Home | History | Annotate | Line # | Download | only in uvm
uvm_physseg.c revision 1.15
      1 /* $NetBSD: uvm_physseg.c,v 1.15 2020/07/13 05:52:50 mrg Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_page.h   7.3 (Berkeley) 4/21/91
     37  * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * Consolidated API from uvm_page.c and others.
     66  * Consolidated and designed by Cherry G. Mathew <cherry (at) zyx.in>
     67  * rbtree(3) backing implementation by:
     68  * Santhosh N. Raju <santhosh.raju (at) gmail.com>
     69  */
     70 
     71 #ifdef _KERNEL_OPT
     72 #include "opt_uvm.h"
     73 #endif
     74 
     75 #include <sys/param.h>
     76 #include <sys/types.h>
     77 #include <sys/extent.h>
     78 #include <sys/kmem.h>
     79 
     80 #include <uvm/uvm.h>
     81 #include <uvm/uvm_page.h>
     82 #include <uvm/uvm_param.h>
     83 #include <uvm/uvm_pdpolicy.h>
     84 #include <uvm/uvm_physseg.h>
     85 
     86 /*
     87  * uvm_physseg: describes one segment of physical memory
     88  */
     89 struct uvm_physseg {
     90 	/* used during RB tree lookup for PHYS_TO_VM_PAGE(). */
     91 	struct  rb_node rb_node;	/* tree information */
     92 	paddr_t	start;			/* PF# of first page in segment */
     93 	paddr_t	end;			/* (PF# of last page in segment) + 1 */
     94 	struct	vm_page *pgs;		/* vm_page structures (from start) */
     95 
     96 	/* less performance sensitive fields. */
     97 	paddr_t	avail_start;		/* PF# of first free page in segment */
     98 	paddr_t	avail_end;		/* (PF# of last free page in segment) +1  */
     99 	struct  extent *ext;		/* extent(9) structure to manage pgs[] */
    100 	int	free_list;		/* which free list they belong on */
    101 	u_int	start_hint;		/* start looking for free pages here */
    102 #ifdef __HAVE_PMAP_PHYSSEG
    103 	struct	pmap_physseg pmseg;	/* pmap specific (MD) data */
    104 #endif
    105 };
    106 
    107 /*
    108  * These functions are reserved for uvm(9) internal use and are not
    109  * exported in the header file uvm_physseg.h
    110  *
    111  * Thus they are redefined here.
    112  */
    113 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    114 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    115 
    116 /* returns a pgs array */
    117 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    118 
    119 #if defined(UVM_HOTPLUG) /* rbtree impementation */
    120 
    121 #define		HANDLE_TO_PHYSSEG_NODE(h)	((struct uvm_physseg *)(h))
    122 #define		PHYSSEG_NODE_TO_HANDLE(u)	((uvm_physseg_t)(u))
    123 
    124 struct uvm_physseg_graph {
    125 	struct rb_tree rb_tree;		/* Tree for entries */
    126 	int            nentries;	/* Number of entries */
    127 } __aligned(COHERENCY_UNIT);
    128 
    129 static struct uvm_physseg_graph uvm_physseg_graph __read_mostly;
    130 
    131 /*
    132  * Note on kmem(9) allocator usage:
    133  * We take the conservative approach that plug/unplug are allowed to
    134  * fail in high memory stress situations.
    135  *
    136  * We want to avoid re-entrant situations in which one plug/unplug
    137  * operation is waiting on a previous one to complete, since this
    138  * makes the design more complicated than necessary.
    139  *
    140  * We may review this and change its behaviour, once the use cases
    141  * become more obvious.
    142  */
    143 
    144 /*
    145  * Special alloc()/free() functions for boot time support:
    146  * We assume that alloc() at boot time is only for new 'vm_physseg's
    147  * This allows us to use a static array for memory allocation at boot
    148  * time. Thus we avoid using kmem(9) which is not ready at this point
    149  * in boot.
    150  *
    151  * After kmem(9) is ready, we use it. We currently discard any free()s
    152  * to this static array, since the size is small enough to be a
    153  * trivial waste on all architectures we run on.
    154  */
    155 
    156 static size_t nseg = 0;
    157 static struct uvm_physseg uvm_physseg[VM_PHYSSEG_MAX];
    158 
    159 static void *
    160 uvm_physseg_alloc(size_t sz)
    161 {
    162 	/*
    163 	 * During boot time, we only support allocating vm_physseg
    164 	 * entries from the static array.
    165 	 * We need to assert for this.
    166 	 */
    167 
    168 	if (__predict_false(uvm.page_init_done == false)) {
    169 		if (sz % sizeof(struct uvm_physseg))
    170 			panic("%s: tried to alloc size other than multiple"
    171 			    " of struct uvm_physseg at boot\n", __func__);
    172 
    173 		size_t n = sz / sizeof(struct uvm_physseg);
    174 		nseg += n;
    175 
    176 		KASSERT(nseg > 0 && nseg <= VM_PHYSSEG_MAX);
    177 
    178 		return &uvm_physseg[nseg - n];
    179 	}
    180 
    181 	return kmem_zalloc(sz, KM_NOSLEEP);
    182 }
    183 
    184 static void
    185 uvm_physseg_free(void *p, size_t sz)
    186 {
    187 	/*
    188 	 * This is a bit tricky. We do allow simulation of free()
    189 	 * during boot (for eg: when MD code is "steal"ing memory,
    190 	 * and the segment has been exhausted (and thus needs to be
    191 	 * free() - ed.
    192 	 * free() also complicates things because we leak the
    193 	 * free(). Therefore calling code can't assume that free()-ed
    194 	 * memory is available for alloc() again, at boot time.
    195 	 *
    196 	 * Thus we can't explicitly disallow free()s during
    197 	 * boot time. However, the same restriction for alloc()
    198 	 * applies to free(). We only allow uvm_physseg related free()s
    199 	 * via this function during boot time.
    200 	 */
    201 
    202 	if (__predict_false(uvm.page_init_done == false)) {
    203 		if (sz % sizeof(struct uvm_physseg))
    204 			panic("%s: tried to free size other than struct uvm_physseg"
    205 			    " at boot\n", __func__);
    206 
    207 	}
    208 
    209 	/*
    210 	 * Could have been in a single if(){} block - split for
    211 	 * clarity
    212 	 */
    213 
    214 	if ((struct uvm_physseg *)p >= uvm_physseg &&
    215 	    (struct uvm_physseg *)p < (uvm_physseg + VM_PHYSSEG_MAX)) {
    216 		if (sz % sizeof(struct uvm_physseg))
    217 			panic("%s: tried to free() other than struct uvm_physseg"
    218 			    " from static array\n", __func__);
    219 
    220 		if ((sz / sizeof(struct uvm_physseg)) >= VM_PHYSSEG_MAX)
    221 			panic("%s: tried to free() the entire static array!", __func__);
    222 		return; /* Nothing to free */
    223 	}
    224 
    225 	kmem_free(p, sz);
    226 }
    227 
    228 /* XXX: Multi page size */
    229 bool
    230 uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
    231 {
    232 	int preload;
    233 	size_t slabpages;
    234 	struct uvm_physseg *ps, *current_ps = NULL;
    235 	struct vm_page *slab = NULL, *pgs = NULL;
    236 
    237 #ifdef DEBUG
    238 	paddr_t off;
    239 	uvm_physseg_t upm;
    240 	upm = uvm_physseg_find(pfn, &off);
    241 
    242 	ps = HANDLE_TO_PHYSSEG_NODE(upm);
    243 
    244 	if (ps != NULL) /* XXX; do we allow "update" plugs ? */
    245 		return false;
    246 #endif
    247 
    248 	/*
    249 	 * do we have room?
    250 	 */
    251 
    252 	ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
    253 	if (ps == NULL) {
    254 		printf("uvm_page_physload: unable to load physical memory "
    255 		    "segment\n");
    256 		printf("\t%d segments allocated, ignoring 0x%"PRIxPADDR" -> 0x%"PRIxPADDR"\n",
    257 		    VM_PHYSSEG_MAX, pfn, pfn + pages + 1);
    258 		printf("\tincrease VM_PHYSSEG_MAX\n");
    259 		return false;
    260 	}
    261 
    262 	/* span init */
    263 	ps->start = pfn;
    264 	ps->end = pfn + pages;
    265 
    266 	/*
    267 	 * XXX: Ugly hack because uvmexp.npages accounts for only
    268 	 * those pages in the segment included below as well - this
    269 	 * should be legacy and removed.
    270 	 */
    271 
    272 	ps->avail_start = ps->start;
    273 	ps->avail_end = ps->end;
    274 
    275 	/*
    276 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    277 	 * called yet, so kmem is not available).
    278 	 */
    279 
    280 	preload = 1; /* We are going to assume it is a preload */
    281 
    282 	RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
    283 		/* If there are non NULL pages then we are not in a preload */
    284 		if (current_ps->pgs != NULL) {
    285 			preload = 0;
    286 			/* Try to scavenge from earlier unplug()s. */
    287 			pgs = uvm_physseg_seg_alloc_from_slab(current_ps, pages);
    288 
    289 			if (pgs != NULL) {
    290 				break;
    291 			}
    292 		}
    293 	}
    294 
    295 
    296 	/*
    297 	 * if VM is already running, attempt to kmem_alloc vm_page structures
    298 	 */
    299 
    300 	if (!preload) {
    301 		if (pgs == NULL) { /* Brand new */
    302 			/* Iteratively try alloc down from uvmexp.npages */
    303 			for (slabpages = (size_t) uvmexp.npages; slabpages >= pages; slabpages--) {
    304 				slab = kmem_zalloc(sizeof *pgs * (long unsigned int)slabpages, KM_NOSLEEP);
    305 				if (slab != NULL)
    306 					break;
    307 			}
    308 
    309 			if (slab == NULL) {
    310 				uvm_physseg_free(ps, sizeof(struct uvm_physseg));
    311 				return false;
    312 			}
    313 
    314 			uvm_physseg_seg_chomp_slab(ps, slab, (size_t) slabpages);
    315 			/* We allocate enough for this plug */
    316 			pgs = uvm_physseg_seg_alloc_from_slab(ps, pages);
    317 
    318 			if (pgs == NULL) {
    319 				printf("unable to uvm_physseg_seg_alloc_from_slab() from backend\n");
    320 				return false;
    321 			}
    322 		} else {
    323 			/* Reuse scavenged extent */
    324 			ps->ext = current_ps->ext;
    325 		}
    326 
    327 		physmem += pages;
    328 		uvmpdpol_reinit();
    329 	} else { /* Boot time - see uvm_page.c:uvm_page_init() */
    330 		pgs = NULL;
    331 		ps->pgs = pgs;
    332 	}
    333 
    334 	/*
    335 	 * now insert us in the proper place in uvm_physseg_graph.rb_tree
    336 	 */
    337 
    338 	current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
    339 	if (current_ps != ps) {
    340 		panic("uvm_page_physload: Duplicate address range detected!");
    341 	}
    342 	uvm_physseg_graph.nentries++;
    343 
    344 	/*
    345 	 * uvm_pagefree() requires the PHYS_TO_VM_PAGE(pgs[i]) on the
    346 	 * newly allocated pgs[] to return the correct value. This is
    347 	 * a bit of a chicken and egg problem, since it needs
    348 	 * uvm_physseg_find() to succeed. For this, the node needs to
    349 	 * be inserted *before* uvm_physseg_init_seg() happens.
    350 	 *
    351 	 * During boot, this happens anyway, since
    352 	 * uvm_physseg_init_seg() is called later on and separately
    353 	 * from uvm_page.c:uvm_page_init().
    354 	 * In the case of hotplug we need to ensure this.
    355 	 */
    356 
    357 	if (__predict_true(!preload))
    358 		uvm_physseg_init_seg(ps, pgs);
    359 
    360 	if (psp != NULL)
    361 		*psp = ps;
    362 
    363 	return true;
    364 }
    365 
    366 static int
    367 uvm_physseg_compare_nodes(void *ctx, const void *nnode1, const void *nnode2)
    368 {
    369 	const struct uvm_physseg *enode1 = nnode1;
    370 	const struct uvm_physseg *enode2 = nnode2;
    371 
    372 	KASSERT(enode1->start < enode2->start || enode1->start >= enode2->end);
    373 	KASSERT(enode2->start < enode1->start || enode2->start >= enode1->end);
    374 
    375 	if (enode1->start < enode2->start)
    376 		return -1;
    377 	if (enode1->start >= enode2->end)
    378 		return 1;
    379 	return 0;
    380 }
    381 
    382 static int
    383 uvm_physseg_compare_key(void *ctx, const void *nnode, const void *pkey)
    384 {
    385 	const struct uvm_physseg *enode = nnode;
    386 	const paddr_t pa = *(const paddr_t *) pkey;
    387 
    388 	if(enode->start <= pa && pa < enode->end)
    389 		return 0;
    390 	if (enode->start < pa)
    391 		return -1;
    392 	if (enode->end > pa)
    393 		return 1;
    394 
    395 	return 0;
    396 }
    397 
    398 static const rb_tree_ops_t uvm_physseg_tree_ops = {
    399 	.rbto_compare_nodes = uvm_physseg_compare_nodes,
    400 	.rbto_compare_key = uvm_physseg_compare_key,
    401 	.rbto_node_offset = offsetof(struct uvm_physseg, rb_node),
    402 	.rbto_context = NULL
    403 };
    404 
    405 /*
    406  * uvm_physseg_init: init the physmem
    407  *
    408  * => physmem unit should not be in use at this point
    409  */
    410 
    411 void
    412 uvm_physseg_init(void)
    413 {
    414 	rb_tree_init(&(uvm_physseg_graph.rb_tree), &uvm_physseg_tree_ops);
    415 	uvm_physseg_graph.nentries = 0;
    416 }
    417 
    418 uvm_physseg_t
    419 uvm_physseg_get_next(uvm_physseg_t upm)
    420 {
    421 	/* next of invalid is invalid, not fatal */
    422 	if (uvm_physseg_valid_p(upm) == false)
    423 		return UVM_PHYSSEG_TYPE_INVALID;
    424 
    425 	return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
    426 	    RB_DIR_RIGHT);
    427 }
    428 
    429 uvm_physseg_t
    430 uvm_physseg_get_prev(uvm_physseg_t upm)
    431 {
    432 	/* prev of invalid is invalid, not fatal */
    433 	if (uvm_physseg_valid_p(upm) == false)
    434 		return UVM_PHYSSEG_TYPE_INVALID;
    435 
    436 	return (uvm_physseg_t) rb_tree_iterate(&(uvm_physseg_graph.rb_tree), upm,
    437 	    RB_DIR_LEFT);
    438 }
    439 
    440 uvm_physseg_t
    441 uvm_physseg_get_last(void)
    442 {
    443 	return (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
    444 }
    445 
    446 uvm_physseg_t
    447 uvm_physseg_get_first(void)
    448 {
    449 	return (uvm_physseg_t) RB_TREE_MIN(&(uvm_physseg_graph.rb_tree));
    450 }
    451 
    452 paddr_t
    453 uvm_physseg_get_highest_frame(void)
    454 {
    455 	struct uvm_physseg *ps =
    456 	    (uvm_physseg_t) RB_TREE_MAX(&(uvm_physseg_graph.rb_tree));
    457 
    458 	return ps->end - 1;
    459 }
    460 
    461 /*
    462  * uvm_page_physunload: unload physical memory and return it to
    463  * caller.
    464  */
    465 bool
    466 uvm_page_physunload(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
    467 {
    468 	struct uvm_physseg *seg;
    469 
    470 	if (__predict_true(uvm.page_init_done == true))
    471 		panic("%s: unload attempted after uvm_page_init()\n", __func__);
    472 
    473 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
    474 
    475 	if (seg->free_list != freelist) {
    476 		return false;
    477 	}
    478 
    479 	/*
    480 	 * During cold boot, what we're about to unplug hasn't been
    481 	 * put on the uvm freelist, nor has uvmexp.npages been
    482 	 * updated. (This happens in uvm_page.c:uvm_page_init())
    483 	 *
    484 	 * For hotplug, we assume here that the pages being unloaded
    485 	 * here are completely out of sight of uvm (ie; not on any uvm
    486 	 * lists), and that  uvmexp.npages has been suitably
    487 	 * decremented before we're called.
    488 	 *
    489 	 * XXX: will avail_end == start if avail_start < avail_end?
    490 	 */
    491 
    492 	/* try from front */
    493 	if (seg->avail_start == seg->start &&
    494 	    seg->avail_start < seg->avail_end) {
    495 		*paddrp = ctob(seg->avail_start);
    496 		return uvm_physseg_unplug(seg->avail_start, 1);
    497 	}
    498 
    499 	/* try from rear */
    500 	if (seg->avail_end == seg->end &&
    501 	    seg->avail_start < seg->avail_end) {
    502 		*paddrp = ctob(seg->avail_end - 1);
    503 		return uvm_physseg_unplug(seg->avail_end - 1, 1);
    504 	}
    505 
    506 	return false;
    507 }
    508 
    509 bool
    510 uvm_page_physunload_force(uvm_physseg_t upm, int freelist, paddr_t *paddrp)
    511 {
    512 	struct uvm_physseg *seg;
    513 
    514 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
    515 
    516 	if (__predict_true(uvm.page_init_done == true))
    517 		panic("%s: unload attempted after uvm_page_init()\n", __func__);
    518 	/* any room in this bank? */
    519 	if (seg->avail_start >= seg->avail_end) {
    520 		return false; /* nope */
    521 	}
    522 
    523 	*paddrp = ctob(seg->avail_start);
    524 
    525 	/* Always unplug from front */
    526 	return uvm_physseg_unplug(seg->avail_start, 1);
    527 }
    528 
    529 
    530 /*
    531  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    532  */
    533 uvm_physseg_t
    534 uvm_physseg_find(paddr_t pframe, psize_t *offp)
    535 {
    536 	struct uvm_physseg * ps = NULL;
    537 
    538 	ps = rb_tree_find_node(&(uvm_physseg_graph.rb_tree), &pframe);
    539 
    540 	if(ps != NULL && offp != NULL)
    541 		*offp = pframe - ps->start;
    542 
    543 	return ps;
    544 }
    545 
    546 #else  /* UVM_HOTPLUG */
    547 
    548 /*
    549  * physical memory config is stored in vm_physmem.
    550  */
    551 
    552 #define	VM_PHYSMEM_PTR(i)	(&vm_physmem[i])
    553 #if VM_PHYSSEG_MAX == 1
    554 #define VM_PHYSMEM_PTR_SWAP(i, j) /* impossible */
    555 #else
    556 #define VM_PHYSMEM_PTR_SWAP(i, j)					      \
    557 	do { vm_physmem[(i)] = vm_physmem[(j)]; } while (0)
    558 #endif
    559 
    560 #define		HANDLE_TO_PHYSSEG_NODE(h)	(VM_PHYSMEM_PTR((int)h))
    561 #define		PHYSSEG_NODE_TO_HANDLE(u)	((int)((vsize_t) (u - vm_physmem) / sizeof(struct uvm_physseg)))
    562 
    563 static struct uvm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    564 static int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    565 #define	vm_nphysmem	vm_nphysseg
    566 
    567 void
    568 uvm_physseg_init(void)
    569 {
    570 	/* XXX: Provisioning for rb_tree related init(s) */
    571 	return;
    572 }
    573 
    574 int
    575 uvm_physseg_get_next(uvm_physseg_t lcv)
    576 {
    577 	/* next of invalid is invalid, not fatal */
    578 	if (uvm_physseg_valid_p(lcv) == false)
    579 		return UVM_PHYSSEG_TYPE_INVALID;
    580 
    581 	return (lcv + 1);
    582 }
    583 
    584 int
    585 uvm_physseg_get_prev(uvm_physseg_t lcv)
    586 {
    587 	/* prev of invalid is invalid, not fatal */
    588 	if (uvm_physseg_valid_p(lcv) == false)
    589 		return UVM_PHYSSEG_TYPE_INVALID;
    590 
    591 	return (lcv - 1);
    592 }
    593 
    594 int
    595 uvm_physseg_get_last(void)
    596 {
    597 	return (vm_nphysseg - 1);
    598 }
    599 
    600 int
    601 uvm_physseg_get_first(void)
    602 {
    603 	return 0;
    604 }
    605 
    606 paddr_t
    607 uvm_physseg_get_highest_frame(void)
    608 {
    609 	int lcv;
    610 	paddr_t last = 0;
    611 	struct uvm_physseg *ps;
    612 
    613 	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
    614 		ps = VM_PHYSMEM_PTR(lcv);
    615 		if (last < ps->end)
    616 			last = ps->end;
    617 	}
    618 
    619 	return last;
    620 }
    621 
    622 
    623 static struct vm_page *
    624 uvm_post_preload_check(void)
    625 {
    626 	int preload, lcv;
    627 
    628 	/*
    629 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    630 	 * called yet, so kmem is not available).
    631 	 */
    632 
    633 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    634 		if (VM_PHYSMEM_PTR(lcv)->pgs)
    635 			break;
    636 	}
    637 	preload = (lcv == vm_nphysmem);
    638 
    639 	/*
    640 	 * if VM is already running, attempt to kmem_alloc vm_page structures
    641 	 */
    642 
    643 	if (!preload) {
    644 		panic("Tried to add RAM after uvm_page_init");
    645 	}
    646 
    647 	return NULL;
    648 }
    649 
    650 /*
    651  * uvm_page_physunload: unload physical memory and return it to
    652  * caller.
    653  */
    654 bool
    655 uvm_page_physunload(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
    656 {
    657 	int x;
    658 	struct uvm_physseg *seg;
    659 
    660 	uvm_post_preload_check();
    661 
    662 	seg = VM_PHYSMEM_PTR(psi);
    663 
    664 	if (seg->free_list != freelist) {
    665 		return false;
    666 	}
    667 
    668 	/* try from front */
    669 	if (seg->avail_start == seg->start &&
    670 	    seg->avail_start < seg->avail_end) {
    671 		*paddrp = ctob(seg->avail_start);
    672 		seg->avail_start++;
    673 		seg->start++;
    674 		/* nothing left?   nuke it */
    675 		if (seg->avail_start == seg->end) {
    676 			if (vm_nphysmem == 1)
    677 				panic("uvm_page_physget: out of memory!");
    678 			vm_nphysmem--;
    679 			for (x = psi ; x < vm_nphysmem ; x++)
    680 				/* structure copy */
    681 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    682 		}
    683 		return (true);
    684 	}
    685 
    686 	/* try from rear */
    687 	if (seg->avail_end == seg->end &&
    688 	    seg->avail_start < seg->avail_end) {
    689 		*paddrp = ctob(seg->avail_end - 1);
    690 		seg->avail_end--;
    691 		seg->end--;
    692 		/* nothing left?   nuke it */
    693 		if (seg->avail_end == seg->start) {
    694 			if (vm_nphysmem == 1)
    695 				panic("uvm_page_physget: out of memory!");
    696 			vm_nphysmem--;
    697 			for (x = psi ; x < vm_nphysmem ; x++)
    698 				/* structure copy */
    699 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    700 		}
    701 		return (true);
    702 	}
    703 
    704 	return false;
    705 }
    706 
    707 bool
    708 uvm_page_physunload_force(uvm_physseg_t psi, int freelist, paddr_t *paddrp)
    709 {
    710 	int x;
    711 	struct uvm_physseg *seg;
    712 
    713 	uvm_post_preload_check();
    714 
    715 	seg = VM_PHYSMEM_PTR(psi);
    716 
    717 	/* any room in this bank? */
    718 	if (seg->avail_start >= seg->avail_end) {
    719 		return false; /* nope */
    720 	}
    721 
    722 	*paddrp = ctob(seg->avail_start);
    723 	seg->avail_start++;
    724 	/* truncate! */
    725 	seg->start = seg->avail_start;
    726 
    727 	/* nothing left?   nuke it */
    728 	if (seg->avail_start == seg->end) {
    729 		if (vm_nphysmem == 1)
    730 			panic("uvm_page_physget: out of memory!");
    731 		vm_nphysmem--;
    732 		for (x = psi ; x < vm_nphysmem ; x++)
    733 			/* structure copy */
    734 			VM_PHYSMEM_PTR_SWAP(x, x + 1);
    735 	}
    736 	return (true);
    737 }
    738 
    739 bool
    740 uvm_physseg_plug(paddr_t pfn, size_t pages, uvm_physseg_t *psp)
    741 {
    742 	int lcv;
    743 	struct vm_page *pgs;
    744 	struct uvm_physseg *ps;
    745 
    746 #ifdef DEBUG
    747 	paddr_t off;
    748 	uvm_physseg_t upm;
    749 	upm = uvm_physseg_find(pfn, &off);
    750 
    751 	if (uvm_physseg_valid_p(upm)) /* XXX; do we allow "update" plugs ? */
    752 		return false;
    753 #endif
    754 
    755 	paddr_t start = pfn;
    756 	paddr_t end = pfn + pages;
    757 	paddr_t avail_start = start;
    758 	paddr_t avail_end = end;
    759 
    760 	if (uvmexp.pagesize == 0)
    761 		panic("uvm_page_physload: page size not set!");
    762 
    763 	/*
    764 	 * do we have room?
    765 	 */
    766 
    767 	if (vm_nphysmem == VM_PHYSSEG_MAX) {
    768 		printf("uvm_page_physload: unable to load physical memory "
    769 		    "segment\n");
    770 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    771 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    772 		printf("\tincrease VM_PHYSSEG_MAX\n");
    773 		if (psp != NULL)
    774 			*psp = UVM_PHYSSEG_TYPE_INVALID_OVERFLOW;
    775 		return false;
    776 	}
    777 
    778 	/*
    779 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    780 	 * called yet, so kmem is not available).
    781 	 */
    782 	pgs = uvm_post_preload_check();
    783 
    784 	/*
    785 	 * now insert us in the proper place in vm_physmem[]
    786 	 */
    787 
    788 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    789 	/* random: put it at the end (easy!) */
    790 	ps = VM_PHYSMEM_PTR(vm_nphysmem);
    791 	lcv = vm_nphysmem;
    792 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    793 	{
    794 		int x;
    795 		/* sort by address for binary search */
    796 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    797 			if (start < VM_PHYSMEM_PTR(lcv)->start)
    798 				break;
    799 		ps = VM_PHYSMEM_PTR(lcv);
    800 		/* move back other entries, if necessary ... */
    801 		for (x = vm_nphysmem ; x > lcv ; x--)
    802 			/* structure copy */
    803 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    804 	}
    805 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    806 	{
    807 		int x;
    808 		/* sort by largest segment first */
    809 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    810 			if ((end - start) >
    811 			    (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
    812 				break;
    813 		ps = VM_PHYSMEM_PTR(lcv);
    814 		/* move back other entries, if necessary ... */
    815 		for (x = vm_nphysmem ; x > lcv ; x--)
    816 			/* structure copy */
    817 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    818 	}
    819 #else
    820 	panic("uvm_page_physload: unknown physseg strategy selected!");
    821 #endif
    822 
    823 	ps->start = start;
    824 	ps->end = end;
    825 	ps->avail_start = avail_start;
    826 	ps->avail_end = avail_end;
    827 
    828 	ps->pgs = pgs;
    829 
    830 	vm_nphysmem++;
    831 
    832 	if (psp != NULL)
    833 		*psp = lcv;
    834 
    835 	return true;
    836 }
    837 
    838 /*
    839  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
    840  */
    841 
    842 #if VM_PHYSSEG_MAX == 1
    843 static inline int vm_physseg_find_contig(struct uvm_physseg *, int, paddr_t, psize_t *);
    844 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    845 static inline int vm_physseg_find_bsearch(struct uvm_physseg *, int, paddr_t, psize_t *);
    846 #else
    847 static inline int vm_physseg_find_linear(struct uvm_physseg *, int, paddr_t, psize_t *);
    848 #endif
    849 
    850 /*
    851  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    852  */
    853 int
    854 uvm_physseg_find(paddr_t pframe, psize_t *offp)
    855 {
    856 
    857 #if VM_PHYSSEG_MAX == 1
    858 	return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
    859 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    860 	return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
    861 #else
    862 	return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
    863 #endif
    864 }
    865 
    866 #if VM_PHYSSEG_MAX == 1
    867 static inline int
    868 vm_physseg_find_contig(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
    869 {
    870 
    871 	/* 'contig' case */
    872 	if (pframe >= segs[0].start && pframe < segs[0].end) {
    873 		if (offp)
    874 			*offp = pframe - segs[0].start;
    875 		return(0);
    876 	}
    877 	return(-1);
    878 }
    879 
    880 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    881 
    882 static inline int
    883 vm_physseg_find_bsearch(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
    884 {
    885 	/* binary search for it */
    886 	int	start, len, guess;
    887 
    888 	/*
    889 	 * if try is too large (thus target is less than try) we reduce
    890 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
    891 	 *
    892 	 * if the try is too small (thus target is greater than try) then
    893 	 * we set the new start to be (try + 1).   this means we need to
    894 	 * reduce the length to (round(len/2) - 1).
    895 	 *
    896 	 * note "adjust" below which takes advantage of the fact that
    897 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
    898 	 * for any value of len we may have
    899 	 */
    900 
    901 	for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
    902 		guess = start + (len / 2);	/* try in the middle */
    903 
    904 		/* start past our try? */
    905 		if (pframe >= segs[guess].start) {
    906 			/* was try correct? */
    907 			if (pframe < segs[guess].end) {
    908 				if (offp)
    909 					*offp = pframe - segs[guess].start;
    910 				return guess;            /* got it */
    911 			}
    912 			start = guess + 1;	/* next time, start here */
    913 			len--;			/* "adjust" */
    914 		} else {
    915 			/*
    916 			 * pframe before try, just reduce length of
    917 			 * region, done in "for" loop
    918 			 */
    919 		}
    920 	}
    921 	return(-1);
    922 }
    923 
    924 #else
    925 
    926 static inline int
    927 vm_physseg_find_linear(struct uvm_physseg *segs, int nsegs, paddr_t pframe, psize_t *offp)
    928 {
    929 	/* linear search for it */
    930 	int	lcv;
    931 
    932 	for (lcv = 0; lcv < nsegs; lcv++) {
    933 		if (pframe >= segs[lcv].start &&
    934 		    pframe < segs[lcv].end) {
    935 			if (offp)
    936 				*offp = pframe - segs[lcv].start;
    937 			return(lcv);		   /* got it */
    938 		}
    939 	}
    940 	return(-1);
    941 }
    942 #endif
    943 #endif /* UVM_HOTPLUG */
    944 
    945 bool
    946 uvm_physseg_valid_p(uvm_physseg_t upm)
    947 {
    948 	struct uvm_physseg *ps;
    949 
    950 	if (upm == UVM_PHYSSEG_TYPE_INVALID ||
    951 	    upm == UVM_PHYSSEG_TYPE_INVALID_EMPTY ||
    952 	    upm == UVM_PHYSSEG_TYPE_INVALID_OVERFLOW)
    953 		return false;
    954 
    955 	/*
    956 	 * This is the delicate init dance -
    957 	 * needs to go with the dance.
    958 	 */
    959 	if (uvm.page_init_done != true)
    960 		return true;
    961 
    962 	ps = HANDLE_TO_PHYSSEG_NODE(upm);
    963 
    964 	/* Extra checks needed only post uvm_page_init() */
    965 	if (ps->pgs == NULL)
    966 		return false;
    967 
    968 	/* XXX: etc. */
    969 
    970 	return true;
    971 
    972 }
    973 
    974 /*
    975  * Boot protocol dictates that these must be able to return partially
    976  * initialised segments.
    977  */
    978 paddr_t
    979 uvm_physseg_get_start(uvm_physseg_t upm)
    980 {
    981 	if (uvm_physseg_valid_p(upm) == false)
    982 		return (paddr_t) -1;
    983 
    984 	return HANDLE_TO_PHYSSEG_NODE(upm)->start;
    985 }
    986 
    987 paddr_t
    988 uvm_physseg_get_end(uvm_physseg_t upm)
    989 {
    990 	if (uvm_physseg_valid_p(upm) == false)
    991 		return (paddr_t) -1;
    992 
    993 	return HANDLE_TO_PHYSSEG_NODE(upm)->end;
    994 }
    995 
    996 paddr_t
    997 uvm_physseg_get_avail_start(uvm_physseg_t upm)
    998 {
    999 	if (uvm_physseg_valid_p(upm) == false)
   1000 		return (paddr_t) -1;
   1001 
   1002 	return HANDLE_TO_PHYSSEG_NODE(upm)->avail_start;
   1003 }
   1004 
   1005 #if defined(UVM_PHYSSEG_LEGACY)
   1006 void
   1007 uvm_physseg_set_avail_start(uvm_physseg_t upm, paddr_t avail_start)
   1008 {
   1009 	struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
   1010 
   1011 #if defined(DIAGNOSTIC)
   1012 	paddr_t avail_end;
   1013 	avail_end = uvm_physseg_get_avail_end(upm);
   1014 	KASSERT(uvm_physseg_valid_p(upm));
   1015 	KASSERT(avail_start < avail_end && avail_start >= ps->start);
   1016 #endif
   1017 
   1018 	ps->avail_start = avail_start;
   1019 }
   1020 
   1021 void
   1022 uvm_physseg_set_avail_end(uvm_physseg_t upm, paddr_t avail_end)
   1023 {
   1024 	struct uvm_physseg *ps = HANDLE_TO_PHYSSEG_NODE(upm);
   1025 
   1026 #if defined(DIAGNOSTIC)
   1027 	paddr_t avail_start;
   1028 	avail_start = uvm_physseg_get_avail_start(upm);
   1029 	KASSERT(uvm_physseg_valid_p(upm));
   1030 	KASSERT(avail_end > avail_start && avail_end <= ps->end);
   1031 #endif
   1032 
   1033 	ps->avail_end = avail_end;
   1034 }
   1035 
   1036 #endif /* UVM_PHYSSEG_LEGACY */
   1037 
   1038 paddr_t
   1039 uvm_physseg_get_avail_end(uvm_physseg_t upm)
   1040 {
   1041 	if (uvm_physseg_valid_p(upm) == false)
   1042 		return (paddr_t) -1;
   1043 
   1044 	return HANDLE_TO_PHYSSEG_NODE(upm)->avail_end;
   1045 }
   1046 
   1047 struct vm_page *
   1048 uvm_physseg_get_pg(uvm_physseg_t upm, paddr_t idx)
   1049 {
   1050 	KASSERT(uvm_physseg_valid_p(upm));
   1051 	return &HANDLE_TO_PHYSSEG_NODE(upm)->pgs[idx];
   1052 }
   1053 
   1054 #ifdef __HAVE_PMAP_PHYSSEG
   1055 struct pmap_physseg *
   1056 uvm_physseg_get_pmseg(uvm_physseg_t upm)
   1057 {
   1058 	KASSERT(uvm_physseg_valid_p(upm));
   1059 	return &(HANDLE_TO_PHYSSEG_NODE(upm)->pmseg);
   1060 }
   1061 #endif
   1062 
   1063 int
   1064 uvm_physseg_get_free_list(uvm_physseg_t upm)
   1065 {
   1066 	KASSERT(uvm_physseg_valid_p(upm));
   1067 	return HANDLE_TO_PHYSSEG_NODE(upm)->free_list;
   1068 }
   1069 
   1070 u_int
   1071 uvm_physseg_get_start_hint(uvm_physseg_t upm)
   1072 {
   1073 	KASSERT(uvm_physseg_valid_p(upm));
   1074 	return HANDLE_TO_PHYSSEG_NODE(upm)->start_hint;
   1075 }
   1076 
   1077 bool
   1078 uvm_physseg_set_start_hint(uvm_physseg_t upm, u_int start_hint)
   1079 {
   1080 	if (uvm_physseg_valid_p(upm) == false)
   1081 		return false;
   1082 
   1083 	HANDLE_TO_PHYSSEG_NODE(upm)->start_hint = start_hint;
   1084 	return true;
   1085 }
   1086 
   1087 void
   1088 uvm_physseg_init_seg(uvm_physseg_t upm, struct vm_page *pgs)
   1089 {
   1090 	psize_t i;
   1091 	psize_t n;
   1092 	paddr_t paddr;
   1093 	struct uvm_physseg *seg;
   1094 	struct vm_page *pg;
   1095 
   1096 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID && pgs != NULL);
   1097 
   1098 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1099 	KASSERT(seg != NULL);
   1100 	KASSERT(seg->pgs == NULL);
   1101 
   1102 	n = seg->end - seg->start;
   1103 	seg->pgs = pgs;
   1104 
   1105 	/* init and free vm_pages (we've already zeroed them) */
   1106 	paddr = ctob(seg->start);
   1107 	for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
   1108 		pg = &seg->pgs[i];
   1109 		pg->phys_addr = paddr;
   1110 #ifdef __HAVE_VM_PAGE_MD
   1111 		VM_MDPAGE_INIT(pg);
   1112 #endif
   1113 		if (atop(paddr) >= seg->avail_start &&
   1114 		    atop(paddr) < seg->avail_end) {
   1115 			uvmexp.npages++;
   1116 			/* add page to free pool */
   1117 			uvm_page_set_freelist(pg,
   1118 			    uvm_page_lookup_freelist(pg));
   1119 			/* Disable LOCKDEBUG: too many and too early. */
   1120 			mutex_init(&pg->interlock, MUTEX_NODEBUG, IPL_NONE);
   1121 			uvm_pagefree(pg);
   1122 		}
   1123 	}
   1124 }
   1125 
   1126 void
   1127 uvm_physseg_seg_chomp_slab(uvm_physseg_t upm, struct vm_page *pgs, size_t n)
   1128 {
   1129 	struct uvm_physseg *seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1130 
   1131 	/* max number of pre-boot unplug()s allowed */
   1132 #define UVM_PHYSSEG_BOOT_UNPLUG_MAX VM_PHYSSEG_MAX
   1133 
   1134 	static char btslab_ex_storage[EXTENT_FIXED_STORAGE_SIZE(UVM_PHYSSEG_BOOT_UNPLUG_MAX)];
   1135 
   1136 	if (__predict_false(uvm.page_init_done == false)) {
   1137 		seg->ext = extent_create("Boot time slab", (u_long) pgs, (u_long) (pgs + n),
   1138 		    (void *)btslab_ex_storage, sizeof(btslab_ex_storage), 0);
   1139 	} else {
   1140 		seg->ext = extent_create("Hotplug slab", (u_long) pgs, (u_long) (pgs + n), NULL, 0, 0);
   1141 	}
   1142 
   1143 	KASSERT(seg->ext != NULL);
   1144 
   1145 }
   1146 
   1147 struct vm_page *
   1148 uvm_physseg_seg_alloc_from_slab(uvm_physseg_t upm, size_t pages)
   1149 {
   1150 	int err;
   1151 	struct uvm_physseg *seg;
   1152 	struct vm_page *pgs = NULL;
   1153 
   1154 	KASSERT(pages > 0);
   1155 
   1156 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1157 
   1158 	if (__predict_false(seg->ext == NULL)) {
   1159 		/*
   1160 		 * This is a situation unique to boot time.
   1161 		 * It shouldn't happen at any point other than from
   1162 		 * the first uvm_page.c:uvm_page_init() call
   1163 		 * Since we're in a loop, we can get away with the
   1164 		 * below.
   1165 		 */
   1166 		KASSERT(uvm.page_init_done != true);
   1167 
   1168 		uvm_physseg_t upmp = uvm_physseg_get_prev(upm);
   1169 		KASSERT(upmp != UVM_PHYSSEG_TYPE_INVALID);
   1170 
   1171 		seg->ext = HANDLE_TO_PHYSSEG_NODE(upmp)->ext;
   1172 
   1173 		KASSERT(seg->ext != NULL);
   1174 	}
   1175 
   1176 	/* We allocate enough for this segment */
   1177 	err = extent_alloc(seg->ext, sizeof(*pgs) * pages, 1, 0, EX_BOUNDZERO, (u_long *)&pgs);
   1178 
   1179 	if (err != 0) {
   1180 #ifdef DEBUG
   1181 		printf("%s: extent_alloc failed with error: %d \n",
   1182 		    __func__, err);
   1183 #endif
   1184 	}
   1185 
   1186 	return pgs;
   1187 }
   1188 
   1189 /*
   1190  * uvm_page_physload: load physical memory into VM system
   1191  *
   1192  * => all args are PFs
   1193  * => all pages in start/end get vm_page structures
   1194  * => areas marked by avail_start/avail_end get added to the free page pool
   1195  * => we are limited to VM_PHYSSEG_MAX physical memory segments
   1196  */
   1197 
   1198 uvm_physseg_t
   1199 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
   1200     paddr_t avail_end, int free_list)
   1201 {
   1202 	struct uvm_physseg *ps;
   1203 	uvm_physseg_t upm;
   1204 
   1205 	if (__predict_true(uvm.page_init_done == true))
   1206 		panic("%s: unload attempted after uvm_page_init()\n", __func__);
   1207 	if (uvmexp.pagesize == 0)
   1208 		panic("uvm_page_physload: page size not set!");
   1209 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
   1210 		panic("uvm_page_physload: bad free list %d", free_list);
   1211 	if (start >= end)
   1212 		panic("uvm_page_physload: start[%lx] >= en[%lx]d", start, end);
   1213 
   1214 	if (uvm_physseg_plug(start, end - start, &upm) == false) {
   1215 		panic("uvm_physseg_plug() failed at boot.");
   1216 		/* NOTREACHED */
   1217 		return UVM_PHYSSEG_TYPE_INVALID; /* XXX: correct type */
   1218 	}
   1219 
   1220 	ps = HANDLE_TO_PHYSSEG_NODE(upm);
   1221 
   1222 	/* Legacy */
   1223 	ps->avail_start = avail_start;
   1224 	ps->avail_end = avail_end;
   1225 
   1226 	ps->free_list = free_list; /* XXX: */
   1227 
   1228 
   1229 	return upm;
   1230 }
   1231 
   1232 bool
   1233 uvm_physseg_unplug(paddr_t pfn, size_t pages)
   1234 {
   1235 	uvm_physseg_t upm;
   1236 	paddr_t off = 0, start __diagused, end;
   1237 	struct uvm_physseg *seg;
   1238 
   1239 	upm = uvm_physseg_find(pfn, &off);
   1240 
   1241 	if (!uvm_physseg_valid_p(upm)) {
   1242 		printf("%s: Tried to unplug from unknown offset\n", __func__);
   1243 		return false;
   1244 	}
   1245 
   1246 	seg = HANDLE_TO_PHYSSEG_NODE(upm);
   1247 
   1248 	start = uvm_physseg_get_start(upm);
   1249 	end = uvm_physseg_get_end(upm);
   1250 
   1251 	if (end < (pfn + pages)) {
   1252 		printf("%s: Tried to unplug oversized span \n", __func__);
   1253 		return false;
   1254 	}
   1255 
   1256 	KASSERT(pfn == start + off); /* sanity */
   1257 
   1258 	if (__predict_true(uvm.page_init_done == true)) {
   1259 		/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1260 		if (extent_free(seg->ext, (u_long)(seg->pgs + off), sizeof(struct vm_page) * pages, EX_MALLOCOK | EX_NOWAIT) != 0)
   1261 			return false;
   1262 	}
   1263 
   1264 	if (off == 0 && (pfn + pages) == end) {
   1265 #if defined(UVM_HOTPLUG) /* rbtree implementation */
   1266 		int segcount = 0;
   1267 		struct uvm_physseg *current_ps;
   1268 		/* Complete segment */
   1269 		if (uvm_physseg_graph.nentries == 1)
   1270 			panic("%s: out of memory!", __func__);
   1271 
   1272 		if (__predict_true(uvm.page_init_done == true)) {
   1273 			RB_TREE_FOREACH(current_ps, &(uvm_physseg_graph.rb_tree)) {
   1274 				if (seg->ext == current_ps->ext)
   1275 					segcount++;
   1276 			}
   1277 			KASSERT(segcount > 0);
   1278 
   1279 			if (segcount == 1) {
   1280 				extent_destroy(seg->ext);
   1281 			}
   1282 
   1283 			/*
   1284 			 * We assume that the unplug will succeed from
   1285 			 *  this point onwards
   1286 			 */
   1287 			uvmexp.npages -= (int) pages;
   1288 		}
   1289 
   1290 		rb_tree_remove_node(&(uvm_physseg_graph.rb_tree), upm);
   1291 		memset(seg, 0, sizeof(struct uvm_physseg));
   1292 		uvm_physseg_free(seg, sizeof(struct uvm_physseg));
   1293 		uvm_physseg_graph.nentries--;
   1294 #else /* UVM_HOTPLUG */
   1295 		int x;
   1296 		if (vm_nphysmem == 1)
   1297 			panic("uvm_page_physget: out of memory!");
   1298 		vm_nphysmem--;
   1299 		for (x = upm ; x < vm_nphysmem ; x++)
   1300 			/* structure copy */
   1301 			VM_PHYSMEM_PTR_SWAP(x, x + 1);
   1302 #endif /* UVM_HOTPLUG */
   1303 		/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1304 		return true;
   1305 	}
   1306 
   1307 	if (off > 0 &&
   1308 	    (pfn + pages) < end) {
   1309 #if defined(UVM_HOTPLUG) /* rbtree implementation */
   1310 		/* middle chunk - need a new segment */
   1311 		struct uvm_physseg *ps, *current_ps;
   1312 		ps = uvm_physseg_alloc(sizeof (struct uvm_physseg));
   1313 		if (ps == NULL) {
   1314 			printf("%s: Unable to allocated new fragment vm_physseg \n",
   1315 			    __func__);
   1316 			return false;
   1317 		}
   1318 
   1319 		/* Remove middle chunk */
   1320 		if (__predict_true(uvm.page_init_done == true)) {
   1321 			KASSERT(seg->ext != NULL);
   1322 			ps->ext = seg->ext;
   1323 
   1324 			/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1325 			/*
   1326 			 * We assume that the unplug will succeed from
   1327 			 *  this point onwards
   1328 			 */
   1329 			uvmexp.npages -= (int) pages;
   1330 		}
   1331 
   1332 		ps->start = pfn + pages;
   1333 		ps->avail_start = ps->start; /* XXX: Legacy */
   1334 
   1335 		ps->end = seg->end;
   1336 		ps->avail_end = ps->end; /* XXX: Legacy */
   1337 
   1338 		seg->end = pfn;
   1339 		seg->avail_end = seg->end; /* XXX: Legacy */
   1340 
   1341 
   1342 		/*
   1343 		 * The new pgs array points to the beginning of the
   1344 		 * tail fragment.
   1345 		 */
   1346 		if (__predict_true(uvm.page_init_done == true))
   1347 			ps->pgs = seg->pgs + off + pages;
   1348 
   1349 		current_ps = rb_tree_insert_node(&(uvm_physseg_graph.rb_tree), ps);
   1350 		if (current_ps != ps) {
   1351 			panic("uvm_page_physload: Duplicate address range detected!");
   1352 		}
   1353 		uvm_physseg_graph.nentries++;
   1354 #else /* UVM_HOTPLUG */
   1355 		panic("%s: can't unplug() from the middle of a segment without"
   1356 		    " UVM_HOTPLUG\n",  __func__);
   1357 		/* NOTREACHED */
   1358 #endif /* UVM_HOTPLUG */
   1359 		return true;
   1360 	}
   1361 
   1362 	if (off == 0 && (pfn + pages) < end) {
   1363 		/* Remove front chunk */
   1364 		if (__predict_true(uvm.page_init_done == true)) {
   1365 			/* XXX: KASSERT() that seg->pgs[] are not on any uvm lists */
   1366 			/*
   1367 			 * We assume that the unplug will succeed from
   1368 			 *  this point onwards
   1369 			 */
   1370 			uvmexp.npages -= (int) pages;
   1371 		}
   1372 
   1373 		/* Truncate */
   1374 		seg->start = pfn + pages;
   1375 		seg->avail_start = seg->start; /* XXX: Legacy */
   1376 
   1377 		/*
   1378 		 * Move the pgs array start to the beginning of the
   1379 		 * tail end.
   1380 		 */
   1381 		if (__predict_true(uvm.page_init_done == true))
   1382 			seg->pgs += pages;
   1383 
   1384 		return true;
   1385 	}
   1386 
   1387 	if (off > 0 && (pfn + pages) == end) {
   1388 		/* back chunk */
   1389 
   1390 
   1391 		/* Truncate! */
   1392 		seg->end = pfn;
   1393 		seg->avail_end = seg->end; /* XXX: Legacy */
   1394 
   1395 		uvmexp.npages -= (int) pages;
   1396 
   1397 		return true;
   1398 	}
   1399 
   1400 	printf("%s: Tried to unplug unknown range \n", __func__);
   1401 
   1402 	return false;
   1403 }
   1404