Home | History | Annotate | Line # | Download | only in uvm
      1  1.209   mlelstv /*	$NetBSD: uvm_swap.c,v 1.209 2025/02/22 09:36:29 mlelstv Exp $	*/
      2    1.1       mrg 
      3    1.1       mrg /*
      4  1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5    1.1       mrg  * All rights reserved.
      6    1.1       mrg  *
      7    1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8    1.1       mrg  * modification, are permitted provided that the following conditions
      9    1.1       mrg  * are met:
     10    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15    1.1       mrg  *
     16    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17    1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18    1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19    1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20    1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21    1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22    1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23    1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24    1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26    1.1       mrg  * SUCH DAMAGE.
     27    1.3       mrg  *
     28    1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29    1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30    1.1       mrg  */
     31   1.57     lukem 
     32   1.57     lukem #include <sys/cdefs.h>
     33  1.209   mlelstv __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.209 2025/02/22 09:36:29 mlelstv Exp $");
     34    1.5       mrg 
     35    1.5       mrg #include "opt_uvmhist.h"
     36   1.16       mrg #include "opt_compat_netbsd.h"
     37   1.41       chs #include "opt_ddb.h"
     38  1.205  riastrad #include "opt_vmswap.h"
     39    1.1       mrg 
     40    1.1       mrg #include <sys/param.h>
     41    1.1       mrg #include <sys/systm.h>
     42  1.183       uwe #include <sys/atomic.h>
     43    1.1       mrg #include <sys/buf.h>
     44   1.89      yamt #include <sys/bufq.h>
     45   1.36       mrg #include <sys/conf.h>
     46  1.187  riastrad #include <sys/cprng.h>
     47    1.1       mrg #include <sys/proc.h>
     48    1.1       mrg #include <sys/namei.h>
     49    1.1       mrg #include <sys/disklabel.h>
     50    1.1       mrg #include <sys/errno.h>
     51    1.1       mrg #include <sys/kernel.h>
     52    1.1       mrg #include <sys/vnode.h>
     53    1.1       mrg #include <sys/file.h>
     54  1.110      yamt #include <sys/vmem.h>
     55   1.90      yamt #include <sys/blist.h>
     56    1.1       mrg #include <sys/mount.h>
     57   1.12        pk #include <sys/pool.h>
     58  1.159      para #include <sys/kmem.h>
     59    1.1       mrg #include <sys/syscallargs.h>
     60   1.17       mrg #include <sys/swap.h>
     61  1.100      elad #include <sys/kauth.h>
     62  1.125        ad #include <sys/sysctl.h>
     63  1.130   hannken #include <sys/workqueue.h>
     64    1.1       mrg 
     65    1.1       mrg #include <uvm/uvm.h>
     66    1.1       mrg 
     67    1.1       mrg #include <miscfs/specfs/specdev.h>
     68    1.1       mrg 
     69  1.194  riastrad #include <crypto/aes/aes.h>
     70  1.198  riastrad #include <crypto/aes/aes_cbc.h>
     71  1.187  riastrad 
     72    1.1       mrg /*
     73    1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     74    1.1       mrg  */
     75    1.1       mrg 
     76    1.1       mrg /*
     77    1.1       mrg  * swap space is managed in the following way:
     78   1.51       chs  *
     79    1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     80    1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     81    1.1       mrg  * information that is passed up to the user (via system calls).
     82    1.1       mrg  *
     83    1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     84  1.199   msaitoh  * swap partition usage.
     85    1.1       mrg  *
     86    1.1       mrg  * the system maintains a global data structure describing all swap
     87    1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     88    1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     89   1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     90  1.164  christos  * TAILQ of "swapdev" structures at that priority.
     91    1.1       mrg  *
     92    1.1       mrg  * locking:
     93  1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     94    1.1       mrg  *    system call and prevents the swap priority list from changing
     95    1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     96  1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     97    1.1       mrg  *    structures including the priority list, the swapdev structures,
     98  1.110      yamt  *    and the swapmap arena.
     99    1.1       mrg  *
    100    1.1       mrg  * each swap device has the following info:
    101    1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
    102    1.1       mrg  *  - swap enabled (allows new allocations on swap)
    103    1.1       mrg  *  - map info in /dev/drum
    104    1.1       mrg  *  - vnode pointer
    105    1.1       mrg  * for swap files only:
    106    1.1       mrg  *  - block size
    107    1.1       mrg  *  - max byte count in buffer
    108    1.1       mrg  *  - buffer
    109    1.1       mrg  *
    110    1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    111    1.1       mrg  * the sys_swapctl performs the following operations:
    112    1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    113   1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    114    1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    115   1.85  junyoung  *	the current swap config into the array. The actual work is done
    116  1.155     rmind  *	in the uvm_swap_stats() function.
    117    1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    118    1.1       mrg  *	priority in "misc", start swapping on it.
    119    1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    120    1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    121    1.1       mrg  *	"misc")
    122    1.1       mrg  */
    123    1.1       mrg 
    124    1.1       mrg /*
    125    1.1       mrg  * swapdev: describes a single swap partition/file
    126    1.1       mrg  *
    127    1.1       mrg  * note the following should be true:
    128    1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    129    1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    130    1.1       mrg  */
    131    1.1       mrg struct swapdev {
    132  1.144       mrg 	dev_t			swd_dev;	/* device id */
    133  1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    134  1.144       mrg 	int			swd_priority;	/* our priority */
    135  1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    136   1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    137   1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    138   1.16       mrg 	int			swd_npages;	/* #pages we can use */
    139   1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    140   1.32       chs 	int			swd_npgbad;	/* #pages bad */
    141   1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    142   1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    143   1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    144   1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    145  1.165  christos 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    146    1.1       mrg 
    147   1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    148   1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    149   1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    150   1.33   thorpej 	int			swd_active;	/* number of active buffers */
    151  1.187  riastrad 
    152  1.190  riastrad 	volatile uint32_t	*swd_encmap;	/* bitmap of encrypted slots */
    153  1.194  riastrad 	struct aesenc		swd_enckey;	/* AES key expanded for enc */
    154  1.194  riastrad 	struct aesdec		swd_deckey;	/* AES key expanded for dec */
    155  1.187  riastrad 	bool			swd_encinit;	/* true if keys initialized */
    156    1.1       mrg };
    157    1.1       mrg 
    158    1.1       mrg /*
    159    1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    160    1.1       mrg  */
    161    1.1       mrg struct swappri {
    162    1.1       mrg 	int			spi_priority;     /* priority */
    163  1.164  christos 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    164  1.165  christos 	/* tailq of swapdevs at this priority */
    165    1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    166    1.1       mrg };
    167    1.1       mrg 
    168    1.1       mrg /*
    169    1.1       mrg  * The following two structures are used to keep track of data transfers
    170    1.1       mrg  * on swap devices associated with regular files.
    171    1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    172    1.1       mrg  * structure names here to ease porting..
    173    1.1       mrg  */
    174    1.1       mrg struct vndxfer {
    175    1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    176    1.1       mrg 	struct swapdev	*vx_sdp;
    177    1.1       mrg 	int		vx_error;
    178    1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    179    1.1       mrg 	int		vx_flags;
    180    1.1       mrg #define VX_BUSY		1
    181    1.1       mrg #define VX_DEAD		2
    182    1.1       mrg };
    183    1.1       mrg 
    184    1.1       mrg struct vndbuf {
    185    1.1       mrg 	struct buf	vb_buf;
    186    1.1       mrg 	struct vndxfer	*vb_xfer;
    187    1.1       mrg };
    188    1.1       mrg 
    189  1.144       mrg /*
    190   1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    191    1.1       mrg  */
    192  1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    193    1.1       mrg 
    194    1.1       mrg /*
    195    1.1       mrg  * local variables
    196    1.1       mrg  */
    197  1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    198    1.1       mrg 
    199    1.1       mrg /* list of all active swap devices [by priority] */
    200    1.1       mrg LIST_HEAD(swap_priority, swappri);
    201    1.1       mrg static struct swap_priority swap_priority;
    202    1.1       mrg 
    203    1.1       mrg /* locks */
    204  1.182        ad static kmutex_t uvm_swap_data_lock __cacheline_aligned;
    205  1.117        ad static krwlock_t swap_syscall_lock;
    206  1.204       mrg bool uvm_swap_init_done = false;
    207    1.1       mrg 
    208  1.130   hannken /* workqueue and use counter for swap to regular files */
    209  1.130   hannken static int sw_reg_count = 0;
    210  1.130   hannken static struct workqueue *sw_reg_workqueue;
    211  1.130   hannken 
    212  1.141        ad /* tuneables */
    213  1.141        ad u_int uvm_swapisfull_factor = 99;
    214  1.205  riastrad #if VMSWAP_DEFAULT_PLAINTEXT
    215  1.189  riastrad bool uvm_swap_encrypt = false;
    216  1.205  riastrad #else
    217  1.205  riastrad bool uvm_swap_encrypt = true;
    218  1.205  riastrad #endif
    219  1.141        ad 
    220    1.1       mrg /*
    221    1.1       mrg  * prototypes
    222    1.1       mrg  */
    223   1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    224    1.1       mrg 
    225  1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    226   1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    227   1.85  junyoung 					 struct swappri *, int);
    228   1.85  junyoung static void		 swaplist_trim(void);
    229    1.1       mrg 
    230   1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    231   1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    232    1.1       mrg 
    233   1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    234  1.130   hannken static void sw_reg_biodone(struct buf *);
    235  1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    236   1.85  junyoung static void sw_reg_start(struct swapdev *);
    237    1.1       mrg 
    238   1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    239    1.1       mrg 
    240  1.187  riastrad static void uvm_swap_genkey(struct swapdev *);
    241  1.189  riastrad static void uvm_swap_encryptpage(struct swapdev *, void *, int);
    242  1.189  riastrad static void uvm_swap_decryptpage(struct swapdev *, void *, int);
    243  1.187  riastrad 
    244  1.190  riastrad static size_t
    245  1.190  riastrad encmap_size(size_t npages)
    246  1.190  riastrad {
    247  1.190  riastrad 	struct swapdev *sdp;
    248  1.190  riastrad 	const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
    249  1.190  riastrad 	const size_t bitsperword = NBBY * bytesperword;
    250  1.190  riastrad 	const size_t nbits = npages; /* one bit for each page */
    251  1.190  riastrad 	const size_t nwords = howmany(nbits, bitsperword);
    252  1.190  riastrad 	const size_t nbytes = nwords * bytesperword;
    253  1.190  riastrad 
    254  1.190  riastrad 	return nbytes;
    255  1.190  riastrad }
    256  1.190  riastrad 
    257    1.1       mrg /*
    258    1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    259    1.1       mrg  *
    260   1.51       chs  * => called at boot time from init_main.c after the filesystems
    261    1.1       mrg  *	are brought up (which happens after uvm_init())
    262    1.1       mrg  */
    263    1.1       mrg void
    264   1.93   thorpej uvm_swap_init(void)
    265    1.1       mrg {
    266  1.197     skrll 	UVMHIST_FUNC(__func__);
    267    1.1       mrg 
    268    1.1       mrg 	UVMHIST_CALLED(pdhist);
    269    1.1       mrg 	/*
    270    1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    271    1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    272    1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    273    1.1       mrg 	 */
    274    1.1       mrg 
    275    1.1       mrg 	LIST_INIT(&swap_priority);
    276    1.1       mrg 	uvmexp.nswapdev = 0;
    277  1.117        ad 	rw_init(&swap_syscall_lock);
    278  1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    279   1.12        pk 
    280    1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    281  1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    282  1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    283  1.145       mrg 		panic("%s: can't lock swap device", __func__);
    284  1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    285  1.145       mrg 		panic("%s: can't open swap device", __func__);
    286  1.151   hannken 	VOP_UNLOCK(swapdev_vp);
    287    1.1       mrg 
    288    1.1       mrg 	/*
    289    1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    290    1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    291   1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    292    1.1       mrg 	 * failure, or no allocation).
    293    1.1       mrg 	 */
    294  1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    295  1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    296  1.147     rmind 	if (swapmap == 0) {
    297  1.145       mrg 		panic("%s: vmem_create failed", __func__);
    298  1.147     rmind 	}
    299  1.146     pooka 
    300  1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    301  1.146     pooka 	    NULL, IPL_BIO);
    302  1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    303  1.146     pooka 	    NULL, IPL_BIO);
    304  1.147     rmind 
    305  1.204       mrg 	uvm_swap_init_done = true;
    306  1.204       mrg 
    307  1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    308    1.1       mrg }
    309    1.1       mrg 
    310    1.1       mrg /*
    311    1.1       mrg  * swaplist functions: functions that operate on the list of swap
    312    1.1       mrg  * devices on the system.
    313    1.1       mrg  */
    314    1.1       mrg 
    315    1.1       mrg /*
    316    1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    317    1.1       mrg  *
    318  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    319  1.154     rmind  * => caller must provide a newly allocated swappri structure (we will
    320  1.154     rmind  *	FREE it if we don't need it... this it to prevent allocation
    321  1.154     rmind  *	blocking here while adding swap)
    322    1.1       mrg  */
    323    1.1       mrg static void
    324   1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    325    1.1       mrg {
    326    1.1       mrg 	struct swappri *spp, *pspp;
    327  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    328    1.1       mrg 
    329  1.190  riastrad 	KASSERT(rw_write_held(&swap_syscall_lock));
    330  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    331  1.190  riastrad 
    332    1.1       mrg 	/*
    333    1.1       mrg 	 * find entry at or after which to insert the new device.
    334    1.1       mrg 	 */
    335   1.55       chs 	pspp = NULL;
    336   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    337    1.1       mrg 		if (priority <= spp->spi_priority)
    338    1.1       mrg 			break;
    339    1.1       mrg 		pspp = spp;
    340    1.1       mrg 	}
    341    1.1       mrg 
    342    1.1       mrg 	/*
    343    1.1       mrg 	 * new priority?
    344    1.1       mrg 	 */
    345    1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    346    1.1       mrg 		spp = newspp;  /* use newspp! */
    347  1.175  pgoyette 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    348   1.32       chs 			    priority, 0, 0, 0);
    349    1.1       mrg 
    350    1.1       mrg 		spp->spi_priority = priority;
    351  1.164  christos 		TAILQ_INIT(&spp->spi_swapdev);
    352    1.1       mrg 
    353    1.1       mrg 		if (pspp)
    354    1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    355    1.1       mrg 		else
    356    1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    357    1.1       mrg 	} else {
    358    1.1       mrg 	  	/* we don't need a new priority structure, free it */
    359  1.159      para 		kmem_free(newspp, sizeof(*newspp));
    360    1.1       mrg 	}
    361    1.1       mrg 
    362    1.1       mrg 	/*
    363    1.1       mrg 	 * priority found (or created).   now insert on the priority's
    364  1.165  christos 	 * tailq list and bump the total number of swapdevs.
    365    1.1       mrg 	 */
    366    1.1       mrg 	sdp->swd_priority = priority;
    367  1.164  christos 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    368    1.1       mrg 	uvmexp.nswapdev++;
    369    1.1       mrg }
    370    1.1       mrg 
    371    1.1       mrg /*
    372    1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    373    1.1       mrg  *	global list.
    374    1.1       mrg  *
    375  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    376    1.1       mrg  * => we return the swapdev we found (and removed)
    377    1.1       mrg  */
    378    1.1       mrg static struct swapdev *
    379  1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    380    1.1       mrg {
    381    1.1       mrg 	struct swapdev *sdp;
    382    1.1       mrg 	struct swappri *spp;
    383    1.1       mrg 
    384  1.190  riastrad 	KASSERT(rw_lock_held(&swap_syscall_lock));
    385  1.190  riastrad 	KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
    386  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    387  1.190  riastrad 
    388    1.1       mrg 	/*
    389    1.1       mrg 	 * search the lists for the requested vp
    390    1.1       mrg 	 */
    391   1.55       chs 
    392   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    393  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    394    1.1       mrg 			if (sdp->swd_vp == vp) {
    395    1.1       mrg 				if (remove) {
    396  1.164  christos 					TAILQ_REMOVE(&spp->spi_swapdev,
    397    1.1       mrg 					    sdp, swd_next);
    398    1.1       mrg 					uvmexp.nswapdev--;
    399    1.1       mrg 				}
    400    1.1       mrg 				return(sdp);
    401    1.1       mrg 			}
    402   1.55       chs 		}
    403    1.1       mrg 	}
    404    1.1       mrg 	return (NULL);
    405    1.1       mrg }
    406    1.1       mrg 
    407  1.113      elad /*
    408    1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    409    1.1       mrg  *	them.
    410    1.1       mrg  *
    411  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    412    1.1       mrg  */
    413    1.1       mrg static void
    414   1.93   thorpej swaplist_trim(void)
    415    1.1       mrg {
    416    1.1       mrg 	struct swappri *spp, *nextspp;
    417    1.1       mrg 
    418  1.190  riastrad 	KASSERT(rw_write_held(&swap_syscall_lock));
    419  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    420  1.190  riastrad 
    421  1.161     rmind 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    422  1.167   mlelstv 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    423    1.1       mrg 			continue;
    424    1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    425  1.159      para 		kmem_free(spp, sizeof(*spp));
    426    1.1       mrg 	}
    427    1.1       mrg }
    428    1.1       mrg 
    429    1.1       mrg /*
    430    1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    431    1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    432    1.1       mrg  *
    433    1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    434  1.127        ad  * => caller must hold uvm_swap_data_lock
    435    1.1       mrg  */
    436    1.1       mrg static struct swapdev *
    437   1.93   thorpej swapdrum_getsdp(int pgno)
    438    1.1       mrg {
    439    1.1       mrg 	struct swapdev *sdp;
    440    1.1       mrg 	struct swappri *spp;
    441   1.51       chs 
    442  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    443  1.190  riastrad 
    444   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    445  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    446   1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    447   1.48      fvdl 				continue;
    448    1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    449    1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    450    1.1       mrg 				return sdp;
    451    1.1       mrg 			}
    452   1.48      fvdl 		}
    453   1.55       chs 	}
    454    1.1       mrg 	return NULL;
    455    1.1       mrg }
    456    1.1       mrg 
    457  1.190  riastrad /*
    458  1.190  riastrad  * swapdrum_sdp_is: true iff the swap device for pgno is sdp
    459  1.190  riastrad  *
    460  1.190  riastrad  * => for use in positive assertions only; result is not stable
    461  1.190  riastrad  */
    462  1.190  riastrad static bool __debugused
    463  1.190  riastrad swapdrum_sdp_is(int pgno, struct swapdev *sdp)
    464  1.190  riastrad {
    465  1.190  riastrad 	bool result;
    466  1.190  riastrad 
    467  1.190  riastrad 	mutex_enter(&uvm_swap_data_lock);
    468  1.190  riastrad 	result = swapdrum_getsdp(pgno) == sdp;
    469  1.190  riastrad 	mutex_exit(&uvm_swap_data_lock);
    470  1.190  riastrad 
    471  1.190  riastrad 	return result;
    472  1.190  riastrad }
    473  1.190  riastrad 
    474  1.173      maxv void swapsys_lock(krw_t op)
    475  1.173      maxv {
    476  1.173      maxv 	rw_enter(&swap_syscall_lock, op);
    477  1.173      maxv }
    478  1.173      maxv 
    479  1.173      maxv void swapsys_unlock(void)
    480  1.173      maxv {
    481  1.173      maxv 	rw_exit(&swap_syscall_lock);
    482  1.173      maxv }
    483    1.1       mrg 
    484  1.176  christos static void
    485  1.176  christos swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
    486  1.176  christos {
    487  1.176  christos 	se->se_dev = sdp->swd_dev;
    488  1.176  christos 	se->se_flags = sdp->swd_flags;
    489  1.176  christos 	se->se_nblks = sdp->swd_nblks;
    490  1.176  christos 	se->se_inuse = inuse;
    491  1.176  christos 	se->se_priority = sdp->swd_priority;
    492  1.176  christos 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
    493  1.176  christos 	strcpy(se->se_path, sdp->swd_path);
    494  1.176  christos }
    495  1.176  christos 
    496  1.180       kre int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
    497  1.177  christos     (void *)enosys;
    498  1.177  christos int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
    499  1.177  christos     (void *)enosys;
    500  1.176  christos 
    501    1.1       mrg /*
    502    1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    503    1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    504    1.1       mrg  */
    505    1.1       mrg int
    506  1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    507    1.1       mrg {
    508  1.133       dsl 	/* {
    509    1.1       mrg 		syscallarg(int) cmd;
    510    1.1       mrg 		syscallarg(void *) arg;
    511    1.1       mrg 		syscallarg(int) misc;
    512  1.133       dsl 	} */
    513    1.1       mrg 	struct vnode *vp;
    514    1.1       mrg 	struct nameidata nd;
    515    1.1       mrg 	struct swappri *spp;
    516    1.1       mrg 	struct swapdev *sdp;
    517  1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    518  1.101  christos 	char	*userpath;
    519  1.161     rmind 	size_t	len = 0;
    520  1.176  christos 	int	error;
    521    1.1       mrg 	int	priority;
    522  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    523    1.1       mrg 
    524    1.1       mrg 	/*
    525    1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    526    1.1       mrg 	 *
    527   1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    528    1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    529    1.1       mrg 	 */
    530    1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    531  1.161     rmind 		const int nswapdev = uvmexp.nswapdev;
    532  1.175  pgoyette 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    533  1.175  pgoyette 		    0, 0, 0);
    534  1.161     rmind 		*retval = nswapdev;
    535  1.161     rmind 		return 0;
    536    1.1       mrg 	}
    537    1.1       mrg 
    538  1.161     rmind 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    539  1.161     rmind 
    540  1.161     rmind 	/*
    541  1.161     rmind 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    542  1.161     rmind 	 */
    543  1.161     rmind 	rw_enter(&swap_syscall_lock, RW_WRITER);
    544  1.161     rmind 
    545    1.1       mrg 	/*
    546    1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    547    1.1       mrg 	 *
    548   1.51       chs 	 * note that the swap_priority list can't change as long
    549    1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    550  1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    551    1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    552    1.1       mrg 	 */
    553  1.176  christos 	switch (SCARG(uap, cmd)) {
    554  1.177  christos 	case SWAP_STATS13:
    555  1.177  christos 		error = (*uvm_swap_stats13)(uap, retval);
    556  1.177  christos 		goto out;
    557  1.177  christos 	case SWAP_STATS50:
    558  1.177  christos 		error = (*uvm_swap_stats50)(uap, retval);
    559  1.177  christos 		goto out;
    560  1.176  christos 	case SWAP_STATS:
    561  1.176  christos 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
    562  1.177  christos 		    NULL, sizeof(struct swapent), retval);
    563   1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    564   1.16       mrg 		goto out;
    565  1.196     skrll 
    566  1.176  christos 	case SWAP_GETDUMPDEV:
    567  1.176  christos 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
    568   1.55       chs 		goto out;
    569  1.176  christos 	default:
    570  1.176  christos 		break;
    571   1.55       chs 	}
    572    1.1       mrg 
    573    1.1       mrg 	/*
    574    1.1       mrg 	 * all other requests require superuser privs.   verify.
    575    1.1       mrg 	 */
    576  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    577  1.106      elad 	    0, NULL, NULL, NULL)))
    578   1.16       mrg 		goto out;
    579    1.1       mrg 
    580  1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    581  1.104    martin 		/* drop the current dump device */
    582  1.104    martin 		dumpdev = NODEV;
    583  1.138    kardel 		dumpcdev = NODEV;
    584  1.104    martin 		cpu_dumpconf();
    585  1.104    martin 		goto out;
    586  1.104    martin 	}
    587  1.104    martin 
    588    1.1       mrg 	/*
    589    1.1       mrg 	 * at this point we expect a path name in arg.   we will
    590    1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    591    1.1       mrg 	 * the vnode (VOP_LOCK).
    592    1.1       mrg 	 *
    593    1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    594   1.16       mrg 	 * miniroot)
    595    1.1       mrg 	 */
    596    1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    597    1.1       mrg 		vp = rootvp;		/* miniroot */
    598  1.152   hannken 		vref(vp);
    599  1.152   hannken 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    600  1.152   hannken 			vrele(vp);
    601   1.16       mrg 			error = EBUSY;
    602   1.16       mrg 			goto out;
    603    1.1       mrg 		}
    604   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    605  1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    606   1.16       mrg 			panic("swapctl: miniroot copy failed");
    607    1.1       mrg 	} else {
    608  1.153  dholland 		struct pathbuf *pb;
    609   1.16       mrg 
    610  1.153  dholland 		/*
    611  1.153  dholland 		 * This used to allow copying in one extra byte
    612  1.153  dholland 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    613  1.153  dholland 		 * This was completely pointless because if anyone
    614  1.153  dholland 		 * used that extra byte namei would fail with
    615  1.153  dholland 		 * ENAMETOOLONG anyway, so I've removed the excess
    616  1.153  dholland 		 * logic. - dholland 20100215
    617  1.153  dholland 		 */
    618  1.153  dholland 
    619  1.153  dholland 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    620  1.153  dholland 		if (error) {
    621  1.153  dholland 			goto out;
    622  1.153  dholland 		}
    623   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    624  1.153  dholland 			/* get a copy of the string */
    625  1.153  dholland 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    626  1.153  dholland 			len = strlen(userpath) + 1;
    627  1.153  dholland 		}
    628  1.153  dholland 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    629  1.153  dholland 		if ((error = namei(&nd))) {
    630  1.153  dholland 			pathbuf_destroy(pb);
    631  1.153  dholland 			goto out;
    632    1.1       mrg 		}
    633    1.1       mrg 		vp = nd.ni_vp;
    634  1.153  dholland 		pathbuf_destroy(pb);
    635    1.1       mrg 	}
    636    1.1       mrg 	/* note: "vp" is referenced and locked */
    637    1.1       mrg 
    638    1.1       mrg 	error = 0;		/* assume no error */
    639    1.1       mrg 	switch(SCARG(uap, cmd)) {
    640   1.40       mrg 
    641   1.24       mrg 	case SWAP_DUMPDEV:
    642   1.24       mrg 		if (vp->v_type != VBLK) {
    643   1.24       mrg 			error = ENOTBLK;
    644   1.45        pk 			break;
    645   1.24       mrg 		}
    646  1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    647  1.109       mrg 			dumpdev = vp->v_rdev;
    648  1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    649  1.138    kardel 		} else
    650  1.109       mrg 			dumpdev = NODEV;
    651   1.68  drochner 		cpu_dumpconf();
    652   1.24       mrg 		break;
    653   1.24       mrg 
    654    1.1       mrg 	case SWAP_CTL:
    655    1.1       mrg 		/*
    656    1.1       mrg 		 * get new priority, remove old entry (if any) and then
    657    1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    658    1.1       mrg 		 * any empty priority structures.
    659    1.1       mrg 		 */
    660    1.1       mrg 		priority = SCARG(uap, misc);
    661  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    662  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    663  1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    664    1.1       mrg 			error = ENOENT;
    665    1.1       mrg 		} else {
    666    1.1       mrg 			swaplist_insert(sdp, spp, priority);
    667    1.1       mrg 			swaplist_trim();
    668    1.1       mrg 		}
    669  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    670    1.1       mrg 		if (error)
    671  1.159      para 			kmem_free(spp, sizeof(*spp));
    672    1.1       mrg 		break;
    673    1.1       mrg 
    674    1.1       mrg 	case SWAP_ON:
    675   1.32       chs 
    676    1.1       mrg 		/*
    677    1.1       mrg 		 * check for duplicates.   if none found, then insert a
    678    1.1       mrg 		 * dummy entry on the list to prevent someone else from
    679    1.1       mrg 		 * trying to enable this device while we are working on
    680    1.1       mrg 		 * it.
    681    1.1       mrg 		 */
    682   1.32       chs 
    683    1.1       mrg 		priority = SCARG(uap, misc);
    684  1.160     rmind 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    685  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    686   1.67       chs 		sdp->swd_flags = SWF_FAKE;
    687   1.67       chs 		sdp->swd_vp = vp;
    688   1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    689   1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    690  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    691  1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    692    1.1       mrg 			error = EBUSY;
    693  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    694   1.96      yamt 			bufq_free(sdp->swd_tab);
    695  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    696  1.159      para 			kmem_free(spp, sizeof(*spp));
    697   1.16       mrg 			break;
    698    1.1       mrg 		}
    699    1.1       mrg 		swaplist_insert(sdp, spp, priority);
    700  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    701    1.1       mrg 
    702  1.161     rmind 		KASSERT(len > 0);
    703   1.16       mrg 		sdp->swd_pathlen = len;
    704  1.161     rmind 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    705  1.161     rmind 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    706   1.19        pk 			panic("swapctl: copystr");
    707   1.32       chs 
    708    1.1       mrg 		/*
    709    1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    710    1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    711    1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    712    1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    713    1.1       mrg 		 */
    714   1.32       chs 
    715   1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    716  1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    717  1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    718    1.1       mrg 			swaplist_trim();
    719  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    720   1.96      yamt 			bufq_free(sdp->swd_tab);
    721  1.159      para 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    722  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    723    1.1       mrg 			break;
    724    1.1       mrg 		}
    725    1.1       mrg 		break;
    726    1.1       mrg 
    727    1.1       mrg 	case SWAP_OFF:
    728  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    729  1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    730  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    731    1.1       mrg 			error = ENXIO;
    732    1.1       mrg 			break;
    733    1.1       mrg 		}
    734   1.32       chs 
    735    1.1       mrg 		/*
    736    1.1       mrg 		 * If a device isn't in use or enabled, we
    737    1.1       mrg 		 * can't stop swapping from it (again).
    738    1.1       mrg 		 */
    739    1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    740  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    741    1.1       mrg 			error = EBUSY;
    742   1.16       mrg 			break;
    743    1.1       mrg 		}
    744    1.1       mrg 
    745    1.1       mrg 		/*
    746   1.32       chs 		 * do the real work.
    747    1.1       mrg 		 */
    748   1.97  christos 		error = swap_off(l, sdp);
    749    1.1       mrg 		break;
    750    1.1       mrg 
    751    1.1       mrg 	default:
    752    1.1       mrg 		error = EINVAL;
    753    1.1       mrg 	}
    754    1.1       mrg 
    755    1.1       mrg 	/*
    756   1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    757    1.1       mrg 	 */
    758    1.1       mrg 	vput(vp);
    759   1.16       mrg out:
    760  1.160     rmind 	rw_exit(&swap_syscall_lock);
    761  1.159      para 	kmem_free(userpath, SWAP_PATH_MAX);
    762    1.1       mrg 
    763  1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    764    1.1       mrg 	return (error);
    765   1.61      manu }
    766   1.61      manu 
    767   1.85  junyoung /*
    768  1.155     rmind  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    769   1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    770   1.61      manu  * emulation to use it directly without going through sys_swapctl().
    771   1.61      manu  * The problem with using sys_swapctl() there is that it involves
    772   1.61      manu  * copying the swapent array to the stackgap, and this array's size
    773   1.85  junyoung  * is not known at build time. Hence it would not be possible to
    774   1.61      manu  * ensure it would fit in the stackgap in any case.
    775   1.61      manu  */
    776  1.176  christos int
    777  1.180       kre uvm_swap_stats(char *ptr, int misc,
    778  1.176  christos     void (*f)(void *, const struct swapent *), size_t len,
    779  1.176  christos     register_t *retval)
    780   1.61      manu {
    781   1.61      manu 	struct swappri *spp;
    782   1.61      manu 	struct swapdev *sdp;
    783  1.176  christos 	struct swapent sep;
    784   1.61      manu 	int count = 0;
    785  1.176  christos 	int error;
    786  1.176  christos 
    787  1.176  christos 	KASSERT(len <= sizeof(sep));
    788  1.176  christos 	if (len == 0)
    789  1.176  christos 		return ENOSYS;
    790  1.176  christos 
    791  1.176  christos 	if (misc < 0)
    792  1.176  christos 		return EINVAL;
    793  1.176  christos 
    794  1.176  christos 	if (misc == 0 || uvmexp.nswapdev == 0)
    795  1.176  christos 		return 0;
    796  1.176  christos 
    797  1.176  christos 	/* Make sure userland cannot exhaust kernel memory */
    798  1.176  christos 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
    799  1.176  christos 		misc = uvmexp.nswapdev;
    800   1.61      manu 
    801  1.173      maxv 	KASSERT(rw_lock_held(&swap_syscall_lock));
    802  1.173      maxv 
    803   1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    804  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    805  1.144       mrg 			int inuse;
    806  1.144       mrg 
    807  1.176  christos 			if (misc-- <= 0)
    808  1.161     rmind 				break;
    809  1.161     rmind 
    810  1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    811   1.61      manu 			    PAGE_SHIFT);
    812   1.85  junyoung 
    813  1.178      maxv 			memset(&sep, 0, sizeof(sep));
    814  1.176  christos 			swapent_cvt(&sep, sdp, inuse);
    815  1.176  christos 			if (f)
    816  1.176  christos 				(*f)(&sep, &sep);
    817  1.176  christos 			if ((error = copyout(&sep, ptr, len)) != 0)
    818  1.176  christos 				return error;
    819  1.176  christos 			ptr += len;
    820   1.61      manu 			count++;
    821   1.61      manu 		}
    822   1.61      manu 	}
    823   1.61      manu 	*retval = count;
    824  1.176  christos 	return 0;
    825    1.1       mrg }
    826    1.1       mrg 
    827    1.1       mrg /*
    828    1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    829    1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    830    1.1       mrg  *	SWF_FAKE).
    831    1.1       mrg  *
    832    1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    833    1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    834  1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    835    1.1       mrg  *	if needed.
    836    1.1       mrg  */
    837    1.1       mrg static int
    838   1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    839    1.1       mrg {
    840    1.1       mrg 	struct vnode *vp;
    841    1.1       mrg 	int error, npages, nblocks, size;
    842    1.1       mrg 	long addr;
    843  1.157    dyoung 	vmem_addr_t result;
    844    1.1       mrg 	struct vattr va;
    845    1.1       mrg 	dev_t dev;
    846  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    847    1.1       mrg 
    848    1.1       mrg 	/*
    849    1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    850    1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    851    1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    852    1.1       mrg 	 */
    853    1.1       mrg 
    854    1.1       mrg 	vp = sdp->swd_vp;
    855    1.1       mrg 	dev = sdp->swd_dev;
    856    1.1       mrg 
    857    1.1       mrg 	/*
    858    1.1       mrg 	 * open the swap file (mostly useful for block device files to
    859    1.1       mrg 	 * let device driver know what is up).
    860    1.1       mrg 	 *
    861    1.1       mrg 	 * we skip the open/close for root on swap because the root
    862    1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    863    1.1       mrg 	 */
    864    1.1       mrg 	if (vp != rootvp) {
    865  1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    866    1.1       mrg 			return (error);
    867    1.1       mrg 	}
    868    1.1       mrg 
    869    1.1       mrg 	/* XXX this only works for block devices */
    870  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    871    1.1       mrg 
    872    1.1       mrg 	/*
    873    1.1       mrg 	 * we now need to determine the size of the swap area.   for
    874    1.1       mrg 	 * block specials we can call the d_psize function.
    875    1.1       mrg 	 * for normal files, we must stat [get attrs].
    876    1.1       mrg 	 *
    877    1.1       mrg 	 * we put the result in nblks.
    878    1.1       mrg 	 * for normal files, we also want the filesystem block size
    879    1.1       mrg 	 * (which we get with statfs).
    880    1.1       mrg 	 */
    881    1.1       mrg 	switch (vp->v_type) {
    882    1.1       mrg 	case VBLK:
    883  1.158       mrg 		if ((nblocks = bdev_size(dev)) == -1) {
    884    1.1       mrg 			error = ENXIO;
    885    1.1       mrg 			goto bad;
    886    1.1       mrg 		}
    887    1.1       mrg 		break;
    888    1.1       mrg 
    889    1.1       mrg 	case VREG:
    890  1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    891    1.1       mrg 			goto bad;
    892    1.1       mrg 		nblocks = (int)btodb(va.va_size);
    893  1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    894    1.1       mrg 		/*
    895    1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    896    1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    897    1.1       mrg 		 */
    898  1.150     pooka 		if (vp->v_tag == VT_NFS)
    899    1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    900    1.1       mrg 		else
    901    1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    902    1.1       mrg 		break;
    903    1.1       mrg 
    904    1.1       mrg 	default:
    905    1.1       mrg 		error = ENXIO;
    906    1.1       mrg 		goto bad;
    907    1.1       mrg 	}
    908    1.1       mrg 
    909    1.1       mrg 	/*
    910    1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    911    1.1       mrg 	 */
    912    1.1       mrg 
    913  1.144       mrg 	sdp->swd_nblks = nblocks;
    914   1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    915    1.1       mrg 
    916    1.1       mrg 	/*
    917    1.1       mrg 	 * for block special files, we want to make sure that leave
    918    1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    919   1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    920    1.1       mrg 	 * note that because of this the "size" can be less than the
    921    1.1       mrg 	 * actual number of blocks on the device.
    922    1.1       mrg 	 */
    923    1.1       mrg 	if (vp->v_type == VBLK) {
    924    1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    925    1.1       mrg 		size = npages - 1;
    926    1.1       mrg 		addr = 1;
    927    1.1       mrg 	} else {
    928    1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    929    1.1       mrg 		size = npages;
    930    1.1       mrg 		addr = 0;
    931    1.1       mrg 	}
    932    1.1       mrg 
    933    1.1       mrg 	/*
    934    1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    935    1.1       mrg 	 * area.   we want at least one page.
    936    1.1       mrg 	 */
    937    1.1       mrg 
    938    1.1       mrg 	if (size < 1) {
    939    1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    940    1.1       mrg 		error = EINVAL;
    941    1.1       mrg 		goto bad;
    942    1.1       mrg 	}
    943    1.1       mrg 
    944  1.203     skrll 	UVMHIST_LOG(pdhist, "  dev=%#jx: size=%jd addr=%jd", dev, size, addr, 0);
    945    1.1       mrg 
    946    1.1       mrg 	/*
    947    1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    948    1.1       mrg 	 */
    949    1.1       mrg 
    950   1.90      yamt 	sdp->swd_blist = blist_create(npages);
    951   1.90      yamt 	/* mark all expect the `saved' region free. */
    952   1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    953    1.1       mrg 
    954    1.1       mrg 	/*
    955  1.187  riastrad 	 * allocate space to for swap encryption state and mark the
    956  1.187  riastrad 	 * keys uninitialized so we generate them lazily
    957  1.187  riastrad 	 */
    958  1.190  riastrad 	sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
    959  1.187  riastrad 	sdp->swd_encinit = false;
    960  1.187  riastrad 
    961  1.187  riastrad 	/*
    962   1.51       chs 	 * if the vnode we are swapping to is the root vnode
    963    1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    964   1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    965    1.1       mrg 	 * find its size and skip over it.
    966    1.1       mrg 	 */
    967    1.1       mrg 	if (vp == rootvp) {
    968    1.1       mrg 		struct mount *mp;
    969   1.86  christos 		struct statvfs *sp;
    970    1.1       mrg 		int rootblocks, rootpages;
    971    1.1       mrg 
    972    1.1       mrg 		mp = rootvnode->v_mount;
    973    1.1       mrg 		sp = &mp->mnt_stat;
    974   1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    975   1.64  fredette 		/*
    976   1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    977   1.64  fredette 		 * blocks in the filesystem, it's the number of
    978   1.64  fredette 		 * data blocks.  so, our rootblocks almost
    979   1.85  junyoung 		 * definitely underestimates the total size
    980   1.64  fredette 		 * of the filesystem - how badly depends on the
    981   1.85  junyoung 		 * details of the filesystem type.  there isn't
    982   1.64  fredette 		 * an obvious way to deal with this cleanly
    983   1.85  junyoung 		 * and perfectly, so for now we just pad our
    984   1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    985   1.64  fredette 		 */
    986   1.64  fredette 		rootblocks += (rootblocks >> 5) +
    987   1.64  fredette 			(rootblocks >> 6) +
    988   1.64  fredette 			(rootblocks >> 7);
    989   1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    990   1.32       chs 		if (rootpages > size)
    991    1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    992    1.1       mrg 
    993   1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    994    1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    995   1.90      yamt 		}
    996    1.1       mrg 
    997   1.32       chs 		size -= rootpages;
    998    1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    999   1.32       chs 		printf("leaving %d pages of swap\n", size);
   1000    1.1       mrg 	}
   1001    1.1       mrg 
   1002   1.39       chs 	/*
   1003   1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
   1004   1.39       chs 	 */
   1005   1.39       chs 	vref(vp);
   1006   1.39       chs 
   1007    1.1       mrg 	/*
   1008    1.1       mrg 	 * now add the new swapdev to the drum and enable.
   1009    1.1       mrg 	 */
   1010  1.157    dyoung 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
   1011  1.157    dyoung 	if (error != 0)
   1012   1.48      fvdl 		panic("swapdrum_add");
   1013  1.130   hannken 	/*
   1014  1.130   hannken 	 * If this is the first regular swap create the workqueue.
   1015  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1016  1.130   hannken 	 */
   1017  1.130   hannken 	if (vp->v_type != VBLK) {
   1018  1.130   hannken 		if (sw_reg_count++ == 0) {
   1019  1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
   1020  1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1021  1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1022  1.145       mrg 				panic("%s: workqueue_create failed", __func__);
   1023  1.130   hannken 		}
   1024  1.130   hannken 	}
   1025   1.48      fvdl 
   1026   1.48      fvdl 	sdp->swd_drumoffset = (int)result;
   1027   1.48      fvdl 	sdp->swd_drumsize = npages;
   1028   1.48      fvdl 	sdp->swd_npages = size;
   1029  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1030    1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1031    1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1032   1.32       chs 	uvmexp.swpages += size;
   1033   1.81        pk 	uvmexp.swpgavail += size;
   1034  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1035    1.1       mrg 	return (0);
   1036    1.1       mrg 
   1037    1.1       mrg 	/*
   1038   1.43       chs 	 * failure: clean up and return error.
   1039    1.1       mrg 	 */
   1040   1.43       chs 
   1041   1.43       chs bad:
   1042   1.90      yamt 	if (sdp->swd_blist) {
   1043   1.90      yamt 		blist_destroy(sdp->swd_blist);
   1044   1.43       chs 	}
   1045   1.43       chs 	if (vp != rootvp) {
   1046  1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1047   1.43       chs 	}
   1048    1.1       mrg 	return (error);
   1049    1.1       mrg }
   1050    1.1       mrg 
   1051    1.1       mrg /*
   1052    1.1       mrg  * swap_off: stop swapping on swapdev
   1053    1.1       mrg  *
   1054   1.32       chs  * => swap data should be locked, we will unlock.
   1055    1.1       mrg  */
   1056    1.1       mrg static int
   1057   1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1058    1.1       mrg {
   1059   1.91      yamt 	int npages = sdp->swd_npages;
   1060   1.91      yamt 	int error = 0;
   1061   1.81        pk 
   1062  1.197     skrll 	UVMHIST_FUNC(__func__);
   1063  1.203     skrll 	UVMHIST_CALLARGS(pdhist, "  dev=%#jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
   1064    1.1       mrg 
   1065  1.190  riastrad 	KASSERT(rw_write_held(&swap_syscall_lock));
   1066  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
   1067  1.190  riastrad 
   1068   1.32       chs 	/* disable the swap area being removed */
   1069    1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1070   1.81        pk 	uvmexp.swpgavail -= npages;
   1071  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1072   1.32       chs 
   1073   1.32       chs 	/*
   1074   1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1075   1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1076   1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1077   1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1078   1.32       chs 	 */
   1079    1.1       mrg 
   1080   1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1081   1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1082   1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1083   1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1084   1.91      yamt 		error = ENOMEM;
   1085   1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1086   1.91      yamt 		error = EBUSY;
   1087   1.91      yamt 	}
   1088   1.51       chs 
   1089   1.91      yamt 	if (error) {
   1090  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1091   1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1092   1.81        pk 		uvmexp.swpgavail += npages;
   1093  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1094   1.91      yamt 
   1095   1.91      yamt 		return error;
   1096   1.32       chs 	}
   1097    1.1       mrg 
   1098    1.1       mrg 	/*
   1099  1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1100  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1101  1.130   hannken 	 */
   1102  1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1103  1.130   hannken 		KASSERT(sw_reg_count > 0);
   1104  1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1105  1.130   hannken 		if (--sw_reg_count == 0) {
   1106  1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1107  1.130   hannken 			sw_reg_workqueue = NULL;
   1108  1.130   hannken 		}
   1109  1.130   hannken 	}
   1110  1.130   hannken 
   1111  1.130   hannken 	/*
   1112   1.58     enami 	 * done with the vnode.
   1113   1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1114   1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1115    1.1       mrg 	 */
   1116   1.39       chs 	vrele(sdp->swd_vp);
   1117   1.32       chs 	if (sdp->swd_vp != rootvp) {
   1118  1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1119   1.32       chs 	}
   1120   1.32       chs 
   1121  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1122   1.81        pk 	uvmexp.swpages -= npages;
   1123   1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1124    1.1       mrg 
   1125  1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1126  1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1127   1.32       chs 	swaplist_trim();
   1128  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1129    1.1       mrg 
   1130   1.32       chs 	/*
   1131   1.32       chs 	 * free all resources!
   1132   1.32       chs 	 */
   1133  1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1134   1.90      yamt 	blist_destroy(sdp->swd_blist);
   1135   1.96      yamt 	bufq_free(sdp->swd_tab);
   1136  1.190  riastrad 	kmem_free(__UNVOLATILE(sdp->swd_encmap),
   1137  1.190  riastrad 	    encmap_size(sdp->swd_drumsize));
   1138  1.187  riastrad 	explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
   1139  1.187  riastrad 	explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
   1140  1.159      para 	kmem_free(sdp, sizeof(*sdp));
   1141    1.1       mrg 	return (0);
   1142    1.1       mrg }
   1143    1.1       mrg 
   1144  1.164  christos void
   1145  1.164  christos uvm_swap_shutdown(struct lwp *l)
   1146  1.164  christos {
   1147  1.164  christos 	struct swapdev *sdp;
   1148  1.164  christos 	struct swappri *spp;
   1149  1.164  christos 	struct vnode *vp;
   1150  1.164  christos 	int error;
   1151  1.164  christos 
   1152  1.206   hannken 	if (!uvm_swap_init_done || uvmexp.nswapdev == 0)
   1153  1.204       mrg 		return;
   1154  1.182        ad 	printf("turning off swap...");
   1155  1.164  christos 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1156  1.164  christos 	mutex_enter(&uvm_swap_data_lock);
   1157  1.164  christos again:
   1158  1.164  christos 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1159  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1160  1.164  christos 			if (sdp->swd_flags & SWF_FAKE)
   1161  1.164  christos 				continue;
   1162  1.164  christos 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1163  1.164  christos 				continue;
   1164  1.164  christos #ifdef DEBUG
   1165  1.201   hannken 			printf("\nturning off swap on %s...", sdp->swd_path);
   1166  1.164  christos #endif
   1167  1.201   hannken 			/* Have to lock and reference vnode for swap_off(). */
   1168  1.202   hannken 			vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE|LK_RETRY);
   1169  1.202   hannken 			vref(vp);
   1170  1.202   hannken 			error = swap_off(l, sdp);
   1171  1.202   hannken 			vput(vp);
   1172  1.202   hannken 			mutex_enter(&uvm_swap_data_lock);
   1173  1.164  christos 			if (error) {
   1174  1.164  christos 				printf("stopping swap on %s failed "
   1175  1.164  christos 				    "with error %d\n", sdp->swd_path, error);
   1176  1.201   hannken 				TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1177  1.164  christos 				uvmexp.nswapdev--;
   1178  1.164  christos 				swaplist_trim();
   1179  1.164  christos 			}
   1180  1.164  christos 			goto again;
   1181  1.164  christos 		}
   1182  1.164  christos 	printf(" done\n");
   1183  1.164  christos 	mutex_exit(&uvm_swap_data_lock);
   1184  1.164  christos 	rw_exit(&swap_syscall_lock);
   1185  1.164  christos }
   1186  1.164  christos 
   1187  1.164  christos 
   1188    1.1       mrg /*
   1189    1.1       mrg  * /dev/drum interface and i/o functions
   1190    1.1       mrg  */
   1191    1.1       mrg 
   1192    1.1       mrg /*
   1193  1.207       chs  * swopen: allow the initial open from uvm_swap_init() and reject all others.
   1194  1.207       chs  */
   1195  1.207       chs 
   1196  1.207       chs static int
   1197  1.207       chs swopen(dev_t dev, int flag, int mode, struct lwp *l)
   1198  1.207       chs {
   1199  1.207       chs 	static bool inited = false;
   1200  1.207       chs 
   1201  1.207       chs 	if (!inited) {
   1202  1.207       chs 		inited = true;
   1203  1.207       chs 		return 0;
   1204  1.207       chs 	}
   1205  1.207       chs 	return ENODEV;
   1206  1.207       chs }
   1207  1.207       chs 
   1208  1.207       chs /*
   1209    1.1       mrg  * swstrategy: perform I/O on the drum
   1210    1.1       mrg  *
   1211    1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1212    1.1       mrg  */
   1213   1.94   thorpej static void
   1214   1.93   thorpej swstrategy(struct buf *bp)
   1215    1.1       mrg {
   1216    1.1       mrg 	struct swapdev *sdp;
   1217    1.1       mrg 	struct vnode *vp;
   1218  1.134        ad 	int pageno, bn;
   1219  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1220    1.1       mrg 
   1221    1.1       mrg 	/*
   1222    1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1223    1.1       mrg 	 * be yanked out from under us because we are holding resources
   1224    1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1225    1.1       mrg 	 */
   1226   1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1227  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1228    1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1229  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1230    1.1       mrg 	if (sdp == NULL) {
   1231    1.1       mrg 		bp->b_error = EINVAL;
   1232  1.163  riastrad 		bp->b_resid = bp->b_bcount;
   1233    1.1       mrg 		biodone(bp);
   1234    1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1235    1.1       mrg 		return;
   1236    1.1       mrg 	}
   1237    1.1       mrg 
   1238    1.1       mrg 	/*
   1239    1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1240    1.1       mrg 	 */
   1241    1.1       mrg 
   1242   1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1243   1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1244    1.1       mrg 
   1245  1.203     skrll 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%#jx bn=%#jx bcount=%jd",
   1246  1.175  pgoyette 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1247    1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1248    1.1       mrg 
   1249    1.1       mrg 	/*
   1250    1.1       mrg 	 * for block devices we finish up here.
   1251   1.32       chs 	 * for regular files we have to do more work which we delegate
   1252    1.1       mrg 	 * to sw_reg_strategy().
   1253    1.1       mrg 	 */
   1254    1.1       mrg 
   1255  1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1256  1.134        ad 	switch (vp->v_type) {
   1257    1.1       mrg 	default:
   1258  1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1259   1.32       chs 
   1260    1.1       mrg 	case VBLK:
   1261    1.1       mrg 
   1262    1.1       mrg 		/*
   1263    1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1264    1.1       mrg 		 * on the swapdev (sdp).
   1265    1.1       mrg 		 */
   1266    1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1267    1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1268    1.1       mrg 
   1269    1.1       mrg 		/*
   1270    1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1271    1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1272    1.1       mrg 		 */
   1273    1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1274  1.134        ad 			mutex_enter(bp->b_objlock);
   1275    1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1276  1.134        ad 			mutex_exit(bp->b_objlock);
   1277  1.156     rmind 			mutex_enter(vp->v_interlock);
   1278  1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1279  1.156     rmind 			mutex_exit(vp->v_interlock);
   1280    1.1       mrg 		}
   1281    1.1       mrg 
   1282   1.41       chs 		/*
   1283    1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1284    1.1       mrg 		 */
   1285    1.1       mrg 		bp->b_vp = vp;
   1286  1.156     rmind 		bp->b_objlock = vp->v_interlock;
   1287   1.84   hannken 		VOP_STRATEGY(vp, bp);
   1288    1.1       mrg 		return;
   1289   1.32       chs 
   1290    1.1       mrg 	case VREG:
   1291    1.1       mrg 		/*
   1292   1.32       chs 		 * delegate to sw_reg_strategy function.
   1293    1.1       mrg 		 */
   1294    1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1295    1.1       mrg 		return;
   1296    1.1       mrg 	}
   1297    1.1       mrg 	/* NOTREACHED */
   1298    1.1       mrg }
   1299    1.1       mrg 
   1300    1.1       mrg /*
   1301   1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1302   1.94   thorpej  */
   1303   1.94   thorpej /*ARGSUSED*/
   1304   1.94   thorpej static int
   1305  1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1306   1.94   thorpej {
   1307  1.197     skrll 	UVMHIST_FUNC(__func__);
   1308  1.203     skrll 	UVMHIST_CALLARGS(pdhist, "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
   1309   1.94   thorpej 
   1310   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1311   1.94   thorpej }
   1312   1.94   thorpej 
   1313   1.94   thorpej /*
   1314   1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1315   1.94   thorpej  */
   1316   1.94   thorpej /*ARGSUSED*/
   1317   1.94   thorpej static int
   1318  1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1319   1.94   thorpej {
   1320  1.197     skrll 	UVMHIST_FUNC(__func__);
   1321  1.203     skrll 	UVMHIST_CALLARGS(pdhist, "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
   1322   1.94   thorpej 
   1323   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1324   1.94   thorpej }
   1325   1.94   thorpej 
   1326   1.94   thorpej const struct bdevsw swap_bdevsw = {
   1327  1.207       chs 	.d_open = swopen,
   1328  1.207       chs 	.d_close = noclose,
   1329  1.168  dholland 	.d_strategy = swstrategy,
   1330  1.168  dholland 	.d_ioctl = noioctl,
   1331  1.168  dholland 	.d_dump = nodump,
   1332  1.168  dholland 	.d_psize = nosize,
   1333  1.171  dholland 	.d_discard = nodiscard,
   1334  1.168  dholland 	.d_flag = D_OTHER
   1335   1.94   thorpej };
   1336   1.94   thorpej 
   1337   1.94   thorpej const struct cdevsw swap_cdevsw = {
   1338  1.168  dholland 	.d_open = nullopen,
   1339  1.168  dholland 	.d_close = nullclose,
   1340  1.168  dholland 	.d_read = swread,
   1341  1.168  dholland 	.d_write = swwrite,
   1342  1.168  dholland 	.d_ioctl = noioctl,
   1343  1.168  dholland 	.d_stop = nostop,
   1344  1.168  dholland 	.d_tty = notty,
   1345  1.168  dholland 	.d_poll = nopoll,
   1346  1.168  dholland 	.d_mmap = nommap,
   1347  1.168  dholland 	.d_kqfilter = nokqfilter,
   1348  1.172  dholland 	.d_discard = nodiscard,
   1349  1.168  dholland 	.d_flag = D_OTHER,
   1350   1.94   thorpej };
   1351   1.94   thorpej 
   1352   1.94   thorpej /*
   1353    1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1354    1.1       mrg  */
   1355    1.1       mrg static void
   1356   1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1357    1.1       mrg {
   1358    1.1       mrg 	struct vnode	*vp;
   1359    1.1       mrg 	struct vndxfer	*vnx;
   1360   1.44     enami 	daddr_t		nbn;
   1361  1.122  christos 	char 		*addr;
   1362   1.44     enami 	off_t		byteoff;
   1363    1.9       mrg 	int		s, off, nra, error, sz, resid;
   1364  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1365    1.1       mrg 
   1366    1.1       mrg 	/*
   1367    1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1368    1.1       mrg 	 * our buffer.
   1369    1.1       mrg 	 */
   1370  1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1371    1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1372    1.1       mrg 	vnx->vx_error = 0;
   1373    1.1       mrg 	vnx->vx_pending = 0;
   1374    1.1       mrg 	vnx->vx_bp = bp;
   1375    1.1       mrg 	vnx->vx_sdp = sdp;
   1376    1.1       mrg 
   1377    1.1       mrg 	/*
   1378    1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1379    1.1       mrg 	 * our buffer.
   1380    1.1       mrg 	 */
   1381    1.1       mrg 	error = 0;
   1382  1.185   msaitoh 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
   1383    1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1384   1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1385    1.1       mrg 
   1386    1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1387    1.1       mrg 		struct vndbuf	*nbp;
   1388    1.1       mrg 
   1389    1.1       mrg 		/*
   1390    1.1       mrg 		 * translate byteoffset into block number.  return values:
   1391    1.1       mrg 		 *   vp = vnode of underlying device
   1392    1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1393    1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1394    1.1       mrg 		 *	block)
   1395    1.1       mrg 		 */
   1396    1.1       mrg 		nra = 0;
   1397    1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1398    1.1       mrg 				 	&vp, &nbn, &nra);
   1399    1.1       mrg 
   1400   1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1401   1.51       chs 			/*
   1402   1.23      marc 			 * this used to just set error, but that doesn't
   1403   1.23      marc 			 * do the right thing.  Instead, it causes random
   1404   1.23      marc 			 * memory errors.  The panic() should remain until
   1405   1.23      marc 			 * this condition doesn't destabilize the system.
   1406   1.23      marc 			 */
   1407   1.23      marc #if 1
   1408  1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1409   1.23      marc #else
   1410    1.1       mrg 			error = EIO;	/* failure */
   1411   1.23      marc #endif
   1412   1.23      marc 		}
   1413    1.1       mrg 
   1414    1.1       mrg 		/*
   1415    1.1       mrg 		 * punt if there was an error or a hole in the file.
   1416    1.1       mrg 		 * we must wait for any i/o ops we have already started
   1417    1.1       mrg 		 * to finish before returning.
   1418    1.1       mrg 		 *
   1419    1.1       mrg 		 * XXX we could deal with holes here but it would be
   1420    1.1       mrg 		 * a hassle (in the write case).
   1421    1.1       mrg 		 */
   1422    1.1       mrg 		if (error) {
   1423    1.1       mrg 			s = splbio();
   1424    1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1425    1.1       mrg 			goto out;
   1426    1.1       mrg 		}
   1427    1.1       mrg 
   1428    1.1       mrg 		/*
   1429    1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1430    1.1       mrg 		 */
   1431   1.41       chs 		off = byteoff % sdp->swd_bsize;
   1432   1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1433   1.41       chs 		if (sz > resid)
   1434    1.1       mrg 			sz = resid;
   1435    1.1       mrg 
   1436   1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1437  1.203     skrll 		    "vp %#jx/%#jx offset %#jx/%#jx",
   1438  1.175  pgoyette 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1439    1.1       mrg 
   1440    1.1       mrg 		/*
   1441    1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1442    1.1       mrg 		 * at the front of the nbp structure so that you can
   1443    1.1       mrg 		 * cast pointers between the two structure easily.
   1444    1.1       mrg 		 */
   1445  1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1446  1.134        ad 		buf_init(&nbp->vb_buf);
   1447  1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1448  1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1449  1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1450    1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1451   1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1452    1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1453    1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1454   1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1455    1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1456   1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1457  1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1458   1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1459  1.156     rmind 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1460   1.53       chs 		if (vp->v_type == VBLK) {
   1461   1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1462   1.53       chs 		}
   1463    1.1       mrg 
   1464    1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1465    1.1       mrg 
   1466    1.1       mrg 		/*
   1467    1.1       mrg 		 * Just sort by block number
   1468    1.1       mrg 		 */
   1469    1.1       mrg 		s = splbio();
   1470    1.1       mrg 		if (vnx->vx_error != 0) {
   1471  1.134        ad 			buf_destroy(&nbp->vb_buf);
   1472  1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1473    1.1       mrg 			goto out;
   1474    1.1       mrg 		}
   1475    1.1       mrg 		vnx->vx_pending++;
   1476    1.1       mrg 
   1477    1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1478  1.134        ad 		/* XXXAD locking */
   1479  1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1480    1.1       mrg 		sw_reg_start(sdp);
   1481    1.1       mrg 		splx(s);
   1482    1.1       mrg 
   1483    1.1       mrg 		/*
   1484    1.1       mrg 		 * advance to the next I/O
   1485    1.1       mrg 		 */
   1486    1.9       mrg 		byteoff += sz;
   1487    1.1       mrg 		addr += sz;
   1488    1.1       mrg 	}
   1489    1.1       mrg 
   1490    1.1       mrg 	s = splbio();
   1491    1.1       mrg 
   1492    1.1       mrg out: /* Arrive here at splbio */
   1493    1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1494    1.1       mrg 	if (vnx->vx_pending == 0) {
   1495  1.134        ad 		error = vnx->vx_error;
   1496  1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1497  1.209   mlelstv 		if (error) {
   1498  1.209   mlelstv 			bp->b_resid = bp->b_bcount;
   1499  1.209   mlelstv 			bp->b_error = error;
   1500  1.209   mlelstv 		}
   1501    1.1       mrg 		biodone(bp);
   1502    1.1       mrg 	}
   1503    1.1       mrg 	splx(s);
   1504    1.1       mrg }
   1505    1.1       mrg 
   1506    1.1       mrg /*
   1507    1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1508    1.1       mrg  *
   1509   1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1510    1.1       mrg  */
   1511    1.1       mrg static void
   1512   1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1513    1.1       mrg {
   1514    1.1       mrg 	struct buf	*bp;
   1515  1.134        ad 	struct vnode	*vp;
   1516  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1517    1.1       mrg 
   1518    1.8       mrg 	/* recursion control */
   1519    1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1520    1.1       mrg 		return;
   1521    1.1       mrg 
   1522    1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1523    1.1       mrg 
   1524   1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1525  1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1526    1.1       mrg 		if (bp == NULL)
   1527    1.1       mrg 			break;
   1528   1.33   thorpej 		sdp->swd_active++;
   1529    1.1       mrg 
   1530    1.1       mrg 		UVMHIST_LOG(pdhist,
   1531  1.203     skrll 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %#jx",
   1532  1.175  pgoyette 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1533  1.175  pgoyette 		    bp->b_bcount);
   1534  1.134        ad 		vp = bp->b_vp;
   1535  1.156     rmind 		KASSERT(bp->b_objlock == vp->v_interlock);
   1536  1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1537  1.156     rmind 			mutex_enter(vp->v_interlock);
   1538  1.134        ad 			vp->v_numoutput++;
   1539  1.156     rmind 			mutex_exit(vp->v_interlock);
   1540  1.134        ad 		}
   1541  1.134        ad 		VOP_STRATEGY(vp, bp);
   1542    1.1       mrg 	}
   1543    1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1544    1.1       mrg }
   1545    1.1       mrg 
   1546    1.1       mrg /*
   1547  1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1548  1.130   hannken  */
   1549  1.130   hannken static void
   1550  1.130   hannken sw_reg_biodone(struct buf *bp)
   1551  1.130   hannken {
   1552  1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1553  1.130   hannken }
   1554  1.130   hannken 
   1555  1.130   hannken /*
   1556    1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1557    1.1       mrg  *
   1558    1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1559    1.1       mrg  */
   1560    1.1       mrg static void
   1561  1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1562    1.1       mrg {
   1563  1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1564    1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1565    1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1566    1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1567   1.72       chs 	int s, resid, error;
   1568  1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1569  1.197     skrll 	UVMHIST_FUNC(__func__);
   1570  1.203     skrll 	UVMHIST_CALLARGS(pdhist, "  vbp=%#jx vp=%#jx blkno=%#jx addr=%#jx",
   1571  1.175  pgoyette 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1572  1.175  pgoyette 	    (uintptr_t)vbp->vb_buf.b_data);
   1573  1.203     skrll 	UVMHIST_LOG(pdhist, "  cnt=%#jx resid=%#jx",
   1574    1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1575    1.1       mrg 
   1576    1.1       mrg 	/*
   1577    1.1       mrg 	 * protect vbp at splbio and update.
   1578    1.1       mrg 	 */
   1579    1.1       mrg 
   1580    1.1       mrg 	s = splbio();
   1581    1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1582    1.1       mrg 	pbp->b_resid -= resid;
   1583    1.1       mrg 	vnx->vx_pending--;
   1584    1.1       mrg 
   1585  1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1586    1.1       mrg 		/* pass error upward */
   1587  1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1588  1.175  pgoyette 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1589   1.72       chs 		vnx->vx_error = error;
   1590   1.35       chs 	}
   1591   1.35       chs 
   1592   1.35       chs 	/*
   1593    1.1       mrg 	 * kill vbp structure
   1594    1.1       mrg 	 */
   1595  1.134        ad 	buf_destroy(&vbp->vb_buf);
   1596  1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1597    1.1       mrg 
   1598    1.1       mrg 	/*
   1599    1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1600    1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1601    1.1       mrg 	 */
   1602    1.1       mrg 	if (vnx->vx_error != 0) {
   1603    1.1       mrg 		/* pass error upward */
   1604  1.134        ad 		error = vnx->vx_error;
   1605    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1606  1.134        ad 			pbp->b_error = error;
   1607  1.209   mlelstv 			pbp->b_resid = pbp->b_bcount;
   1608    1.1       mrg 			biodone(pbp);
   1609  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1610    1.1       mrg 		}
   1611   1.11        pk 	} else if (pbp->b_resid == 0) {
   1612   1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1613    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1614  1.175  pgoyette 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1615  1.175  pgoyette 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1616    1.1       mrg 			biodone(pbp);
   1617  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1618    1.1       mrg 		}
   1619    1.1       mrg 	}
   1620    1.1       mrg 
   1621    1.1       mrg 	/*
   1622    1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1623    1.1       mrg 	 */
   1624   1.33   thorpej 	sdp->swd_active--;
   1625    1.1       mrg 	sw_reg_start(sdp);
   1626    1.1       mrg 	splx(s);
   1627    1.1       mrg }
   1628    1.1       mrg 
   1629    1.1       mrg 
   1630    1.1       mrg /*
   1631    1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1632    1.1       mrg  *
   1633    1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1634    1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1635    1.1       mrg  * => space can be freed with uvm_swap_free
   1636    1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1637  1.127        ad  * => we lock uvm_swap_data_lock
   1638    1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1639    1.1       mrg  */
   1640    1.1       mrg int
   1641  1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1642    1.1       mrg {
   1643    1.1       mrg 	struct swapdev *sdp;
   1644    1.1       mrg 	struct swappri *spp;
   1645  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1646    1.1       mrg 
   1647    1.1       mrg 	/*
   1648    1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1649    1.1       mrg 	 */
   1650    1.1       mrg 	if (uvmexp.nswapdev < 1)
   1651    1.1       mrg 		return 0;
   1652   1.51       chs 
   1653    1.1       mrg 	/*
   1654  1.162  jakllsch 	 * XXXJAK: BEGIN HACK
   1655  1.162  jakllsch 	 *
   1656  1.162  jakllsch 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1657  1.162  jakllsch 	 * too many slots.
   1658  1.162  jakllsch 	 */
   1659  1.162  jakllsch 	if (*nslots > BLIST_MAX_ALLOC) {
   1660  1.162  jakllsch 		if (__predict_false(lessok == false))
   1661  1.162  jakllsch 			return 0;
   1662  1.162  jakllsch 		*nslots = BLIST_MAX_ALLOC;
   1663  1.162  jakllsch 	}
   1664  1.162  jakllsch 	/* XXXJAK: END HACK */
   1665  1.162  jakllsch 
   1666  1.162  jakllsch 	/*
   1667    1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1668    1.1       mrg 	 */
   1669  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1670    1.1       mrg 
   1671    1.1       mrg ReTry:	/* XXXMRG */
   1672   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1673  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1674   1.90      yamt 			uint64_t result;
   1675   1.90      yamt 
   1676    1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1677    1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1678    1.1       mrg 				continue;
   1679    1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1680    1.1       mrg 				continue;
   1681   1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1682   1.90      yamt 			if (result == BLIST_NONE) {
   1683    1.1       mrg 				continue;
   1684    1.1       mrg 			}
   1685   1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1686    1.1       mrg 
   1687    1.1       mrg 			/*
   1688  1.165  christos 			 * successful allocation!  now rotate the tailq.
   1689    1.1       mrg 			 */
   1690  1.164  christos 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1691  1.164  christos 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1692    1.1       mrg 			sdp->swd_npginuse += *nslots;
   1693    1.1       mrg 			uvmexp.swpginuse += *nslots;
   1694  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1695    1.1       mrg 			/* done!  return drum slot number */
   1696    1.1       mrg 			UVMHIST_LOG(pdhist,
   1697  1.175  pgoyette 			    "success!  returning %jd slots starting at %jd",
   1698    1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1699   1.55       chs 			return (result + sdp->swd_drumoffset);
   1700    1.1       mrg 		}
   1701    1.1       mrg 	}
   1702    1.1       mrg 
   1703    1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1704    1.1       mrg 	if (*nslots > 1 && lessok) {
   1705    1.1       mrg 		*nslots = 1;
   1706   1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1707   1.90      yamt 		goto ReTry;
   1708    1.1       mrg 	}
   1709    1.1       mrg 	/* XXXMRG: END HACK */
   1710    1.1       mrg 
   1711  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1712   1.55       chs 	return 0;
   1713    1.1       mrg }
   1714    1.1       mrg 
   1715  1.141        ad /*
   1716  1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1717  1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1718  1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1719  1.141        ad  * pages are busy.
   1720  1.141        ad  */
   1721  1.119   thorpej bool
   1722   1.81        pk uvm_swapisfull(void)
   1723   1.81        pk {
   1724  1.141        ad 	int swpgonly;
   1725  1.119   thorpej 	bool rv;
   1726   1.81        pk 
   1727  1.200       chs 	if (uvmexp.swpages == 0) {
   1728  1.200       chs 		return true;
   1729  1.200       chs 	}
   1730  1.200       chs 
   1731  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1732   1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1733  1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1734  1.141        ad 	    uvm_swapisfull_factor);
   1735  1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1736  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1737   1.81        pk 
   1738   1.81        pk 	return (rv);
   1739   1.81        pk }
   1740   1.81        pk 
   1741    1.1       mrg /*
   1742   1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1743   1.32       chs  *
   1744  1.127        ad  * => we lock uvm_swap_data_lock
   1745   1.32       chs  */
   1746   1.32       chs void
   1747   1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1748   1.32       chs {
   1749   1.32       chs 	struct swapdev *sdp;
   1750  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1751   1.32       chs 
   1752  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1753   1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1754   1.82        pk 	KASSERT(sdp != NULL);
   1755   1.32       chs 
   1756   1.32       chs 	/*
   1757   1.32       chs 	 * we just keep track of how many pages have been marked bad
   1758   1.32       chs 	 * in this device, to make everything add up in swap_off().
   1759   1.32       chs 	 * we assume here that the range of slots will all be within
   1760   1.32       chs 	 * one swap device.
   1761   1.32       chs 	 */
   1762   1.41       chs 
   1763   1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1764  1.182        ad 	atomic_add_int(&uvmexp.swpgonly, -nslots);
   1765   1.32       chs 	sdp->swd_npgbad += nslots;
   1766  1.175  pgoyette 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1767  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1768   1.32       chs }
   1769   1.32       chs 
   1770   1.32       chs /*
   1771    1.1       mrg  * uvm_swap_free: free swap slots
   1772    1.1       mrg  *
   1773    1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1774  1.127        ad  * => we lock uvm_swap_data_lock
   1775    1.1       mrg  */
   1776    1.1       mrg void
   1777   1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1778    1.1       mrg {
   1779    1.1       mrg 	struct swapdev *sdp;
   1780  1.197     skrll 	UVMHIST_FUNC(__func__);
   1781  1.197     skrll 	UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
   1782    1.1       mrg 	    startslot, 0, 0);
   1783   1.32       chs 
   1784   1.32       chs 	/*
   1785   1.32       chs 	 * ignore attempts to free the "bad" slot.
   1786   1.32       chs 	 */
   1787   1.46       chs 
   1788   1.32       chs 	if (startslot == SWSLOT_BAD) {
   1789   1.32       chs 		return;
   1790   1.32       chs 	}
   1791   1.32       chs 
   1792    1.1       mrg 	/*
   1793   1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1794   1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1795    1.1       mrg 	 * lookup and access the extent.
   1796    1.1       mrg 	 */
   1797   1.46       chs 
   1798  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1799    1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1800   1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1801   1.46       chs 	KASSERT(sdp != NULL);
   1802   1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1803   1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1804    1.1       mrg 	sdp->swd_npginuse -= nslots;
   1805    1.1       mrg 	uvmexp.swpginuse -= nslots;
   1806  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1807    1.1       mrg }
   1808    1.1       mrg 
   1809    1.1       mrg /*
   1810    1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1811    1.1       mrg  *
   1812    1.1       mrg  * => can be sync or async
   1813    1.1       mrg  */
   1814   1.54       chs 
   1815    1.1       mrg int
   1816   1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1817    1.1       mrg {
   1818   1.56       chs 	int error;
   1819    1.1       mrg 
   1820   1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1821    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1822   1.56       chs 	return error;
   1823    1.1       mrg }
   1824    1.1       mrg 
   1825    1.1       mrg /*
   1826    1.1       mrg  * uvm_swap_get: get a single page from swap
   1827    1.1       mrg  *
   1828    1.1       mrg  * => usually a sync op (from fault)
   1829    1.1       mrg  */
   1830   1.54       chs 
   1831    1.1       mrg int
   1832   1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1833    1.1       mrg {
   1834   1.56       chs 	int error;
   1835    1.1       mrg 
   1836  1.184        ad 	atomic_inc_uint(&uvmexp.nswget);
   1837   1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1838   1.32       chs 	if (swslot == SWSLOT_BAD) {
   1839   1.47       chs 		return EIO;
   1840   1.32       chs 	}
   1841   1.81        pk 
   1842   1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1843    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1844   1.56       chs 	if (error == 0) {
   1845   1.47       chs 
   1846   1.26       chs 		/*
   1847   1.54       chs 		 * this page is no longer only in swap.
   1848   1.26       chs 		 */
   1849   1.47       chs 
   1850   1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1851  1.182        ad 		atomic_dec_uint(&uvmexp.swpgonly);
   1852   1.26       chs 	}
   1853   1.56       chs 	return error;
   1854    1.1       mrg }
   1855    1.1       mrg 
   1856    1.1       mrg /*
   1857    1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1858    1.1       mrg  */
   1859    1.1       mrg 
   1860    1.1       mrg static int
   1861   1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1862    1.1       mrg {
   1863    1.1       mrg 	daddr_t startblk;
   1864    1.1       mrg 	struct	buf *bp;
   1865   1.15       eeh 	vaddr_t kva;
   1866  1.134        ad 	int	error, mapinflags;
   1867  1.187  riastrad 	bool write, async, swap_encrypt;
   1868  1.197     skrll 	UVMHIST_FUNC(__func__);
   1869  1.203     skrll 	UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%#jx",
   1870    1.1       mrg 	    startslot, npages, flags, 0);
   1871   1.32       chs 
   1872   1.41       chs 	write = (flags & B_READ) == 0;
   1873   1.41       chs 	async = (flags & B_ASYNC) != 0;
   1874  1.189  riastrad 	swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
   1875   1.41       chs 
   1876    1.1       mrg 	/*
   1877  1.137      yamt 	 * allocate a buf for the i/o.
   1878  1.137      yamt 	 */
   1879  1.137      yamt 
   1880  1.208  riastrad 	KASSERT(curlwp != uvm.pagedaemon_lwp || write);
   1881  1.208  riastrad 	KASSERT(curlwp != uvm.pagedaemon_lwp || async);
   1882  1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1883  1.137      yamt 	if (bp == NULL) {
   1884  1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1885  1.137      yamt 		return ENOMEM;
   1886  1.137      yamt 	}
   1887  1.137      yamt 
   1888  1.137      yamt 	/*
   1889    1.1       mrg 	 * convert starting drum slot to block number
   1890    1.1       mrg 	 */
   1891   1.54       chs 
   1892   1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1893    1.1       mrg 
   1894    1.1       mrg 	/*
   1895   1.54       chs 	 * first, map the pages into the kernel.
   1896   1.41       chs 	 */
   1897   1.41       chs 
   1898   1.54       chs 	mapinflags = !write ?
   1899   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1900   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1901  1.187  riastrad 	if (write && swap_encrypt)	/* need to encrypt in-place */
   1902  1.187  riastrad 		mapinflags |= UVMPAGER_MAPIN_READ;
   1903   1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1904    1.1       mrg 
   1905   1.51       chs 	/*
   1906  1.187  riastrad 	 * encrypt writes in place if requested
   1907  1.187  riastrad 	 */
   1908  1.187  riastrad 
   1909  1.187  riastrad 	if (write) do {
   1910  1.187  riastrad 		struct swapdev *sdp;
   1911  1.187  riastrad 		int i;
   1912  1.187  riastrad 
   1913  1.187  riastrad 		/*
   1914  1.187  riastrad 		 * Get the swapdev so we can discriminate on the
   1915  1.187  riastrad 		 * encryption state.  There may or may not be an
   1916  1.187  riastrad 		 * encryption key generated; we may or may not be asked
   1917  1.187  riastrad 		 * to encrypt swap.
   1918  1.187  riastrad 		 *
   1919  1.187  riastrad 		 * 1. NO KEY, NO ENCRYPTION: Nothing to do.
   1920  1.187  riastrad 		 *
   1921  1.187  riastrad 		 * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
   1922  1.187  riastrad 		 *    and mark the slots encrypted.
   1923  1.187  riastrad 		 *
   1924  1.187  riastrad 		 * 3. KEY, BUT NO ENCRYPTION: The slots may already be
   1925  1.187  riastrad 		 *    marked encrypted from a past life.  Mark them not
   1926  1.187  riastrad 		 *    encrypted.
   1927  1.187  riastrad 		 *
   1928  1.187  riastrad 		 * 4. KEY, ENCRYPTION: Encrypt and mark the slots
   1929  1.187  riastrad 		 *    encrypted.
   1930  1.187  riastrad 		 */
   1931  1.190  riastrad 		mutex_enter(&uvm_swap_data_lock);
   1932  1.187  riastrad 		sdp = swapdrum_getsdp(startslot);
   1933  1.187  riastrad 		if (!sdp->swd_encinit) {
   1934  1.190  riastrad 			if (!swap_encrypt) {
   1935  1.190  riastrad 				mutex_exit(&uvm_swap_data_lock);
   1936  1.187  riastrad 				break;
   1937  1.190  riastrad 			}
   1938  1.187  riastrad 			uvm_swap_genkey(sdp);
   1939  1.187  riastrad 		}
   1940  1.187  riastrad 		KASSERT(sdp->swd_encinit);
   1941  1.190  riastrad 		mutex_exit(&uvm_swap_data_lock);
   1942  1.187  riastrad 
   1943  1.192  jdolecek 		for (i = 0; i < npages; i++) {
   1944  1.192  jdolecek 			int s = startslot + i;
   1945  1.192  jdolecek 			KDASSERT(swapdrum_sdp_is(s, sdp));
   1946  1.192  jdolecek 			KASSERT(s >= sdp->swd_drumoffset);
   1947  1.192  jdolecek 			s -= sdp->swd_drumoffset;
   1948  1.192  jdolecek 			KASSERT(s < sdp->swd_drumsize);
   1949  1.192  jdolecek 
   1950  1.192  jdolecek 			if (swap_encrypt) {
   1951  1.189  riastrad 				uvm_swap_encryptpage(sdp,
   1952  1.188  riastrad 				    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   1953  1.190  riastrad 				atomic_or_32(&sdp->swd_encmap[s/32],
   1954  1.190  riastrad 				    __BIT(s%32));
   1955  1.192  jdolecek 			} else {
   1956  1.190  riastrad 				atomic_and_32(&sdp->swd_encmap[s/32],
   1957  1.190  riastrad 				    ~__BIT(s%32));
   1958  1.187  riastrad 			}
   1959  1.187  riastrad 		}
   1960  1.187  riastrad 	} while (0);
   1961  1.187  riastrad 
   1962  1.187  riastrad 	/*
   1963    1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1964    1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1965    1.1       mrg 	 */
   1966   1.54       chs 
   1967  1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1968  1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1969    1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1970   1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1971  1.122  christos 	bp->b_data = (void *)kva;
   1972    1.1       mrg 	bp->b_blkno = startblk;
   1973   1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1974    1.1       mrg 
   1975   1.51       chs 	/*
   1976   1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1977    1.1       mrg 	 */
   1978   1.54       chs 
   1979   1.41       chs 	if (write) {
   1980  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1981  1.134        ad 		swapdev_vp->v_numoutput++;
   1982  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1983    1.1       mrg 	}
   1984    1.1       mrg 
   1985    1.1       mrg 	/*
   1986   1.41       chs 	 * for async ops we must set up the iodone handler.
   1987    1.1       mrg 	 */
   1988   1.54       chs 
   1989   1.41       chs 	if (async) {
   1990  1.186       chs 		bp->b_iodone = uvm_aio_aiodone;
   1991    1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1992  1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1993   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1994   1.83      yamt 		else
   1995   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1996   1.83      yamt 	} else {
   1997  1.134        ad 		bp->b_iodone = NULL;
   1998   1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1999    1.1       mrg 	}
   2000    1.1       mrg 	UVMHIST_LOG(pdhist,
   2001  1.203     skrll 	    "about to start io: data = %#jx blkno = %#jx, bcount = %jd",
   2002  1.175  pgoyette 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   2003    1.1       mrg 
   2004    1.1       mrg 	/*
   2005    1.1       mrg 	 * now we start the I/O, and if async, return.
   2006    1.1       mrg 	 */
   2007   1.54       chs 
   2008   1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   2009  1.190  riastrad 	if (async) {
   2010  1.190  riastrad 		/*
   2011  1.190  riastrad 		 * Reads are always synchronous; if this changes, we
   2012  1.190  riastrad 		 * need to add an asynchronous path for decryption.
   2013  1.190  riastrad 		 */
   2014  1.193  jdolecek 		KASSERT(write);
   2015   1.47       chs 		return 0;
   2016  1.190  riastrad 	}
   2017    1.1       mrg 
   2018    1.1       mrg 	/*
   2019    1.1       mrg 	 * must be sync i/o.   wait for it to finish
   2020    1.1       mrg 	 */
   2021   1.54       chs 
   2022   1.47       chs 	error = biowait(bp);
   2023  1.191  riastrad 	if (error)
   2024  1.191  riastrad 		goto out;
   2025    1.1       mrg 
   2026    1.1       mrg 	/*
   2027  1.187  riastrad 	 * decrypt reads in place if needed
   2028  1.187  riastrad 	 */
   2029  1.187  riastrad 
   2030  1.187  riastrad 	if (!write) do {
   2031  1.187  riastrad 		struct swapdev *sdp;
   2032  1.190  riastrad 		bool encinit;
   2033  1.187  riastrad 		int i;
   2034  1.187  riastrad 
   2035  1.190  riastrad 		/*
   2036  1.190  riastrad 		 * Get the sdp.  Everything about it except the encinit
   2037  1.190  riastrad 		 * bit, saying whether the encryption key is
   2038  1.190  riastrad 		 * initialized or not, and the encrypted bit for each
   2039  1.190  riastrad 		 * page, is stable until all swap pages have been
   2040  1.190  riastrad 		 * released and the device is removed.
   2041  1.190  riastrad 		 */
   2042  1.190  riastrad 		mutex_enter(&uvm_swap_data_lock);
   2043  1.187  riastrad 		sdp = swapdrum_getsdp(startslot);
   2044  1.190  riastrad 		encinit = sdp->swd_encinit;
   2045  1.190  riastrad 		mutex_exit(&uvm_swap_data_lock);
   2046  1.190  riastrad 
   2047  1.190  riastrad 		if (!encinit)
   2048  1.187  riastrad 			/*
   2049  1.187  riastrad 			 * If there's no encryption key, there's no way
   2050  1.187  riastrad 			 * any of these slots can be encrypted, so
   2051  1.187  riastrad 			 * nothing to do here.
   2052  1.187  riastrad 			 */
   2053  1.187  riastrad 			break;
   2054  1.187  riastrad 		for (i = 0; i < npages; i++) {
   2055  1.187  riastrad 			int s = startslot + i;
   2056  1.190  riastrad 			KDASSERT(swapdrum_sdp_is(s, sdp));
   2057  1.187  riastrad 			KASSERT(s >= sdp->swd_drumoffset);
   2058  1.187  riastrad 			s -= sdp->swd_drumoffset;
   2059  1.187  riastrad 			KASSERT(s < sdp->swd_drumsize);
   2060  1.190  riastrad 			if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
   2061  1.190  riastrad 				__BIT(s%32)) == 0)
   2062  1.187  riastrad 				continue;
   2063  1.189  riastrad 			uvm_swap_decryptpage(sdp,
   2064  1.188  riastrad 			    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   2065  1.187  riastrad 		}
   2066  1.187  riastrad 	} while (0);
   2067  1.191  riastrad out:
   2068  1.187  riastrad 	/*
   2069    1.1       mrg 	 * kill the pager mapping
   2070    1.1       mrg 	 */
   2071   1.54       chs 
   2072    1.1       mrg 	uvm_pagermapout(kva, npages);
   2073    1.1       mrg 
   2074    1.1       mrg 	/*
   2075   1.54       chs 	 * now dispose of the buf and we're done.
   2076    1.1       mrg 	 */
   2077   1.54       chs 
   2078  1.134        ad 	if (write) {
   2079  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   2080   1.41       chs 		vwakeup(bp);
   2081  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   2082  1.134        ad 	}
   2083   1.98      yamt 	putiobuf(bp);
   2084  1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   2085  1.134        ad 
   2086   1.47       chs 	return (error);
   2087    1.1       mrg }
   2088  1.187  riastrad 
   2089  1.187  riastrad /*
   2090  1.187  riastrad  * uvm_swap_genkey(sdp)
   2091  1.187  riastrad  *
   2092  1.187  riastrad  *	Generate a key for swap encryption.
   2093  1.187  riastrad  */
   2094  1.187  riastrad static void
   2095  1.187  riastrad uvm_swap_genkey(struct swapdev *sdp)
   2096  1.187  riastrad {
   2097  1.187  riastrad 	uint8_t key[32];
   2098  1.187  riastrad 
   2099  1.187  riastrad 	KASSERT(!sdp->swd_encinit);
   2100  1.187  riastrad 
   2101  1.187  riastrad 	cprng_strong(kern_cprng, key, sizeof key, 0);
   2102  1.194  riastrad 	aes_setenckey256(&sdp->swd_enckey, key);
   2103  1.194  riastrad 	aes_setdeckey256(&sdp->swd_deckey, key);
   2104  1.187  riastrad 	explicit_memset(key, 0, sizeof key);
   2105  1.187  riastrad 
   2106  1.187  riastrad 	sdp->swd_encinit = true;
   2107  1.187  riastrad }
   2108  1.187  riastrad 
   2109  1.187  riastrad /*
   2110  1.189  riastrad  * uvm_swap_encryptpage(sdp, kva, slot)
   2111  1.187  riastrad  *
   2112  1.187  riastrad  *	Encrypt one page of data at kva for the specified slot number
   2113  1.187  riastrad  *	in the swap device.
   2114  1.187  riastrad  */
   2115  1.187  riastrad static void
   2116  1.189  riastrad uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
   2117  1.187  riastrad {
   2118  1.195  riastrad 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2119  1.187  riastrad 
   2120  1.187  riastrad 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2121  1.187  riastrad 	le32enc(preiv, slot);
   2122  1.194  riastrad 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2123  1.187  riastrad 
   2124  1.187  riastrad 	/* *kva := AES-CBC_k(iv, *kva) */
   2125  1.194  riastrad 	aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
   2126  1.194  riastrad 	    AES_256_NROUNDS);
   2127  1.187  riastrad 
   2128  1.187  riastrad 	explicit_memset(&iv, 0, sizeof iv);
   2129  1.187  riastrad }
   2130  1.187  riastrad 
   2131  1.187  riastrad /*
   2132  1.189  riastrad  * uvm_swap_decryptpage(sdp, kva, slot)
   2133  1.187  riastrad  *
   2134  1.187  riastrad  *	Decrypt one page of data at kva for the specified slot number
   2135  1.187  riastrad  *	in the swap device.
   2136  1.187  riastrad  */
   2137  1.187  riastrad static void
   2138  1.189  riastrad uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
   2139  1.187  riastrad {
   2140  1.195  riastrad 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2141  1.187  riastrad 
   2142  1.187  riastrad 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2143  1.187  riastrad 	le32enc(preiv, slot);
   2144  1.194  riastrad 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2145  1.187  riastrad 
   2146  1.187  riastrad 	/* *kva := AES-CBC^{-1}_k(iv, *kva) */
   2147  1.194  riastrad 	aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
   2148  1.194  riastrad 	    AES_256_NROUNDS);
   2149  1.187  riastrad 
   2150  1.187  riastrad 	explicit_memset(&iv, 0, sizeof iv);
   2151  1.187  riastrad }
   2152  1.187  riastrad 
   2153  1.187  riastrad SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
   2154  1.187  riastrad {
   2155  1.187  riastrad 
   2156  1.187  riastrad 	sysctl_createv(clog, 0, NULL, NULL,
   2157  1.187  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
   2158  1.187  riastrad 	    SYSCTL_DESCR("Encrypt data when swapped out to disk"),
   2159  1.189  riastrad 	    NULL, 0, &uvm_swap_encrypt, 0,
   2160  1.187  riastrad 	    CTL_VM, CTL_CREATE, CTL_EOL);
   2161  1.187  riastrad }
   2162