG */
948 1.1 cherry
949 1.1 cherry bool
950 1.2 cherry uvm_physseg_valid_p(uvm_physseg_t upm)
951 1.1 cherry {
952 1.1 cherry struct uvm_physseg *ps;
953 1.1 cherry
954 1.1 cherry if (upm == UVM_PHYSSEG_TYPE_INVALID ||
955 1.1 cherry upm == UVM_PHYSSEG_TYPE_INVALID_EMPTY ||
956 1.1 cherry upm == UVM_PHYSSEG_TYPE_INVALID_OVERFLOW)
957 1.1 cherry return false;
958 1.1 cherry
959 1.1 cherry /*
960 1.1 cherry * This is the delicate init dance -
961 1.1 cherry * needs to go with the dance.
962 1.1 cherry */
963 1.1 cherry if (uvm.page_init_done != true)
964 1.1 cherry return true;
965 1.1 cherry
966 1.1 cherry ps = HANDLE_TO_PHYSSEG_NODE(upm);
967 1.1 cherry
968 1.1 cherry /* Extra checks needed only post uvm_page_init() */
969 1.1 cherry if (ps->pgs == NULL)
970 1.1 cherry return false;
971 1.1 cherry
972 1.1 cherry /* XXX: etc. */
973 1.1 cherry
974 1.1 cherry return true;
975 1.1 cherry
976 1.1 cherry }
977 1.1 cherry
978 1.1 cherry /*
979 1.1 cherry * Boot protocol dictates that these must be able to return partially
980 1.1 cherry * initialised segments.
981 1.1 cherry */
982 1.1 cherry paddr_t
983 1.1 cherry uvm_physseg_get_start(uvm_physseg_t upm)
984 1.1 cherry {
985 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
986 1.1 cherry return (paddr_t) -1;
987 1.1 cherry
988 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->start;
989 1.1 cherry }
990 1.1 cherry
991 1.1 cherry paddr_t
992 1.1 cherry uvm_physseg_get_end(uvm_physseg_t upm)
993 1.1 cherry {
994 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
995 1.1 cherry return (paddr_t) -1;
996 1.1 cherry
997 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->end;
998 1.1 cherry }
999 1.1 cherry
1000 1.1 cherry paddr_t
1001 1.1 cherry uvm_physseg_get_avail_start(uvm_physseg_t upm)
1002 1.1 cherry {
1003 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
1004 1.1 cherry return (paddr_t) -1;
1005 1.1 cherry
1006 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->avail_start;
1007 1.1 cherry }
1008 1.1 cherry
1009 1.6 rin #if defined(UVM_PHYSSEG_LEGACY)
1010 1.4 christos void
1011 1.4 christos uvm_physseg_set_avail_start(uvm_physseg_t upm, paddr_t avail_start)
1012 1.4 christos {
1013 1.5 cherry struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
1014 1.5 cherry
1015 1.5 cherry #if defined(DIAGNOSTIC)
1016 1.5 cherry paddr_t avail_end;
1017 1.5 cherry avail_end = uvm_physseg_get_avail_end(upm);
1018 1.4 christos KASSERT(uvm_physseg_valid_p(upm));
1019 1.5 cherry KASSERT(avail_start < avail_end && avail_start >= ps->start);
1020 1.5 cherry #endif
1021 1.5 cherry
1022 1.5 cherry ps->avail_start = avail_start;
1023 1.4 christos }
1024 1.9.4.1 martin
1025 1.9.4.1 martin void
1026 1.9.4.1 martin uvm_physseg_set_avail_end(uvm_physseg_t upm, paddr_t avail_end)
1027 1.5 cherry {
1028 1.5 cherry struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
1029 1.5 cherry
1030 1.5 cherry #if defined(DIAGNOSTIC)
1031 1.5 cherry paddr_t avail_start;
1032 1.5 cherry avail_start = uvm_physseg_get_avail_start(upm);
1033 1.5 cherry KASSERT(uvm_physseg_valid_p(upm));
1034 1.5 cherry KASSERT(avail_end > avail_start && avail_end <= ps->end);
1035 1.4 christos #endif
1036 1.4 christos
1037 1.5 cherry ps->avail_end = avail_end;
1038 1.5 cherry }
1039 1.5 cherry
1040 1.6 rin #endif /* UVM_PHYSSEG_LEGACY */
1041 1.5 cherry
1042 1.1 cherry paddr_t
1043 1.1 cherry uvm_physseg_get_avail_end(uvm_physseg_t upm)
1044 1.1 cherry {
1045 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
1046 1.1 cherry return (paddr_t) -1;
1047 1.1 cherry
1048 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->avail_end;
1049 1.1 cherry }
1050 1.1 cherry
1051 1.1 cherry struct vm_page *
1052 1.1 cherry uvm_physseg_get_pg(uvm_physseg_t upm, paddr_t idx)
1053 1.1 cherry {
1054 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1055 1.1 cherry return &HANDLE_TO_PHYSSEG_NODE(upm)->pgs[idx];
1056 1.1 cherry }
1057 1.1 cherry
1058 1.1 cherry #ifdef __HAVE_PMAP_PHYSSEG
1059 1.1 cherry struct pmap_physseg *
1060 1.1 cherry uvm_physseg_get_pmseg(uvm_physseg_t upm)
1061 1.1 cherry {
1062 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1063 1.1 cherry return &(HANDLE_TO_PHYSSEG_NODE(upm)->pmseg);
1064 1.1 cherry }
1065 1.1 cherry #endif
1066 1.1 cherry
1067 1.1 cherry int
1068 1.1 cherry uvm_physseg_get_free_list(uvm_physseg_t upm)
1069 1.1 cherry {
1070 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1071 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->free_list;
1072 1.1 cherry }
1073 1.1 cherry
1074 1.1 cherry u_int
1075 1.1 cherry uvm_physseg_get_start_hint(uvm_physseg_t upm)
1076 1.1 cherry {
1077 1.2 cherry KASSERT(uvm_physseg_valid_p(upm));
1078 1.1 cherry return HANDLE_TO_PHYSSEG_NODE(upm)->start_hint;
1079 1.1 cherry }
1080 1.1 cherry
1081 1.1 cherry bool
1082 1.1 cherry uvm_physseg_set_start_hint(uvm_physseg_t upm, u_int start_hint)
1083 1.1 cherry {
1084 1.2 cherry if (uvm_physseg_valid_p(upm) == false)
1085 1.1 cherry return false;
1086 1.1 cherry
1087 1.1 cherry HANDLE_TO_PHYSSEG_NODE(upm)->start_hint = start_hint;
1088 1.1 cherry return true;
1089 1.1 cherry }
1090 1.1 cherry
1091 1.1 cherry void
1092 1.1 cherry uvm_physseg_init_seg(uvm_physseg_t upm, struct vm_page *pgs)
1093 1.1 cherry {
1094 1.1 cherry psize_t i;
1095 1.1 cherry psize_t n;
1096 1.1 cherry paddr_t paddr;
1097 1.1 cherry struct uvm_physseg *seg;
1098 1.9.4.1 martin struct vm_page *pg;
1099 1.1 cherry
1100 1.1 cherry KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID && pgs != NULL);
1101 1.1 cherry
1102 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
1103 1.1 cherry KASSERT(seg != NULL);
1104 1.1 cherry KASSERT(seg->pgs == NULL);
1105 1.1 cherry
1106 1.1 cherry n = seg->end - seg->start;
1107 1.1 cherry seg->pgs = pgs;
1108 1.1 cherry
1109 1.1 cherry /* init and free vm_pages (we've already zeroed them) */
1110 1.1 cherry paddr = ctob(seg->start);
1111 1.1 cherry for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
1112 1.9.4.1 martin pg = &seg->pgs[i];
1113 1.9.4.1 martin pg->phys_addr = paddr;
1114 1.1 cherry #ifdef __HAVE_VM_PAGE_MD
1115 1.9.4.1 martin VM_MDPAGE_INIT(pg);
1116 1.1 cherry #endif
1117 1.1 cherry if (atop(paddr) >= seg->avail_start &&
1118 1.1 cherry atop(paddr) < seg->avail_end) {
1119 1.1 cherry uvmexp.npages++;
1120 1.1 cherry /* add page to free pool */
1121 1.9.4.1 martin uvm_page_set_freelist(pg,
1122 1.9.4.1 martin uvm_page_lookup_freelist(pg));
1123 1.9.4.1 martin /* Disable LOCKDEBUG: too many and too early. */
1124 1.9.4.1 martin mutex_init(&pg->interlock, MUTEX_NODEBUG, IPL_NONE);
1125 1.9.4.1 martin uvm_pagefree(pg);
1126 1.1 cherry }
1127 1.1 cherry }
1128 1.1 cherry }
1129 1.1 cherry
1130 1.1 cherry void
1131 1.1 cherry uvm_physseg_seg_chomp_slab(uvm_physseg_t upm, struct vm_page *pgs, size_t n)
1132 1.1 cherry {
1133 1.1 cherry struct uvm_physseg *seg = HANDLE_TO_PHYSSEG_NODE(upm);
1134 1.1 cherry
1135 1.1 cherry /* max number of pre-boot unplug()s allowed */
1136 1.1 cherry #define UVM_PHYSSEG_BOOT_UNPLUG_MAX VM_PHYSSEG_MAX
1137 1.1 cherry
1138 1.1 cherry static char btslab_ex_storage[EXTENT_FIXED_STORAGE_SIZE(UVM_PHYSSEG_BOOT_UNPLUG_MAX)];
1139 1.1 cherry
1140 1.1 cherry if (__predict_false(uvm.page_init_done == false)) {
1141 1.1 cherry seg->ext = extent_create("Boot time slab", (u_long) pgs, (u_long) (pgs + n),
1142 1.1 cherry (void *)btslab_ex_storage, sizeof(btslab_ex_storage), 0);
1143 1.1 cherry } else {
1144 1.1 cherry seg->ext = extent_create("Hotplug slab", (u_long) pgs, (u_long) (pgs + n), NULL, 0, 0);
1145 1.1 cherry }
1146 1.1 cherry
1147 1.1 cherry KASSERT(seg->ext != NULL);
1148 1.1 cherry
1149 1.1 cherry }
1150 1.1 cherry
1151 1.1 cherry struct vm_page *
1152 1.1 cherry uvm_physseg_seg_alloc_from_slab(uvm_physseg_t upm, size_t pages)
1153 1.1 cherry {
1154 1.1 cherry int err;
1155 1.1 cherry struct uvm_physseg *seg;
1156 1.1 cherry struct vm_page *pgs = NULL;
1157 1.1 cherry
1158 1.9 christos KASSERT(pages > 0);
1159 1.9 christos
1160 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
1161 1.1 cherry
1162 1.1 cherry if (__predict_false(seg->ext == NULL)) {
1163 1.1 cherry /*
1164 1.1 cherry * This is a situation unique to boot time.
1165 1.1 cherry * It shouldn't happen at any point other than from
1166 1.1 cherry * the first uvm_page.c:uvm_page_init() call
1167 1.1 cherry * Since we're in a loop, we can get away with the
1168 1.1 cherry * below.
1169 1.1 cherry */
1170 1.1 cherry KASSERT(uvm.page_init_done != true);
1171 1.1 cherry
1172 1.9 christos uvm_physseg_t upmp = uvm_physseg_get_prev(upm);
1173 1.9 christos KASSERT(upmp != UVM_PHYSSEG_TYPE_INVALID);
1174 1.9 christos
1175 1.9 christos seg->ext = HANDLE_TO_PHYSSEG_NODE(upmp)->ext;
1176 1.1 cherry
1177 1.1 cherry KASSERT(seg->ext != NULL);
1178 1.1 cherry }
1179 1.1 cherry
1180 1.1 cherry /* We allocate enough for this segment */
1181 1.1 cherry err = extent_alloc(seg->ext, sizeof(*pgs) * pages, 1, 0, EX_BOUNDZERO, (u_long *)&pgs);
1182 1.1 cherry
1183 1.1 cherry if (err != 0) {
1184 1.1 cherry #ifdef DEBUG
1185 1.1 cherry printf("%s: extent_alloc failed with error: %d \n",
1186 1.1 cherry __func__, err);
1187 1.1 cherry #endif
1188 1.1 cherry }
1189 1.1 cherry
1190 1.1 cherry return pgs;
1191 1.1 cherry }
1192 1.1 cherry
1193 1.1 cherry /*
1194 1.1 cherry * uvm_page_physload: load physical memory into VM system
1195 1.1 cherry *
1196 1.1 cherry * => all args are PFs
1197 1.1 cherry * => all pages in start/end get vm_page structures
1198 1.1 cherry * => areas marked by avail_start/avail_end get added to the free page pool
1199 1.1 cherry * => we are limited to VM_PHYSSEG_MAX physical memory segments
1200 1.1 cherry */
1201 1.1 cherry
1202 1.1 cherry uvm_physseg_t
1203 1.1 cherry uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
1204 1.1 cherry paddr_t avail_end, int free_list)
1205 1.1 cherry {
1206 1.1 cherry struct uvm_physseg *ps;
1207 1.1 cherry uvm_physseg_t upm;
1208 1.1 cherry
1209 1.1 cherry if (__predict_true(uvm.page_init_done == true))
1210 1.1 cherry panic("%s: unload attempted after uvm_page_init()\n", __func__);
1211 1.1 cherry if (uvmexp.pagesize == 0)
1212 1.1 cherry panic("uvm_page_physload: page size not set!");
1213 1.1 cherry if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
1214 1.1 cherry panic("uvm_page_physload: bad free list %d", free_list);
1215 1.1 cherry if (start >= end)
1216 1.1 cherry panic("uvm_page_physload: start >= end");
1217 1.1 cherry
1218 1.1 cherry if (uvm_physseg_plug(start, end - start, &upm) == false) {
1219 1.1 cherry panic("uvm_physseg_plug() failed at boot.");
1220 1.1 cherry /* NOTREACHED */
1221 1.1 cherry return UVM_PHYSSEG_TYPE_INVALID; /* XXX: correct type */
1222 1.1 cherry }
1223 1.1 cherry
1224 1.1 cherry ps = HANDLE_TO_PHYSSEG_NODE(upm);
1225 1.1 cherry
1226 1.1 cherry /* Legacy */
1227 1.1 cherry ps->avail_start = avail_start;
1228 1.1 cherry ps->avail_end = avail_end;
1229 1.1 cherry
1230 1.1 cherry ps->free_list = free_list; /* XXX: */
1231 1.1 cherry
1232 1.1 cherry
1233 1.1 cherry return upm;
1234 1.1 cherry }
1235 1.1 cherry
1236 1.1 cherry bool
1237 1.1 cherry uvm_physseg_unplug(paddr_t pfn, size_t pages)
1238 1.1 cherry {
1239 1.1 cherry uvm_physseg_t upm;
1240 1.8 riastrad paddr_t off = 0, start __diagused, end;
1241 1.1 cherry struct uvm_physseg *seg;
1242 1.1 cherry
1243 1.1 cherry upm = uvm_physseg_find(pfn, &off);
1244 1.1 cherry
1245 1.2 cherry if (!uvm_physseg_valid_p(upm)) {
1246 1.1 cherry printf("%s: Tried to unplug from unknown offset\n", __func__);
1247 1.1 cherry return false;
1248 1.1 cherry }
1249 1.1 cherry
1250 1.1 cherry seg = HANDLE_TO_PHYSSEG_NODE(upm);
1251 1.1 cherry
1252 1.1 cherry start = uvm_physseg_get_start(upm);
1253 1.1 cherry end = uvm_physseg_get_end(upm);
1254 1.1 cherry
1255 1.1 cherry if (end < (pfn + pages)) {
1256 1.1 cherry printf("%s: Tried to unplug oversized span \n", __func__);
1257 1.1 cherry return false;
1258 1.1 cherry }
1259 1.1 cherry
1260 1.1 cherry KASSERT(pfn == start + off); /* sanity */
1261 1.1 cherry
1262 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1263 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1264 1.1 cherry if (extent_free(seg->ext, (u_long)(seg->pgs + off), sizeof(struct vm_page) * pages, EX_MALLOCOK | EX_NOWAIT) != 0)
1265 1.1 cherry return false;
1266 1.1 cherry }
1267 1.1 cherry
1268 1.1 cherry if (off == 0 && (pfn + pages) == end) {
1269 1.1 cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
1270 1.1 cherry int segcount = 0;
1271 1.1 cherry struct uvm_physseg *current_ps;
1272 1.1 cherry /* Complete segment */
1273 1.1 cherry if (uvm_physseg_graph.nentries == 1)
1274 1.1 cherry panic("%s: out of memory!", __func__);
1275 1.1 cherry
1276 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1277 1.1 cherry RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
1278 1.1 cherry if (seg->ext == current_ps->ext)
1279 1.1 cherry segcount++;
1280 1.1 cherry }
1281 1.1 cherry KASSERT(segcount > 0);
1282 1.1 cherry
1283 1.1 cherry if (segcount == 1) {
1284 1.1 cherry extent_destroy(seg->ext);
1285 1.1 cherry }
1286 1.1 cherry
1287 1.1 cherry /*
1288 1.1 cherry * We assume that the unplug will succeed from
1289 1.1 cherry * this point onwards
1290 1.1 cherry */
1291 1.1 cherry uvmexp.npages -= (int) pages;
1292 1.1 cherry }
1293 1.1 cherry
1294 1.1 cherry rb_tree_remove_node(&(uvm_physseg_graph.rb_tree), upm);
1295 1.1 cherry memset(seg, 0, sizeof(struct uvm_physseg));
1296 1.1 cherry uvm_physseg_free(seg, sizeof(struct uvm_physseg));
1297 1.1 cherry uvm_physseg_graph.nentries--;
1298 1.1 cherry #else /* UVM_HOTPLUG */
1299 1.1 cherry int x;
1300 1.1 cherry if (vm_nphysmem == 1)
1301 1.1 cherry panic("uvm_page_physget: out of memory!");
1302 1.1 cherry vm_nphysmem--;
1303 1.1 cherry for (x = upm ; x < vm_nphysmem ; x++)
1304 1.1 cherry /* structure copy */
1305 1.1 cherry VM_PHYSMEM_PTR_SWAP(x, x + 1);
1306 1.1 cherry #endif /* UVM_HOTPLUG */
1307 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1308 1.1 cherry return true;
1309 1.1 cherry }
1310 1.1 cherry
1311 1.1 cherry if (off > 0 &&
1312 1.1 cherry (pfn + pages) < end) {
1313 1.1 cherry #if defined(UVM_HOTPLUG) /* rbtree implementation */
1314 1.1 cherry /* middle chunk - need a new segment */
1315 1.1 cherry struct uvm_physseg *ps, *current_ps;
1316 1.1 cherry ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
1317 1.1 cherry if (ps == NULL) {
1318 1.1 cherry printf("%s: Unable to allocated new fragment vm_physseg \n",
1319 1.1 cherry __func__);
1320 1.1 cherry return false;
1321 1.1 cherry }
1322 1.1 cherry
1323 1.1 cherry /* Remove middle chunk */
1324 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1325 1.1 cherry KASSERT(seg->ext != NULL);
1326 1.1 cherry ps->ext = seg->ext;
1327 1.1 cherry
1328 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1329 1.1 cherry /*
1330 1.1 cherry * We assume that the unplug will succeed from
1331 1.1 cherry * this point onwards
1332 1.1 cherry */
1333 1.1 cherry uvmexp.npages -= (int) pages;
1334 1.1 cherry }
1335 1.1 cherry
1336 1.1 cherry ps->start = pfn + pages;
1337 1.1 cherry ps->avail_start = ps->start; /* XXX: Legacy */
1338 1.1 cherry
1339 1.1 cherry ps->end = seg->end;
1340 1.1 cherry ps->avail_end = ps->end; /* XXX: Legacy */
1341 1.1 cherry
1342 1.1 cherry seg->end = pfn;
1343 1.1 cherry seg->avail_end = seg->end; /* XXX: Legacy */
1344 1.1 cherry
1345 1.1 cherry
1346 1.1 cherry /*
1347 1.1 cherry * The new pgs array points to the beginning of the
1348 1.1 cherry * tail fragment.
1349 1.1 cherry */
1350 1.1 cherry if (__predict_true(uvm.page_init_done == true))
1351 1.1 cherry ps->pgs = seg->pgs + off + pages;
1352 1.1 cherry
1353 1.1 cherry current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
1354 1.1 cherry if (current_ps != ps) {
1355 1.1 cherry panic("uvm_page_physload: Duplicate address range detected!");
1356 1.1 cherry }
1357 1.1 cherry uvm_physseg_graph.nentries++;
1358 1.1 cherry #else /* UVM_HOTPLUG */
1359 1.1 cherry panic("%s: can't unplug() from the middle of a segment without"
1360 1.7 uwe " UVM_HOTPLUG\n", __func__);
1361 1.1 cherry /* NOTREACHED */
1362 1.1 cherry #endif /* UVM_HOTPLUG */
1363 1.1 cherry return true;
1364 1.1 cherry }
1365 1.1 cherry
1366 1.1 cherry if (off == 0 && (pfn + pages) < end) {
1367 1.1 cherry /* Remove front chunk */
1368 1.1 cherry if (__predict_true(uvm.page_init_done == true)) {
1369 1.1 cherry /* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
1370 1.1 cherry /*
1371 1.1 cherry * We assume that the unplug will succeed from
1372 1.1 cherry * this point onwards
1373 1.1 cherry */
1374 1.1 cherry uvmexp.npages -= (int) pages;
1375 1.1 cherry }
1376 1.1 cherry
1377 1.1 cherry /* Truncate */
1378 1.1 cherry seg->start = pfn + pages;
1379 1.1 cherry seg->avail_start = seg->start; /* XXX: Legacy */
1380 1.1 cherry
1381 1.1 cherry /*
1382 1.1 cherry * Move the pgs array start to the beginning of the
1383 1.1 cherry * tail end.
1384 1.1 cherry */
1385 1.1 cherry if (__predict_true(uvm.page_init_done == true))
1386 1.1 cherry seg->pgs += pages;
1387 1.1 cherry
1388 1.1 cherry return true;
1389 1.1 cherry }
1390 1.1 cherry
1391 1.1 cherry if (off > 0 && (pfn + pages) == end) {
1392 1.1 cherry /* back chunk */
1393 1.1 cherry
1394 1.1 cherry
1395 1.1 cherry /* Truncate! */
1396 1.1 cherry seg->end = pfn;
1397 1.1 cherry seg->avail_end = seg->end; /* XXX: Legacy */
1398 1.1 cherry
1399 1.1 cherry uvmexp.npages -= (int) pages;
1400 1.1 cherry
1401 1.1 cherry return true;
1402 1.1 cherry }
1403 1.1 cherry
1404 1.1 cherry printf("%s: Tried to unplug unknown range \n", __func__);
1405 1.1 cherry
1406 1.1 cherry return false;
1407 1.1 cherry }
1408