uvm_swap.c revision 1.1 1 1.1 mrg /* $NetBSD: uvm_swap.c,v 1.1 1998/02/05 06:25:08 mrg Exp $ */
2 1.1 mrg /* $Id: uvm_swap.c,v 1.1 1998/02/05 06:25:08 mrg Exp $ */
3 1.1 mrg
4 1.1 mrg /*
5 1.1 mrg * Copyright (c) 1995, 1996, 1997 Matthew R. Green
6 1.1 mrg * All rights reserved.
7 1.1 mrg *
8 1.1 mrg * Redistribution and use in source and binary forms, with or without
9 1.1 mrg * modification, are permitted provided that the following conditions
10 1.1 mrg * are met:
11 1.1 mrg * 1. Redistributions of source code must retain the above copyright
12 1.1 mrg * notice, this list of conditions and the following disclaimer.
13 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 mrg * notice, this list of conditions and the following disclaimer in the
15 1.1 mrg * documentation and/or other materials provided with the distribution.
16 1.1 mrg * 3. The name of the author may not be used to endorse or promote products
17 1.1 mrg * derived from this software without specific prior written permission.
18 1.1 mrg *
19 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 mrg * SUCH DAMAGE.
30 1.1 mrg */
31 1.1 mrg
32 1.1 mrg #include <sys/param.h>
33 1.1 mrg #include <sys/systm.h>
34 1.1 mrg #include <sys/buf.h>
35 1.1 mrg #include <sys/proc.h>
36 1.1 mrg #include <sys/namei.h>
37 1.1 mrg #include <sys/disklabel.h>
38 1.1 mrg #include <sys/errno.h>
39 1.1 mrg #include <sys/kernel.h>
40 1.1 mrg #include <sys/malloc.h>
41 1.1 mrg #include <sys/vnode.h>
42 1.1 mrg #include <sys/file.h>
43 1.1 mrg #include <sys/extent.h>
44 1.1 mrg #include <sys/mount.h>
45 1.1 mrg #include <sys/syscallargs.h>
46 1.1 mrg
47 1.1 mrg #include <vm/vm.h>
48 1.1 mrg #include <vm/vm_swap.h>
49 1.1 mrg #include <vm/vm_conf.h>
50 1.1 mrg
51 1.1 mrg #include <uvm/uvm.h>
52 1.1 mrg
53 1.1 mrg #include <miscfs/specfs/specdev.h>
54 1.1 mrg
55 1.1 mrg /*
56 1.1 mrg * uvm_swap.c: manage configuration and i/o to swap space.
57 1.1 mrg */
58 1.1 mrg
59 1.1 mrg /*
60 1.1 mrg * swap space is managed in the following way:
61 1.1 mrg *
62 1.1 mrg * each swap partition or file is described by a "swapdev" structure.
63 1.1 mrg * each "swapdev" structure contains a "swapent" structure which contains
64 1.1 mrg * information that is passed up to the user (via system calls).
65 1.1 mrg *
66 1.1 mrg * each swap partition is assigned a "priority" (int) which controls
67 1.1 mrg * swap parition usage.
68 1.1 mrg *
69 1.1 mrg * the system maintains a global data structure describing all swap
70 1.1 mrg * partitions/files. there is a sorted LIST of "swappri" structures
71 1.1 mrg * which describe "swapdev"'s at that priority. this LIST is headed
72 1.1 mrg * by the "swap_priority" global var. each "swappri" contains a
73 1.1 mrg * CIRCLEQ of "swapdev" structures at that priority.
74 1.1 mrg *
75 1.1 mrg * the system maintains a fixed pool of "swapbuf" structures for use
76 1.1 mrg * at swap i/o time. a swapbuf includes a "buf" structure and an
77 1.1 mrg * "aiodone" [we want to avoid malloc()'ing anything at swapout time
78 1.1 mrg * since memory may be low].
79 1.1 mrg *
80 1.1 mrg * locking:
81 1.1 mrg * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
82 1.1 mrg * system call and prevents the swap priority list from changing
83 1.1 mrg * while we are in the middle of a system call (e.g. SWAP_STATS).
84 1.1 mrg * - swap_data_lock (simple_lock): this lock protects all swap data
85 1.1 mrg * structures including the priority list, the swapdev structures,
86 1.1 mrg * and the swapmap extent.
87 1.1 mrg * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
88 1.1 mrg * pool.
89 1.1 mrg *
90 1.1 mrg * each swap device has the following info:
91 1.1 mrg * - swap device in use (could be disabled, preventing future use)
92 1.1 mrg * - swap enabled (allows new allocations on swap)
93 1.1 mrg * - map info in /dev/drum
94 1.1 mrg * - vnode pointer
95 1.1 mrg * for swap files only:
96 1.1 mrg * - block size
97 1.1 mrg * - max byte count in buffer
98 1.1 mrg * - buffer
99 1.1 mrg * - credentials to use when doing i/o to file
100 1.1 mrg *
101 1.1 mrg * userland controls and configures swap with the swapctl(2) system call.
102 1.1 mrg * the sys_swapctl performs the following operations:
103 1.1 mrg * [1] SWAP_NSWAP: returns the number of swap devices currently configured
104 1.1 mrg * [2] SWAP_STATS: given a pointer to an array of swapent structures
105 1.1 mrg * (passed in via "arg") of a size passed in via "misc" ... we load
106 1.1 mrg * the current swap config into the array.
107 1.1 mrg * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
108 1.1 mrg * priority in "misc", start swapping on it.
109 1.1 mrg * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
110 1.1 mrg * [5] SWAP_CTL: changes the priority of a swap device (new priority in
111 1.1 mrg * "misc")
112 1.1 mrg */
113 1.1 mrg
114 1.1 mrg /*
115 1.1 mrg * SWAP_TO_FILES: allows swapping to plain files.
116 1.1 mrg */
117 1.1 mrg
118 1.1 mrg #define SWAP_TO_FILES
119 1.1 mrg
120 1.1 mrg /*
121 1.1 mrg * swapdev: describes a single swap partition/file
122 1.1 mrg *
123 1.1 mrg * note the following should be true:
124 1.1 mrg * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 1.1 mrg * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 1.1 mrg */
127 1.1 mrg struct swapdev {
128 1.1 mrg struct swapent swd_se; /* swap entry struct */
129 1.1 mrg #define swd_dev swd_se.se_dev /* dev_t for this dev */
130 1.1 mrg #define swd_flags swd_se.se_flags /* flags:inuse/enable/fake*/
131 1.1 mrg #define swd_priority swd_se.se_priority /* our priority */
132 1.1 mrg /* also: swd_se.se_nblks, swd_se.se_inuse */
133 1.1 mrg int swd_npages; /* #pages we can use */
134 1.1 mrg int swd_npginuse; /* #pages in use */
135 1.1 mrg int swd_drumoffset; /* page0 offset in drum */
136 1.1 mrg int swd_drumsize; /* #pages in drum */
137 1.1 mrg struct extent *swd_ex; /* extent for this swapdev*/
138 1.1 mrg struct vnode *swd_vp; /* backing vnode */
139 1.1 mrg CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
140 1.1 mrg
141 1.1 mrg #ifdef SWAP_TO_FILES
142 1.1 mrg int swd_bsize; /* blocksize (bytes) */
143 1.1 mrg int swd_maxactive; /* max active i/o reqs */
144 1.1 mrg struct buf swd_tab; /* buffer list */
145 1.1 mrg struct ucred *swd_cred; /* cred for file access */
146 1.1 mrg #endif
147 1.1 mrg };
148 1.1 mrg
149 1.1 mrg /*
150 1.1 mrg * swap device priority entry; the list is kept sorted on `spi_priority'.
151 1.1 mrg */
152 1.1 mrg struct swappri {
153 1.1 mrg int spi_priority; /* priority */
154 1.1 mrg CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
155 1.1 mrg /* circleq of swapdevs at this priority */
156 1.1 mrg LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
157 1.1 mrg };
158 1.1 mrg
159 1.1 mrg /*
160 1.1 mrg * swapbuf, swapbuffer plus async i/o info
161 1.1 mrg */
162 1.1 mrg struct swapbuf {
163 1.1 mrg struct buf sw_buf; /* a buffer structure */
164 1.1 mrg struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
165 1.1 mrg SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
166 1.1 mrg };
167 1.1 mrg
168 1.1 mrg /*
169 1.1 mrg * The following two structures are used to keep track of data transfers
170 1.1 mrg * on swap devices associated with regular files.
171 1.1 mrg * NOTE: this code is more or less a copy of vnd.c; we use the same
172 1.1 mrg * structure names here to ease porting..
173 1.1 mrg */
174 1.1 mrg struct vndxfer {
175 1.1 mrg struct buf *vx_bp; /* Pointer to parent buffer */
176 1.1 mrg struct swapdev *vx_sdp;
177 1.1 mrg int vx_error;
178 1.1 mrg int vx_pending; /* # of pending aux buffers */
179 1.1 mrg int vx_flags;
180 1.1 mrg #define VX_BUSY 1
181 1.1 mrg #define VX_DEAD 2
182 1.1 mrg };
183 1.1 mrg
184 1.1 mrg struct vndbuf {
185 1.1 mrg struct buf vb_buf;
186 1.1 mrg struct vndxfer *vb_xfer;
187 1.1 mrg };
188 1.1 mrg
189 1.1 mrg /*
190 1.1 mrg * XXX: Not a very good idea in a swap strategy module!
191 1.1 mrg */
192 1.1 mrg #define getvndxfer() \
193 1.1 mrg ((struct vndxfer *)malloc(sizeof(struct vndxfer), M_DEVBUF, M_WAITOK))
194 1.1 mrg
195 1.1 mrg #define putvndxfer(vnx) \
196 1.1 mrg free((caddr_t)(vnx), M_DEVBUF)
197 1.1 mrg
198 1.1 mrg #define getvndbuf() \
199 1.1 mrg ((struct vndbuf *)malloc(sizeof(struct vndbuf), M_DEVBUF, M_WAITOK))
200 1.1 mrg
201 1.1 mrg #define putvndbuf(vbp) \
202 1.1 mrg free((caddr_t)(vbp), M_DEVBUF)
203 1.1 mrg
204 1.1 mrg /*
205 1.1 mrg * local variables
206 1.1 mrg */
207 1.1 mrg UVMHIST_DECL(pdhist);
208 1.1 mrg static struct extent *swapmap; /* controls the mapping of /dev/drum */
209 1.1 mrg SIMPLEQ_HEAD(swapbufhead, swapbuf);
210 1.1 mrg static struct swapbufhead freesbufs; /* list of free swapbufs */
211 1.1 mrg static int sbufs_wanted = 0; /* someone sleeping for swapbufs? */
212 1.1 mrg #if NCPU > 1
213 1.1 mrg static simple_lock_data_t swap_buf_lock;/* locks freesbufs and sbufs_wanted */
214 1.1 mrg #endif
215 1.1 mrg
216 1.1 mrg /* list of all active swap devices [by priority] */
217 1.1 mrg LIST_HEAD(swap_priority, swappri);
218 1.1 mrg static struct swap_priority swap_priority;
219 1.1 mrg
220 1.1 mrg /* locks */
221 1.1 mrg lock_data_t swap_syscall_lock;
222 1.1 mrg #if NCPU > 1
223 1.1 mrg static simple_lock_data_t swap_data_lock;
224 1.1 mrg #endif
225 1.1 mrg
226 1.1 mrg /*
227 1.1 mrg * prototypes
228 1.1 mrg */
229 1.1 mrg static void swapdrum_add __P((struct swapdev *, int));
230 1.1 mrg static struct swapdev *swapdrum_getsdp __P((int));
231 1.1 mrg
232 1.1 mrg static struct swapdev *swaplist_find __P((struct vnode *, int));
233 1.1 mrg static void swaplist_insert __P((struct swapdev *,
234 1.1 mrg struct swappri *, int));
235 1.1 mrg static void swaplist_trim __P((void));
236 1.1 mrg
237 1.1 mrg static int swap_on __P((struct proc *, struct swapdev *));
238 1.1 mrg #ifdef SWAP_OFF_WORKS
239 1.1 mrg static int swap_off __P((struct proc *, struct swapdev *));
240 1.1 mrg #endif
241 1.1 mrg
242 1.1 mrg #ifdef SWAP_TO_FILES
243 1.1 mrg static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
244 1.1 mrg static void sw_reg_iodone __P((struct buf *));
245 1.1 mrg static void sw_reg_start __P((struct swapdev *));
246 1.1 mrg #endif
247 1.1 mrg
248 1.1 mrg static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
249 1.1 mrg static void uvm_swap_bufdone __P((struct buf *));
250 1.1 mrg static int uvm_swap_io __P((struct vm_page **, int, int, int));
251 1.1 mrg
252 1.1 mrg /*
253 1.1 mrg * uvm_swap_init: init the swap system data structures and locks
254 1.1 mrg *
255 1.1 mrg * => called at boot time from init_main.c after the filesystems
256 1.1 mrg * are brought up (which happens after uvm_init())
257 1.1 mrg */
258 1.1 mrg void
259 1.1 mrg uvm_swap_init()
260 1.1 mrg {
261 1.1 mrg struct swapbuf *sp;
262 1.1 mrg struct proc *p = &proc0; /* XXX */
263 1.1 mrg int i;
264 1.1 mrg #if defined(UVMHIST)
265 1.1 mrg static char histbuf[sizeof(struct uvm_history_ent) * 100];
266 1.1 mrg #endif
267 1.1 mrg UVMHIST_FUNC("uvm_swap_init");
268 1.1 mrg
269 1.1 mrg UVMHIST_INIT_STATIC(pdhist, histbuf);
270 1.1 mrg UVMHIST_CALLED(pdhist);
271 1.1 mrg /*
272 1.1 mrg * first, init the swap list, its counter, and its lock.
273 1.1 mrg * then get a handle on the vnode for /dev/drum by using
274 1.1 mrg * the its dev_t number ("swapdev", from MD conf.c).
275 1.1 mrg */
276 1.1 mrg
277 1.1 mrg LIST_INIT(&swap_priority);
278 1.1 mrg uvmexp.nswapdev = 0;
279 1.1 mrg lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
280 1.1 mrg simple_lock_init(&swap_data_lock);
281 1.1 mrg if (bdevvp(swapdev, &swapdev_vp))
282 1.1 mrg panic("uvm_swap_init: can't get vnode for swap device");
283 1.1 mrg
284 1.1 mrg /*
285 1.1 mrg * create swap block resource map to map /dev/drum. the range
286 1.1 mrg * from 1 to INT_MAX allows 2 gigablocks of swap space. note
287 1.1 mrg * that block 0 is reserved (used to indicate an allocation
288 1.1 mrg * failure, or no allocation).
289 1.1 mrg */
290 1.1 mrg swapmap = extent_create("swapmap", 1, INT_MAX,
291 1.1 mrg M_VMSWAP, 0, 0, EX_NOWAIT);
292 1.1 mrg if (swapmap == 0)
293 1.1 mrg panic("uvm_swap_init: extent_create failed");
294 1.1 mrg
295 1.1 mrg /*
296 1.1 mrg * allocate our private pool of "swapbuf" structures (includes
297 1.1 mrg * a "buf" structure). ["nswbuf" comes from param.c and can
298 1.1 mrg * be adjusted by MD code before we get here].
299 1.1 mrg */
300 1.1 mrg
301 1.1 mrg sp = malloc(sizeof(*sp) * nswbuf, M_VMSWAP, M_NOWAIT);
302 1.1 mrg if (sp == NULL)
303 1.1 mrg panic("uvm_swap_init: unable to malloc swap bufs");
304 1.1 mrg bzero(sp, sizeof(*sp) * nswbuf);
305 1.1 mrg SIMPLEQ_INIT(&freesbufs);
306 1.1 mrg simple_lock_init(&swap_buf_lock);
307 1.1 mrg
308 1.1 mrg /* build free list */
309 1.1 mrg for (i = 0 ; i < nswbuf ; i++, sp++) {
310 1.1 mrg /* p == proc0 */
311 1.1 mrg sp->sw_buf.b_rcred = sp->sw_buf.b_wcred = p->p_ucred;
312 1.1 mrg sp->sw_buf.b_vnbufs.le_next = NOLIST;
313 1.1 mrg SIMPLEQ_INSERT_HEAD(&freesbufs, sp, sw_sq);
314 1.1 mrg }
315 1.1 mrg printf("uvm_swap: allocated %d swap buffer headers\n", nswbuf);
316 1.1 mrg
317 1.1 mrg /*
318 1.1 mrg * done!
319 1.1 mrg */
320 1.1 mrg UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
321 1.1 mrg }
322 1.1 mrg
323 1.1 mrg /*
324 1.1 mrg * swaplist functions: functions that operate on the list of swap
325 1.1 mrg * devices on the system.
326 1.1 mrg */
327 1.1 mrg
328 1.1 mrg /*
329 1.1 mrg * swaplist_insert: insert swap device "sdp" into the global list
330 1.1 mrg *
331 1.1 mrg * => caller must hold both swap_syscall_lock and swap_data_lock
332 1.1 mrg * => caller must provide a newly malloc'd swappri structure (we will
333 1.1 mrg * FREE it if we don't need it... this it to prevent malloc blocking
334 1.1 mrg * here while adding swap)
335 1.1 mrg */
336 1.1 mrg static void
337 1.1 mrg swaplist_insert(sdp, newspp, priority)
338 1.1 mrg struct swapdev *sdp;
339 1.1 mrg struct swappri *newspp;
340 1.1 mrg int priority;
341 1.1 mrg {
342 1.1 mrg struct swappri *spp, *pspp;
343 1.1 mrg UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
344 1.1 mrg
345 1.1 mrg /*
346 1.1 mrg * find entry at or after which to insert the new device.
347 1.1 mrg */
348 1.1 mrg for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
349 1.1 mrg spp = spp->spi_swappri.le_next) {
350 1.1 mrg if (priority <= spp->spi_priority)
351 1.1 mrg break;
352 1.1 mrg pspp = spp;
353 1.1 mrg }
354 1.1 mrg
355 1.1 mrg /*
356 1.1 mrg * new priority?
357 1.1 mrg */
358 1.1 mrg if (spp == NULL || spp->spi_priority != priority) {
359 1.1 mrg spp = newspp; /* use newspp! */
360 1.1 mrg UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
361 1.1 mrg
362 1.1 mrg spp->spi_priority = priority;
363 1.1 mrg CIRCLEQ_INIT(&spp->spi_swapdev);
364 1.1 mrg
365 1.1 mrg if (pspp)
366 1.1 mrg LIST_INSERT_AFTER(pspp, spp, spi_swappri);
367 1.1 mrg else
368 1.1 mrg LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
369 1.1 mrg } else {
370 1.1 mrg /* we don't need a new priority structure, free it */
371 1.1 mrg FREE(newspp, M_VMSWAP);
372 1.1 mrg }
373 1.1 mrg
374 1.1 mrg /*
375 1.1 mrg * priority found (or created). now insert on the priority's
376 1.1 mrg * circleq list and bump the total number of swapdevs.
377 1.1 mrg */
378 1.1 mrg sdp->swd_priority = priority;
379 1.1 mrg CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
380 1.1 mrg uvmexp.nswapdev++;
381 1.1 mrg
382 1.1 mrg /*
383 1.1 mrg * done!
384 1.1 mrg */
385 1.1 mrg }
386 1.1 mrg
387 1.1 mrg /*
388 1.1 mrg * swaplist_find: find and optionally remove a swap device from the
389 1.1 mrg * global list.
390 1.1 mrg *
391 1.1 mrg * => caller must hold both swap_syscall_lock and swap_data_lock
392 1.1 mrg * => we return the swapdev we found (and removed)
393 1.1 mrg */
394 1.1 mrg static struct swapdev *
395 1.1 mrg swaplist_find(vp, remove)
396 1.1 mrg struct vnode *vp;
397 1.1 mrg boolean_t remove;
398 1.1 mrg {
399 1.1 mrg struct swapdev *sdp;
400 1.1 mrg struct swappri *spp;
401 1.1 mrg
402 1.1 mrg /*
403 1.1 mrg * search the lists for the requested vp
404 1.1 mrg */
405 1.1 mrg for (spp = swap_priority.lh_first; spp != NULL;
406 1.1 mrg spp = spp->spi_swappri.le_next) {
407 1.1 mrg for (sdp = spp->spi_swapdev.cqh_first;
408 1.1 mrg sdp != (void *)&spp->spi_swapdev;
409 1.1 mrg sdp = sdp->swd_next.cqe_next)
410 1.1 mrg if (sdp->swd_vp == vp) {
411 1.1 mrg if (remove) {
412 1.1 mrg CIRCLEQ_REMOVE(&spp->spi_swapdev,
413 1.1 mrg sdp, swd_next);
414 1.1 mrg uvmexp.nswapdev--;
415 1.1 mrg }
416 1.1 mrg return(sdp);
417 1.1 mrg }
418 1.1 mrg }
419 1.1 mrg return (NULL);
420 1.1 mrg }
421 1.1 mrg
422 1.1 mrg
423 1.1 mrg /*
424 1.1 mrg * swaplist_trim: scan priority list for empty priority entries and kill
425 1.1 mrg * them.
426 1.1 mrg *
427 1.1 mrg * => caller must hold both swap_syscall_lock and swap_data_lock
428 1.1 mrg */
429 1.1 mrg static void
430 1.1 mrg swaplist_trim()
431 1.1 mrg {
432 1.1 mrg struct swappri *spp, *nextspp;
433 1.1 mrg
434 1.1 mrg for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
435 1.1 mrg nextspp = spp->spi_swappri.le_next;
436 1.1 mrg if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
437 1.1 mrg continue;
438 1.1 mrg LIST_REMOVE(spp, spi_swappri);
439 1.1 mrg free((caddr_t)spp, M_VMSWAP);
440 1.1 mrg }
441 1.1 mrg }
442 1.1 mrg
443 1.1 mrg /*
444 1.1 mrg * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
445 1.1 mrg *
446 1.1 mrg * => caller must hold swap_syscall_lock
447 1.1 mrg * => swap_data_lock should be unlocked (we may sleep)
448 1.1 mrg */
449 1.1 mrg static void
450 1.1 mrg swapdrum_add(sdp, npages)
451 1.1 mrg struct swapdev *sdp;
452 1.1 mrg int npages;
453 1.1 mrg {
454 1.1 mrg u_long result;
455 1.1 mrg
456 1.1 mrg if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
457 1.1 mrg EX_WAITOK, &result))
458 1.1 mrg panic("swapdrum_add");
459 1.1 mrg
460 1.1 mrg sdp->swd_drumoffset = result;
461 1.1 mrg sdp->swd_drumsize = npages;
462 1.1 mrg }
463 1.1 mrg
464 1.1 mrg /*
465 1.1 mrg * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
466 1.1 mrg * to the "swapdev" that maps that section of the drum.
467 1.1 mrg *
468 1.1 mrg * => each swapdev takes one big contig chunk of the drum
469 1.1 mrg * => caller must hold swap_data_lock
470 1.1 mrg */
471 1.1 mrg static struct swapdev *
472 1.1 mrg swapdrum_getsdp(pgno)
473 1.1 mrg int pgno;
474 1.1 mrg {
475 1.1 mrg struct swapdev *sdp;
476 1.1 mrg struct swappri *spp;
477 1.1 mrg
478 1.1 mrg for (spp = swap_priority.lh_first; spp != NULL;
479 1.1 mrg spp = spp->spi_swappri.le_next)
480 1.1 mrg for (sdp = spp->spi_swapdev.cqh_first;
481 1.1 mrg sdp != (void *)&spp->spi_swapdev;
482 1.1 mrg sdp = sdp->swd_next.cqe_next)
483 1.1 mrg if (pgno >= sdp->swd_drumoffset &&
484 1.1 mrg pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
485 1.1 mrg return sdp;
486 1.1 mrg }
487 1.1 mrg return NULL;
488 1.1 mrg }
489 1.1 mrg
490 1.1 mrg
491 1.1 mrg /*
492 1.1 mrg * sys_swapctl: main entry point for swapctl(2) system call
493 1.1 mrg * [with two helper functions: swap_on and swap_off]
494 1.1 mrg */
495 1.1 mrg int
496 1.1 mrg sys_swapctl(p, v, retval)
497 1.1 mrg struct proc *p;
498 1.1 mrg void *v;
499 1.1 mrg register_t *retval;
500 1.1 mrg {
501 1.1 mrg struct sys_swapctl_args /* {
502 1.1 mrg syscallarg(int) cmd;
503 1.1 mrg syscallarg(void *) arg;
504 1.1 mrg syscallarg(int) misc;
505 1.1 mrg } */ *uap = (struct sys_swapctl_args *)v;
506 1.1 mrg struct vnode *vp;
507 1.1 mrg struct nameidata nd;
508 1.1 mrg struct swappri *spp;
509 1.1 mrg struct swapdev *sdp;
510 1.1 mrg struct swapent *sep;
511 1.1 mrg int count, error, misc;
512 1.1 mrg int priority;
513 1.1 mrg UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
514 1.1 mrg
515 1.1 mrg misc = SCARG(uap, misc);
516 1.1 mrg
517 1.1 mrg /*
518 1.1 mrg * ensure serialized syscall access by grabbing the swap_syscall_lock
519 1.1 mrg */
520 1.1 mrg lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0, curproc);
521 1.1 mrg
522 1.1 mrg /*
523 1.1 mrg * we handle the non-priv NSWAP and STATS request first.
524 1.1 mrg *
525 1.1 mrg * SWAP_NSWAP: return number of config'd swap devices
526 1.1 mrg * [can also be obtained with uvmexp sysctl]
527 1.1 mrg */
528 1.1 mrg if (SCARG(uap, cmd) == SWAP_NSWAP) {
529 1.1 mrg UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev, 0, 0, 0);
530 1.1 mrg *retval = uvmexp.nswapdev;
531 1.1 mrg lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0, curproc);
532 1.1 mrg return (0);
533 1.1 mrg }
534 1.1 mrg
535 1.1 mrg /*
536 1.1 mrg * SWAP_STATS: get stats on current # of configured swap devs
537 1.1 mrg *
538 1.1 mrg * note that the swap_priority list can't change as long
539 1.1 mrg * as we are holding the swap_syscall_lock. we don't want
540 1.1 mrg * to grab the swap_data_lock because we may fault&sleep during
541 1.1 mrg * copyout() and we don't want to be holding that lock then!
542 1.1 mrg */
543 1.1 mrg if (SCARG(uap, cmd) == SWAP_STATS) {
544 1.1 mrg sep = (struct swapent *)SCARG(uap, arg);
545 1.1 mrg count = 0;
546 1.1 mrg
547 1.1 mrg for (spp = swap_priority.lh_first; spp != NULL;
548 1.1 mrg spp = spp->spi_swappri.le_next) {
549 1.1 mrg for (sdp = spp->spi_swapdev.cqh_first;
550 1.1 mrg sdp != (void *)&spp->spi_swapdev && misc-- > 0;
551 1.1 mrg sdp = sdp->swd_next.cqe_next) {
552 1.1 mrg /* backwards compatibility for system call */
553 1.1 mrg sdp->swd_se.se_inuse =
554 1.1 mrg btodb(sdp->swd_npginuse * PAGE_SIZE);
555 1.1 mrg error = copyout((caddr_t)&sdp->swd_se,
556 1.1 mrg (caddr_t)sep, sizeof(struct swapent));
557 1.1 mrg if (error) {
558 1.1 mrg lockmgr(&swap_syscall_lock,
559 1.1 mrg LK_RELEASE, (void *)0, curproc);
560 1.1 mrg return (error);
561 1.1 mrg }
562 1.1 mrg count++;
563 1.1 mrg sep++;
564 1.1 mrg }
565 1.1 mrg }
566 1.1 mrg
567 1.1 mrg UVMHIST_LOG(pdhist, "<-done SWAP_STATS", 0, 0, 0, 0);
568 1.1 mrg
569 1.1 mrg *retval = count;
570 1.1 mrg lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0, curproc);
571 1.1 mrg return (0);
572 1.1 mrg }
573 1.1 mrg
574 1.1 mrg /*
575 1.1 mrg * all other requests require superuser privs. verify.
576 1.1 mrg */
577 1.1 mrg if ((error = suser(p->p_ucred, &p->p_acflag))) {
578 1.1 mrg lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0, curproc);
579 1.1 mrg return (error);
580 1.1 mrg }
581 1.1 mrg
582 1.1 mrg /*
583 1.1 mrg * at this point we expect a path name in arg. we will
584 1.1 mrg * use namei() to gain a vnode reference (vref), and lock
585 1.1 mrg * the vnode (VOP_LOCK).
586 1.1 mrg *
587 1.1 mrg * XXX: a NULL arg means use the root vnode pointer (e.g. for
588 1.1 mrg * miniroot
589 1.1 mrg */
590 1.1 mrg if (SCARG(uap, arg) == NULL) {
591 1.1 mrg vp = rootvp; /* miniroot */
592 1.1 mrg if (vget(vp, 1)) {
593 1.1 mrg lockmgr(&swap_syscall_lock, LK_RELEASE,
594 1.1 mrg (void *)0, curproc);
595 1.1 mrg return (EBUSY);
596 1.1 mrg }
597 1.1 mrg } else {
598 1.1 mrg NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, UIO_USERSPACE,
599 1.1 mrg SCARG(uap, arg), p);
600 1.1 mrg if ((error = namei(&nd))) {
601 1.1 mrg lockmgr(&swap_syscall_lock, LK_RELEASE,
602 1.1 mrg (void *)0, curproc);
603 1.1 mrg return (error);
604 1.1 mrg }
605 1.1 mrg vp = nd.ni_vp;
606 1.1 mrg }
607 1.1 mrg /* note: "vp" is referenced and locked */
608 1.1 mrg
609 1.1 mrg error = 0; /* assume no error */
610 1.1 mrg switch(SCARG(uap, cmd)) {
611 1.1 mrg case SWAP_CTL:
612 1.1 mrg /*
613 1.1 mrg * get new priority, remove old entry (if any) and then
614 1.1 mrg * reinsert it in the correct place. finally, prune out
615 1.1 mrg * any empty priority structures.
616 1.1 mrg */
617 1.1 mrg priority = SCARG(uap, misc);
618 1.1 mrg spp = (struct swappri *)
619 1.1 mrg malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
620 1.1 mrg simple_lock(&swap_data_lock);
621 1.1 mrg if ((sdp = swaplist_find(vp, 1)) == NULL) {
622 1.1 mrg error = ENOENT;
623 1.1 mrg } else {
624 1.1 mrg swaplist_insert(sdp, spp, priority);
625 1.1 mrg swaplist_trim();
626 1.1 mrg }
627 1.1 mrg simple_unlock(&swap_data_lock);
628 1.1 mrg if (error)
629 1.1 mrg free(spp, M_VMSWAP);
630 1.1 mrg break;
631 1.1 mrg
632 1.1 mrg case SWAP_ON:
633 1.1 mrg /*
634 1.1 mrg * check for duplicates. if none found, then insert a
635 1.1 mrg * dummy entry on the list to prevent someone else from
636 1.1 mrg * trying to enable this device while we are working on
637 1.1 mrg * it.
638 1.1 mrg */
639 1.1 mrg priority = SCARG(uap, misc);
640 1.1 mrg simple_lock(&swap_data_lock);
641 1.1 mrg if ((sdp = swaplist_find(vp, 0)) != NULL) {
642 1.1 mrg error = EBUSY;
643 1.1 mrg simple_unlock(&swap_data_lock);
644 1.1 mrg goto bad;
645 1.1 mrg }
646 1.1 mrg sdp = (struct swapdev *)
647 1.1 mrg malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
648 1.1 mrg spp = (struct swappri *)
649 1.1 mrg malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
650 1.1 mrg bzero(sdp, sizeof(*sdp));
651 1.1 mrg sdp->swd_flags = SWF_FAKE; /* placeholder only */
652 1.1 mrg sdp->swd_vp = vp;
653 1.1 mrg sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
654 1.1 mrg #ifdef SWAP_TO_FILES
655 1.1 mrg /*
656 1.1 mrg * XXX Is NFS elaboration necessary?
657 1.1 mrg */
658 1.1 mrg if (vp->v_type == VREG)
659 1.1 mrg sdp->swd_cred = crdup(p->p_ucred);
660 1.1 mrg #endif
661 1.1 mrg swaplist_insert(sdp, spp, priority);
662 1.1 mrg simple_unlock(&swap_data_lock);
663 1.1 mrg
664 1.1 mrg /*
665 1.1 mrg * we've now got a FAKE placeholder in the swap list.
666 1.1 mrg * now attempt to enable swap on it. if we fail, undo
667 1.1 mrg * what we've done and kill the fake entry we just inserted.
668 1.1 mrg * if swap_on is a success, it will clear the SWF_FAKE flag
669 1.1 mrg */
670 1.1 mrg if ((error = swap_on(p, sdp)) != 0) {
671 1.1 mrg simple_lock(&swap_data_lock);
672 1.1 mrg (void) swaplist_find(vp, 1); /* kill fake entry */
673 1.1 mrg swaplist_trim();
674 1.1 mrg simple_unlock(&swap_data_lock);
675 1.1 mrg #ifdef SWAP_TO_FILES
676 1.1 mrg if (vp->v_type == VREG)
677 1.1 mrg crfree(sdp->swd_cred);
678 1.1 mrg #endif
679 1.1 mrg free((caddr_t)sdp, M_VMSWAP);
680 1.1 mrg break;
681 1.1 mrg }
682 1.1 mrg
683 1.1 mrg /*
684 1.1 mrg * got it! now add a second reference to vp so that
685 1.1 mrg * we keep a reference to the vnode after we return.
686 1.1 mrg */
687 1.1 mrg vref(vp);
688 1.1 mrg break;
689 1.1 mrg
690 1.1 mrg case SWAP_OFF:
691 1.1 mrg UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
692 1.1 mrg #ifdef SWAP_OFF_WORKS
693 1.1 mrg /*
694 1.1 mrg * find the entry of interest and ensure it is enabled.
695 1.1 mrg */
696 1.1 mrg simple_lock(&swap_data_lock);
697 1.1 mrg if ((sdp = swaplist_find(vp, 0)) == NULL) {
698 1.1 mrg simple_unlock(&swap_data_lock);
699 1.1 mrg error = ENXIO;
700 1.1 mrg break;
701 1.1 mrg }
702 1.1 mrg /*
703 1.1 mrg * If a device isn't in use or enabled, we
704 1.1 mrg * can't stop swapping from it (again).
705 1.1 mrg */
706 1.1 mrg if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
707 1.1 mrg simple_unlock(&swap_data_lock);
708 1.1 mrg error = EBUSY;
709 1.1 mrg goto bad;
710 1.1 mrg }
711 1.1 mrg /* XXXCDC: should we call with list locked or unlocked? */
712 1.1 mrg if ((error = swap_off(p, sdp)) != 0)
713 1.1 mrg goto bad;
714 1.1 mrg /* XXXCDC: might need relock here */
715 1.1 mrg
716 1.1 mrg /*
717 1.1 mrg * now we can kill the entry.
718 1.1 mrg */
719 1.1 mrg if ((sdp = swaplist_find(vp, 1)) == NULL) {
720 1.1 mrg error = ENXIO;
721 1.1 mrg break;
722 1.1 mrg }
723 1.1 mrg simple_unlock(&swap_data_lock);
724 1.1 mrg free((caddr_t)sdp, M_VMSWAP);
725 1.1 mrg #else
726 1.1 mrg error = EINVAL;
727 1.1 mrg #endif
728 1.1 mrg break;
729 1.1 mrg
730 1.1 mrg default:
731 1.1 mrg UVMHIST_LOG(pdhist, "unhandled command: %#x",
732 1.1 mrg SCARG(uap, cmd), 0, 0, 0);
733 1.1 mrg error = EINVAL;
734 1.1 mrg }
735 1.1 mrg
736 1.1 mrg bad:
737 1.1 mrg /*
738 1.1 mrg * done! use vput to drop our reference and unlock
739 1.1 mrg */
740 1.1 mrg vput(vp);
741 1.1 mrg lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0, curproc);
742 1.1 mrg
743 1.1 mrg UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
744 1.1 mrg return (error);
745 1.1 mrg }
746 1.1 mrg
747 1.1 mrg /*
748 1.1 mrg * swap_on: attempt to enable a swapdev for swapping. note that the
749 1.1 mrg * swapdev is already on the global list, but disabled (marked
750 1.1 mrg * SWF_FAKE).
751 1.1 mrg *
752 1.1 mrg * => we avoid the start of the disk (to protect disk labels)
753 1.1 mrg * => we also avoid the miniroot, if we are swapping to root.
754 1.1 mrg * => caller should leave swap_data_lock unlocked, we may lock it
755 1.1 mrg * if needed.
756 1.1 mrg */
757 1.1 mrg static int
758 1.1 mrg swap_on(p, sdp)
759 1.1 mrg struct proc *p;
760 1.1 mrg struct swapdev *sdp;
761 1.1 mrg {
762 1.1 mrg static int count = 0; /* static */
763 1.1 mrg struct vnode *vp;
764 1.1 mrg int error, npages, nblocks, size;
765 1.1 mrg long addr;
766 1.1 mrg char *storage;
767 1.1 mrg int storagesize;
768 1.1 mrg #ifdef SWAP_TO_FILES
769 1.1 mrg struct vattr va;
770 1.1 mrg #endif
771 1.1 mrg #ifdef NFS
772 1.1 mrg extern int (**nfsv2_vnodeop_p) __P((void *));
773 1.1 mrg #endif /* NFS */
774 1.1 mrg dev_t dev;
775 1.1 mrg char *name;
776 1.1 mrg UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
777 1.1 mrg
778 1.1 mrg /*
779 1.1 mrg * we want to enable swapping on sdp. the swd_vp contains
780 1.1 mrg * the vnode we want (locked and ref'd), and the swd_dev
781 1.1 mrg * contains the dev_t of the file, if it a block device.
782 1.1 mrg */
783 1.1 mrg
784 1.1 mrg vp = sdp->swd_vp;
785 1.1 mrg dev = sdp->swd_dev;
786 1.1 mrg
787 1.1 mrg /*
788 1.1 mrg * open the swap file (mostly useful for block device files to
789 1.1 mrg * let device driver know what is up).
790 1.1 mrg *
791 1.1 mrg * we skip the open/close for root on swap because the root
792 1.1 mrg * has already been opened when root was mounted (mountroot).
793 1.1 mrg */
794 1.1 mrg if (vp != rootvp) {
795 1.1 mrg if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
796 1.1 mrg return (error);
797 1.1 mrg }
798 1.1 mrg
799 1.1 mrg /* XXX this only works for block devices */
800 1.1 mrg UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
801 1.1 mrg
802 1.1 mrg /*
803 1.1 mrg * we now need to determine the size of the swap area. for
804 1.1 mrg * block specials we can call the d_psize function.
805 1.1 mrg * for normal files, we must stat [get attrs].
806 1.1 mrg *
807 1.1 mrg * we put the result in nblks.
808 1.1 mrg * for normal files, we also want the filesystem block size
809 1.1 mrg * (which we get with statfs).
810 1.1 mrg */
811 1.1 mrg switch (vp->v_type) {
812 1.1 mrg case VBLK:
813 1.1 mrg if (bdevsw[major(dev)].d_psize == 0 ||
814 1.1 mrg (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
815 1.1 mrg error = ENXIO;
816 1.1 mrg goto bad;
817 1.1 mrg }
818 1.1 mrg break;
819 1.1 mrg
820 1.1 mrg #ifdef SWAP_TO_FILES
821 1.1 mrg case VREG:
822 1.1 mrg if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
823 1.1 mrg goto bad;
824 1.1 mrg nblocks = (int)btodb(va.va_size);
825 1.1 mrg if ((error =
826 1.1 mrg VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
827 1.1 mrg goto bad;
828 1.1 mrg
829 1.1 mrg sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
830 1.1 mrg /*
831 1.1 mrg * limit the max # of outstanding I/O requests we issue
832 1.1 mrg * at any one time. take it easy on NFS servers.
833 1.1 mrg */
834 1.1 mrg #ifdef NFS
835 1.1 mrg if (vp->v_op == nfsv2_vnodeop_p)
836 1.1 mrg sdp->swd_maxactive = 2; /* XXX */
837 1.1 mrg else
838 1.1 mrg #endif /* NFS */
839 1.1 mrg sdp->swd_maxactive = 8; /* XXX */
840 1.1 mrg break;
841 1.1 mrg #endif
842 1.1 mrg
843 1.1 mrg default:
844 1.1 mrg error = ENXIO;
845 1.1 mrg goto bad;
846 1.1 mrg }
847 1.1 mrg
848 1.1 mrg /*
849 1.1 mrg * save nblocks in a safe place and convert to pages.
850 1.1 mrg */
851 1.1 mrg
852 1.1 mrg sdp->swd_se.se_nblks = nblocks;
853 1.1 mrg npages = dbtob(nblocks) / PAGE_SIZE;
854 1.1 mrg
855 1.1 mrg /*
856 1.1 mrg * for block special files, we want to make sure that leave
857 1.1 mrg * the disklabel and bootblocks alone, so we arrange to skip
858 1.1 mrg * over them (randomly choosing to skip PAGE_SIZE bytes).
859 1.1 mrg * note that because of this the "size" can be less than the
860 1.1 mrg * actual number of blocks on the device.
861 1.1 mrg */
862 1.1 mrg if (vp->v_type == VBLK) {
863 1.1 mrg /* we use pages 1 to (size - 1) [inclusive] */
864 1.1 mrg size = npages - 1;
865 1.1 mrg addr = 1;
866 1.1 mrg } else {
867 1.1 mrg /* we use pages 0 to (size - 1) [inclusive] */
868 1.1 mrg size = npages;
869 1.1 mrg addr = 0;
870 1.1 mrg }
871 1.1 mrg
872 1.1 mrg /*
873 1.1 mrg * make sure we have enough blocks for a reasonable sized swap
874 1.1 mrg * area. we want at least one page.
875 1.1 mrg */
876 1.1 mrg
877 1.1 mrg if (size < 1) {
878 1.1 mrg UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
879 1.1 mrg error = EINVAL;
880 1.1 mrg goto bad;
881 1.1 mrg }
882 1.1 mrg
883 1.1 mrg UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
884 1.1 mrg
885 1.1 mrg /*
886 1.1 mrg * now we need to allocate an extent to manage this swap device
887 1.1 mrg */
888 1.1 mrg name = malloc(12, M_VMSWAP, M_WAITOK);
889 1.1 mrg sprintf(name, "swap0x%04x", count++);
890 1.1 mrg
891 1.1 mrg /*
892 1.1 mrg * XXXCDC: what should we make of this extent storage size stuff
893 1.1 mrg *
894 1.1 mrg * XXXMRG: well, i've come to realise that we need, at most,
895 1.1 mrg * blocks2pages(npages)/2 extents (or so), to cover all possible
896 1.1 mrg * allocations that may occur in the extent -- every other page
897 1.1 mrg * being allocated.
898 1.1 mrg */
899 1.1 mrg #if 1
900 1.1 mrg storagesize = EXTENT_FIXED_STORAGE_SIZE(maxproc * 2);
901 1.1 mrg #else
902 1.1 mrg /* XXXMRG: this uses lots of memory */
903 1.1 mrg storagesize = EXTENT_FIXED_STORAGE_SIZE(npages / 2);
904 1.1 mrg #endif
905 1.1 mrg storage = malloc(storagesize, M_VMSWAP, M_WAITOK);
906 1.1 mrg /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
907 1.1 mrg sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
908 1.1 mrg storage, storagesize, EX_WAITOK);
909 1.1 mrg /* allocate the `saved' region from the extent so it won't be used */
910 1.1 mrg if (addr) {
911 1.1 mrg if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
912 1.1 mrg panic("disklabel region");
913 1.1 mrg sdp->swd_npginuse += addr;
914 1.1 mrg uvmexp.swpginuse += addr;
915 1.1 mrg }
916 1.1 mrg
917 1.1 mrg
918 1.1 mrg /*
919 1.1 mrg * if the vnode we are swapping to is the root vnode
920 1.1 mrg * (i.e. we are swapping to the miniroot) then we want
921 1.1 mrg * to make sure we don't overwrite it. do a statfs to
922 1.1 mrg * find its size and skip over it.
923 1.1 mrg */
924 1.1 mrg if (vp == rootvp) {
925 1.1 mrg struct mount *mp;
926 1.1 mrg struct statfs *sp;
927 1.1 mrg int rootblocks, rootpages;
928 1.1 mrg
929 1.1 mrg mp = rootvnode->v_mount;
930 1.1 mrg sp = &mp->mnt_stat;
931 1.1 mrg rootblocks = sp->f_blocks * btodb(sp->f_bsize);
932 1.1 mrg rootpages = round_page(dbtob(rootblocks)) / PAGE_SIZE;
933 1.1 mrg if (rootpages > npages)
934 1.1 mrg panic("swap_on: miniroot larger than swap?");
935 1.1 mrg
936 1.1 mrg if (extent_alloc_region(sdp->swd_ex, addr,
937 1.1 mrg rootpages, EX_WAITOK))
938 1.1 mrg panic("swap_on: unable to preserve miniroot");
939 1.1 mrg
940 1.1 mrg sdp->swd_npginuse += (rootpages - addr);
941 1.1 mrg uvmexp.swpginuse += (rootpages - addr);
942 1.1 mrg
943 1.1 mrg printf("Preserved %d pages of miniroot ", rootpages);
944 1.1 mrg printf("leaving %d pages of swap\n", size - rootpages);
945 1.1 mrg }
946 1.1 mrg
947 1.1 mrg /*
948 1.1 mrg * now add the new swapdev to the drum and enable.
949 1.1 mrg */
950 1.1 mrg simple_lock(&swap_data_lock);
951 1.1 mrg swapdrum_add(sdp, npages);
952 1.1 mrg sdp->swd_npages = npages;
953 1.1 mrg sdp->swd_flags &= ~SWF_FAKE; /* going live */
954 1.1 mrg sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
955 1.1 mrg simple_unlock(&swap_data_lock);
956 1.1 mrg uvmexp.swpages += npages;
957 1.1 mrg
958 1.1 mrg /*
959 1.1 mrg * add anon's to reflect the swap space we added
960 1.1 mrg */
961 1.1 mrg uvm_anon_add(size);
962 1.1 mrg
963 1.1 mrg return (0);
964 1.1 mrg
965 1.1 mrg bad:
966 1.1 mrg /*
967 1.1 mrg * failure: close device if necessary and return error.
968 1.1 mrg */
969 1.1 mrg if (vp != rootvp)
970 1.1 mrg (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
971 1.1 mrg return (error);
972 1.1 mrg }
973 1.1 mrg
974 1.1 mrg #ifdef SWAP_OFF_WORKS
975 1.1 mrg /*
976 1.1 mrg * swap_off: stop swapping on swapdev
977 1.1 mrg *
978 1.1 mrg * XXXCDC: what conditions go here?
979 1.1 mrg */
980 1.1 mrg static int
981 1.1 mrg swap_off(p, sdp)
982 1.1 mrg struct proc *p;
983 1.1 mrg struct swapdev *sdp;
984 1.1 mrg {
985 1.1 mrg char *name;
986 1.1 mrg UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
987 1.1 mrg
988 1.1 mrg /* turn off the enable flag */
989 1.1 mrg sdp->swd_flags &= ~SWF_ENABLE;
990 1.1 mrg
991 1.1 mrg UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
992 1.1 mrg
993 1.1 mrg /*
994 1.1 mrg * XXX write me
995 1.1 mrg *
996 1.1 mrg * the idea is to find out which processes are using this swap
997 1.1 mrg * device, and page them all in.
998 1.1 mrg *
999 1.1 mrg * eventually, we should try to move them out to other swap areas
1000 1.1 mrg * if available.
1001 1.1 mrg *
1002 1.1 mrg * The alternative is to create a redirection map for this swap
1003 1.1 mrg * device. This should work by moving all the pages of data from
1004 1.1 mrg * the ex-swap device to another one, and making an entry in the
1005 1.1 mrg * redirection map for it. locking is going to be important for
1006 1.1 mrg * this!
1007 1.1 mrg *
1008 1.1 mrg * XXXCDC: also need to shrink anon pool
1009 1.1 mrg */
1010 1.1 mrg
1011 1.1 mrg /* until the above code is written, we must ENODEV */
1012 1.1 mrg return ENODEV;
1013 1.1 mrg
1014 1.1 mrg extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1015 1.1 mrg name = sdp->swd_ex->ex_name;
1016 1.1 mrg extent_destroy(sdp->swd_ex);
1017 1.1 mrg free(name, M_VMSWAP);
1018 1.1 mrg free((caddr_t)sdp->swd_ex, M_VMSWAP);
1019 1.1 mrg if (sdp->swp_vp != rootvp)
1020 1.1 mrg (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1021 1.1 mrg if (sdp->swd_vp)
1022 1.1 mrg vrele(sdp->swd_vp);
1023 1.1 mrg free((caddr_t)sdp, M_VMSWAP);
1024 1.1 mrg return (0);
1025 1.1 mrg }
1026 1.1 mrg #endif
1027 1.1 mrg
1028 1.1 mrg /*
1029 1.1 mrg * /dev/drum interface and i/o functions
1030 1.1 mrg */
1031 1.1 mrg
1032 1.1 mrg /*
1033 1.1 mrg * swread: the read function for the drum (just a call to physio)
1034 1.1 mrg */
1035 1.1 mrg /*ARGSUSED*/
1036 1.1 mrg int
1037 1.1 mrg swread(dev, uio, ioflag)
1038 1.1 mrg dev_t dev;
1039 1.1 mrg struct uio *uio;
1040 1.1 mrg int ioflag;
1041 1.1 mrg {
1042 1.1 mrg UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1043 1.1 mrg
1044 1.1 mrg UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1045 1.1 mrg return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1046 1.1 mrg }
1047 1.1 mrg
1048 1.1 mrg /*
1049 1.1 mrg * swwrite: the write function for the drum (just a call to physio)
1050 1.1 mrg */
1051 1.1 mrg /*ARGSUSED*/
1052 1.1 mrg int
1053 1.1 mrg swwrite(dev, uio, ioflag)
1054 1.1 mrg dev_t dev;
1055 1.1 mrg struct uio *uio;
1056 1.1 mrg int ioflag;
1057 1.1 mrg {
1058 1.1 mrg UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1059 1.1 mrg
1060 1.1 mrg UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1061 1.1 mrg return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1062 1.1 mrg }
1063 1.1 mrg
1064 1.1 mrg /*
1065 1.1 mrg * swstrategy: perform I/O on the drum
1066 1.1 mrg *
1067 1.1 mrg * => we must map the i/o request from the drum to the correct swapdev.
1068 1.1 mrg */
1069 1.1 mrg void
1070 1.1 mrg swstrategy(bp)
1071 1.1 mrg struct buf *bp;
1072 1.1 mrg {
1073 1.1 mrg struct swapdev *sdp;
1074 1.1 mrg struct vnode *vp;
1075 1.1 mrg int pageno;
1076 1.1 mrg int bn;
1077 1.1 mrg UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1078 1.1 mrg
1079 1.1 mrg /*
1080 1.1 mrg * convert block number to swapdev. note that swapdev can't
1081 1.1 mrg * be yanked out from under us because we are holding resources
1082 1.1 mrg * in it (i.e. the blocks we are doing I/O on).
1083 1.1 mrg */
1084 1.1 mrg pageno = dbtob(bp->b_blkno) / PAGE_SIZE;
1085 1.1 mrg simple_lock(&swap_data_lock);
1086 1.1 mrg sdp = swapdrum_getsdp(pageno);
1087 1.1 mrg simple_unlock(&swap_data_lock);
1088 1.1 mrg if (sdp == NULL) {
1089 1.1 mrg bp->b_error = EINVAL;
1090 1.1 mrg bp->b_flags |= B_ERROR;
1091 1.1 mrg biodone(bp);
1092 1.1 mrg UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1093 1.1 mrg return;
1094 1.1 mrg }
1095 1.1 mrg
1096 1.1 mrg /*
1097 1.1 mrg * convert drum page number to block number on this swapdev.
1098 1.1 mrg */
1099 1.1 mrg
1100 1.1 mrg pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1101 1.1 mrg bn = btodb(pageno * PAGE_SIZE); /* convert to diskblock */
1102 1.1 mrg
1103 1.1 mrg UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1104 1.1 mrg ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1105 1.1 mrg sdp->swd_drumoffset, bn, bp->b_bcount);
1106 1.1 mrg
1107 1.1 mrg
1108 1.1 mrg /*
1109 1.1 mrg * for block devices we finish up here.
1110 1.1 mrg * for regular files we have to do more work which we deligate
1111 1.1 mrg * to sw_reg_strategy().
1112 1.1 mrg */
1113 1.1 mrg
1114 1.1 mrg switch (sdp->swd_vp->v_type) {
1115 1.1 mrg default:
1116 1.1 mrg panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1117 1.1 mrg case VBLK:
1118 1.1 mrg
1119 1.1 mrg /*
1120 1.1 mrg * must convert "bp" from an I/O on /dev/drum to an I/O
1121 1.1 mrg * on the swapdev (sdp).
1122 1.1 mrg */
1123 1.1 mrg bp->b_blkno = bn; /* swapdev block number */
1124 1.1 mrg vp = sdp->swd_vp; /* swapdev vnode pointer */
1125 1.1 mrg bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1126 1.1 mrg VHOLD(vp); /* "hold" swapdev vp for i/o */
1127 1.1 mrg
1128 1.1 mrg /*
1129 1.1 mrg * if we are doing a write, we have to redirect the i/o on
1130 1.1 mrg * drum's v_numoutput counter to the swapdevs.
1131 1.1 mrg */
1132 1.1 mrg if ((bp->b_flags & B_READ) == 0) {
1133 1.1 mrg int s = splbio();
1134 1.1 mrg vwakeup(bp); /* kills one 'v_numoutput' on drum */
1135 1.1 mrg vp->v_numoutput++; /* put it on swapdev */
1136 1.1 mrg splx(s);
1137 1.1 mrg }
1138 1.1 mrg
1139 1.1 mrg /*
1140 1.1 mrg * dissassocate buffer with /dev/drum vnode
1141 1.1 mrg * [could be null if buf was from physio]
1142 1.1 mrg */
1143 1.1 mrg if (bp->b_vp != NULLVP)
1144 1.1 mrg brelvp(bp);
1145 1.1 mrg
1146 1.1 mrg /*
1147 1.1 mrg * finally plug in swapdev vnode and start I/O
1148 1.1 mrg */
1149 1.1 mrg bp->b_vp = vp;
1150 1.1 mrg VOP_STRATEGY(bp);
1151 1.1 mrg return;
1152 1.1 mrg #ifdef SWAP_TO_FILES
1153 1.1 mrg case VREG:
1154 1.1 mrg /*
1155 1.1 mrg * deligate to sw_reg_strategy function.
1156 1.1 mrg */
1157 1.1 mrg sw_reg_strategy(sdp, bp, bn);
1158 1.1 mrg return;
1159 1.1 mrg #endif
1160 1.1 mrg }
1161 1.1 mrg /* NOTREACHED */
1162 1.1 mrg }
1163 1.1 mrg
1164 1.1 mrg #ifdef SWAP_TO_FILES
1165 1.1 mrg /*
1166 1.1 mrg * sw_reg_strategy: handle swap i/o to regular files
1167 1.1 mrg */
1168 1.1 mrg static void
1169 1.1 mrg sw_reg_strategy(sdp, bp, bn)
1170 1.1 mrg struct swapdev *sdp;
1171 1.1 mrg struct buf *bp;
1172 1.1 mrg int bn;
1173 1.1 mrg {
1174 1.1 mrg struct vnode *vp;
1175 1.1 mrg struct vndxfer *vnx;
1176 1.1 mrg daddr_t nbn;
1177 1.1 mrg caddr_t addr;
1178 1.1 mrg int byteoff, s, off, nra, error, sz, resid;
1179 1.1 mrg UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1180 1.1 mrg
1181 1.1 mrg /*
1182 1.1 mrg * allocate a vndxfer head for this transfer and point it to
1183 1.1 mrg * our buffer.
1184 1.1 mrg */
1185 1.1 mrg vnx = getvndxfer();
1186 1.1 mrg vnx->vx_flags = VX_BUSY;
1187 1.1 mrg vnx->vx_error = 0;
1188 1.1 mrg vnx->vx_pending = 0;
1189 1.1 mrg vnx->vx_bp = bp;
1190 1.1 mrg vnx->vx_sdp = sdp;
1191 1.1 mrg
1192 1.1 mrg /*
1193 1.1 mrg * setup for main loop where we read filesystem blocks into
1194 1.1 mrg * our buffer.
1195 1.1 mrg */
1196 1.1 mrg error = 0;
1197 1.1 mrg bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1198 1.1 mrg addr = bp->b_data; /* current position in buffer */
1199 1.1 mrg byteoff = dbtob(bn); /* XXX: should it be an off_t? */
1200 1.1 mrg
1201 1.1 mrg for (resid = bp->b_resid; resid; resid -= sz) {
1202 1.1 mrg struct vndbuf *nbp;
1203 1.1 mrg
1204 1.1 mrg /*
1205 1.1 mrg * translate byteoffset into block number. return values:
1206 1.1 mrg * vp = vnode of underlying device
1207 1.1 mrg * nbn = new block number (on underlying vnode dev)
1208 1.1 mrg * nra = num blocks we can read-ahead (excludes requested
1209 1.1 mrg * block)
1210 1.1 mrg */
1211 1.1 mrg nra = 0;
1212 1.1 mrg error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1213 1.1 mrg &vp, &nbn, &nra);
1214 1.1 mrg
1215 1.1 mrg if (error == 0 && (long)nbn == -1)
1216 1.1 mrg error = EIO; /* failure */
1217 1.1 mrg
1218 1.1 mrg /*
1219 1.1 mrg * punt if there was an error or a hole in the file.
1220 1.1 mrg * we must wait for any i/o ops we have already started
1221 1.1 mrg * to finish before returning.
1222 1.1 mrg *
1223 1.1 mrg * XXX we could deal with holes here but it would be
1224 1.1 mrg * a hassle (in the write case).
1225 1.1 mrg */
1226 1.1 mrg if (error) {
1227 1.1 mrg s = splbio();
1228 1.1 mrg vnx->vx_error = error; /* pass error up */
1229 1.1 mrg goto out;
1230 1.1 mrg }
1231 1.1 mrg
1232 1.1 mrg /*
1233 1.1 mrg * compute the size ("sz") of this transfer (in bytes).
1234 1.1 mrg * XXXCDC: ignores read-ahead for non-zero offset
1235 1.1 mrg */
1236 1.1 mrg if ((off = (byteoff % sdp->swd_bsize)) != 0)
1237 1.1 mrg sz = sdp->swd_bsize - off;
1238 1.1 mrg else
1239 1.1 mrg sz = (1 + nra) * sdp->swd_bsize;
1240 1.1 mrg
1241 1.1 mrg if (resid < sz)
1242 1.1 mrg sz = resid;
1243 1.1 mrg
1244 1.1 mrg UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p bn 0x%x/0x%x",
1245 1.1 mrg sdp->swd_vp, vp, bn, nbn);
1246 1.1 mrg
1247 1.1 mrg /*
1248 1.1 mrg * now get a buf structure. note that the vb_buf is
1249 1.1 mrg * at the front of the nbp structure so that you can
1250 1.1 mrg * cast pointers between the two structure easily.
1251 1.1 mrg */
1252 1.1 mrg nbp = getvndbuf();
1253 1.1 mrg nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1254 1.1 mrg nbp->vb_buf.b_bcount = sz;
1255 1.1 mrg nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1256 1.1 mrg nbp->vb_buf.b_error = 0;
1257 1.1 mrg nbp->vb_buf.b_data = addr;
1258 1.1 mrg nbp->vb_buf.b_blkno = nbn + btodb(off);
1259 1.1 mrg nbp->vb_buf.b_proc = bp->b_proc;
1260 1.1 mrg nbp->vb_buf.b_iodone = sw_reg_iodone;
1261 1.1 mrg nbp->vb_buf.b_vp = NULLVP;
1262 1.1 mrg nbp->vb_buf.b_rcred = sdp->swd_cred;
1263 1.1 mrg nbp->vb_buf.b_wcred = sdp->swd_cred;
1264 1.1 mrg
1265 1.1 mrg /*
1266 1.1 mrg * set b_dirtyoff/end and b_vaildoff/end. this is
1267 1.1 mrg * required by the NFS client code (otherwise it will
1268 1.1 mrg * just discard our I/O request).
1269 1.1 mrg */
1270 1.1 mrg if (bp->b_dirtyend == 0) {
1271 1.1 mrg nbp->vb_buf.b_dirtyoff = 0;
1272 1.1 mrg nbp->vb_buf.b_dirtyend = sz;
1273 1.1 mrg } else {
1274 1.1 mrg nbp->vb_buf.b_dirtyoff =
1275 1.1 mrg max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1276 1.1 mrg nbp->vb_buf.b_dirtyend =
1277 1.1 mrg min(sz,
1278 1.1 mrg max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1279 1.1 mrg }
1280 1.1 mrg if (bp->b_validend == 0) {
1281 1.1 mrg nbp->vb_buf.b_validoff = 0;
1282 1.1 mrg nbp->vb_buf.b_validend = sz;
1283 1.1 mrg } else {
1284 1.1 mrg nbp->vb_buf.b_validoff =
1285 1.1 mrg max(0, bp->b_validoff - (bp->b_bcount-resid));
1286 1.1 mrg nbp->vb_buf.b_validend =
1287 1.1 mrg min(sz,
1288 1.1 mrg max(0, bp->b_validend - (bp->b_bcount-resid)));
1289 1.1 mrg }
1290 1.1 mrg
1291 1.1 mrg nbp->vb_xfer = vnx; /* patch it back in to vnx */
1292 1.1 mrg
1293 1.1 mrg /*
1294 1.1 mrg * Just sort by block number
1295 1.1 mrg */
1296 1.1 mrg nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1297 1.1 mrg s = splbio();
1298 1.1 mrg if (vnx->vx_error != 0) {
1299 1.1 mrg putvndbuf(nbp);
1300 1.1 mrg goto out;
1301 1.1 mrg }
1302 1.1 mrg vnx->vx_pending++;
1303 1.1 mrg
1304 1.1 mrg /* assoc new buffer with underlying vnode */
1305 1.1 mrg bgetvp(vp, &nbp->vb_buf);
1306 1.1 mrg
1307 1.1 mrg /* sort it in and start I/O if we are not over our limit */
1308 1.1 mrg disksort(&sdp->swd_tab, &nbp->vb_buf);
1309 1.1 mrg sw_reg_start(sdp);
1310 1.1 mrg splx(s);
1311 1.1 mrg
1312 1.1 mrg /*
1313 1.1 mrg * advance to the next I/O
1314 1.1 mrg */
1315 1.1 mrg bn += sz;
1316 1.1 mrg addr += sz;
1317 1.1 mrg }
1318 1.1 mrg
1319 1.1 mrg s = splbio();
1320 1.1 mrg
1321 1.1 mrg out: /* Arrive here at splbio */
1322 1.1 mrg vnx->vx_flags &= ~VX_BUSY;
1323 1.1 mrg if (vnx->vx_pending == 0) {
1324 1.1 mrg if (vnx->vx_error != 0) {
1325 1.1 mrg bp->b_error = vnx->vx_error;
1326 1.1 mrg bp->b_flags |= B_ERROR;
1327 1.1 mrg }
1328 1.1 mrg putvndxfer(vnx);
1329 1.1 mrg biodone(bp);
1330 1.1 mrg }
1331 1.1 mrg splx(s);
1332 1.1 mrg }
1333 1.1 mrg
1334 1.1 mrg /*
1335 1.1 mrg * sw_reg_start: start an I/O request on the requested swapdev
1336 1.1 mrg *
1337 1.1 mrg * => reqs are sorted by disksort (above)
1338 1.1 mrg */
1339 1.1 mrg static void
1340 1.1 mrg sw_reg_start(sdp)
1341 1.1 mrg struct swapdev *sdp;
1342 1.1 mrg {
1343 1.1 mrg struct buf *bp;
1344 1.1 mrg UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1345 1.1 mrg
1346 1.1 mrg /* recursion control */
1347 1.1 mrg if ((sdp->swd_flags & SWF_BUSY) != 0)
1348 1.1 mrg return;
1349 1.1 mrg
1350 1.1 mrg sdp->swd_flags |= SWF_BUSY;
1351 1.1 mrg
1352 1.1 mrg while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1353 1.1 mrg bp = sdp->swd_tab.b_actf;
1354 1.1 mrg if (bp == NULL)
1355 1.1 mrg break;
1356 1.1 mrg sdp->swd_tab.b_actf = bp->b_actf;
1357 1.1 mrg sdp->swd_tab.b_active++;
1358 1.1 mrg
1359 1.1 mrg UVMHIST_LOG(pdhist,
1360 1.1 mrg "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1361 1.1 mrg bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1362 1.1 mrg if ((bp->b_flags & B_READ) == 0)
1363 1.1 mrg bp->b_vp->v_numoutput++;
1364 1.1 mrg VOP_STRATEGY(bp);
1365 1.1 mrg }
1366 1.1 mrg sdp->swd_flags &= ~SWF_BUSY;
1367 1.1 mrg }
1368 1.1 mrg
1369 1.1 mrg /*
1370 1.1 mrg * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1371 1.1 mrg *
1372 1.1 mrg * => note that we can recover the vndbuf struct by casting the buf ptr
1373 1.1 mrg */
1374 1.1 mrg static void
1375 1.1 mrg sw_reg_iodone(bp)
1376 1.1 mrg struct buf *bp;
1377 1.1 mrg {
1378 1.1 mrg struct vndbuf *vbp = (struct vndbuf *) bp;
1379 1.1 mrg struct vndxfer *vnx = vbp->vb_xfer;
1380 1.1 mrg struct buf *pbp = vnx->vx_bp; /* parent buffer */
1381 1.1 mrg struct swapdev *sdp = vnx->vx_sdp;
1382 1.1 mrg int s, resid;
1383 1.1 mrg UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1384 1.1 mrg
1385 1.1 mrg UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1386 1.1 mrg vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1387 1.1 mrg UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1388 1.1 mrg vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1389 1.1 mrg
1390 1.1 mrg /*
1391 1.1 mrg * protect vbp at splbio and update.
1392 1.1 mrg */
1393 1.1 mrg
1394 1.1 mrg s = splbio();
1395 1.1 mrg resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1396 1.1 mrg pbp->b_resid -= resid;
1397 1.1 mrg vnx->vx_pending--;
1398 1.1 mrg
1399 1.1 mrg if (vbp->vb_buf.b_error) {
1400 1.1 mrg UVMHIST_LOG(pdhist, " got error=%d !",
1401 1.1 mrg vbp->vb_buf.b_error, 0, 0, 0);
1402 1.1 mrg
1403 1.1 mrg /* pass error upward */
1404 1.1 mrg vnx->vx_error = vbp->vb_buf.b_error;
1405 1.1 mrg }
1406 1.1 mrg
1407 1.1 mrg /*
1408 1.1 mrg * drop "hold" reference to vnode (if one)
1409 1.1 mrg * XXXCDC: always set to NULLVP, this is useless, right?
1410 1.1 mrg */
1411 1.1 mrg if (vbp->vb_buf.b_vp != NULLVP)
1412 1.1 mrg brelvp(&vbp->vb_buf);
1413 1.1 mrg
1414 1.1 mrg /*
1415 1.1 mrg * kill vbp structure
1416 1.1 mrg */
1417 1.1 mrg putvndbuf(vbp);
1418 1.1 mrg
1419 1.1 mrg /*
1420 1.1 mrg * wrap up this transaction if it has run to completion or, in
1421 1.1 mrg * case of an error, when all auxiliary buffers have returned.
1422 1.1 mrg */
1423 1.1 mrg if (vnx->vx_error != 0) {
1424 1.1 mrg /* pass error upward */
1425 1.1 mrg pbp->b_flags |= B_ERROR;
1426 1.1 mrg pbp->b_error = vnx->vx_error;
1427 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1428 1.1 mrg putvndxfer(vnx);
1429 1.1 mrg biodone(pbp);
1430 1.1 mrg }
1431 1.1 mrg }
1432 1.1 mrg
1433 1.1 mrg if (pbp->b_resid == 0) {
1434 1.1 mrg #ifdef DIAGNOSTIC
1435 1.1 mrg if (vnx->vx_pending != 0)
1436 1.1 mrg panic("sw_reg_iodone: vnx pending: %d", vnx->vx_pending);
1437 1.1 mrg #endif
1438 1.1 mrg
1439 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0) {
1440 1.1 mrg UVMHIST_LOG(pdhist, " iodone error=%d !",
1441 1.1 mrg pbp, vnx->vx_error, 0, 0);
1442 1.1 mrg putvndxfer(vnx);
1443 1.1 mrg biodone(pbp);
1444 1.1 mrg }
1445 1.1 mrg }
1446 1.1 mrg
1447 1.1 mrg /*
1448 1.1 mrg * done! start next swapdev I/O if one is pending
1449 1.1 mrg */
1450 1.1 mrg sdp->swd_tab.b_active--;
1451 1.1 mrg sw_reg_start(sdp);
1452 1.1 mrg
1453 1.1 mrg splx(s);
1454 1.1 mrg }
1455 1.1 mrg #endif /* SWAP_TO_FILES */
1456 1.1 mrg
1457 1.1 mrg
1458 1.1 mrg /*
1459 1.1 mrg * uvm_swap_alloc: allocate space on swap
1460 1.1 mrg *
1461 1.1 mrg * => allocation is done "round robin" down the priority list, as we
1462 1.1 mrg * allocate in a priority we "rotate" the circle queue.
1463 1.1 mrg * => space can be freed with uvm_swap_free
1464 1.1 mrg * => we return the page slot number in /dev/drum (0 == invalid slot)
1465 1.1 mrg * => we lock swap_data_lock
1466 1.1 mrg * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1467 1.1 mrg */
1468 1.1 mrg int
1469 1.1 mrg uvm_swap_alloc(nslots, lessok)
1470 1.1 mrg int *nslots; /* IN/OUT */
1471 1.1 mrg boolean_t lessok;
1472 1.1 mrg {
1473 1.1 mrg struct swapdev *sdp;
1474 1.1 mrg struct swappri *spp;
1475 1.1 mrg u_long result;
1476 1.1 mrg UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1477 1.1 mrg
1478 1.1 mrg /*
1479 1.1 mrg * no swap devices configured yet? definite failure.
1480 1.1 mrg */
1481 1.1 mrg if (uvmexp.nswapdev < 1)
1482 1.1 mrg return 0;
1483 1.1 mrg
1484 1.1 mrg /*
1485 1.1 mrg * lock data lock, convert slots into blocks, and enter loop
1486 1.1 mrg */
1487 1.1 mrg simple_lock(&swap_data_lock);
1488 1.1 mrg
1489 1.1 mrg ReTry: /* XXXMRG */
1490 1.1 mrg for (spp = swap_priority.lh_first; spp != NULL;
1491 1.1 mrg spp = spp->spi_swappri.le_next) {
1492 1.1 mrg for (sdp = spp->spi_swapdev.cqh_first;
1493 1.1 mrg sdp != (void *)&spp->spi_swapdev;
1494 1.1 mrg sdp = sdp->swd_next.cqe_next) {
1495 1.1 mrg /* if it's not enabled, then we can't swap from it */
1496 1.1 mrg if ((sdp->swd_flags & SWF_ENABLE) == 0)
1497 1.1 mrg continue;
1498 1.1 mrg if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1499 1.1 mrg continue;
1500 1.1 mrg if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1501 1.1 mrg EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1502 1.1 mrg &result) != 0) {
1503 1.1 mrg continue;
1504 1.1 mrg }
1505 1.1 mrg
1506 1.1 mrg /*
1507 1.1 mrg * successful allocation! now rotate the circleq.
1508 1.1 mrg */
1509 1.1 mrg CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1510 1.1 mrg CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1511 1.1 mrg sdp->swd_npginuse += *nslots;
1512 1.1 mrg uvmexp.swpginuse += *nslots;
1513 1.1 mrg simple_unlock(&swap_data_lock);
1514 1.1 mrg /* done! return drum slot number */
1515 1.1 mrg UVMHIST_LOG(pdhist,
1516 1.1 mrg "success! returning %d slots starting at %d",
1517 1.1 mrg *nslots, result + sdp->swd_drumoffset, 0, 0);
1518 1.1 mrg #if 0
1519 1.1 mrg {
1520 1.1 mrg struct swapdev *sdp2;
1521 1.1 mrg
1522 1.1 mrg sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1523 1.1 mrg if (sdp2 == NULL) {
1524 1.1 mrg printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1525 1.1 mrg *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1526 1.1 mrg panic("uvm_swap_alloc: allocating unmapped swap block!");
1527 1.1 mrg }
1528 1.1 mrg }
1529 1.1 mrg #endif
1530 1.1 mrg return(result + sdp->swd_drumoffset);
1531 1.1 mrg }
1532 1.1 mrg }
1533 1.1 mrg
1534 1.1 mrg /* XXXMRG: BEGIN HACK */
1535 1.1 mrg if (*nslots > 1 && lessok) {
1536 1.1 mrg *nslots = 1;
1537 1.1 mrg goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1538 1.1 mrg }
1539 1.1 mrg /* XXXMRG: END HACK */
1540 1.1 mrg
1541 1.1 mrg simple_unlock(&swap_data_lock);
1542 1.1 mrg return 0; /* failed */
1543 1.1 mrg }
1544 1.1 mrg
1545 1.1 mrg /*
1546 1.1 mrg * uvm_swap_free: free swap slots
1547 1.1 mrg *
1548 1.1 mrg * => this can be all or part of an allocation made by uvm_swap_alloc
1549 1.1 mrg * => we lock swap_data_lock
1550 1.1 mrg */
1551 1.1 mrg void
1552 1.1 mrg uvm_swap_free(startslot, nslots)
1553 1.1 mrg int startslot;
1554 1.1 mrg int nslots;
1555 1.1 mrg {
1556 1.1 mrg struct swapdev *sdp;
1557 1.1 mrg UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1558 1.1 mrg
1559 1.1 mrg UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1560 1.1 mrg startslot, 0, 0);
1561 1.1 mrg /*
1562 1.1 mrg * convert drum slot offset back to sdp, free the blocks
1563 1.1 mrg * in the extent, and return. must hold pri lock to do
1564 1.1 mrg * lookup and access the extent.
1565 1.1 mrg */
1566 1.1 mrg simple_lock(&swap_data_lock);
1567 1.1 mrg sdp = swapdrum_getsdp(startslot);
1568 1.1 mrg
1569 1.1 mrg #ifdef DIAGNOSTIC
1570 1.1 mrg if (uvmexp.nswapdev < 1)
1571 1.1 mrg panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1572 1.1 mrg if (sdp == NULL) {
1573 1.1 mrg printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1574 1.1 mrg nslots);
1575 1.1 mrg panic("uvm_swap_free: unmapped address\n");
1576 1.1 mrg }
1577 1.1 mrg #endif
1578 1.1 mrg extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1579 1.1 mrg EX_MALLOCOK|EX_NOWAIT);
1580 1.1 mrg sdp->swd_npginuse -= nslots;
1581 1.1 mrg uvmexp.swpginuse -= nslots;
1582 1.1 mrg #ifdef DIAGNOSTIC
1583 1.1 mrg if (sdp->swd_npginuse < 0)
1584 1.1 mrg panic("uvm_swap_free: inuse < 0");
1585 1.1 mrg #endif
1586 1.1 mrg simple_unlock(&swap_data_lock);
1587 1.1 mrg }
1588 1.1 mrg
1589 1.1 mrg /*
1590 1.1 mrg * uvm_swap_put: put any number of pages into a contig place on swap
1591 1.1 mrg *
1592 1.1 mrg * => can be sync or async
1593 1.1 mrg * => XXXMRG: consider making it an inline or macro
1594 1.1 mrg */
1595 1.1 mrg int
1596 1.1 mrg uvm_swap_put(swslot, ppsp, npages, flags)
1597 1.1 mrg int swslot;
1598 1.1 mrg struct vm_page **ppsp;
1599 1.1 mrg int npages;
1600 1.1 mrg int flags;
1601 1.1 mrg {
1602 1.1 mrg int result;
1603 1.1 mrg
1604 1.1 mrg #if 0
1605 1.1 mrg flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1606 1.1 mrg #endif
1607 1.1 mrg
1608 1.1 mrg result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1609 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1610 1.1 mrg
1611 1.1 mrg return (result);
1612 1.1 mrg }
1613 1.1 mrg
1614 1.1 mrg /*
1615 1.1 mrg * uvm_swap_get: get a single page from swap
1616 1.1 mrg *
1617 1.1 mrg * => usually a sync op (from fault)
1618 1.1 mrg * => XXXMRG: consider making it an inline or macro
1619 1.1 mrg */
1620 1.1 mrg int
1621 1.1 mrg uvm_swap_get(page, swslot, flags)
1622 1.1 mrg struct vm_page *page;
1623 1.1 mrg int swslot, flags;
1624 1.1 mrg {
1625 1.1 mrg int result;
1626 1.1 mrg
1627 1.1 mrg uvmexp.nswget++;
1628 1.1 mrg #ifdef DIAGNOSTIC
1629 1.1 mrg if ((flags & PGO_SYNCIO) == 0)
1630 1.1 mrg printf("uvm_swap_get: ASYNC get requested?\n");
1631 1.1 mrg #endif
1632 1.1 mrg
1633 1.1 mrg result = uvm_swap_io(&page, swslot, 1, B_READ |
1634 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1635 1.1 mrg
1636 1.1 mrg return (result);
1637 1.1 mrg }
1638 1.1 mrg
1639 1.1 mrg /*
1640 1.1 mrg * uvm_swap_io: do an i/o operation to swap
1641 1.1 mrg */
1642 1.1 mrg
1643 1.1 mrg static int
1644 1.1 mrg uvm_swap_io(pps, startslot, npages, flags)
1645 1.1 mrg struct vm_page **pps;
1646 1.1 mrg int startslot, npages, flags;
1647 1.1 mrg {
1648 1.1 mrg daddr_t startblk;
1649 1.1 mrg struct swapbuf *sbp;
1650 1.1 mrg struct buf *bp;
1651 1.1 mrg vm_offset_t kva;
1652 1.1 mrg int result, s, waitf;
1653 1.1 mrg UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1654 1.1 mrg
1655 1.1 mrg UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1656 1.1 mrg startslot, npages, flags, 0);
1657 1.1 mrg /*
1658 1.1 mrg * convert starting drum slot to block number
1659 1.1 mrg */
1660 1.1 mrg startblk = btodb(startslot * PAGE_SIZE);
1661 1.1 mrg
1662 1.1 mrg /*
1663 1.1 mrg * first, map the pages into the kernel (XXX: currently required
1664 1.1 mrg * by buffer system). note that we don't let pagermapin alloc
1665 1.1 mrg * an aiodesc structure because we don't want to chance a malloc.
1666 1.1 mrg * we've got our own pool of aiodesc structures (in swapbuf).
1667 1.1 mrg */
1668 1.1 mrg waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1669 1.1 mrg kva = uvm_pagermapin(pps, npages, NULL, waitf);
1670 1.1 mrg if (kva == NULL)
1671 1.1 mrg return (VM_PAGER_AGAIN);
1672 1.1 mrg
1673 1.1 mrg /*
1674 1.1 mrg * now allocate a swap buffer off of freesbufs
1675 1.1 mrg * [make sure we don't put the pagedaemon to sleep...]
1676 1.1 mrg */
1677 1.1 mrg s = splbio();
1678 1.1 mrg simple_lock(&swap_buf_lock);
1679 1.1 mrg
1680 1.1 mrg /* never put the pagedaemon to sleep! */
1681 1.1 mrg if ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc) {
1682 1.1 mrg
1683 1.1 mrg sbp = freesbufs.sqh_first;
1684 1.1 mrg
1685 1.1 mrg } else {
1686 1.1 mrg
1687 1.1 mrg /* we can sleep for a sbuf if needed */
1688 1.1 mrg while (freesbufs.sqh_first == NULL) {
1689 1.1 mrg
1690 1.1 mrg sbufs_wanted = 1;
1691 1.1 mrg UVM_UNLOCK_AND_WAIT(&freesbufs, &swap_buf_lock, 0,
1692 1.1 mrg "uvmswiobuf",0);
1693 1.1 mrg
1694 1.1 mrg simple_lock(&swap_buf_lock); /* relock */
1695 1.1 mrg }
1696 1.1 mrg sbp = freesbufs.sqh_first;
1697 1.1 mrg }
1698 1.1 mrg
1699 1.1 mrg if (sbp)
1700 1.1 mrg SIMPLEQ_REMOVE_HEAD(&freesbufs, sbp, sw_sq);
1701 1.1 mrg simple_unlock(&swap_buf_lock);
1702 1.1 mrg splx(s); /* drop splbio */
1703 1.1 mrg
1704 1.1 mrg /*
1705 1.1 mrg * if we failed to get a swapbuf, return "try again"
1706 1.1 mrg */
1707 1.1 mrg if (sbp == NULL)
1708 1.1 mrg return (VM_PAGER_AGAIN);
1709 1.1 mrg
1710 1.1 mrg /*
1711 1.1 mrg * fill in the bp/sbp. we currently route our i/o through
1712 1.1 mrg * /dev/drum's vnode [swapdev_vp].
1713 1.1 mrg */
1714 1.1 mrg bp = &sbp->sw_buf;
1715 1.1 mrg bp->b_flags = B_BUSY | (flags & (B_READ|B_ASYNC));
1716 1.1 mrg bp->b_proc = &proc0; /* XXX */
1717 1.1 mrg bp->b_data = (caddr_t)kva;
1718 1.1 mrg bp->b_blkno = startblk;
1719 1.1 mrg VHOLD(swapdev_vp);
1720 1.1 mrg bp->b_vp = swapdev_vp;
1721 1.1 mrg /* XXXCDC: isn't swapdev_vp always a VCHR? */
1722 1.1 mrg /* XXXMRG: probably -- this is obviously something inherited... */
1723 1.1 mrg if (swapdev_vp->v_type == VBLK)
1724 1.1 mrg bp->b_dev = swapdev_vp->v_rdev;
1725 1.1 mrg bp->b_bcount = npages * PAGE_SIZE;
1726 1.1 mrg
1727 1.1 mrg /*
1728 1.1 mrg * for pageouts we must set "dirtyoff" [NFS client code needs it].
1729 1.1 mrg * and we bump v_numoutput (counter of number of active outputs).
1730 1.1 mrg */
1731 1.1 mrg if ((bp->b_flags & B_READ) == 0) {
1732 1.1 mrg bp->b_dirtyoff = 0;
1733 1.1 mrg bp->b_dirtyend = npages * PAGE_SIZE;
1734 1.1 mrg s = splbio();
1735 1.1 mrg swapdev_vp->v_numoutput++;
1736 1.1 mrg splx(s);
1737 1.1 mrg }
1738 1.1 mrg
1739 1.1 mrg /*
1740 1.1 mrg * for async ops we must set up the aiodesc and setup the callback
1741 1.1 mrg * XXX: we expect no async-reads, but we don't prevent it here.
1742 1.1 mrg */
1743 1.1 mrg if (flags & B_ASYNC) {
1744 1.1 mrg sbp->sw_aio.aiodone = uvm_swap_aiodone;
1745 1.1 mrg sbp->sw_aio.kva = kva;
1746 1.1 mrg sbp->sw_aio.npages = npages;
1747 1.1 mrg sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1748 1.1 mrg bp->b_flags |= B_CALL; /* set callback */
1749 1.1 mrg bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1750 1.1 mrg UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1751 1.1 mrg }
1752 1.1 mrg UVMHIST_LOG(pdhist,
1753 1.1 mrg "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1754 1.1 mrg bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1755 1.1 mrg
1756 1.1 mrg /*
1757 1.1 mrg * now we start the I/O, and if async, return.
1758 1.1 mrg */
1759 1.1 mrg VOP_STRATEGY(bp);
1760 1.1 mrg if (flags & B_ASYNC)
1761 1.1 mrg return (VM_PAGER_PEND);
1762 1.1 mrg
1763 1.1 mrg /*
1764 1.1 mrg * must be sync i/o. wait for it to finish
1765 1.1 mrg */
1766 1.1 mrg bp->b_error = biowait(bp);
1767 1.1 mrg result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1768 1.1 mrg
1769 1.1 mrg /*
1770 1.1 mrg * kill the pager mapping
1771 1.1 mrg */
1772 1.1 mrg uvm_pagermapout(kva, npages);
1773 1.1 mrg
1774 1.1 mrg /*
1775 1.1 mrg * now dispose of the swap buffer
1776 1.1 mrg */
1777 1.1 mrg s = splbio();
1778 1.1 mrg bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1779 1.1 mrg if (bp->b_vp)
1780 1.1 mrg brelvp(bp);
1781 1.1 mrg
1782 1.1 mrg simple_lock(&swap_buf_lock);
1783 1.1 mrg SIMPLEQ_INSERT_HEAD(&freesbufs, sbp, sw_sq);
1784 1.1 mrg if (sbufs_wanted) {
1785 1.1 mrg sbufs_wanted = 0;
1786 1.1 mrg thread_wakeup(&freesbufs);
1787 1.1 mrg }
1788 1.1 mrg simple_unlock(&swap_buf_lock);
1789 1.1 mrg splx(s);
1790 1.1 mrg
1791 1.1 mrg /*
1792 1.1 mrg * finally return.
1793 1.1 mrg */
1794 1.1 mrg UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1795 1.1 mrg return (result);
1796 1.1 mrg }
1797 1.1 mrg
1798 1.1 mrg /*
1799 1.1 mrg * uvm_swap_bufdone: called from the buffer system when the i/o is done
1800 1.1 mrg */
1801 1.1 mrg static void
1802 1.1 mrg uvm_swap_bufdone(bp)
1803 1.1 mrg struct buf *bp;
1804 1.1 mrg {
1805 1.1 mrg struct swapbuf *sbp = (struct swapbuf *) bp;
1806 1.1 mrg int s = splbio();
1807 1.1 mrg UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1808 1.1 mrg
1809 1.1 mrg UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1810 1.1 mrg #ifdef DIAGNOSTIC
1811 1.1 mrg /*
1812 1.1 mrg * sanity check: swapbufs are private, so they shouldn't be wanted
1813 1.1 mrg */
1814 1.1 mrg if (bp->b_flags & B_WANTED)
1815 1.1 mrg panic("uvm_swap_bufdone: private buf wanted");
1816 1.1 mrg #endif
1817 1.1 mrg
1818 1.1 mrg /*
1819 1.1 mrg * drop buffers reference to the vnode and its flags.
1820 1.1 mrg */
1821 1.1 mrg bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1822 1.1 mrg if (bp->b_vp)
1823 1.1 mrg brelvp(bp);
1824 1.1 mrg
1825 1.1 mrg /*
1826 1.1 mrg * now put the aio on the uvm.aio_done list and wake the
1827 1.1 mrg * pagedaemon (which will finish up our job in its context).
1828 1.1 mrg */
1829 1.1 mrg simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1830 1.1 mrg TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1831 1.1 mrg simple_unlock(&uvm.pagedaemon_lock);
1832 1.1 mrg
1833 1.1 mrg thread_wakeup(&uvm.pagedaemon);
1834 1.1 mrg splx(s);
1835 1.1 mrg }
1836 1.1 mrg
1837 1.1 mrg /*
1838 1.1 mrg * uvm_swap_aiodone: aiodone function for anonymous memory
1839 1.1 mrg *
1840 1.1 mrg * => this is called in the context of the pagedaemon (but with the
1841 1.1 mrg * page queues unlocked!)
1842 1.1 mrg * => our "aio" structure must be part of a "swapbuf"
1843 1.1 mrg */
1844 1.1 mrg static void
1845 1.1 mrg uvm_swap_aiodone(aio)
1846 1.1 mrg struct uvm_aiodesc *aio;
1847 1.1 mrg {
1848 1.1 mrg struct swapbuf *sbp = aio->pd_ptr;
1849 1.1 mrg /* XXXMRG: does this work if PAGE_SIZE is a variable, eg SUN4C&&SUN4 */
1850 1.1 mrg /* XXX it does with GCC */
1851 1.1 mrg struct vm_page *pps[MAXBSIZE/PAGE_SIZE];
1852 1.1 mrg int lcv, s;
1853 1.1 mrg vm_offset_t addr;
1854 1.1 mrg UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1855 1.1 mrg
1856 1.1 mrg UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1857 1.1 mrg #ifdef DIAGNOSTIC
1858 1.1 mrg /*
1859 1.1 mrg * sanity check
1860 1.1 mrg */
1861 1.1 mrg if (aio->npages > (MAXBSIZE/PAGE_SIZE))
1862 1.1 mrg panic("uvm_swap_aiodone: aio too big!");
1863 1.1 mrg #endif
1864 1.1 mrg
1865 1.1 mrg /*
1866 1.1 mrg * first, we have to recover the page pointers (pps) by poking in the
1867 1.1 mrg * kernel pmap (XXX: should be saved in the buf structure).
1868 1.1 mrg */
1869 1.1 mrg for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1870 1.1 mrg addr += PAGE_SIZE, lcv++) {
1871 1.1 mrg pps[lcv] = uvm_pageratop(addr);
1872 1.1 mrg }
1873 1.1 mrg
1874 1.1 mrg /*
1875 1.1 mrg * now we can dispose of the kernel mappings of the buffer
1876 1.1 mrg */
1877 1.1 mrg uvm_pagermapout(aio->kva, aio->npages);
1878 1.1 mrg
1879 1.1 mrg /*
1880 1.1 mrg * now we can dispose of the pages by using the dropcluster function
1881 1.1 mrg * [note that we have no "page of interest" so we pass in null]
1882 1.1 mrg */
1883 1.1 mrg uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1884 1.1 mrg PGO_PDFREECLUST, 0);
1885 1.1 mrg
1886 1.1 mrg /*
1887 1.1 mrg * finally, we can dispose of the swapbuf
1888 1.1 mrg */
1889 1.1 mrg s = splbio();
1890 1.1 mrg simple_lock(&swap_buf_lock);
1891 1.1 mrg SIMPLEQ_INSERT_HEAD(&freesbufs, sbp, sw_sq);
1892 1.1 mrg if (sbufs_wanted) {
1893 1.1 mrg sbufs_wanted = 0;
1894 1.1 mrg thread_wakeup(&freesbufs);
1895 1.1 mrg }
1896 1.1 mrg simple_unlock(&swap_buf_lock);
1897 1.1 mrg splx(s);
1898 1.1 mrg
1899 1.1 mrg /*
1900 1.1 mrg * done!
1901 1.1 mrg */
1902 1.1 mrg }
1903