1 1.209 mlelstv /* $NetBSD: uvm_swap.c,v 1.209 2025/02/22 09:36:29 mlelstv Exp $ */ 2 1.1 mrg 3 1.1 mrg /* 4 1.144 mrg * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green 5 1.1 mrg * All rights reserved. 6 1.1 mrg * 7 1.1 mrg * Redistribution and use in source and binary forms, with or without 8 1.1 mrg * modification, are permitted provided that the following conditions 9 1.1 mrg * are met: 10 1.1 mrg * 1. Redistributions of source code must retain the above copyright 11 1.1 mrg * notice, this list of conditions and the following disclaimer. 12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 mrg * notice, this list of conditions and the following disclaimer in the 14 1.1 mrg * documentation and/or other materials provided with the distribution. 15 1.1 mrg * 16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 1.1 mrg * SUCH DAMAGE. 27 1.3 mrg * 28 1.3 mrg * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp 29 1.3 mrg * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp 30 1.1 mrg */ 31 1.57 lukem 32 1.57 lukem #include <sys/cdefs.h> 33 1.209 mlelstv __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.209 2025/02/22 09:36:29 mlelstv Exp $"); 34 1.5 mrg 35 1.5 mrg #include "opt_uvmhist.h" 36 1.16 mrg #include "opt_compat_netbsd.h" 37 1.41 chs #include "opt_ddb.h" 38 1.205 riastrad #include "opt_vmswap.h" 39 1.1 mrg 40 1.1 mrg #include <sys/param.h> 41 1.1 mrg #include <sys/systm.h> 42 1.183 uwe #include <sys/atomic.h> 43 1.1 mrg #include <sys/buf.h> 44 1.89 yamt #include <sys/bufq.h> 45 1.36 mrg #include <sys/conf.h> 46 1.187 riastrad #include <sys/cprng.h> 47 1.1 mrg #include <sys/proc.h> 48 1.1 mrg #include <sys/namei.h> 49 1.1 mrg #include <sys/disklabel.h> 50 1.1 mrg #include <sys/errno.h> 51 1.1 mrg #include <sys/kernel.h> 52 1.1 mrg #include <sys/vnode.h> 53 1.1 mrg #include <sys/file.h> 54 1.110 yamt #include <sys/vmem.h> 55 1.90 yamt #include <sys/blist.h> 56 1.1 mrg #include <sys/mount.h> 57 1.12 pk #include <sys/pool.h> 58 1.159 para #include <sys/kmem.h> 59 1.1 mrg #include <sys/syscallargs.h> 60 1.17 mrg #include <sys/swap.h> 61 1.100 elad #include <sys/kauth.h> 62 1.125 ad #include <sys/sysctl.h> 63 1.130 hannken #include <sys/workqueue.h> 64 1.1 mrg 65 1.1 mrg #include <uvm/uvm.h> 66 1.1 mrg 67 1.1 mrg #include <miscfs/specfs/specdev.h> 68 1.1 mrg 69 1.194 riastrad #include <crypto/aes/aes.h> 70 1.198 riastrad #include <crypto/aes/aes_cbc.h> 71 1.187 riastrad 72 1.1 mrg /* 73 1.1 mrg * uvm_swap.c: manage configuration and i/o to swap space. 74 1.1 mrg */ 75 1.1 mrg 76 1.1 mrg /* 77 1.1 mrg * swap space is managed in the following way: 78 1.51 chs * 79 1.1 mrg * each swap partition or file is described by a "swapdev" structure. 80 1.1 mrg * each "swapdev" structure contains a "swapent" structure which contains 81 1.1 mrg * information that is passed up to the user (via system calls). 82 1.1 mrg * 83 1.1 mrg * each swap partition is assigned a "priority" (int) which controls 84 1.199 msaitoh * swap partition usage. 85 1.1 mrg * 86 1.1 mrg * the system maintains a global data structure describing all swap 87 1.1 mrg * partitions/files. there is a sorted LIST of "swappri" structures 88 1.1 mrg * which describe "swapdev"'s at that priority. this LIST is headed 89 1.51 chs * by the "swap_priority" global var. each "swappri" contains a 90 1.164 christos * TAILQ of "swapdev" structures at that priority. 91 1.1 mrg * 92 1.1 mrg * locking: 93 1.127 ad * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl 94 1.1 mrg * system call and prevents the swap priority list from changing 95 1.1 mrg * while we are in the middle of a system call (e.g. SWAP_STATS). 96 1.127 ad * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data 97 1.1 mrg * structures including the priority list, the swapdev structures, 98 1.110 yamt * and the swapmap arena. 99 1.1 mrg * 100 1.1 mrg * each swap device has the following info: 101 1.1 mrg * - swap device in use (could be disabled, preventing future use) 102 1.1 mrg * - swap enabled (allows new allocations on swap) 103 1.1 mrg * - map info in /dev/drum 104 1.1 mrg * - vnode pointer 105 1.1 mrg * for swap files only: 106 1.1 mrg * - block size 107 1.1 mrg * - max byte count in buffer 108 1.1 mrg * - buffer 109 1.1 mrg * 110 1.1 mrg * userland controls and configures swap with the swapctl(2) system call. 111 1.1 mrg * the sys_swapctl performs the following operations: 112 1.1 mrg * [1] SWAP_NSWAP: returns the number of swap devices currently configured 113 1.51 chs * [2] SWAP_STATS: given a pointer to an array of swapent structures 114 1.1 mrg * (passed in via "arg") of a size passed in via "misc" ... we load 115 1.85 junyoung * the current swap config into the array. The actual work is done 116 1.155 rmind * in the uvm_swap_stats() function. 117 1.1 mrg * [3] SWAP_ON: given a pathname in arg (could be device or file) and a 118 1.1 mrg * priority in "misc", start swapping on it. 119 1.1 mrg * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device 120 1.1 mrg * [5] SWAP_CTL: changes the priority of a swap device (new priority in 121 1.1 mrg * "misc") 122 1.1 mrg */ 123 1.1 mrg 124 1.1 mrg /* 125 1.1 mrg * swapdev: describes a single swap partition/file 126 1.1 mrg * 127 1.1 mrg * note the following should be true: 128 1.1 mrg * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks] 129 1.1 mrg * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel] 130 1.1 mrg */ 131 1.1 mrg struct swapdev { 132 1.144 mrg dev_t swd_dev; /* device id */ 133 1.144 mrg int swd_flags; /* flags:inuse/enable/fake */ 134 1.144 mrg int swd_priority; /* our priority */ 135 1.144 mrg int swd_nblks; /* blocks in this device */ 136 1.16 mrg char *swd_path; /* saved pathname of device */ 137 1.16 mrg int swd_pathlen; /* length of pathname */ 138 1.16 mrg int swd_npages; /* #pages we can use */ 139 1.16 mrg int swd_npginuse; /* #pages in use */ 140 1.32 chs int swd_npgbad; /* #pages bad */ 141 1.16 mrg int swd_drumoffset; /* page0 offset in drum */ 142 1.16 mrg int swd_drumsize; /* #pages in drum */ 143 1.90 yamt blist_t swd_blist; /* blist for this swapdev */ 144 1.16 mrg struct vnode *swd_vp; /* backing vnode */ 145 1.165 christos TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */ 146 1.1 mrg 147 1.16 mrg int swd_bsize; /* blocksize (bytes) */ 148 1.16 mrg int swd_maxactive; /* max active i/o reqs */ 149 1.96 yamt struct bufq_state *swd_tab; /* buffer list */ 150 1.33 thorpej int swd_active; /* number of active buffers */ 151 1.187 riastrad 152 1.190 riastrad volatile uint32_t *swd_encmap; /* bitmap of encrypted slots */ 153 1.194 riastrad struct aesenc swd_enckey; /* AES key expanded for enc */ 154 1.194 riastrad struct aesdec swd_deckey; /* AES key expanded for dec */ 155 1.187 riastrad bool swd_encinit; /* true if keys initialized */ 156 1.1 mrg }; 157 1.1 mrg 158 1.1 mrg /* 159 1.1 mrg * swap device priority entry; the list is kept sorted on `spi_priority'. 160 1.1 mrg */ 161 1.1 mrg struct swappri { 162 1.1 mrg int spi_priority; /* priority */ 163 1.164 christos TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev; 164 1.165 christos /* tailq of swapdevs at this priority */ 165 1.1 mrg LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */ 166 1.1 mrg }; 167 1.1 mrg 168 1.1 mrg /* 169 1.1 mrg * The following two structures are used to keep track of data transfers 170 1.1 mrg * on swap devices associated with regular files. 171 1.1 mrg * NOTE: this code is more or less a copy of vnd.c; we use the same 172 1.1 mrg * structure names here to ease porting.. 173 1.1 mrg */ 174 1.1 mrg struct vndxfer { 175 1.1 mrg struct buf *vx_bp; /* Pointer to parent buffer */ 176 1.1 mrg struct swapdev *vx_sdp; 177 1.1 mrg int vx_error; 178 1.1 mrg int vx_pending; /* # of pending aux buffers */ 179 1.1 mrg int vx_flags; 180 1.1 mrg #define VX_BUSY 1 181 1.1 mrg #define VX_DEAD 2 182 1.1 mrg }; 183 1.1 mrg 184 1.1 mrg struct vndbuf { 185 1.1 mrg struct buf vb_buf; 186 1.1 mrg struct vndxfer *vb_xfer; 187 1.1 mrg }; 188 1.1 mrg 189 1.144 mrg /* 190 1.12 pk * We keep a of pool vndbuf's and vndxfer structures. 191 1.1 mrg */ 192 1.146 pooka static struct pool vndxfer_pool, vndbuf_pool; 193 1.1 mrg 194 1.1 mrg /* 195 1.1 mrg * local variables 196 1.1 mrg */ 197 1.110 yamt static vmem_t *swapmap; /* controls the mapping of /dev/drum */ 198 1.1 mrg 199 1.1 mrg /* list of all active swap devices [by priority] */ 200 1.1 mrg LIST_HEAD(swap_priority, swappri); 201 1.1 mrg static struct swap_priority swap_priority; 202 1.1 mrg 203 1.1 mrg /* locks */ 204 1.182 ad static kmutex_t uvm_swap_data_lock __cacheline_aligned; 205 1.117 ad static krwlock_t swap_syscall_lock; 206 1.204 mrg bool uvm_swap_init_done = false; 207 1.1 mrg 208 1.130 hannken /* workqueue and use counter for swap to regular files */ 209 1.130 hannken static int sw_reg_count = 0; 210 1.130 hannken static struct workqueue *sw_reg_workqueue; 211 1.130 hannken 212 1.141 ad /* tuneables */ 213 1.141 ad u_int uvm_swapisfull_factor = 99; 214 1.205 riastrad #if VMSWAP_DEFAULT_PLAINTEXT 215 1.189 riastrad bool uvm_swap_encrypt = false; 216 1.205 riastrad #else 217 1.205 riastrad bool uvm_swap_encrypt = true; 218 1.205 riastrad #endif 219 1.141 ad 220 1.1 mrg /* 221 1.1 mrg * prototypes 222 1.1 mrg */ 223 1.85 junyoung static struct swapdev *swapdrum_getsdp(int); 224 1.1 mrg 225 1.120 matt static struct swapdev *swaplist_find(struct vnode *, bool); 226 1.85 junyoung static void swaplist_insert(struct swapdev *, 227 1.85 junyoung struct swappri *, int); 228 1.85 junyoung static void swaplist_trim(void); 229 1.1 mrg 230 1.97 christos static int swap_on(struct lwp *, struct swapdev *); 231 1.97 christos static int swap_off(struct lwp *, struct swapdev *); 232 1.1 mrg 233 1.85 junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int); 234 1.130 hannken static void sw_reg_biodone(struct buf *); 235 1.130 hannken static void sw_reg_iodone(struct work *wk, void *dummy); 236 1.85 junyoung static void sw_reg_start(struct swapdev *); 237 1.1 mrg 238 1.85 junyoung static int uvm_swap_io(struct vm_page **, int, int, int); 239 1.1 mrg 240 1.187 riastrad static void uvm_swap_genkey(struct swapdev *); 241 1.189 riastrad static void uvm_swap_encryptpage(struct swapdev *, void *, int); 242 1.189 riastrad static void uvm_swap_decryptpage(struct swapdev *, void *, int); 243 1.187 riastrad 244 1.190 riastrad static size_t 245 1.190 riastrad encmap_size(size_t npages) 246 1.190 riastrad { 247 1.190 riastrad struct swapdev *sdp; 248 1.190 riastrad const size_t bytesperword = sizeof(sdp->swd_encmap[0]); 249 1.190 riastrad const size_t bitsperword = NBBY * bytesperword; 250 1.190 riastrad const size_t nbits = npages; /* one bit for each page */ 251 1.190 riastrad const size_t nwords = howmany(nbits, bitsperword); 252 1.190 riastrad const size_t nbytes = nwords * bytesperword; 253 1.190 riastrad 254 1.190 riastrad return nbytes; 255 1.190 riastrad } 256 1.190 riastrad 257 1.1 mrg /* 258 1.1 mrg * uvm_swap_init: init the swap system data structures and locks 259 1.1 mrg * 260 1.51 chs * => called at boot time from init_main.c after the filesystems 261 1.1 mrg * are brought up (which happens after uvm_init()) 262 1.1 mrg */ 263 1.1 mrg void 264 1.93 thorpej uvm_swap_init(void) 265 1.1 mrg { 266 1.197 skrll UVMHIST_FUNC(__func__); 267 1.1 mrg 268 1.1 mrg UVMHIST_CALLED(pdhist); 269 1.1 mrg /* 270 1.1 mrg * first, init the swap list, its counter, and its lock. 271 1.1 mrg * then get a handle on the vnode for /dev/drum by using 272 1.1 mrg * the its dev_t number ("swapdev", from MD conf.c). 273 1.1 mrg */ 274 1.1 mrg 275 1.1 mrg LIST_INIT(&swap_priority); 276 1.1 mrg uvmexp.nswapdev = 0; 277 1.117 ad rw_init(&swap_syscall_lock); 278 1.134 ad mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE); 279 1.12 pk 280 1.1 mrg if (bdevvp(swapdev, &swapdev_vp)) 281 1.145 mrg panic("%s: can't get vnode for swap device", __func__); 282 1.136 hannken if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY)) 283 1.145 mrg panic("%s: can't lock swap device", __func__); 284 1.135 hannken if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED)) 285 1.145 mrg panic("%s: can't open swap device", __func__); 286 1.151 hannken VOP_UNLOCK(swapdev_vp); 287 1.1 mrg 288 1.1 mrg /* 289 1.1 mrg * create swap block resource map to map /dev/drum. the range 290 1.1 mrg * from 1 to INT_MAX allows 2 gigablocks of swap space. note 291 1.51 chs * that block 0 is reserved (used to indicate an allocation 292 1.1 mrg * failure, or no allocation). 293 1.1 mrg */ 294 1.110 yamt swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0, 295 1.126 ad VM_NOSLEEP, IPL_NONE); 296 1.147 rmind if (swapmap == 0) { 297 1.145 mrg panic("%s: vmem_create failed", __func__); 298 1.147 rmind } 299 1.146 pooka 300 1.146 pooka pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 301 1.146 pooka NULL, IPL_BIO); 302 1.146 pooka pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 303 1.146 pooka NULL, IPL_BIO); 304 1.147 rmind 305 1.204 mrg uvm_swap_init_done = true; 306 1.204 mrg 307 1.147 rmind UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0); 308 1.1 mrg } 309 1.1 mrg 310 1.1 mrg /* 311 1.1 mrg * swaplist functions: functions that operate on the list of swap 312 1.1 mrg * devices on the system. 313 1.1 mrg */ 314 1.1 mrg 315 1.1 mrg /* 316 1.1 mrg * swaplist_insert: insert swap device "sdp" into the global list 317 1.1 mrg * 318 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock 319 1.154 rmind * => caller must provide a newly allocated swappri structure (we will 320 1.154 rmind * FREE it if we don't need it... this it to prevent allocation 321 1.154 rmind * blocking here while adding swap) 322 1.1 mrg */ 323 1.1 mrg static void 324 1.93 thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority) 325 1.1 mrg { 326 1.1 mrg struct swappri *spp, *pspp; 327 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); 328 1.1 mrg 329 1.190 riastrad KASSERT(rw_write_held(&swap_syscall_lock)); 330 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock)); 331 1.190 riastrad 332 1.1 mrg /* 333 1.1 mrg * find entry at or after which to insert the new device. 334 1.1 mrg */ 335 1.55 chs pspp = NULL; 336 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) { 337 1.1 mrg if (priority <= spp->spi_priority) 338 1.1 mrg break; 339 1.1 mrg pspp = spp; 340 1.1 mrg } 341 1.1 mrg 342 1.1 mrg /* 343 1.1 mrg * new priority? 344 1.1 mrg */ 345 1.1 mrg if (spp == NULL || spp->spi_priority != priority) { 346 1.1 mrg spp = newspp; /* use newspp! */ 347 1.175 pgoyette UVMHIST_LOG(pdhist, "created new swappri = %jd", 348 1.32 chs priority, 0, 0, 0); 349 1.1 mrg 350 1.1 mrg spp->spi_priority = priority; 351 1.164 christos TAILQ_INIT(&spp->spi_swapdev); 352 1.1 mrg 353 1.1 mrg if (pspp) 354 1.1 mrg LIST_INSERT_AFTER(pspp, spp, spi_swappri); 355 1.1 mrg else 356 1.1 mrg LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri); 357 1.1 mrg } else { 358 1.1 mrg /* we don't need a new priority structure, free it */ 359 1.159 para kmem_free(newspp, sizeof(*newspp)); 360 1.1 mrg } 361 1.1 mrg 362 1.1 mrg /* 363 1.1 mrg * priority found (or created). now insert on the priority's 364 1.165 christos * tailq list and bump the total number of swapdevs. 365 1.1 mrg */ 366 1.1 mrg sdp->swd_priority = priority; 367 1.164 christos TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 368 1.1 mrg uvmexp.nswapdev++; 369 1.1 mrg } 370 1.1 mrg 371 1.1 mrg /* 372 1.1 mrg * swaplist_find: find and optionally remove a swap device from the 373 1.1 mrg * global list. 374 1.1 mrg * 375 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock 376 1.1 mrg * => we return the swapdev we found (and removed) 377 1.1 mrg */ 378 1.1 mrg static struct swapdev * 379 1.119 thorpej swaplist_find(struct vnode *vp, bool remove) 380 1.1 mrg { 381 1.1 mrg struct swapdev *sdp; 382 1.1 mrg struct swappri *spp; 383 1.1 mrg 384 1.190 riastrad KASSERT(rw_lock_held(&swap_syscall_lock)); 385 1.190 riastrad KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1); 386 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock)); 387 1.190 riastrad 388 1.1 mrg /* 389 1.1 mrg * search the lists for the requested vp 390 1.1 mrg */ 391 1.55 chs 392 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) { 393 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 394 1.1 mrg if (sdp->swd_vp == vp) { 395 1.1 mrg if (remove) { 396 1.164 christos TAILQ_REMOVE(&spp->spi_swapdev, 397 1.1 mrg sdp, swd_next); 398 1.1 mrg uvmexp.nswapdev--; 399 1.1 mrg } 400 1.1 mrg return(sdp); 401 1.1 mrg } 402 1.55 chs } 403 1.1 mrg } 404 1.1 mrg return (NULL); 405 1.1 mrg } 406 1.1 mrg 407 1.113 elad /* 408 1.1 mrg * swaplist_trim: scan priority list for empty priority entries and kill 409 1.1 mrg * them. 410 1.1 mrg * 411 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock 412 1.1 mrg */ 413 1.1 mrg static void 414 1.93 thorpej swaplist_trim(void) 415 1.1 mrg { 416 1.1 mrg struct swappri *spp, *nextspp; 417 1.1 mrg 418 1.190 riastrad KASSERT(rw_write_held(&swap_syscall_lock)); 419 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock)); 420 1.190 riastrad 421 1.161 rmind LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) { 422 1.167 mlelstv if (!TAILQ_EMPTY(&spp->spi_swapdev)) 423 1.1 mrg continue; 424 1.1 mrg LIST_REMOVE(spp, spi_swappri); 425 1.159 para kmem_free(spp, sizeof(*spp)); 426 1.1 mrg } 427 1.1 mrg } 428 1.1 mrg 429 1.1 mrg /* 430 1.1 mrg * swapdrum_getsdp: given a page offset in /dev/drum, convert it back 431 1.1 mrg * to the "swapdev" that maps that section of the drum. 432 1.1 mrg * 433 1.1 mrg * => each swapdev takes one big contig chunk of the drum 434 1.127 ad * => caller must hold uvm_swap_data_lock 435 1.1 mrg */ 436 1.1 mrg static struct swapdev * 437 1.93 thorpej swapdrum_getsdp(int pgno) 438 1.1 mrg { 439 1.1 mrg struct swapdev *sdp; 440 1.1 mrg struct swappri *spp; 441 1.51 chs 442 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock)); 443 1.190 riastrad 444 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) { 445 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 446 1.48 fvdl if (sdp->swd_flags & SWF_FAKE) 447 1.48 fvdl continue; 448 1.1 mrg if (pgno >= sdp->swd_drumoffset && 449 1.1 mrg pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) { 450 1.1 mrg return sdp; 451 1.1 mrg } 452 1.48 fvdl } 453 1.55 chs } 454 1.1 mrg return NULL; 455 1.1 mrg } 456 1.1 mrg 457 1.190 riastrad /* 458 1.190 riastrad * swapdrum_sdp_is: true iff the swap device for pgno is sdp 459 1.190 riastrad * 460 1.190 riastrad * => for use in positive assertions only; result is not stable 461 1.190 riastrad */ 462 1.190 riastrad static bool __debugused 463 1.190 riastrad swapdrum_sdp_is(int pgno, struct swapdev *sdp) 464 1.190 riastrad { 465 1.190 riastrad bool result; 466 1.190 riastrad 467 1.190 riastrad mutex_enter(&uvm_swap_data_lock); 468 1.190 riastrad result = swapdrum_getsdp(pgno) == sdp; 469 1.190 riastrad mutex_exit(&uvm_swap_data_lock); 470 1.190 riastrad 471 1.190 riastrad return result; 472 1.190 riastrad } 473 1.190 riastrad 474 1.173 maxv void swapsys_lock(krw_t op) 475 1.173 maxv { 476 1.173 maxv rw_enter(&swap_syscall_lock, op); 477 1.173 maxv } 478 1.173 maxv 479 1.173 maxv void swapsys_unlock(void) 480 1.173 maxv { 481 1.173 maxv rw_exit(&swap_syscall_lock); 482 1.173 maxv } 483 1.1 mrg 484 1.176 christos static void 485 1.176 christos swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse) 486 1.176 christos { 487 1.176 christos se->se_dev = sdp->swd_dev; 488 1.176 christos se->se_flags = sdp->swd_flags; 489 1.176 christos se->se_nblks = sdp->swd_nblks; 490 1.176 christos se->se_inuse = inuse; 491 1.176 christos se->se_priority = sdp->swd_priority; 492 1.176 christos KASSERT(sdp->swd_pathlen < sizeof(se->se_path)); 493 1.176 christos strcpy(se->se_path, sdp->swd_path); 494 1.176 christos } 495 1.176 christos 496 1.180 kre int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) = 497 1.177 christos (void *)enosys; 498 1.177 christos int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) = 499 1.177 christos (void *)enosys; 500 1.176 christos 501 1.1 mrg /* 502 1.1 mrg * sys_swapctl: main entry point for swapctl(2) system call 503 1.1 mrg * [with two helper functions: swap_on and swap_off] 504 1.1 mrg */ 505 1.1 mrg int 506 1.133 dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval) 507 1.1 mrg { 508 1.133 dsl /* { 509 1.1 mrg syscallarg(int) cmd; 510 1.1 mrg syscallarg(void *) arg; 511 1.1 mrg syscallarg(int) misc; 512 1.133 dsl } */ 513 1.1 mrg struct vnode *vp; 514 1.1 mrg struct nameidata nd; 515 1.1 mrg struct swappri *spp; 516 1.1 mrg struct swapdev *sdp; 517 1.101 christos #define SWAP_PATH_MAX (PATH_MAX + 1) 518 1.101 christos char *userpath; 519 1.161 rmind size_t len = 0; 520 1.176 christos int error; 521 1.1 mrg int priority; 522 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); 523 1.1 mrg 524 1.1 mrg /* 525 1.1 mrg * we handle the non-priv NSWAP and STATS request first. 526 1.1 mrg * 527 1.51 chs * SWAP_NSWAP: return number of config'd swap devices 528 1.1 mrg * [can also be obtained with uvmexp sysctl] 529 1.1 mrg */ 530 1.1 mrg if (SCARG(uap, cmd) == SWAP_NSWAP) { 531 1.161 rmind const int nswapdev = uvmexp.nswapdev; 532 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev, 533 1.175 pgoyette 0, 0, 0); 534 1.161 rmind *retval = nswapdev; 535 1.161 rmind return 0; 536 1.1 mrg } 537 1.1 mrg 538 1.161 rmind userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP); 539 1.161 rmind 540 1.161 rmind /* 541 1.161 rmind * ensure serialized syscall access by grabbing the swap_syscall_lock 542 1.161 rmind */ 543 1.161 rmind rw_enter(&swap_syscall_lock, RW_WRITER); 544 1.161 rmind 545 1.1 mrg /* 546 1.1 mrg * SWAP_STATS: get stats on current # of configured swap devs 547 1.1 mrg * 548 1.51 chs * note that the swap_priority list can't change as long 549 1.1 mrg * as we are holding the swap_syscall_lock. we don't want 550 1.127 ad * to grab the uvm_swap_data_lock because we may fault&sleep during 551 1.1 mrg * copyout() and we don't want to be holding that lock then! 552 1.1 mrg */ 553 1.176 christos switch (SCARG(uap, cmd)) { 554 1.177 christos case SWAP_STATS13: 555 1.177 christos error = (*uvm_swap_stats13)(uap, retval); 556 1.177 christos goto out; 557 1.177 christos case SWAP_STATS50: 558 1.177 christos error = (*uvm_swap_stats50)(uap, retval); 559 1.177 christos goto out; 560 1.176 christos case SWAP_STATS: 561 1.176 christos error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc), 562 1.177 christos NULL, sizeof(struct swapent), retval); 563 1.16 mrg UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0); 564 1.16 mrg goto out; 565 1.196 skrll 566 1.176 christos case SWAP_GETDUMPDEV: 567 1.176 christos error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev)); 568 1.55 chs goto out; 569 1.176 christos default: 570 1.176 christos break; 571 1.55 chs } 572 1.1 mrg 573 1.1 mrg /* 574 1.1 mrg * all other requests require superuser privs. verify. 575 1.1 mrg */ 576 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL, 577 1.106 elad 0, NULL, NULL, NULL))) 578 1.16 mrg goto out; 579 1.1 mrg 580 1.104 martin if (SCARG(uap, cmd) == SWAP_DUMPOFF) { 581 1.104 martin /* drop the current dump device */ 582 1.104 martin dumpdev = NODEV; 583 1.138 kardel dumpcdev = NODEV; 584 1.104 martin cpu_dumpconf(); 585 1.104 martin goto out; 586 1.104 martin } 587 1.104 martin 588 1.1 mrg /* 589 1.1 mrg * at this point we expect a path name in arg. we will 590 1.1 mrg * use namei() to gain a vnode reference (vref), and lock 591 1.1 mrg * the vnode (VOP_LOCK). 592 1.1 mrg * 593 1.1 mrg * XXX: a NULL arg means use the root vnode pointer (e.g. for 594 1.16 mrg * miniroot) 595 1.1 mrg */ 596 1.1 mrg if (SCARG(uap, arg) == NULL) { 597 1.1 mrg vp = rootvp; /* miniroot */ 598 1.152 hannken vref(vp); 599 1.152 hannken if (vn_lock(vp, LK_EXCLUSIVE)) { 600 1.152 hannken vrele(vp); 601 1.16 mrg error = EBUSY; 602 1.16 mrg goto out; 603 1.1 mrg } 604 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON && 605 1.101 christos copystr("miniroot", userpath, SWAP_PATH_MAX, &len)) 606 1.16 mrg panic("swapctl: miniroot copy failed"); 607 1.1 mrg } else { 608 1.153 dholland struct pathbuf *pb; 609 1.16 mrg 610 1.153 dholland /* 611 1.153 dholland * This used to allow copying in one extra byte 612 1.153 dholland * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON. 613 1.153 dholland * This was completely pointless because if anyone 614 1.153 dholland * used that extra byte namei would fail with 615 1.153 dholland * ENAMETOOLONG anyway, so I've removed the excess 616 1.153 dholland * logic. - dholland 20100215 617 1.153 dholland */ 618 1.153 dholland 619 1.153 dholland error = pathbuf_copyin(SCARG(uap, arg), &pb); 620 1.153 dholland if (error) { 621 1.153 dholland goto out; 622 1.153 dholland } 623 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON) { 624 1.153 dholland /* get a copy of the string */ 625 1.153 dholland pathbuf_copystring(pb, userpath, SWAP_PATH_MAX); 626 1.153 dholland len = strlen(userpath) + 1; 627 1.153 dholland } 628 1.153 dholland NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 629 1.153 dholland if ((error = namei(&nd))) { 630 1.153 dholland pathbuf_destroy(pb); 631 1.153 dholland goto out; 632 1.1 mrg } 633 1.1 mrg vp = nd.ni_vp; 634 1.153 dholland pathbuf_destroy(pb); 635 1.1 mrg } 636 1.1 mrg /* note: "vp" is referenced and locked */ 637 1.1 mrg 638 1.1 mrg error = 0; /* assume no error */ 639 1.1 mrg switch(SCARG(uap, cmd)) { 640 1.40 mrg 641 1.24 mrg case SWAP_DUMPDEV: 642 1.24 mrg if (vp->v_type != VBLK) { 643 1.24 mrg error = ENOTBLK; 644 1.45 pk break; 645 1.24 mrg } 646 1.138 kardel if (bdevsw_lookup(vp->v_rdev)) { 647 1.109 mrg dumpdev = vp->v_rdev; 648 1.138 kardel dumpcdev = devsw_blk2chr(dumpdev); 649 1.138 kardel } else 650 1.109 mrg dumpdev = NODEV; 651 1.68 drochner cpu_dumpconf(); 652 1.24 mrg break; 653 1.24 mrg 654 1.1 mrg case SWAP_CTL: 655 1.1 mrg /* 656 1.1 mrg * get new priority, remove old entry (if any) and then 657 1.1 mrg * reinsert it in the correct place. finally, prune out 658 1.1 mrg * any empty priority structures. 659 1.1 mrg */ 660 1.1 mrg priority = SCARG(uap, misc); 661 1.159 para spp = kmem_alloc(sizeof(*spp), KM_SLEEP); 662 1.127 ad mutex_enter(&uvm_swap_data_lock); 663 1.120 matt if ((sdp = swaplist_find(vp, true)) == NULL) { 664 1.1 mrg error = ENOENT; 665 1.1 mrg } else { 666 1.1 mrg swaplist_insert(sdp, spp, priority); 667 1.1 mrg swaplist_trim(); 668 1.1 mrg } 669 1.127 ad mutex_exit(&uvm_swap_data_lock); 670 1.1 mrg if (error) 671 1.159 para kmem_free(spp, sizeof(*spp)); 672 1.1 mrg break; 673 1.1 mrg 674 1.1 mrg case SWAP_ON: 675 1.32 chs 676 1.1 mrg /* 677 1.1 mrg * check for duplicates. if none found, then insert a 678 1.1 mrg * dummy entry on the list to prevent someone else from 679 1.1 mrg * trying to enable this device while we are working on 680 1.1 mrg * it. 681 1.1 mrg */ 682 1.32 chs 683 1.1 mrg priority = SCARG(uap, misc); 684 1.160 rmind sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP); 685 1.159 para spp = kmem_alloc(sizeof(*spp), KM_SLEEP); 686 1.67 chs sdp->swd_flags = SWF_FAKE; 687 1.67 chs sdp->swd_vp = vp; 688 1.67 chs sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV; 689 1.96 yamt bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK); 690 1.127 ad mutex_enter(&uvm_swap_data_lock); 691 1.120 matt if (swaplist_find(vp, false) != NULL) { 692 1.1 mrg error = EBUSY; 693 1.127 ad mutex_exit(&uvm_swap_data_lock); 694 1.96 yamt bufq_free(sdp->swd_tab); 695 1.159 para kmem_free(sdp, sizeof(*sdp)); 696 1.159 para kmem_free(spp, sizeof(*spp)); 697 1.16 mrg break; 698 1.1 mrg } 699 1.1 mrg swaplist_insert(sdp, spp, priority); 700 1.127 ad mutex_exit(&uvm_swap_data_lock); 701 1.1 mrg 702 1.161 rmind KASSERT(len > 0); 703 1.16 mrg sdp->swd_pathlen = len; 704 1.161 rmind sdp->swd_path = kmem_alloc(len, KM_SLEEP); 705 1.161 rmind if (copystr(userpath, sdp->swd_path, len, 0) != 0) 706 1.19 pk panic("swapctl: copystr"); 707 1.32 chs 708 1.1 mrg /* 709 1.1 mrg * we've now got a FAKE placeholder in the swap list. 710 1.1 mrg * now attempt to enable swap on it. if we fail, undo 711 1.1 mrg * what we've done and kill the fake entry we just inserted. 712 1.1 mrg * if swap_on is a success, it will clear the SWF_FAKE flag 713 1.1 mrg */ 714 1.32 chs 715 1.97 christos if ((error = swap_on(l, sdp)) != 0) { 716 1.127 ad mutex_enter(&uvm_swap_data_lock); 717 1.120 matt (void) swaplist_find(vp, true); /* kill fake entry */ 718 1.1 mrg swaplist_trim(); 719 1.127 ad mutex_exit(&uvm_swap_data_lock); 720 1.96 yamt bufq_free(sdp->swd_tab); 721 1.159 para kmem_free(sdp->swd_path, sdp->swd_pathlen); 722 1.159 para kmem_free(sdp, sizeof(*sdp)); 723 1.1 mrg break; 724 1.1 mrg } 725 1.1 mrg break; 726 1.1 mrg 727 1.1 mrg case SWAP_OFF: 728 1.127 ad mutex_enter(&uvm_swap_data_lock); 729 1.120 matt if ((sdp = swaplist_find(vp, false)) == NULL) { 730 1.127 ad mutex_exit(&uvm_swap_data_lock); 731 1.1 mrg error = ENXIO; 732 1.1 mrg break; 733 1.1 mrg } 734 1.32 chs 735 1.1 mrg /* 736 1.1 mrg * If a device isn't in use or enabled, we 737 1.1 mrg * can't stop swapping from it (again). 738 1.1 mrg */ 739 1.1 mrg if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) { 740 1.127 ad mutex_exit(&uvm_swap_data_lock); 741 1.1 mrg error = EBUSY; 742 1.16 mrg break; 743 1.1 mrg } 744 1.1 mrg 745 1.1 mrg /* 746 1.32 chs * do the real work. 747 1.1 mrg */ 748 1.97 christos error = swap_off(l, sdp); 749 1.1 mrg break; 750 1.1 mrg 751 1.1 mrg default: 752 1.1 mrg error = EINVAL; 753 1.1 mrg } 754 1.1 mrg 755 1.1 mrg /* 756 1.39 chs * done! release the ref gained by namei() and unlock. 757 1.1 mrg */ 758 1.1 mrg vput(vp); 759 1.16 mrg out: 760 1.160 rmind rw_exit(&swap_syscall_lock); 761 1.159 para kmem_free(userpath, SWAP_PATH_MAX); 762 1.1 mrg 763 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0); 764 1.1 mrg return (error); 765 1.61 manu } 766 1.61 manu 767 1.85 junyoung /* 768 1.155 rmind * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept 769 1.85 junyoung * away from sys_swapctl() in order to allow COMPAT_* swapctl() 770 1.61 manu * emulation to use it directly without going through sys_swapctl(). 771 1.61 manu * The problem with using sys_swapctl() there is that it involves 772 1.61 manu * copying the swapent array to the stackgap, and this array's size 773 1.85 junyoung * is not known at build time. Hence it would not be possible to 774 1.61 manu * ensure it would fit in the stackgap in any case. 775 1.61 manu */ 776 1.176 christos int 777 1.180 kre uvm_swap_stats(char *ptr, int misc, 778 1.176 christos void (*f)(void *, const struct swapent *), size_t len, 779 1.176 christos register_t *retval) 780 1.61 manu { 781 1.61 manu struct swappri *spp; 782 1.61 manu struct swapdev *sdp; 783 1.176 christos struct swapent sep; 784 1.61 manu int count = 0; 785 1.176 christos int error; 786 1.176 christos 787 1.176 christos KASSERT(len <= sizeof(sep)); 788 1.176 christos if (len == 0) 789 1.176 christos return ENOSYS; 790 1.176 christos 791 1.176 christos if (misc < 0) 792 1.176 christos return EINVAL; 793 1.176 christos 794 1.176 christos if (misc == 0 || uvmexp.nswapdev == 0) 795 1.176 christos return 0; 796 1.176 christos 797 1.176 christos /* Make sure userland cannot exhaust kernel memory */ 798 1.176 christos if ((size_t)misc > (size_t)uvmexp.nswapdev) 799 1.176 christos misc = uvmexp.nswapdev; 800 1.61 manu 801 1.173 maxv KASSERT(rw_lock_held(&swap_syscall_lock)); 802 1.173 maxv 803 1.61 manu LIST_FOREACH(spp, &swap_priority, spi_swappri) { 804 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 805 1.144 mrg int inuse; 806 1.144 mrg 807 1.176 christos if (misc-- <= 0) 808 1.161 rmind break; 809 1.161 rmind 810 1.144 mrg inuse = btodb((uint64_t)sdp->swd_npginuse << 811 1.61 manu PAGE_SHIFT); 812 1.85 junyoung 813 1.178 maxv memset(&sep, 0, sizeof(sep)); 814 1.176 christos swapent_cvt(&sep, sdp, inuse); 815 1.176 christos if (f) 816 1.176 christos (*f)(&sep, &sep); 817 1.176 christos if ((error = copyout(&sep, ptr, len)) != 0) 818 1.176 christos return error; 819 1.176 christos ptr += len; 820 1.61 manu count++; 821 1.61 manu } 822 1.61 manu } 823 1.61 manu *retval = count; 824 1.176 christos return 0; 825 1.1 mrg } 826 1.1 mrg 827 1.1 mrg /* 828 1.1 mrg * swap_on: attempt to enable a swapdev for swapping. note that the 829 1.1 mrg * swapdev is already on the global list, but disabled (marked 830 1.1 mrg * SWF_FAKE). 831 1.1 mrg * 832 1.1 mrg * => we avoid the start of the disk (to protect disk labels) 833 1.1 mrg * => we also avoid the miniroot, if we are swapping to root. 834 1.127 ad * => caller should leave uvm_swap_data_lock unlocked, we may lock it 835 1.1 mrg * if needed. 836 1.1 mrg */ 837 1.1 mrg static int 838 1.97 christos swap_on(struct lwp *l, struct swapdev *sdp) 839 1.1 mrg { 840 1.1 mrg struct vnode *vp; 841 1.1 mrg int error, npages, nblocks, size; 842 1.1 mrg long addr; 843 1.157 dyoung vmem_addr_t result; 844 1.1 mrg struct vattr va; 845 1.1 mrg dev_t dev; 846 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); 847 1.1 mrg 848 1.1 mrg /* 849 1.1 mrg * we want to enable swapping on sdp. the swd_vp contains 850 1.1 mrg * the vnode we want (locked and ref'd), and the swd_dev 851 1.1 mrg * contains the dev_t of the file, if it a block device. 852 1.1 mrg */ 853 1.1 mrg 854 1.1 mrg vp = sdp->swd_vp; 855 1.1 mrg dev = sdp->swd_dev; 856 1.1 mrg 857 1.1 mrg /* 858 1.1 mrg * open the swap file (mostly useful for block device files to 859 1.1 mrg * let device driver know what is up). 860 1.1 mrg * 861 1.1 mrg * we skip the open/close for root on swap because the root 862 1.1 mrg * has already been opened when root was mounted (mountroot). 863 1.1 mrg */ 864 1.1 mrg if (vp != rootvp) { 865 1.131 pooka if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred))) 866 1.1 mrg return (error); 867 1.1 mrg } 868 1.1 mrg 869 1.1 mrg /* XXX this only works for block devices */ 870 1.175 pgoyette UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0); 871 1.1 mrg 872 1.1 mrg /* 873 1.1 mrg * we now need to determine the size of the swap area. for 874 1.1 mrg * block specials we can call the d_psize function. 875 1.1 mrg * for normal files, we must stat [get attrs]. 876 1.1 mrg * 877 1.1 mrg * we put the result in nblks. 878 1.1 mrg * for normal files, we also want the filesystem block size 879 1.1 mrg * (which we get with statfs). 880 1.1 mrg */ 881 1.1 mrg switch (vp->v_type) { 882 1.1 mrg case VBLK: 883 1.158 mrg if ((nblocks = bdev_size(dev)) == -1) { 884 1.1 mrg error = ENXIO; 885 1.1 mrg goto bad; 886 1.1 mrg } 887 1.1 mrg break; 888 1.1 mrg 889 1.1 mrg case VREG: 890 1.131 pooka if ((error = VOP_GETATTR(vp, &va, l->l_cred))) 891 1.1 mrg goto bad; 892 1.1 mrg nblocks = (int)btodb(va.va_size); 893 1.149 mlelstv sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift; 894 1.1 mrg /* 895 1.1 mrg * limit the max # of outstanding I/O requests we issue 896 1.1 mrg * at any one time. take it easy on NFS servers. 897 1.1 mrg */ 898 1.150 pooka if (vp->v_tag == VT_NFS) 899 1.1 mrg sdp->swd_maxactive = 2; /* XXX */ 900 1.1 mrg else 901 1.1 mrg sdp->swd_maxactive = 8; /* XXX */ 902 1.1 mrg break; 903 1.1 mrg 904 1.1 mrg default: 905 1.1 mrg error = ENXIO; 906 1.1 mrg goto bad; 907 1.1 mrg } 908 1.1 mrg 909 1.1 mrg /* 910 1.1 mrg * save nblocks in a safe place and convert to pages. 911 1.1 mrg */ 912 1.1 mrg 913 1.144 mrg sdp->swd_nblks = nblocks; 914 1.99 matt npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT; 915 1.1 mrg 916 1.1 mrg /* 917 1.1 mrg * for block special files, we want to make sure that leave 918 1.1 mrg * the disklabel and bootblocks alone, so we arrange to skip 919 1.32 chs * over them (arbitrarily choosing to skip PAGE_SIZE bytes). 920 1.1 mrg * note that because of this the "size" can be less than the 921 1.1 mrg * actual number of blocks on the device. 922 1.1 mrg */ 923 1.1 mrg if (vp->v_type == VBLK) { 924 1.1 mrg /* we use pages 1 to (size - 1) [inclusive] */ 925 1.1 mrg size = npages - 1; 926 1.1 mrg addr = 1; 927 1.1 mrg } else { 928 1.1 mrg /* we use pages 0 to (size - 1) [inclusive] */ 929 1.1 mrg size = npages; 930 1.1 mrg addr = 0; 931 1.1 mrg } 932 1.1 mrg 933 1.1 mrg /* 934 1.1 mrg * make sure we have enough blocks for a reasonable sized swap 935 1.1 mrg * area. we want at least one page. 936 1.1 mrg */ 937 1.1 mrg 938 1.1 mrg if (size < 1) { 939 1.1 mrg UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0); 940 1.1 mrg error = EINVAL; 941 1.1 mrg goto bad; 942 1.1 mrg } 943 1.1 mrg 944 1.203 skrll UVMHIST_LOG(pdhist, " dev=%#jx: size=%jd addr=%jd", dev, size, addr, 0); 945 1.1 mrg 946 1.1 mrg /* 947 1.1 mrg * now we need to allocate an extent to manage this swap device 948 1.1 mrg */ 949 1.1 mrg 950 1.90 yamt sdp->swd_blist = blist_create(npages); 951 1.90 yamt /* mark all expect the `saved' region free. */ 952 1.90 yamt blist_free(sdp->swd_blist, addr, size); 953 1.1 mrg 954 1.1 mrg /* 955 1.187 riastrad * allocate space to for swap encryption state and mark the 956 1.187 riastrad * keys uninitialized so we generate them lazily 957 1.187 riastrad */ 958 1.190 riastrad sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP); 959 1.187 riastrad sdp->swd_encinit = false; 960 1.187 riastrad 961 1.187 riastrad /* 962 1.51 chs * if the vnode we are swapping to is the root vnode 963 1.1 mrg * (i.e. we are swapping to the miniroot) then we want 964 1.51 chs * to make sure we don't overwrite it. do a statfs to 965 1.1 mrg * find its size and skip over it. 966 1.1 mrg */ 967 1.1 mrg if (vp == rootvp) { 968 1.1 mrg struct mount *mp; 969 1.86 christos struct statvfs *sp; 970 1.1 mrg int rootblocks, rootpages; 971 1.1 mrg 972 1.1 mrg mp = rootvnode->v_mount; 973 1.1 mrg sp = &mp->mnt_stat; 974 1.86 christos rootblocks = sp->f_blocks * btodb(sp->f_frsize); 975 1.64 fredette /* 976 1.64 fredette * XXX: sp->f_blocks isn't the total number of 977 1.64 fredette * blocks in the filesystem, it's the number of 978 1.64 fredette * data blocks. so, our rootblocks almost 979 1.85 junyoung * definitely underestimates the total size 980 1.64 fredette * of the filesystem - how badly depends on the 981 1.85 junyoung * details of the filesystem type. there isn't 982 1.64 fredette * an obvious way to deal with this cleanly 983 1.85 junyoung * and perfectly, so for now we just pad our 984 1.64 fredette * rootblocks estimate with an extra 5 percent. 985 1.64 fredette */ 986 1.64 fredette rootblocks += (rootblocks >> 5) + 987 1.64 fredette (rootblocks >> 6) + 988 1.64 fredette (rootblocks >> 7); 989 1.20 chs rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT; 990 1.32 chs if (rootpages > size) 991 1.1 mrg panic("swap_on: miniroot larger than swap?"); 992 1.1 mrg 993 1.90 yamt if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) { 994 1.1 mrg panic("swap_on: unable to preserve miniroot"); 995 1.90 yamt } 996 1.1 mrg 997 1.32 chs size -= rootpages; 998 1.1 mrg printf("Preserved %d pages of miniroot ", rootpages); 999 1.32 chs printf("leaving %d pages of swap\n", size); 1000 1.1 mrg } 1001 1.1 mrg 1002 1.39 chs /* 1003 1.39 chs * add a ref to vp to reflect usage as a swap device. 1004 1.39 chs */ 1005 1.39 chs vref(vp); 1006 1.39 chs 1007 1.1 mrg /* 1008 1.1 mrg * now add the new swapdev to the drum and enable. 1009 1.1 mrg */ 1010 1.157 dyoung error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result); 1011 1.157 dyoung if (error != 0) 1012 1.48 fvdl panic("swapdrum_add"); 1013 1.130 hannken /* 1014 1.130 hannken * If this is the first regular swap create the workqueue. 1015 1.130 hannken * => Protected by swap_syscall_lock. 1016 1.130 hannken */ 1017 1.130 hannken if (vp->v_type != VBLK) { 1018 1.130 hannken if (sw_reg_count++ == 0) { 1019 1.130 hannken KASSERT(sw_reg_workqueue == NULL); 1020 1.130 hannken if (workqueue_create(&sw_reg_workqueue, "swapiod", 1021 1.130 hannken sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0) 1022 1.145 mrg panic("%s: workqueue_create failed", __func__); 1023 1.130 hannken } 1024 1.130 hannken } 1025 1.48 fvdl 1026 1.48 fvdl sdp->swd_drumoffset = (int)result; 1027 1.48 fvdl sdp->swd_drumsize = npages; 1028 1.48 fvdl sdp->swd_npages = size; 1029 1.127 ad mutex_enter(&uvm_swap_data_lock); 1030 1.1 mrg sdp->swd_flags &= ~SWF_FAKE; /* going live */ 1031 1.1 mrg sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE); 1032 1.32 chs uvmexp.swpages += size; 1033 1.81 pk uvmexp.swpgavail += size; 1034 1.127 ad mutex_exit(&uvm_swap_data_lock); 1035 1.1 mrg return (0); 1036 1.1 mrg 1037 1.1 mrg /* 1038 1.43 chs * failure: clean up and return error. 1039 1.1 mrg */ 1040 1.43 chs 1041 1.43 chs bad: 1042 1.90 yamt if (sdp->swd_blist) { 1043 1.90 yamt blist_destroy(sdp->swd_blist); 1044 1.43 chs } 1045 1.43 chs if (vp != rootvp) { 1046 1.131 pooka (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred); 1047 1.43 chs } 1048 1.1 mrg return (error); 1049 1.1 mrg } 1050 1.1 mrg 1051 1.1 mrg /* 1052 1.1 mrg * swap_off: stop swapping on swapdev 1053 1.1 mrg * 1054 1.32 chs * => swap data should be locked, we will unlock. 1055 1.1 mrg */ 1056 1.1 mrg static int 1057 1.97 christos swap_off(struct lwp *l, struct swapdev *sdp) 1058 1.1 mrg { 1059 1.91 yamt int npages = sdp->swd_npages; 1060 1.91 yamt int error = 0; 1061 1.81 pk 1062 1.197 skrll UVMHIST_FUNC(__func__); 1063 1.203 skrll UVMHIST_CALLARGS(pdhist, " dev=%#jx, npages=%jd", sdp->swd_dev,npages, 0, 0); 1064 1.1 mrg 1065 1.190 riastrad KASSERT(rw_write_held(&swap_syscall_lock)); 1066 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock)); 1067 1.190 riastrad 1068 1.32 chs /* disable the swap area being removed */ 1069 1.1 mrg sdp->swd_flags &= ~SWF_ENABLE; 1070 1.81 pk uvmexp.swpgavail -= npages; 1071 1.127 ad mutex_exit(&uvm_swap_data_lock); 1072 1.32 chs 1073 1.32 chs /* 1074 1.32 chs * the idea is to find all the pages that are paged out to this 1075 1.32 chs * device, and page them all in. in uvm, swap-backed pageable 1076 1.32 chs * memory can take two forms: aobjs and anons. call the 1077 1.32 chs * swapoff hook for each subsystem to bring in pages. 1078 1.32 chs */ 1079 1.1 mrg 1080 1.32 chs if (uao_swap_off(sdp->swd_drumoffset, 1081 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize) || 1082 1.91 yamt amap_swap_off(sdp->swd_drumoffset, 1083 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize)) { 1084 1.91 yamt error = ENOMEM; 1085 1.91 yamt } else if (sdp->swd_npginuse > sdp->swd_npgbad) { 1086 1.91 yamt error = EBUSY; 1087 1.91 yamt } 1088 1.51 chs 1089 1.91 yamt if (error) { 1090 1.127 ad mutex_enter(&uvm_swap_data_lock); 1091 1.32 chs sdp->swd_flags |= SWF_ENABLE; 1092 1.81 pk uvmexp.swpgavail += npages; 1093 1.127 ad mutex_exit(&uvm_swap_data_lock); 1094 1.91 yamt 1095 1.91 yamt return error; 1096 1.32 chs } 1097 1.1 mrg 1098 1.1 mrg /* 1099 1.130 hannken * If this is the last regular swap destroy the workqueue. 1100 1.130 hannken * => Protected by swap_syscall_lock. 1101 1.130 hannken */ 1102 1.130 hannken if (sdp->swd_vp->v_type != VBLK) { 1103 1.130 hannken KASSERT(sw_reg_count > 0); 1104 1.130 hannken KASSERT(sw_reg_workqueue != NULL); 1105 1.130 hannken if (--sw_reg_count == 0) { 1106 1.130 hannken workqueue_destroy(sw_reg_workqueue); 1107 1.130 hannken sw_reg_workqueue = NULL; 1108 1.130 hannken } 1109 1.130 hannken } 1110 1.130 hannken 1111 1.130 hannken /* 1112 1.58 enami * done with the vnode. 1113 1.39 chs * drop our ref on the vnode before calling VOP_CLOSE() 1114 1.39 chs * so that spec_close() can tell if this is the last close. 1115 1.1 mrg */ 1116 1.39 chs vrele(sdp->swd_vp); 1117 1.32 chs if (sdp->swd_vp != rootvp) { 1118 1.131 pooka (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred); 1119 1.32 chs } 1120 1.32 chs 1121 1.127 ad mutex_enter(&uvm_swap_data_lock); 1122 1.81 pk uvmexp.swpages -= npages; 1123 1.82 pk uvmexp.swpginuse -= sdp->swd_npgbad; 1124 1.1 mrg 1125 1.120 matt if (swaplist_find(sdp->swd_vp, true) == NULL) 1126 1.145 mrg panic("%s: swapdev not in list", __func__); 1127 1.32 chs swaplist_trim(); 1128 1.127 ad mutex_exit(&uvm_swap_data_lock); 1129 1.1 mrg 1130 1.32 chs /* 1131 1.32 chs * free all resources! 1132 1.32 chs */ 1133 1.110 yamt vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize); 1134 1.90 yamt blist_destroy(sdp->swd_blist); 1135 1.96 yamt bufq_free(sdp->swd_tab); 1136 1.190 riastrad kmem_free(__UNVOLATILE(sdp->swd_encmap), 1137 1.190 riastrad encmap_size(sdp->swd_drumsize)); 1138 1.187 riastrad explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey); 1139 1.187 riastrad explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey); 1140 1.159 para kmem_free(sdp, sizeof(*sdp)); 1141 1.1 mrg return (0); 1142 1.1 mrg } 1143 1.1 mrg 1144 1.164 christos void 1145 1.164 christos uvm_swap_shutdown(struct lwp *l) 1146 1.164 christos { 1147 1.164 christos struct swapdev *sdp; 1148 1.164 christos struct swappri *spp; 1149 1.164 christos struct vnode *vp; 1150 1.164 christos int error; 1151 1.164 christos 1152 1.206 hannken if (!uvm_swap_init_done || uvmexp.nswapdev == 0) 1153 1.204 mrg return; 1154 1.182 ad printf("turning off swap..."); 1155 1.164 christos rw_enter(&swap_syscall_lock, RW_WRITER); 1156 1.164 christos mutex_enter(&uvm_swap_data_lock); 1157 1.164 christos again: 1158 1.164 christos LIST_FOREACH(spp, &swap_priority, spi_swappri) 1159 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 1160 1.164 christos if (sdp->swd_flags & SWF_FAKE) 1161 1.164 christos continue; 1162 1.164 christos if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) 1163 1.164 christos continue; 1164 1.164 christos #ifdef DEBUG 1165 1.201 hannken printf("\nturning off swap on %s...", sdp->swd_path); 1166 1.164 christos #endif 1167 1.201 hannken /* Have to lock and reference vnode for swap_off(). */ 1168 1.202 hannken vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE|LK_RETRY); 1169 1.202 hannken vref(vp); 1170 1.202 hannken error = swap_off(l, sdp); 1171 1.202 hannken vput(vp); 1172 1.202 hannken mutex_enter(&uvm_swap_data_lock); 1173 1.164 christos if (error) { 1174 1.164 christos printf("stopping swap on %s failed " 1175 1.164 christos "with error %d\n", sdp->swd_path, error); 1176 1.201 hannken TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); 1177 1.164 christos uvmexp.nswapdev--; 1178 1.164 christos swaplist_trim(); 1179 1.164 christos } 1180 1.164 christos goto again; 1181 1.164 christos } 1182 1.164 christos printf(" done\n"); 1183 1.164 christos mutex_exit(&uvm_swap_data_lock); 1184 1.164 christos rw_exit(&swap_syscall_lock); 1185 1.164 christos } 1186 1.164 christos 1187 1.164 christos 1188 1.1 mrg /* 1189 1.1 mrg * /dev/drum interface and i/o functions 1190 1.1 mrg */ 1191 1.1 mrg 1192 1.1 mrg /* 1193 1.207 chs * swopen: allow the initial open from uvm_swap_init() and reject all others. 1194 1.207 chs */ 1195 1.207 chs 1196 1.207 chs static int 1197 1.207 chs swopen(dev_t dev, int flag, int mode, struct lwp *l) 1198 1.207 chs { 1199 1.207 chs static bool inited = false; 1200 1.207 chs 1201 1.207 chs if (!inited) { 1202 1.207 chs inited = true; 1203 1.207 chs return 0; 1204 1.207 chs } 1205 1.207 chs return ENODEV; 1206 1.207 chs } 1207 1.207 chs 1208 1.207 chs /* 1209 1.1 mrg * swstrategy: perform I/O on the drum 1210 1.1 mrg * 1211 1.1 mrg * => we must map the i/o request from the drum to the correct swapdev. 1212 1.1 mrg */ 1213 1.94 thorpej static void 1214 1.93 thorpej swstrategy(struct buf *bp) 1215 1.1 mrg { 1216 1.1 mrg struct swapdev *sdp; 1217 1.1 mrg struct vnode *vp; 1218 1.134 ad int pageno, bn; 1219 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); 1220 1.1 mrg 1221 1.1 mrg /* 1222 1.1 mrg * convert block number to swapdev. note that swapdev can't 1223 1.1 mrg * be yanked out from under us because we are holding resources 1224 1.1 mrg * in it (i.e. the blocks we are doing I/O on). 1225 1.1 mrg */ 1226 1.41 chs pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT; 1227 1.127 ad mutex_enter(&uvm_swap_data_lock); 1228 1.1 mrg sdp = swapdrum_getsdp(pageno); 1229 1.127 ad mutex_exit(&uvm_swap_data_lock); 1230 1.1 mrg if (sdp == NULL) { 1231 1.1 mrg bp->b_error = EINVAL; 1232 1.163 riastrad bp->b_resid = bp->b_bcount; 1233 1.1 mrg biodone(bp); 1234 1.1 mrg UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0); 1235 1.1 mrg return; 1236 1.1 mrg } 1237 1.1 mrg 1238 1.1 mrg /* 1239 1.1 mrg * convert drum page number to block number on this swapdev. 1240 1.1 mrg */ 1241 1.1 mrg 1242 1.32 chs pageno -= sdp->swd_drumoffset; /* page # on swapdev */ 1243 1.99 matt bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */ 1244 1.1 mrg 1245 1.203 skrll UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%#jx bn=%#jx bcount=%jd", 1246 1.175 pgoyette ((bp->b_flags & B_READ) == 0) ? 1 : 0, 1247 1.1 mrg sdp->swd_drumoffset, bn, bp->b_bcount); 1248 1.1 mrg 1249 1.1 mrg /* 1250 1.1 mrg * for block devices we finish up here. 1251 1.32 chs * for regular files we have to do more work which we delegate 1252 1.1 mrg * to sw_reg_strategy(). 1253 1.1 mrg */ 1254 1.1 mrg 1255 1.134 ad vp = sdp->swd_vp; /* swapdev vnode pointer */ 1256 1.134 ad switch (vp->v_type) { 1257 1.1 mrg default: 1258 1.145 mrg panic("%s: vnode type 0x%x", __func__, vp->v_type); 1259 1.32 chs 1260 1.1 mrg case VBLK: 1261 1.1 mrg 1262 1.1 mrg /* 1263 1.1 mrg * must convert "bp" from an I/O on /dev/drum to an I/O 1264 1.1 mrg * on the swapdev (sdp). 1265 1.1 mrg */ 1266 1.1 mrg bp->b_blkno = bn; /* swapdev block number */ 1267 1.1 mrg bp->b_dev = sdp->swd_dev; /* swapdev dev_t */ 1268 1.1 mrg 1269 1.1 mrg /* 1270 1.1 mrg * if we are doing a write, we have to redirect the i/o on 1271 1.1 mrg * drum's v_numoutput counter to the swapdevs. 1272 1.1 mrg */ 1273 1.1 mrg if ((bp->b_flags & B_READ) == 0) { 1274 1.134 ad mutex_enter(bp->b_objlock); 1275 1.1 mrg vwakeup(bp); /* kills one 'v_numoutput' on drum */ 1276 1.134 ad mutex_exit(bp->b_objlock); 1277 1.156 rmind mutex_enter(vp->v_interlock); 1278 1.134 ad vp->v_numoutput++; /* put it on swapdev */ 1279 1.156 rmind mutex_exit(vp->v_interlock); 1280 1.1 mrg } 1281 1.1 mrg 1282 1.41 chs /* 1283 1.1 mrg * finally plug in swapdev vnode and start I/O 1284 1.1 mrg */ 1285 1.1 mrg bp->b_vp = vp; 1286 1.156 rmind bp->b_objlock = vp->v_interlock; 1287 1.84 hannken VOP_STRATEGY(vp, bp); 1288 1.1 mrg return; 1289 1.32 chs 1290 1.1 mrg case VREG: 1291 1.1 mrg /* 1292 1.32 chs * delegate to sw_reg_strategy function. 1293 1.1 mrg */ 1294 1.1 mrg sw_reg_strategy(sdp, bp, bn); 1295 1.1 mrg return; 1296 1.1 mrg } 1297 1.1 mrg /* NOTREACHED */ 1298 1.1 mrg } 1299 1.1 mrg 1300 1.1 mrg /* 1301 1.94 thorpej * swread: the read function for the drum (just a call to physio) 1302 1.94 thorpej */ 1303 1.94 thorpej /*ARGSUSED*/ 1304 1.94 thorpej static int 1305 1.112 yamt swread(dev_t dev, struct uio *uio, int ioflag) 1306 1.94 thorpej { 1307 1.197 skrll UVMHIST_FUNC(__func__); 1308 1.203 skrll UVMHIST_CALLARGS(pdhist, " dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0); 1309 1.94 thorpej 1310 1.94 thorpej return (physio(swstrategy, NULL, dev, B_READ, minphys, uio)); 1311 1.94 thorpej } 1312 1.94 thorpej 1313 1.94 thorpej /* 1314 1.94 thorpej * swwrite: the write function for the drum (just a call to physio) 1315 1.94 thorpej */ 1316 1.94 thorpej /*ARGSUSED*/ 1317 1.94 thorpej static int 1318 1.112 yamt swwrite(dev_t dev, struct uio *uio, int ioflag) 1319 1.94 thorpej { 1320 1.197 skrll UVMHIST_FUNC(__func__); 1321 1.203 skrll UVMHIST_CALLARGS(pdhist, " dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0); 1322 1.94 thorpej 1323 1.94 thorpej return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio)); 1324 1.94 thorpej } 1325 1.94 thorpej 1326 1.94 thorpej const struct bdevsw swap_bdevsw = { 1327 1.207 chs .d_open = swopen, 1328 1.207 chs .d_close = noclose, 1329 1.168 dholland .d_strategy = swstrategy, 1330 1.168 dholland .d_ioctl = noioctl, 1331 1.168 dholland .d_dump = nodump, 1332 1.168 dholland .d_psize = nosize, 1333 1.171 dholland .d_discard = nodiscard, 1334 1.168 dholland .d_flag = D_OTHER 1335 1.94 thorpej }; 1336 1.94 thorpej 1337 1.94 thorpej const struct cdevsw swap_cdevsw = { 1338 1.168 dholland .d_open = nullopen, 1339 1.168 dholland .d_close = nullclose, 1340 1.168 dholland .d_read = swread, 1341 1.168 dholland .d_write = swwrite, 1342 1.168 dholland .d_ioctl = noioctl, 1343 1.168 dholland .d_stop = nostop, 1344 1.168 dholland .d_tty = notty, 1345 1.168 dholland .d_poll = nopoll, 1346 1.168 dholland .d_mmap = nommap, 1347 1.168 dholland .d_kqfilter = nokqfilter, 1348 1.172 dholland .d_discard = nodiscard, 1349 1.168 dholland .d_flag = D_OTHER, 1350 1.94 thorpej }; 1351 1.94 thorpej 1352 1.94 thorpej /* 1353 1.1 mrg * sw_reg_strategy: handle swap i/o to regular files 1354 1.1 mrg */ 1355 1.1 mrg static void 1356 1.93 thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn) 1357 1.1 mrg { 1358 1.1 mrg struct vnode *vp; 1359 1.1 mrg struct vndxfer *vnx; 1360 1.44 enami daddr_t nbn; 1361 1.122 christos char *addr; 1362 1.44 enami off_t byteoff; 1363 1.9 mrg int s, off, nra, error, sz, resid; 1364 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); 1365 1.1 mrg 1366 1.1 mrg /* 1367 1.1 mrg * allocate a vndxfer head for this transfer and point it to 1368 1.1 mrg * our buffer. 1369 1.1 mrg */ 1370 1.134 ad vnx = pool_get(&vndxfer_pool, PR_WAITOK); 1371 1.1 mrg vnx->vx_flags = VX_BUSY; 1372 1.1 mrg vnx->vx_error = 0; 1373 1.1 mrg vnx->vx_pending = 0; 1374 1.1 mrg vnx->vx_bp = bp; 1375 1.1 mrg vnx->vx_sdp = sdp; 1376 1.1 mrg 1377 1.1 mrg /* 1378 1.1 mrg * setup for main loop where we read filesystem blocks into 1379 1.1 mrg * our buffer. 1380 1.1 mrg */ 1381 1.1 mrg error = 0; 1382 1.185 msaitoh bp->b_resid = bp->b_bcount; /* nothing transferred yet! */ 1383 1.1 mrg addr = bp->b_data; /* current position in buffer */ 1384 1.99 matt byteoff = dbtob((uint64_t)bn); 1385 1.1 mrg 1386 1.1 mrg for (resid = bp->b_resid; resid; resid -= sz) { 1387 1.1 mrg struct vndbuf *nbp; 1388 1.1 mrg 1389 1.1 mrg /* 1390 1.1 mrg * translate byteoffset into block number. return values: 1391 1.1 mrg * vp = vnode of underlying device 1392 1.1 mrg * nbn = new block number (on underlying vnode dev) 1393 1.1 mrg * nra = num blocks we can read-ahead (excludes requested 1394 1.1 mrg * block) 1395 1.1 mrg */ 1396 1.1 mrg nra = 0; 1397 1.1 mrg error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize, 1398 1.1 mrg &vp, &nbn, &nra); 1399 1.1 mrg 1400 1.32 chs if (error == 0 && nbn == (daddr_t)-1) { 1401 1.51 chs /* 1402 1.23 marc * this used to just set error, but that doesn't 1403 1.23 marc * do the right thing. Instead, it causes random 1404 1.23 marc * memory errors. The panic() should remain until 1405 1.23 marc * this condition doesn't destabilize the system. 1406 1.23 marc */ 1407 1.23 marc #if 1 1408 1.145 mrg panic("%s: swap to sparse file", __func__); 1409 1.23 marc #else 1410 1.1 mrg error = EIO; /* failure */ 1411 1.23 marc #endif 1412 1.23 marc } 1413 1.1 mrg 1414 1.1 mrg /* 1415 1.1 mrg * punt if there was an error or a hole in the file. 1416 1.1 mrg * we must wait for any i/o ops we have already started 1417 1.1 mrg * to finish before returning. 1418 1.1 mrg * 1419 1.1 mrg * XXX we could deal with holes here but it would be 1420 1.1 mrg * a hassle (in the write case). 1421 1.1 mrg */ 1422 1.1 mrg if (error) { 1423 1.1 mrg s = splbio(); 1424 1.1 mrg vnx->vx_error = error; /* pass error up */ 1425 1.1 mrg goto out; 1426 1.1 mrg } 1427 1.1 mrg 1428 1.1 mrg /* 1429 1.1 mrg * compute the size ("sz") of this transfer (in bytes). 1430 1.1 mrg */ 1431 1.41 chs off = byteoff % sdp->swd_bsize; 1432 1.41 chs sz = (1 + nra) * sdp->swd_bsize - off; 1433 1.41 chs if (sz > resid) 1434 1.1 mrg sz = resid; 1435 1.1 mrg 1436 1.41 chs UVMHIST_LOG(pdhist, "sw_reg_strategy: " 1437 1.203 skrll "vp %#jx/%#jx offset %#jx/%#jx", 1438 1.175 pgoyette (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn); 1439 1.1 mrg 1440 1.1 mrg /* 1441 1.1 mrg * now get a buf structure. note that the vb_buf is 1442 1.1 mrg * at the front of the nbp structure so that you can 1443 1.1 mrg * cast pointers between the two structure easily. 1444 1.1 mrg */ 1445 1.134 ad nbp = pool_get(&vndbuf_pool, PR_WAITOK); 1446 1.134 ad buf_init(&nbp->vb_buf); 1447 1.134 ad nbp->vb_buf.b_flags = bp->b_flags; 1448 1.134 ad nbp->vb_buf.b_cflags = bp->b_cflags; 1449 1.134 ad nbp->vb_buf.b_oflags = bp->b_oflags; 1450 1.1 mrg nbp->vb_buf.b_bcount = sz; 1451 1.12 pk nbp->vb_buf.b_bufsize = sz; 1452 1.1 mrg nbp->vb_buf.b_error = 0; 1453 1.1 mrg nbp->vb_buf.b_data = addr; 1454 1.41 chs nbp->vb_buf.b_lblkno = 0; 1455 1.1 mrg nbp->vb_buf.b_blkno = nbn + btodb(off); 1456 1.34 thorpej nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno; 1457 1.130 hannken nbp->vb_buf.b_iodone = sw_reg_biodone; 1458 1.53 chs nbp->vb_buf.b_vp = vp; 1459 1.156 rmind nbp->vb_buf.b_objlock = vp->v_interlock; 1460 1.53 chs if (vp->v_type == VBLK) { 1461 1.53 chs nbp->vb_buf.b_dev = vp->v_rdev; 1462 1.53 chs } 1463 1.1 mrg 1464 1.1 mrg nbp->vb_xfer = vnx; /* patch it back in to vnx */ 1465 1.1 mrg 1466 1.1 mrg /* 1467 1.1 mrg * Just sort by block number 1468 1.1 mrg */ 1469 1.1 mrg s = splbio(); 1470 1.1 mrg if (vnx->vx_error != 0) { 1471 1.134 ad buf_destroy(&nbp->vb_buf); 1472 1.134 ad pool_put(&vndbuf_pool, nbp); 1473 1.1 mrg goto out; 1474 1.1 mrg } 1475 1.1 mrg vnx->vx_pending++; 1476 1.1 mrg 1477 1.1 mrg /* sort it in and start I/O if we are not over our limit */ 1478 1.134 ad /* XXXAD locking */ 1479 1.143 yamt bufq_put(sdp->swd_tab, &nbp->vb_buf); 1480 1.1 mrg sw_reg_start(sdp); 1481 1.1 mrg splx(s); 1482 1.1 mrg 1483 1.1 mrg /* 1484 1.1 mrg * advance to the next I/O 1485 1.1 mrg */ 1486 1.9 mrg byteoff += sz; 1487 1.1 mrg addr += sz; 1488 1.1 mrg } 1489 1.1 mrg 1490 1.1 mrg s = splbio(); 1491 1.1 mrg 1492 1.1 mrg out: /* Arrive here at splbio */ 1493 1.1 mrg vnx->vx_flags &= ~VX_BUSY; 1494 1.1 mrg if (vnx->vx_pending == 0) { 1495 1.134 ad error = vnx->vx_error; 1496 1.134 ad pool_put(&vndxfer_pool, vnx); 1497 1.209 mlelstv if (error) { 1498 1.209 mlelstv bp->b_resid = bp->b_bcount; 1499 1.209 mlelstv bp->b_error = error; 1500 1.209 mlelstv } 1501 1.1 mrg biodone(bp); 1502 1.1 mrg } 1503 1.1 mrg splx(s); 1504 1.1 mrg } 1505 1.1 mrg 1506 1.1 mrg /* 1507 1.1 mrg * sw_reg_start: start an I/O request on the requested swapdev 1508 1.1 mrg * 1509 1.65 hannken * => reqs are sorted by b_rawblkno (above) 1510 1.1 mrg */ 1511 1.1 mrg static void 1512 1.93 thorpej sw_reg_start(struct swapdev *sdp) 1513 1.1 mrg { 1514 1.1 mrg struct buf *bp; 1515 1.134 ad struct vnode *vp; 1516 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); 1517 1.1 mrg 1518 1.8 mrg /* recursion control */ 1519 1.1 mrg if ((sdp->swd_flags & SWF_BUSY) != 0) 1520 1.1 mrg return; 1521 1.1 mrg 1522 1.1 mrg sdp->swd_flags |= SWF_BUSY; 1523 1.1 mrg 1524 1.33 thorpej while (sdp->swd_active < sdp->swd_maxactive) { 1525 1.143 yamt bp = bufq_get(sdp->swd_tab); 1526 1.1 mrg if (bp == NULL) 1527 1.1 mrg break; 1528 1.33 thorpej sdp->swd_active++; 1529 1.1 mrg 1530 1.1 mrg UVMHIST_LOG(pdhist, 1531 1.203 skrll "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %#jx", 1532 1.175 pgoyette (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno, 1533 1.175 pgoyette bp->b_bcount); 1534 1.134 ad vp = bp->b_vp; 1535 1.156 rmind KASSERT(bp->b_objlock == vp->v_interlock); 1536 1.134 ad if ((bp->b_flags & B_READ) == 0) { 1537 1.156 rmind mutex_enter(vp->v_interlock); 1538 1.134 ad vp->v_numoutput++; 1539 1.156 rmind mutex_exit(vp->v_interlock); 1540 1.134 ad } 1541 1.134 ad VOP_STRATEGY(vp, bp); 1542 1.1 mrg } 1543 1.1 mrg sdp->swd_flags &= ~SWF_BUSY; 1544 1.1 mrg } 1545 1.1 mrg 1546 1.1 mrg /* 1547 1.130 hannken * sw_reg_biodone: one of our i/o's has completed 1548 1.130 hannken */ 1549 1.130 hannken static void 1550 1.130 hannken sw_reg_biodone(struct buf *bp) 1551 1.130 hannken { 1552 1.130 hannken workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL); 1553 1.130 hannken } 1554 1.130 hannken 1555 1.130 hannken /* 1556 1.1 mrg * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup 1557 1.1 mrg * 1558 1.1 mrg * => note that we can recover the vndbuf struct by casting the buf ptr 1559 1.1 mrg */ 1560 1.1 mrg static void 1561 1.130 hannken sw_reg_iodone(struct work *wk, void *dummy) 1562 1.1 mrg { 1563 1.130 hannken struct vndbuf *vbp = (void *)wk; 1564 1.1 mrg struct vndxfer *vnx = vbp->vb_xfer; 1565 1.1 mrg struct buf *pbp = vnx->vx_bp; /* parent buffer */ 1566 1.1 mrg struct swapdev *sdp = vnx->vx_sdp; 1567 1.72 chs int s, resid, error; 1568 1.130 hannken KASSERT(&vbp->vb_buf.b_work == wk); 1569 1.197 skrll UVMHIST_FUNC(__func__); 1570 1.203 skrll UVMHIST_CALLARGS(pdhist, " vbp=%#jx vp=%#jx blkno=%#jx addr=%#jx", 1571 1.175 pgoyette (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, 1572 1.175 pgoyette (uintptr_t)vbp->vb_buf.b_data); 1573 1.203 skrll UVMHIST_LOG(pdhist, " cnt=%#jx resid=%#jx", 1574 1.1 mrg vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0); 1575 1.1 mrg 1576 1.1 mrg /* 1577 1.1 mrg * protect vbp at splbio and update. 1578 1.1 mrg */ 1579 1.1 mrg 1580 1.1 mrg s = splbio(); 1581 1.1 mrg resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid; 1582 1.1 mrg pbp->b_resid -= resid; 1583 1.1 mrg vnx->vx_pending--; 1584 1.1 mrg 1585 1.129 ad if (vbp->vb_buf.b_error != 0) { 1586 1.1 mrg /* pass error upward */ 1587 1.134 ad error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO; 1588 1.175 pgoyette UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0); 1589 1.72 chs vnx->vx_error = error; 1590 1.35 chs } 1591 1.35 chs 1592 1.35 chs /* 1593 1.1 mrg * kill vbp structure 1594 1.1 mrg */ 1595 1.134 ad buf_destroy(&vbp->vb_buf); 1596 1.134 ad pool_put(&vndbuf_pool, vbp); 1597 1.1 mrg 1598 1.1 mrg /* 1599 1.1 mrg * wrap up this transaction if it has run to completion or, in 1600 1.1 mrg * case of an error, when all auxiliary buffers have returned. 1601 1.1 mrg */ 1602 1.1 mrg if (vnx->vx_error != 0) { 1603 1.1 mrg /* pass error upward */ 1604 1.134 ad error = vnx->vx_error; 1605 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) { 1606 1.134 ad pbp->b_error = error; 1607 1.209 mlelstv pbp->b_resid = pbp->b_bcount; 1608 1.1 mrg biodone(pbp); 1609 1.134 ad pool_put(&vndxfer_pool, vnx); 1610 1.1 mrg } 1611 1.11 pk } else if (pbp->b_resid == 0) { 1612 1.46 chs KASSERT(vnx->vx_pending == 0); 1613 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0) { 1614 1.175 pgoyette UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !", 1615 1.175 pgoyette (uintptr_t)pbp, vnx->vx_error, 0, 0); 1616 1.1 mrg biodone(pbp); 1617 1.134 ad pool_put(&vndxfer_pool, vnx); 1618 1.1 mrg } 1619 1.1 mrg } 1620 1.1 mrg 1621 1.1 mrg /* 1622 1.1 mrg * done! start next swapdev I/O if one is pending 1623 1.1 mrg */ 1624 1.33 thorpej sdp->swd_active--; 1625 1.1 mrg sw_reg_start(sdp); 1626 1.1 mrg splx(s); 1627 1.1 mrg } 1628 1.1 mrg 1629 1.1 mrg 1630 1.1 mrg /* 1631 1.1 mrg * uvm_swap_alloc: allocate space on swap 1632 1.1 mrg * 1633 1.1 mrg * => allocation is done "round robin" down the priority list, as we 1634 1.1 mrg * allocate in a priority we "rotate" the circle queue. 1635 1.1 mrg * => space can be freed with uvm_swap_free 1636 1.1 mrg * => we return the page slot number in /dev/drum (0 == invalid slot) 1637 1.127 ad * => we lock uvm_swap_data_lock 1638 1.1 mrg * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM 1639 1.1 mrg */ 1640 1.1 mrg int 1641 1.119 thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok) 1642 1.1 mrg { 1643 1.1 mrg struct swapdev *sdp; 1644 1.1 mrg struct swappri *spp; 1645 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); 1646 1.1 mrg 1647 1.1 mrg /* 1648 1.1 mrg * no swap devices configured yet? definite failure. 1649 1.1 mrg */ 1650 1.1 mrg if (uvmexp.nswapdev < 1) 1651 1.1 mrg return 0; 1652 1.51 chs 1653 1.1 mrg /* 1654 1.162 jakllsch * XXXJAK: BEGIN HACK 1655 1.162 jakllsch * 1656 1.162 jakllsch * blist_alloc() in subr_blist.c will panic if we try to allocate 1657 1.162 jakllsch * too many slots. 1658 1.162 jakllsch */ 1659 1.162 jakllsch if (*nslots > BLIST_MAX_ALLOC) { 1660 1.162 jakllsch if (__predict_false(lessok == false)) 1661 1.162 jakllsch return 0; 1662 1.162 jakllsch *nslots = BLIST_MAX_ALLOC; 1663 1.162 jakllsch } 1664 1.162 jakllsch /* XXXJAK: END HACK */ 1665 1.162 jakllsch 1666 1.162 jakllsch /* 1667 1.1 mrg * lock data lock, convert slots into blocks, and enter loop 1668 1.1 mrg */ 1669 1.127 ad mutex_enter(&uvm_swap_data_lock); 1670 1.1 mrg 1671 1.1 mrg ReTry: /* XXXMRG */ 1672 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) { 1673 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 1674 1.90 yamt uint64_t result; 1675 1.90 yamt 1676 1.1 mrg /* if it's not enabled, then we can't swap from it */ 1677 1.1 mrg if ((sdp->swd_flags & SWF_ENABLE) == 0) 1678 1.1 mrg continue; 1679 1.1 mrg if (sdp->swd_npginuse + *nslots > sdp->swd_npages) 1680 1.1 mrg continue; 1681 1.90 yamt result = blist_alloc(sdp->swd_blist, *nslots); 1682 1.90 yamt if (result == BLIST_NONE) { 1683 1.1 mrg continue; 1684 1.1 mrg } 1685 1.90 yamt KASSERT(result < sdp->swd_drumsize); 1686 1.1 mrg 1687 1.1 mrg /* 1688 1.165 christos * successful allocation! now rotate the tailq. 1689 1.1 mrg */ 1690 1.164 christos TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); 1691 1.164 christos TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 1692 1.1 mrg sdp->swd_npginuse += *nslots; 1693 1.1 mrg uvmexp.swpginuse += *nslots; 1694 1.127 ad mutex_exit(&uvm_swap_data_lock); 1695 1.1 mrg /* done! return drum slot number */ 1696 1.1 mrg UVMHIST_LOG(pdhist, 1697 1.175 pgoyette "success! returning %jd slots starting at %jd", 1698 1.1 mrg *nslots, result + sdp->swd_drumoffset, 0, 0); 1699 1.55 chs return (result + sdp->swd_drumoffset); 1700 1.1 mrg } 1701 1.1 mrg } 1702 1.1 mrg 1703 1.1 mrg /* XXXMRG: BEGIN HACK */ 1704 1.1 mrg if (*nslots > 1 && lessok) { 1705 1.1 mrg *nslots = 1; 1706 1.90 yamt /* XXXMRG: ugh! blist should support this for us */ 1707 1.90 yamt goto ReTry; 1708 1.1 mrg } 1709 1.1 mrg /* XXXMRG: END HACK */ 1710 1.1 mrg 1711 1.127 ad mutex_exit(&uvm_swap_data_lock); 1712 1.55 chs return 0; 1713 1.1 mrg } 1714 1.1 mrg 1715 1.141 ad /* 1716 1.141 ad * uvm_swapisfull: return true if most of available swap is allocated 1717 1.141 ad * and in use. we don't count some small portion as it may be inaccessible 1718 1.141 ad * to us at any given moment, for example if there is lock contention or if 1719 1.141 ad * pages are busy. 1720 1.141 ad */ 1721 1.119 thorpej bool 1722 1.81 pk uvm_swapisfull(void) 1723 1.81 pk { 1724 1.141 ad int swpgonly; 1725 1.119 thorpej bool rv; 1726 1.81 pk 1727 1.200 chs if (uvmexp.swpages == 0) { 1728 1.200 chs return true; 1729 1.200 chs } 1730 1.200 chs 1731 1.127 ad mutex_enter(&uvm_swap_data_lock); 1732 1.81 pk KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1733 1.141 ad swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 / 1734 1.141 ad uvm_swapisfull_factor); 1735 1.141 ad rv = (swpgonly >= uvmexp.swpgavail); 1736 1.127 ad mutex_exit(&uvm_swap_data_lock); 1737 1.81 pk 1738 1.81 pk return (rv); 1739 1.81 pk } 1740 1.81 pk 1741 1.1 mrg /* 1742 1.32 chs * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors 1743 1.32 chs * 1744 1.127 ad * => we lock uvm_swap_data_lock 1745 1.32 chs */ 1746 1.32 chs void 1747 1.93 thorpej uvm_swap_markbad(int startslot, int nslots) 1748 1.32 chs { 1749 1.32 chs struct swapdev *sdp; 1750 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); 1751 1.32 chs 1752 1.127 ad mutex_enter(&uvm_swap_data_lock); 1753 1.32 chs sdp = swapdrum_getsdp(startslot); 1754 1.82 pk KASSERT(sdp != NULL); 1755 1.32 chs 1756 1.32 chs /* 1757 1.32 chs * we just keep track of how many pages have been marked bad 1758 1.32 chs * in this device, to make everything add up in swap_off(). 1759 1.32 chs * we assume here that the range of slots will all be within 1760 1.32 chs * one swap device. 1761 1.32 chs */ 1762 1.41 chs 1763 1.82 pk KASSERT(uvmexp.swpgonly >= nslots); 1764 1.182 ad atomic_add_int(&uvmexp.swpgonly, -nslots); 1765 1.32 chs sdp->swd_npgbad += nslots; 1766 1.175 pgoyette UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0); 1767 1.127 ad mutex_exit(&uvm_swap_data_lock); 1768 1.32 chs } 1769 1.32 chs 1770 1.32 chs /* 1771 1.1 mrg * uvm_swap_free: free swap slots 1772 1.1 mrg * 1773 1.1 mrg * => this can be all or part of an allocation made by uvm_swap_alloc 1774 1.127 ad * => we lock uvm_swap_data_lock 1775 1.1 mrg */ 1776 1.1 mrg void 1777 1.93 thorpej uvm_swap_free(int startslot, int nslots) 1778 1.1 mrg { 1779 1.1 mrg struct swapdev *sdp; 1780 1.197 skrll UVMHIST_FUNC(__func__); 1781 1.197 skrll UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots, 1782 1.1 mrg startslot, 0, 0); 1783 1.32 chs 1784 1.32 chs /* 1785 1.32 chs * ignore attempts to free the "bad" slot. 1786 1.32 chs */ 1787 1.46 chs 1788 1.32 chs if (startslot == SWSLOT_BAD) { 1789 1.32 chs return; 1790 1.32 chs } 1791 1.32 chs 1792 1.1 mrg /* 1793 1.51 chs * convert drum slot offset back to sdp, free the blocks 1794 1.51 chs * in the extent, and return. must hold pri lock to do 1795 1.1 mrg * lookup and access the extent. 1796 1.1 mrg */ 1797 1.46 chs 1798 1.127 ad mutex_enter(&uvm_swap_data_lock); 1799 1.1 mrg sdp = swapdrum_getsdp(startslot); 1800 1.46 chs KASSERT(uvmexp.nswapdev >= 1); 1801 1.46 chs KASSERT(sdp != NULL); 1802 1.46 chs KASSERT(sdp->swd_npginuse >= nslots); 1803 1.90 yamt blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots); 1804 1.1 mrg sdp->swd_npginuse -= nslots; 1805 1.1 mrg uvmexp.swpginuse -= nslots; 1806 1.127 ad mutex_exit(&uvm_swap_data_lock); 1807 1.1 mrg } 1808 1.1 mrg 1809 1.1 mrg /* 1810 1.1 mrg * uvm_swap_put: put any number of pages into a contig place on swap 1811 1.1 mrg * 1812 1.1 mrg * => can be sync or async 1813 1.1 mrg */ 1814 1.54 chs 1815 1.1 mrg int 1816 1.93 thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags) 1817 1.1 mrg { 1818 1.56 chs int error; 1819 1.1 mrg 1820 1.56 chs error = uvm_swap_io(ppsp, swslot, npages, B_WRITE | 1821 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1822 1.56 chs return error; 1823 1.1 mrg } 1824 1.1 mrg 1825 1.1 mrg /* 1826 1.1 mrg * uvm_swap_get: get a single page from swap 1827 1.1 mrg * 1828 1.1 mrg * => usually a sync op (from fault) 1829 1.1 mrg */ 1830 1.54 chs 1831 1.1 mrg int 1832 1.93 thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags) 1833 1.1 mrg { 1834 1.56 chs int error; 1835 1.1 mrg 1836 1.184 ad atomic_inc_uint(&uvmexp.nswget); 1837 1.46 chs KASSERT(flags & PGO_SYNCIO); 1838 1.32 chs if (swslot == SWSLOT_BAD) { 1839 1.47 chs return EIO; 1840 1.32 chs } 1841 1.81 pk 1842 1.56 chs error = uvm_swap_io(&page, swslot, 1, B_READ | 1843 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1844 1.56 chs if (error == 0) { 1845 1.47 chs 1846 1.26 chs /* 1847 1.54 chs * this page is no longer only in swap. 1848 1.26 chs */ 1849 1.47 chs 1850 1.56 chs KASSERT(uvmexp.swpgonly > 0); 1851 1.182 ad atomic_dec_uint(&uvmexp.swpgonly); 1852 1.26 chs } 1853 1.56 chs return error; 1854 1.1 mrg } 1855 1.1 mrg 1856 1.1 mrg /* 1857 1.1 mrg * uvm_swap_io: do an i/o operation to swap 1858 1.1 mrg */ 1859 1.1 mrg 1860 1.1 mrg static int 1861 1.93 thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags) 1862 1.1 mrg { 1863 1.1 mrg daddr_t startblk; 1864 1.1 mrg struct buf *bp; 1865 1.15 eeh vaddr_t kva; 1866 1.134 ad int error, mapinflags; 1867 1.187 riastrad bool write, async, swap_encrypt; 1868 1.197 skrll UVMHIST_FUNC(__func__); 1869 1.203 skrll UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%#jx", 1870 1.1 mrg startslot, npages, flags, 0); 1871 1.32 chs 1872 1.41 chs write = (flags & B_READ) == 0; 1873 1.41 chs async = (flags & B_ASYNC) != 0; 1874 1.189 riastrad swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt); 1875 1.41 chs 1876 1.1 mrg /* 1877 1.137 yamt * allocate a buf for the i/o. 1878 1.137 yamt */ 1879 1.137 yamt 1880 1.208 riastrad KASSERT(curlwp != uvm.pagedaemon_lwp || write); 1881 1.208 riastrad KASSERT(curlwp != uvm.pagedaemon_lwp || async); 1882 1.137 yamt bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp); 1883 1.137 yamt if (bp == NULL) { 1884 1.137 yamt uvm_aio_aiodone_pages(pps, npages, true, ENOMEM); 1885 1.137 yamt return ENOMEM; 1886 1.137 yamt } 1887 1.137 yamt 1888 1.137 yamt /* 1889 1.1 mrg * convert starting drum slot to block number 1890 1.1 mrg */ 1891 1.54 chs 1892 1.99 matt startblk = btodb((uint64_t)startslot << PAGE_SHIFT); 1893 1.1 mrg 1894 1.1 mrg /* 1895 1.54 chs * first, map the pages into the kernel. 1896 1.41 chs */ 1897 1.41 chs 1898 1.54 chs mapinflags = !write ? 1899 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ : 1900 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE; 1901 1.187 riastrad if (write && swap_encrypt) /* need to encrypt in-place */ 1902 1.187 riastrad mapinflags |= UVMPAGER_MAPIN_READ; 1903 1.41 chs kva = uvm_pagermapin(pps, npages, mapinflags); 1904 1.1 mrg 1905 1.51 chs /* 1906 1.187 riastrad * encrypt writes in place if requested 1907 1.187 riastrad */ 1908 1.187 riastrad 1909 1.187 riastrad if (write) do { 1910 1.187 riastrad struct swapdev *sdp; 1911 1.187 riastrad int i; 1912 1.187 riastrad 1913 1.187 riastrad /* 1914 1.187 riastrad * Get the swapdev so we can discriminate on the 1915 1.187 riastrad * encryption state. There may or may not be an 1916 1.187 riastrad * encryption key generated; we may or may not be asked 1917 1.187 riastrad * to encrypt swap. 1918 1.187 riastrad * 1919 1.187 riastrad * 1. NO KEY, NO ENCRYPTION: Nothing to do. 1920 1.187 riastrad * 1921 1.187 riastrad * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt, 1922 1.187 riastrad * and mark the slots encrypted. 1923 1.187 riastrad * 1924 1.187 riastrad * 3. KEY, BUT NO ENCRYPTION: The slots may already be 1925 1.187 riastrad * marked encrypted from a past life. Mark them not 1926 1.187 riastrad * encrypted. 1927 1.187 riastrad * 1928 1.187 riastrad * 4. KEY, ENCRYPTION: Encrypt and mark the slots 1929 1.187 riastrad * encrypted. 1930 1.187 riastrad */ 1931 1.190 riastrad mutex_enter(&uvm_swap_data_lock); 1932 1.187 riastrad sdp = swapdrum_getsdp(startslot); 1933 1.187 riastrad if (!sdp->swd_encinit) { 1934 1.190 riastrad if (!swap_encrypt) { 1935 1.190 riastrad mutex_exit(&uvm_swap_data_lock); 1936 1.187 riastrad break; 1937 1.190 riastrad } 1938 1.187 riastrad uvm_swap_genkey(sdp); 1939 1.187 riastrad } 1940 1.187 riastrad KASSERT(sdp->swd_encinit); 1941 1.190 riastrad mutex_exit(&uvm_swap_data_lock); 1942 1.187 riastrad 1943 1.192 jdolecek for (i = 0; i < npages; i++) { 1944 1.192 jdolecek int s = startslot + i; 1945 1.192 jdolecek KDASSERT(swapdrum_sdp_is(s, sdp)); 1946 1.192 jdolecek KASSERT(s >= sdp->swd_drumoffset); 1947 1.192 jdolecek s -= sdp->swd_drumoffset; 1948 1.192 jdolecek KASSERT(s < sdp->swd_drumsize); 1949 1.192 jdolecek 1950 1.192 jdolecek if (swap_encrypt) { 1951 1.189 riastrad uvm_swap_encryptpage(sdp, 1952 1.188 riastrad (void *)(kva + (vsize_t)i*PAGE_SIZE), s); 1953 1.190 riastrad atomic_or_32(&sdp->swd_encmap[s/32], 1954 1.190 riastrad __BIT(s%32)); 1955 1.192 jdolecek } else { 1956 1.190 riastrad atomic_and_32(&sdp->swd_encmap[s/32], 1957 1.190 riastrad ~__BIT(s%32)); 1958 1.187 riastrad } 1959 1.187 riastrad } 1960 1.187 riastrad } while (0); 1961 1.187 riastrad 1962 1.187 riastrad /* 1963 1.1 mrg * fill in the bp/sbp. we currently route our i/o through 1964 1.1 mrg * /dev/drum's vnode [swapdev_vp]. 1965 1.1 mrg */ 1966 1.54 chs 1967 1.134 ad bp->b_cflags = BC_BUSY | BC_NOCACHE; 1968 1.134 ad bp->b_flags = (flags & (B_READ|B_ASYNC)); 1969 1.1 mrg bp->b_proc = &proc0; /* XXX */ 1970 1.12 pk bp->b_vnbufs.le_next = NOLIST; 1971 1.122 christos bp->b_data = (void *)kva; 1972 1.1 mrg bp->b_blkno = startblk; 1973 1.41 chs bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT; 1974 1.1 mrg 1975 1.51 chs /* 1976 1.41 chs * bump v_numoutput (counter of number of active outputs). 1977 1.1 mrg */ 1978 1.54 chs 1979 1.41 chs if (write) { 1980 1.156 rmind mutex_enter(swapdev_vp->v_interlock); 1981 1.134 ad swapdev_vp->v_numoutput++; 1982 1.156 rmind mutex_exit(swapdev_vp->v_interlock); 1983 1.1 mrg } 1984 1.1 mrg 1985 1.1 mrg /* 1986 1.41 chs * for async ops we must set up the iodone handler. 1987 1.1 mrg */ 1988 1.54 chs 1989 1.41 chs if (async) { 1990 1.186 chs bp->b_iodone = uvm_aio_aiodone; 1991 1.1 mrg UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0); 1992 1.126 ad if (curlwp == uvm.pagedaemon_lwp) 1993 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1994 1.83 yamt else 1995 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 1996 1.83 yamt } else { 1997 1.134 ad bp->b_iodone = NULL; 1998 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1999 1.1 mrg } 2000 1.1 mrg UVMHIST_LOG(pdhist, 2001 1.203 skrll "about to start io: data = %#jx blkno = %#jx, bcount = %jd", 2002 1.175 pgoyette (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0); 2003 1.1 mrg 2004 1.1 mrg /* 2005 1.1 mrg * now we start the I/O, and if async, return. 2006 1.1 mrg */ 2007 1.54 chs 2008 1.84 hannken VOP_STRATEGY(swapdev_vp, bp); 2009 1.190 riastrad if (async) { 2010 1.190 riastrad /* 2011 1.190 riastrad * Reads are always synchronous; if this changes, we 2012 1.190 riastrad * need to add an asynchronous path for decryption. 2013 1.190 riastrad */ 2014 1.193 jdolecek KASSERT(write); 2015 1.47 chs return 0; 2016 1.190 riastrad } 2017 1.1 mrg 2018 1.1 mrg /* 2019 1.1 mrg * must be sync i/o. wait for it to finish 2020 1.1 mrg */ 2021 1.54 chs 2022 1.47 chs error = biowait(bp); 2023 1.191 riastrad if (error) 2024 1.191 riastrad goto out; 2025 1.1 mrg 2026 1.1 mrg /* 2027 1.187 riastrad * decrypt reads in place if needed 2028 1.187 riastrad */ 2029 1.187 riastrad 2030 1.187 riastrad if (!write) do { 2031 1.187 riastrad struct swapdev *sdp; 2032 1.190 riastrad bool encinit; 2033 1.187 riastrad int i; 2034 1.187 riastrad 2035 1.190 riastrad /* 2036 1.190 riastrad * Get the sdp. Everything about it except the encinit 2037 1.190 riastrad * bit, saying whether the encryption key is 2038 1.190 riastrad * initialized or not, and the encrypted bit for each 2039 1.190 riastrad * page, is stable until all swap pages have been 2040 1.190 riastrad * released and the device is removed. 2041 1.190 riastrad */ 2042 1.190 riastrad mutex_enter(&uvm_swap_data_lock); 2043 1.187 riastrad sdp = swapdrum_getsdp(startslot); 2044 1.190 riastrad encinit = sdp->swd_encinit; 2045 1.190 riastrad mutex_exit(&uvm_swap_data_lock); 2046 1.190 riastrad 2047 1.190 riastrad if (!encinit) 2048 1.187 riastrad /* 2049 1.187 riastrad * If there's no encryption key, there's no way 2050 1.187 riastrad * any of these slots can be encrypted, so 2051 1.187 riastrad * nothing to do here. 2052 1.187 riastrad */ 2053 1.187 riastrad break; 2054 1.187 riastrad for (i = 0; i < npages; i++) { 2055 1.187 riastrad int s = startslot + i; 2056 1.190 riastrad KDASSERT(swapdrum_sdp_is(s, sdp)); 2057 1.187 riastrad KASSERT(s >= sdp->swd_drumoffset); 2058 1.187 riastrad s -= sdp->swd_drumoffset; 2059 1.187 riastrad KASSERT(s < sdp->swd_drumsize); 2060 1.190 riastrad if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) & 2061 1.190 riastrad __BIT(s%32)) == 0) 2062 1.187 riastrad continue; 2063 1.189 riastrad uvm_swap_decryptpage(sdp, 2064 1.188 riastrad (void *)(kva + (vsize_t)i*PAGE_SIZE), s); 2065 1.187 riastrad } 2066 1.187 riastrad } while (0); 2067 1.191 riastrad out: 2068 1.187 riastrad /* 2069 1.1 mrg * kill the pager mapping 2070 1.1 mrg */ 2071 1.54 chs 2072 1.1 mrg uvm_pagermapout(kva, npages); 2073 1.1 mrg 2074 1.1 mrg /* 2075 1.54 chs * now dispose of the buf and we're done. 2076 1.1 mrg */ 2077 1.54 chs 2078 1.134 ad if (write) { 2079 1.156 rmind mutex_enter(swapdev_vp->v_interlock); 2080 1.41 chs vwakeup(bp); 2081 1.156 rmind mutex_exit(swapdev_vp->v_interlock); 2082 1.134 ad } 2083 1.98 yamt putiobuf(bp); 2084 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0); 2085 1.134 ad 2086 1.47 chs return (error); 2087 1.1 mrg } 2088 1.187 riastrad 2089 1.187 riastrad /* 2090 1.187 riastrad * uvm_swap_genkey(sdp) 2091 1.187 riastrad * 2092 1.187 riastrad * Generate a key for swap encryption. 2093 1.187 riastrad */ 2094 1.187 riastrad static void 2095 1.187 riastrad uvm_swap_genkey(struct swapdev *sdp) 2096 1.187 riastrad { 2097 1.187 riastrad uint8_t key[32]; 2098 1.187 riastrad 2099 1.187 riastrad KASSERT(!sdp->swd_encinit); 2100 1.187 riastrad 2101 1.187 riastrad cprng_strong(kern_cprng, key, sizeof key, 0); 2102 1.194 riastrad aes_setenckey256(&sdp->swd_enckey, key); 2103 1.194 riastrad aes_setdeckey256(&sdp->swd_deckey, key); 2104 1.187 riastrad explicit_memset(key, 0, sizeof key); 2105 1.187 riastrad 2106 1.187 riastrad sdp->swd_encinit = true; 2107 1.187 riastrad } 2108 1.187 riastrad 2109 1.187 riastrad /* 2110 1.189 riastrad * uvm_swap_encryptpage(sdp, kva, slot) 2111 1.187 riastrad * 2112 1.187 riastrad * Encrypt one page of data at kva for the specified slot number 2113 1.187 riastrad * in the swap device. 2114 1.187 riastrad */ 2115 1.187 riastrad static void 2116 1.189 riastrad uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot) 2117 1.187 riastrad { 2118 1.195 riastrad uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16); 2119 1.187 riastrad 2120 1.187 riastrad /* iv := AES_k(le32enc(slot) || 0^96) */ 2121 1.187 riastrad le32enc(preiv, slot); 2122 1.194 riastrad aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS); 2123 1.187 riastrad 2124 1.187 riastrad /* *kva := AES-CBC_k(iv, *kva) */ 2125 1.194 riastrad aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv, 2126 1.194 riastrad AES_256_NROUNDS); 2127 1.187 riastrad 2128 1.187 riastrad explicit_memset(&iv, 0, sizeof iv); 2129 1.187 riastrad } 2130 1.187 riastrad 2131 1.187 riastrad /* 2132 1.189 riastrad * uvm_swap_decryptpage(sdp, kva, slot) 2133 1.187 riastrad * 2134 1.187 riastrad * Decrypt one page of data at kva for the specified slot number 2135 1.187 riastrad * in the swap device. 2136 1.187 riastrad */ 2137 1.187 riastrad static void 2138 1.189 riastrad uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot) 2139 1.187 riastrad { 2140 1.195 riastrad uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16); 2141 1.187 riastrad 2142 1.187 riastrad /* iv := AES_k(le32enc(slot) || 0^96) */ 2143 1.187 riastrad le32enc(preiv, slot); 2144 1.194 riastrad aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS); 2145 1.187 riastrad 2146 1.187 riastrad /* *kva := AES-CBC^{-1}_k(iv, *kva) */ 2147 1.194 riastrad aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv, 2148 1.194 riastrad AES_256_NROUNDS); 2149 1.187 riastrad 2150 1.187 riastrad explicit_memset(&iv, 0, sizeof iv); 2151 1.187 riastrad } 2152 1.187 riastrad 2153 1.187 riastrad SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup") 2154 1.187 riastrad { 2155 1.187 riastrad 2156 1.187 riastrad sysctl_createv(clog, 0, NULL, NULL, 2157 1.187 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt", 2158 1.187 riastrad SYSCTL_DESCR("Encrypt data when swapped out to disk"), 2159 1.189 riastrad NULL, 0, &uvm_swap_encrypt, 0, 2160 1.187 riastrad CTL_VM, CTL_CREATE, CTL_EOL); 2161 1.187 riastrad } 2162