Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.137
      1  1.137      yamt /*	$NetBSD: uvm_swap.c,v 1.137 2008/02/29 20:35:23 yamt Exp $	*/
      2    1.1       mrg 
      3    1.1       mrg /*
      4    1.1       mrg  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5    1.1       mrg  * All rights reserved.
      6    1.1       mrg  *
      7    1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8    1.1       mrg  * modification, are permitted provided that the following conditions
      9    1.1       mrg  * are met:
     10    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15    1.1       mrg  * 3. The name of the author may not be used to endorse or promote products
     16    1.1       mrg  *    derived from this software without specific prior written permission.
     17    1.1       mrg  *
     18    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19    1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20    1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21    1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22    1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23    1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24    1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25    1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26    1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28    1.1       mrg  * SUCH DAMAGE.
     29    1.3       mrg  *
     30    1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31    1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32    1.1       mrg  */
     33   1.57     lukem 
     34   1.57     lukem #include <sys/cdefs.h>
     35  1.137      yamt __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.137 2008/02/29 20:35:23 yamt Exp $");
     36    1.5       mrg 
     37    1.6   thorpej #include "fs_nfs.h"
     38    1.5       mrg #include "opt_uvmhist.h"
     39   1.16       mrg #include "opt_compat_netbsd.h"
     40   1.41       chs #include "opt_ddb.h"
     41    1.1       mrg 
     42    1.1       mrg #include <sys/param.h>
     43    1.1       mrg #include <sys/systm.h>
     44    1.1       mrg #include <sys/buf.h>
     45   1.89      yamt #include <sys/bufq.h>
     46   1.36       mrg #include <sys/conf.h>
     47    1.1       mrg #include <sys/proc.h>
     48    1.1       mrg #include <sys/namei.h>
     49    1.1       mrg #include <sys/disklabel.h>
     50    1.1       mrg #include <sys/errno.h>
     51    1.1       mrg #include <sys/kernel.h>
     52  1.111      yamt #include <sys/malloc.h>
     53    1.1       mrg #include <sys/vnode.h>
     54    1.1       mrg #include <sys/file.h>
     55  1.110      yamt #include <sys/vmem.h>
     56   1.90      yamt #include <sys/blist.h>
     57    1.1       mrg #include <sys/mount.h>
     58   1.12        pk #include <sys/pool.h>
     59    1.1       mrg #include <sys/syscallargs.h>
     60   1.17       mrg #include <sys/swap.h>
     61  1.100      elad #include <sys/kauth.h>
     62  1.125        ad #include <sys/sysctl.h>
     63  1.130   hannken #include <sys/workqueue.h>
     64    1.1       mrg 
     65    1.1       mrg #include <uvm/uvm.h>
     66    1.1       mrg 
     67    1.1       mrg #include <miscfs/specfs/specdev.h>
     68    1.1       mrg 
     69    1.1       mrg /*
     70    1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     71    1.1       mrg  */
     72    1.1       mrg 
     73    1.1       mrg /*
     74    1.1       mrg  * swap space is managed in the following way:
     75   1.51       chs  *
     76    1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     77    1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     78    1.1       mrg  * information that is passed up to the user (via system calls).
     79    1.1       mrg  *
     80    1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     81    1.1       mrg  * swap parition usage.
     82    1.1       mrg  *
     83    1.1       mrg  * the system maintains a global data structure describing all swap
     84    1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     85    1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     86   1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     87    1.1       mrg  * CIRCLEQ of "swapdev" structures at that priority.
     88    1.1       mrg  *
     89    1.1       mrg  * locking:
     90  1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     91    1.1       mrg  *    system call and prevents the swap priority list from changing
     92    1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     93  1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     94    1.1       mrg  *    structures including the priority list, the swapdev structures,
     95  1.110      yamt  *    and the swapmap arena.
     96    1.1       mrg  *
     97    1.1       mrg  * each swap device has the following info:
     98    1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     99    1.1       mrg  *  - swap enabled (allows new allocations on swap)
    100    1.1       mrg  *  - map info in /dev/drum
    101    1.1       mrg  *  - vnode pointer
    102    1.1       mrg  * for swap files only:
    103    1.1       mrg  *  - block size
    104    1.1       mrg  *  - max byte count in buffer
    105    1.1       mrg  *  - buffer
    106    1.1       mrg  *
    107    1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    108    1.1       mrg  * the sys_swapctl performs the following operations:
    109    1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    110   1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    111    1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    112   1.85  junyoung  *	the current swap config into the array. The actual work is done
    113   1.63      manu  *	in the uvm_swap_stats(9) function.
    114    1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    115    1.1       mrg  *	priority in "misc", start swapping on it.
    116    1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    117    1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    118    1.1       mrg  *	"misc")
    119    1.1       mrg  */
    120    1.1       mrg 
    121    1.1       mrg /*
    122    1.1       mrg  * swapdev: describes a single swap partition/file
    123    1.1       mrg  *
    124    1.1       mrg  * note the following should be true:
    125    1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    126    1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    127    1.1       mrg  */
    128    1.1       mrg struct swapdev {
    129   1.16       mrg 	struct oswapent swd_ose;
    130   1.16       mrg #define	swd_dev		swd_ose.ose_dev		/* device id */
    131   1.16       mrg #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    132   1.16       mrg #define	swd_priority	swd_ose.ose_priority	/* our priority */
    133   1.16       mrg 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    134   1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    135   1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    136   1.16       mrg 	int			swd_npages;	/* #pages we can use */
    137   1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    138   1.32       chs 	int			swd_npgbad;	/* #pages bad */
    139   1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    140   1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    141   1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    142   1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    143   1.16       mrg 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    144    1.1       mrg 
    145   1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    146   1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    147   1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    148   1.33   thorpej 	int			swd_active;	/* number of active buffers */
    149    1.1       mrg };
    150    1.1       mrg 
    151    1.1       mrg /*
    152    1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    153    1.1       mrg  */
    154    1.1       mrg struct swappri {
    155    1.1       mrg 	int			spi_priority;     /* priority */
    156    1.1       mrg 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    157    1.1       mrg 	/* circleq of swapdevs at this priority */
    158    1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    159    1.1       mrg };
    160    1.1       mrg 
    161    1.1       mrg /*
    162    1.1       mrg  * The following two structures are used to keep track of data transfers
    163    1.1       mrg  * on swap devices associated with regular files.
    164    1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    165    1.1       mrg  * structure names here to ease porting..
    166    1.1       mrg  */
    167    1.1       mrg struct vndxfer {
    168    1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    169    1.1       mrg 	struct swapdev	*vx_sdp;
    170    1.1       mrg 	int		vx_error;
    171    1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    172    1.1       mrg 	int		vx_flags;
    173    1.1       mrg #define VX_BUSY		1
    174    1.1       mrg #define VX_DEAD		2
    175    1.1       mrg };
    176    1.1       mrg 
    177    1.1       mrg struct vndbuf {
    178    1.1       mrg 	struct buf	vb_buf;
    179    1.1       mrg 	struct vndxfer	*vb_xfer;
    180    1.1       mrg };
    181    1.1       mrg 
    182   1.12        pk 
    183    1.1       mrg /*
    184   1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    185    1.1       mrg  */
    186  1.123        ad POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
    187  1.123        ad     IPL_BIO);
    188  1.123        ad POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
    189  1.123        ad     IPL_BIO);
    190    1.1       mrg 
    191    1.1       mrg /*
    192    1.1       mrg  * local variables
    193    1.1       mrg  */
    194  1.111      yamt MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    195  1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    196    1.1       mrg 
    197    1.1       mrg /* list of all active swap devices [by priority] */
    198    1.1       mrg LIST_HEAD(swap_priority, swappri);
    199    1.1       mrg static struct swap_priority swap_priority;
    200    1.1       mrg 
    201    1.1       mrg /* locks */
    202  1.117        ad static krwlock_t swap_syscall_lock;
    203    1.1       mrg 
    204  1.130   hannken /* workqueue and use counter for swap to regular files */
    205  1.130   hannken static int sw_reg_count = 0;
    206  1.130   hannken static struct workqueue *sw_reg_workqueue;
    207  1.130   hannken 
    208    1.1       mrg /*
    209    1.1       mrg  * prototypes
    210    1.1       mrg  */
    211   1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    212    1.1       mrg 
    213  1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    214   1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    215   1.85  junyoung 					 struct swappri *, int);
    216   1.85  junyoung static void		 swaplist_trim(void);
    217    1.1       mrg 
    218   1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    219   1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    220    1.1       mrg 
    221   1.95      yamt static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    222   1.95      yamt 
    223   1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    224  1.130   hannken static void sw_reg_biodone(struct buf *);
    225  1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    226   1.85  junyoung static void sw_reg_start(struct swapdev *);
    227    1.1       mrg 
    228   1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    229    1.1       mrg 
    230    1.1       mrg /*
    231    1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    232    1.1       mrg  *
    233   1.51       chs  * => called at boot time from init_main.c after the filesystems
    234    1.1       mrg  *	are brought up (which happens after uvm_init())
    235    1.1       mrg  */
    236    1.1       mrg void
    237   1.93   thorpej uvm_swap_init(void)
    238    1.1       mrg {
    239    1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    240    1.1       mrg 
    241    1.1       mrg 	UVMHIST_CALLED(pdhist);
    242    1.1       mrg 	/*
    243    1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    244    1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    245    1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    246    1.1       mrg 	 */
    247    1.1       mrg 
    248    1.1       mrg 	LIST_INIT(&swap_priority);
    249    1.1       mrg 	uvmexp.nswapdev = 0;
    250  1.117        ad 	rw_init(&swap_syscall_lock);
    251  1.117        ad 	cv_init(&uvm.scheduler_cv, "schedule");
    252  1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    253   1.12        pk 
    254  1.117        ad 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    255  1.126        ad 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    256  1.117        ad 
    257    1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    258    1.1       mrg 		panic("uvm_swap_init: can't get vnode for swap device");
    259  1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    260  1.136   hannken 		panic("uvm_swap_init: can't lock swap device");
    261  1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    262  1.135   hannken 		panic("uvm_swap_init: can't open swap device");
    263  1.136   hannken 	VOP_UNLOCK(swapdev_vp, 0);
    264    1.1       mrg 
    265    1.1       mrg 	/*
    266    1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    267    1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    268   1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    269    1.1       mrg 	 * failure, or no allocation).
    270    1.1       mrg 	 */
    271  1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    272  1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    273    1.1       mrg 	if (swapmap == 0)
    274    1.1       mrg 		panic("uvm_swap_init: extent_create failed");
    275    1.1       mrg 
    276    1.1       mrg 	/*
    277    1.1       mrg 	 * done!
    278    1.1       mrg 	 */
    279  1.121   thorpej 	uvm.swap_running = true;
    280  1.125        ad 	uvm.swapout_enabled = 1;
    281    1.1       mrg 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    282  1.125        ad 
    283  1.125        ad         sysctl_createv(NULL, 0, NULL, NULL,
    284  1.125        ad             CTLFLAG_READWRITE,
    285  1.125        ad             CTLTYPE_INT, "swapout",
    286  1.125        ad             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
    287  1.125        ad             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
    288    1.1       mrg }
    289    1.1       mrg 
    290    1.1       mrg /*
    291    1.1       mrg  * swaplist functions: functions that operate on the list of swap
    292    1.1       mrg  * devices on the system.
    293    1.1       mrg  */
    294    1.1       mrg 
    295    1.1       mrg /*
    296    1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    297    1.1       mrg  *
    298  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    299    1.1       mrg  * => caller must provide a newly malloc'd swappri structure (we will
    300    1.1       mrg  *	FREE it if we don't need it... this it to prevent malloc blocking
    301    1.1       mrg  *	here while adding swap)
    302    1.1       mrg  */
    303    1.1       mrg static void
    304   1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    305    1.1       mrg {
    306    1.1       mrg 	struct swappri *spp, *pspp;
    307    1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    308    1.1       mrg 
    309    1.1       mrg 	/*
    310    1.1       mrg 	 * find entry at or after which to insert the new device.
    311    1.1       mrg 	 */
    312   1.55       chs 	pspp = NULL;
    313   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    314    1.1       mrg 		if (priority <= spp->spi_priority)
    315    1.1       mrg 			break;
    316    1.1       mrg 		pspp = spp;
    317    1.1       mrg 	}
    318    1.1       mrg 
    319    1.1       mrg 	/*
    320    1.1       mrg 	 * new priority?
    321    1.1       mrg 	 */
    322    1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    323    1.1       mrg 		spp = newspp;  /* use newspp! */
    324   1.32       chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    325   1.32       chs 			    priority, 0, 0, 0);
    326    1.1       mrg 
    327    1.1       mrg 		spp->spi_priority = priority;
    328    1.1       mrg 		CIRCLEQ_INIT(&spp->spi_swapdev);
    329    1.1       mrg 
    330    1.1       mrg 		if (pspp)
    331    1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    332    1.1       mrg 		else
    333    1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    334    1.1       mrg 	} else {
    335    1.1       mrg 	  	/* we don't need a new priority structure, free it */
    336  1.111      yamt 		FREE(newspp, M_VMSWAP);
    337    1.1       mrg 	}
    338    1.1       mrg 
    339    1.1       mrg 	/*
    340    1.1       mrg 	 * priority found (or created).   now insert on the priority's
    341    1.1       mrg 	 * circleq list and bump the total number of swapdevs.
    342    1.1       mrg 	 */
    343    1.1       mrg 	sdp->swd_priority = priority;
    344    1.1       mrg 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    345    1.1       mrg 	uvmexp.nswapdev++;
    346    1.1       mrg }
    347    1.1       mrg 
    348    1.1       mrg /*
    349    1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    350    1.1       mrg  *	global list.
    351    1.1       mrg  *
    352  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    353    1.1       mrg  * => we return the swapdev we found (and removed)
    354    1.1       mrg  */
    355    1.1       mrg static struct swapdev *
    356  1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    357    1.1       mrg {
    358    1.1       mrg 	struct swapdev *sdp;
    359    1.1       mrg 	struct swappri *spp;
    360    1.1       mrg 
    361    1.1       mrg 	/*
    362    1.1       mrg 	 * search the lists for the requested vp
    363    1.1       mrg 	 */
    364   1.55       chs 
    365   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    366   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    367    1.1       mrg 			if (sdp->swd_vp == vp) {
    368    1.1       mrg 				if (remove) {
    369    1.1       mrg 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    370    1.1       mrg 					    sdp, swd_next);
    371    1.1       mrg 					uvmexp.nswapdev--;
    372    1.1       mrg 				}
    373    1.1       mrg 				return(sdp);
    374    1.1       mrg 			}
    375   1.55       chs 		}
    376    1.1       mrg 	}
    377    1.1       mrg 	return (NULL);
    378    1.1       mrg }
    379    1.1       mrg 
    380  1.113      elad /*
    381    1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    382    1.1       mrg  *	them.
    383    1.1       mrg  *
    384  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    385    1.1       mrg  */
    386    1.1       mrg static void
    387   1.93   thorpej swaplist_trim(void)
    388    1.1       mrg {
    389    1.1       mrg 	struct swappri *spp, *nextspp;
    390    1.1       mrg 
    391   1.32       chs 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    392   1.32       chs 		nextspp = LIST_NEXT(spp, spi_swappri);
    393   1.32       chs 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    394   1.32       chs 		    (void *)&spp->spi_swapdev)
    395    1.1       mrg 			continue;
    396    1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    397  1.111      yamt 		free(spp, M_VMSWAP);
    398    1.1       mrg 	}
    399    1.1       mrg }
    400    1.1       mrg 
    401    1.1       mrg /*
    402    1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    403    1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    404    1.1       mrg  *
    405    1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    406  1.127        ad  * => caller must hold uvm_swap_data_lock
    407    1.1       mrg  */
    408    1.1       mrg static struct swapdev *
    409   1.93   thorpej swapdrum_getsdp(int pgno)
    410    1.1       mrg {
    411    1.1       mrg 	struct swapdev *sdp;
    412    1.1       mrg 	struct swappri *spp;
    413   1.51       chs 
    414   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    415   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    416   1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    417   1.48      fvdl 				continue;
    418    1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    419    1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    420    1.1       mrg 				return sdp;
    421    1.1       mrg 			}
    422   1.48      fvdl 		}
    423   1.55       chs 	}
    424    1.1       mrg 	return NULL;
    425    1.1       mrg }
    426    1.1       mrg 
    427    1.1       mrg 
    428    1.1       mrg /*
    429    1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    430    1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    431    1.1       mrg  */
    432    1.1       mrg int
    433  1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    434    1.1       mrg {
    435  1.133       dsl 	/* {
    436    1.1       mrg 		syscallarg(int) cmd;
    437    1.1       mrg 		syscallarg(void *) arg;
    438    1.1       mrg 		syscallarg(int) misc;
    439  1.133       dsl 	} */
    440    1.1       mrg 	struct vnode *vp;
    441    1.1       mrg 	struct nameidata nd;
    442    1.1       mrg 	struct swappri *spp;
    443    1.1       mrg 	struct swapdev *sdp;
    444    1.1       mrg 	struct swapent *sep;
    445  1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    446  1.101  christos 	char	*userpath;
    447   1.18     enami 	size_t	len;
    448   1.61      manu 	int	error, misc;
    449    1.1       mrg 	int	priority;
    450    1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    451    1.1       mrg 
    452    1.1       mrg 	misc = SCARG(uap, misc);
    453    1.1       mrg 
    454    1.1       mrg 	/*
    455    1.1       mrg 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    456    1.1       mrg 	 */
    457  1.117        ad 	rw_enter(&swap_syscall_lock, RW_WRITER);
    458   1.24       mrg 
    459  1.111      yamt 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    460    1.1       mrg 	/*
    461    1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    462    1.1       mrg 	 *
    463   1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    464    1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    465    1.1       mrg 	 */
    466    1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    467    1.8       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    468    1.8       mrg 		    0, 0, 0);
    469    1.1       mrg 		*retval = uvmexp.nswapdev;
    470   1.16       mrg 		error = 0;
    471   1.16       mrg 		goto out;
    472    1.1       mrg 	}
    473    1.1       mrg 
    474    1.1       mrg 	/*
    475    1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    476    1.1       mrg 	 *
    477   1.51       chs 	 * note that the swap_priority list can't change as long
    478    1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    479  1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    480    1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    481    1.1       mrg 	 */
    482   1.16       mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    483   1.16       mrg #if defined(COMPAT_13)
    484   1.16       mrg 	    || SCARG(uap, cmd) == SWAP_OSTATS
    485   1.16       mrg #endif
    486   1.16       mrg 	    ) {
    487   1.88  christos 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    488   1.88  christos 			misc = uvmexp.nswapdev;
    489   1.16       mrg #if defined(COMPAT_13)
    490   1.61      manu 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    491   1.61      manu 			len = sizeof(struct oswapent) * misc;
    492   1.62      manu 		else
    493   1.16       mrg #endif
    494   1.62      manu 			len = sizeof(struct swapent) * misc;
    495  1.111      yamt 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    496   1.62      manu 
    497   1.95      yamt 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    498   1.92  christos 		error = copyout(sep, SCARG(uap, arg), len);
    499    1.1       mrg 
    500  1.111      yamt 		free(sep, M_TEMP);
    501   1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    502   1.16       mrg 		goto out;
    503   1.51       chs 	}
    504   1.55       chs 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    505   1.55       chs 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    506   1.55       chs 
    507   1.55       chs 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    508   1.55       chs 		goto out;
    509   1.55       chs 	}
    510    1.1       mrg 
    511    1.1       mrg 	/*
    512    1.1       mrg 	 * all other requests require superuser privs.   verify.
    513    1.1       mrg 	 */
    514  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    515  1.106      elad 	    0, NULL, NULL, NULL)))
    516   1.16       mrg 		goto out;
    517    1.1       mrg 
    518  1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    519  1.104    martin 		/* drop the current dump device */
    520  1.104    martin 		dumpdev = NODEV;
    521  1.104    martin 		cpu_dumpconf();
    522  1.104    martin 		goto out;
    523  1.104    martin 	}
    524  1.104    martin 
    525    1.1       mrg 	/*
    526    1.1       mrg 	 * at this point we expect a path name in arg.   we will
    527    1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    528    1.1       mrg 	 * the vnode (VOP_LOCK).
    529    1.1       mrg 	 *
    530    1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    531   1.16       mrg 	 * miniroot)
    532    1.1       mrg 	 */
    533    1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    534    1.1       mrg 		vp = rootvp;		/* miniroot */
    535   1.79   thorpej 		if (vget(vp, LK_EXCLUSIVE)) {
    536   1.16       mrg 			error = EBUSY;
    537   1.16       mrg 			goto out;
    538    1.1       mrg 		}
    539   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    540  1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    541   1.16       mrg 			panic("swapctl: miniroot copy failed");
    542    1.1       mrg 	} else {
    543   1.16       mrg 		int	space;
    544   1.16       mrg 		char	*where;
    545   1.16       mrg 
    546   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    547   1.16       mrg 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    548  1.101  christos 			    SWAP_PATH_MAX, &len)))
    549   1.16       mrg 				goto out;
    550   1.16       mrg 			space = UIO_SYSSPACE;
    551   1.16       mrg 			where = userpath;
    552   1.16       mrg 		} else {
    553   1.16       mrg 			space = UIO_USERSPACE;
    554   1.16       mrg 			where = (char *)SCARG(uap, arg);
    555    1.1       mrg 		}
    556  1.132     pooka 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    557  1.132     pooka 		    space, where);
    558   1.16       mrg 		if ((error = namei(&nd)))
    559   1.16       mrg 			goto out;
    560    1.1       mrg 		vp = nd.ni_vp;
    561    1.1       mrg 	}
    562    1.1       mrg 	/* note: "vp" is referenced and locked */
    563    1.1       mrg 
    564    1.1       mrg 	error = 0;		/* assume no error */
    565    1.1       mrg 	switch(SCARG(uap, cmd)) {
    566   1.40       mrg 
    567   1.24       mrg 	case SWAP_DUMPDEV:
    568   1.24       mrg 		if (vp->v_type != VBLK) {
    569   1.24       mrg 			error = ENOTBLK;
    570   1.45        pk 			break;
    571   1.24       mrg 		}
    572  1.109       mrg 		if (bdevsw_lookup(vp->v_rdev))
    573  1.109       mrg 			dumpdev = vp->v_rdev;
    574  1.109       mrg 		else
    575  1.109       mrg 			dumpdev = NODEV;
    576   1.68  drochner 		cpu_dumpconf();
    577   1.24       mrg 		break;
    578   1.24       mrg 
    579    1.1       mrg 	case SWAP_CTL:
    580    1.1       mrg 		/*
    581    1.1       mrg 		 * get new priority, remove old entry (if any) and then
    582    1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    583    1.1       mrg 		 * any empty priority structures.
    584    1.1       mrg 		 */
    585    1.1       mrg 		priority = SCARG(uap, misc);
    586  1.111      yamt 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    587  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    588  1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    589    1.1       mrg 			error = ENOENT;
    590    1.1       mrg 		} else {
    591    1.1       mrg 			swaplist_insert(sdp, spp, priority);
    592    1.1       mrg 			swaplist_trim();
    593    1.1       mrg 		}
    594  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    595    1.1       mrg 		if (error)
    596  1.111      yamt 			free(spp, M_VMSWAP);
    597    1.1       mrg 		break;
    598    1.1       mrg 
    599    1.1       mrg 	case SWAP_ON:
    600   1.32       chs 
    601    1.1       mrg 		/*
    602    1.1       mrg 		 * check for duplicates.   if none found, then insert a
    603    1.1       mrg 		 * dummy entry on the list to prevent someone else from
    604    1.1       mrg 		 * trying to enable this device while we are working on
    605    1.1       mrg 		 * it.
    606    1.1       mrg 		 */
    607   1.32       chs 
    608    1.1       mrg 		priority = SCARG(uap, misc);
    609  1.111      yamt 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    610  1.111      yamt 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    611  1.111      yamt 		memset(sdp, 0, sizeof(*sdp));
    612   1.67       chs 		sdp->swd_flags = SWF_FAKE;
    613   1.67       chs 		sdp->swd_vp = vp;
    614   1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    615   1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    616  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    617  1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    618    1.1       mrg 			error = EBUSY;
    619  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    620   1.96      yamt 			bufq_free(sdp->swd_tab);
    621  1.111      yamt 			free(sdp, M_VMSWAP);
    622  1.111      yamt 			free(spp, M_VMSWAP);
    623   1.16       mrg 			break;
    624    1.1       mrg 		}
    625    1.1       mrg 		swaplist_insert(sdp, spp, priority);
    626  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    627    1.1       mrg 
    628   1.16       mrg 		sdp->swd_pathlen = len;
    629  1.111      yamt 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    630   1.19        pk 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    631   1.19        pk 			panic("swapctl: copystr");
    632   1.32       chs 
    633    1.1       mrg 		/*
    634    1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    635    1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    636    1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    637    1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    638    1.1       mrg 		 */
    639   1.32       chs 
    640   1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    641  1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    642  1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    643    1.1       mrg 			swaplist_trim();
    644  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    645   1.96      yamt 			bufq_free(sdp->swd_tab);
    646  1.111      yamt 			free(sdp->swd_path, M_VMSWAP);
    647  1.111      yamt 			free(sdp, M_VMSWAP);
    648    1.1       mrg 			break;
    649    1.1       mrg 		}
    650    1.1       mrg 		break;
    651    1.1       mrg 
    652    1.1       mrg 	case SWAP_OFF:
    653  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    654  1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    655  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    656    1.1       mrg 			error = ENXIO;
    657    1.1       mrg 			break;
    658    1.1       mrg 		}
    659   1.32       chs 
    660    1.1       mrg 		/*
    661    1.1       mrg 		 * If a device isn't in use or enabled, we
    662    1.1       mrg 		 * can't stop swapping from it (again).
    663    1.1       mrg 		 */
    664    1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    665  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    666    1.1       mrg 			error = EBUSY;
    667   1.16       mrg 			break;
    668    1.1       mrg 		}
    669    1.1       mrg 
    670    1.1       mrg 		/*
    671   1.32       chs 		 * do the real work.
    672    1.1       mrg 		 */
    673   1.97  christos 		error = swap_off(l, sdp);
    674    1.1       mrg 		break;
    675    1.1       mrg 
    676    1.1       mrg 	default:
    677    1.1       mrg 		error = EINVAL;
    678    1.1       mrg 	}
    679    1.1       mrg 
    680    1.1       mrg 	/*
    681   1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    682    1.1       mrg 	 */
    683    1.1       mrg 	vput(vp);
    684   1.39       chs 
    685   1.16       mrg out:
    686  1.111      yamt 	free(userpath, M_TEMP);
    687  1.117        ad 	rw_exit(&swap_syscall_lock);
    688    1.1       mrg 
    689    1.1       mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    690    1.1       mrg 	return (error);
    691   1.61      manu }
    692   1.61      manu 
    693   1.85  junyoung /*
    694   1.61      manu  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    695   1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    696   1.61      manu  * emulation to use it directly without going through sys_swapctl().
    697   1.61      manu  * The problem with using sys_swapctl() there is that it involves
    698   1.61      manu  * copying the swapent array to the stackgap, and this array's size
    699   1.85  junyoung  * is not known at build time. Hence it would not be possible to
    700   1.61      manu  * ensure it would fit in the stackgap in any case.
    701   1.61      manu  */
    702   1.61      manu void
    703   1.93   thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    704   1.61      manu {
    705   1.95      yamt 
    706  1.117        ad 	rw_enter(&swap_syscall_lock, RW_READER);
    707   1.95      yamt 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    708  1.117        ad 	rw_exit(&swap_syscall_lock);
    709   1.95      yamt }
    710   1.95      yamt 
    711   1.95      yamt static void
    712   1.95      yamt uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    713   1.95      yamt {
    714   1.61      manu 	struct swappri *spp;
    715   1.61      manu 	struct swapdev *sdp;
    716   1.61      manu 	int count = 0;
    717   1.61      manu 
    718   1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    719   1.61      manu 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    720   1.61      manu 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    721   1.61      manu 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    722   1.61      manu 		  	/*
    723   1.61      manu 			 * backwards compatibility for system call.
    724   1.61      manu 			 * note that we use 'struct oswapent' as an
    725   1.61      manu 			 * overlay into both 'struct swapdev' and
    726   1.61      manu 			 * the userland 'struct swapent', as we
    727   1.61      manu 			 * want to retain backwards compatibility
    728   1.61      manu 			 * with NetBSD 1.3.
    729   1.61      manu 			 */
    730   1.61      manu 			sdp->swd_ose.ose_inuse =
    731   1.99      matt 			    btodb((uint64_t)sdp->swd_npginuse <<
    732   1.61      manu 			    PAGE_SHIFT);
    733   1.85  junyoung 			(void)memcpy(sep, &sdp->swd_ose,
    734   1.61      manu 			    sizeof(struct oswapent));
    735   1.85  junyoung 
    736   1.61      manu 			/* now copy out the path if necessary */
    737  1.108   thorpej #if !defined(COMPAT_13)
    738  1.108   thorpej 			(void) cmd;
    739  1.108   thorpej #endif
    740   1.61      manu #if defined(COMPAT_13)
    741   1.61      manu 			if (cmd == SWAP_STATS)
    742   1.61      manu #endif
    743   1.61      manu 				(void)memcpy(&sep->se_path, sdp->swd_path,
    744   1.61      manu 				    sdp->swd_pathlen);
    745   1.61      manu 
    746   1.61      manu 			count++;
    747   1.61      manu #if defined(COMPAT_13)
    748   1.61      manu 			if (cmd == SWAP_OSTATS)
    749   1.61      manu 				sep = (struct swapent *)
    750   1.61      manu 				    ((struct oswapent *)sep + 1);
    751   1.61      manu 			else
    752   1.61      manu #endif
    753   1.61      manu 				sep++;
    754   1.61      manu 		}
    755   1.61      manu 	}
    756   1.61      manu 
    757   1.61      manu 	*retval = count;
    758   1.61      manu 	return;
    759    1.1       mrg }
    760    1.1       mrg 
    761    1.1       mrg /*
    762    1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    763    1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    764    1.1       mrg  *	SWF_FAKE).
    765    1.1       mrg  *
    766    1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    767    1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    768  1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    769    1.1       mrg  *	if needed.
    770    1.1       mrg  */
    771    1.1       mrg static int
    772   1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    773    1.1       mrg {
    774    1.1       mrg 	struct vnode *vp;
    775    1.1       mrg 	int error, npages, nblocks, size;
    776    1.1       mrg 	long addr;
    777   1.48      fvdl 	u_long result;
    778    1.1       mrg 	struct vattr va;
    779    1.1       mrg #ifdef NFS
    780   1.85  junyoung 	extern int (**nfsv2_vnodeop_p)(void *);
    781    1.1       mrg #endif /* NFS */
    782   1.69   gehenna 	const struct bdevsw *bdev;
    783    1.1       mrg 	dev_t dev;
    784    1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    785    1.1       mrg 
    786    1.1       mrg 	/*
    787    1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    788    1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    789    1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    790    1.1       mrg 	 */
    791    1.1       mrg 
    792    1.1       mrg 	vp = sdp->swd_vp;
    793    1.1       mrg 	dev = sdp->swd_dev;
    794    1.1       mrg 
    795    1.1       mrg 	/*
    796    1.1       mrg 	 * open the swap file (mostly useful for block device files to
    797    1.1       mrg 	 * let device driver know what is up).
    798    1.1       mrg 	 *
    799    1.1       mrg 	 * we skip the open/close for root on swap because the root
    800    1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    801    1.1       mrg 	 */
    802    1.1       mrg 	if (vp != rootvp) {
    803  1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    804    1.1       mrg 			return (error);
    805    1.1       mrg 	}
    806    1.1       mrg 
    807    1.1       mrg 	/* XXX this only works for block devices */
    808    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    809    1.1       mrg 
    810    1.1       mrg 	/*
    811    1.1       mrg 	 * we now need to determine the size of the swap area.   for
    812    1.1       mrg 	 * block specials we can call the d_psize function.
    813    1.1       mrg 	 * for normal files, we must stat [get attrs].
    814    1.1       mrg 	 *
    815    1.1       mrg 	 * we put the result in nblks.
    816    1.1       mrg 	 * for normal files, we also want the filesystem block size
    817    1.1       mrg 	 * (which we get with statfs).
    818    1.1       mrg 	 */
    819    1.1       mrg 	switch (vp->v_type) {
    820    1.1       mrg 	case VBLK:
    821   1.69   gehenna 		bdev = bdevsw_lookup(dev);
    822   1.69   gehenna 		if (bdev == NULL || bdev->d_psize == NULL ||
    823   1.69   gehenna 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    824    1.1       mrg 			error = ENXIO;
    825    1.1       mrg 			goto bad;
    826    1.1       mrg 		}
    827    1.1       mrg 		break;
    828    1.1       mrg 
    829    1.1       mrg 	case VREG:
    830  1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    831    1.1       mrg 			goto bad;
    832    1.1       mrg 		nblocks = (int)btodb(va.va_size);
    833    1.1       mrg 		if ((error =
    834  1.131     pooka 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
    835    1.1       mrg 			goto bad;
    836    1.1       mrg 
    837    1.1       mrg 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    838    1.1       mrg 		/*
    839    1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    840    1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    841    1.1       mrg 		 */
    842    1.1       mrg #ifdef NFS
    843    1.1       mrg 		if (vp->v_op == nfsv2_vnodeop_p)
    844    1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    845    1.1       mrg 		else
    846    1.1       mrg #endif /* NFS */
    847    1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    848    1.1       mrg 		break;
    849    1.1       mrg 
    850    1.1       mrg 	default:
    851    1.1       mrg 		error = ENXIO;
    852    1.1       mrg 		goto bad;
    853    1.1       mrg 	}
    854    1.1       mrg 
    855    1.1       mrg 	/*
    856    1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    857    1.1       mrg 	 */
    858    1.1       mrg 
    859   1.16       mrg 	sdp->swd_ose.ose_nblks = nblocks;
    860   1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    861    1.1       mrg 
    862    1.1       mrg 	/*
    863    1.1       mrg 	 * for block special files, we want to make sure that leave
    864    1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    865   1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    866    1.1       mrg 	 * note that because of this the "size" can be less than the
    867    1.1       mrg 	 * actual number of blocks on the device.
    868    1.1       mrg 	 */
    869    1.1       mrg 	if (vp->v_type == VBLK) {
    870    1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    871    1.1       mrg 		size = npages - 1;
    872    1.1       mrg 		addr = 1;
    873    1.1       mrg 	} else {
    874    1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    875    1.1       mrg 		size = npages;
    876    1.1       mrg 		addr = 0;
    877    1.1       mrg 	}
    878    1.1       mrg 
    879    1.1       mrg 	/*
    880    1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    881    1.1       mrg 	 * area.   we want at least one page.
    882    1.1       mrg 	 */
    883    1.1       mrg 
    884    1.1       mrg 	if (size < 1) {
    885    1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    886    1.1       mrg 		error = EINVAL;
    887    1.1       mrg 		goto bad;
    888    1.1       mrg 	}
    889    1.1       mrg 
    890    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    891    1.1       mrg 
    892    1.1       mrg 	/*
    893    1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    894    1.1       mrg 	 */
    895    1.1       mrg 
    896   1.90      yamt 	sdp->swd_blist = blist_create(npages);
    897   1.90      yamt 	/* mark all expect the `saved' region free. */
    898   1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    899    1.1       mrg 
    900    1.1       mrg 	/*
    901   1.51       chs 	 * if the vnode we are swapping to is the root vnode
    902    1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    903   1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    904    1.1       mrg 	 * find its size and skip over it.
    905    1.1       mrg 	 */
    906    1.1       mrg 	if (vp == rootvp) {
    907    1.1       mrg 		struct mount *mp;
    908   1.86  christos 		struct statvfs *sp;
    909    1.1       mrg 		int rootblocks, rootpages;
    910    1.1       mrg 
    911    1.1       mrg 		mp = rootvnode->v_mount;
    912    1.1       mrg 		sp = &mp->mnt_stat;
    913   1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    914   1.64  fredette 		/*
    915   1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    916   1.64  fredette 		 * blocks in the filesystem, it's the number of
    917   1.64  fredette 		 * data blocks.  so, our rootblocks almost
    918   1.85  junyoung 		 * definitely underestimates the total size
    919   1.64  fredette 		 * of the filesystem - how badly depends on the
    920   1.85  junyoung 		 * details of the filesystem type.  there isn't
    921   1.64  fredette 		 * an obvious way to deal with this cleanly
    922   1.85  junyoung 		 * and perfectly, so for now we just pad our
    923   1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    924   1.64  fredette 		 */
    925   1.64  fredette 		rootblocks += (rootblocks >> 5) +
    926   1.64  fredette 			(rootblocks >> 6) +
    927   1.64  fredette 			(rootblocks >> 7);
    928   1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    929   1.32       chs 		if (rootpages > size)
    930    1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    931    1.1       mrg 
    932   1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    933    1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    934   1.90      yamt 		}
    935    1.1       mrg 
    936   1.32       chs 		size -= rootpages;
    937    1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    938   1.32       chs 		printf("leaving %d pages of swap\n", size);
    939    1.1       mrg 	}
    940    1.1       mrg 
    941   1.39       chs 	/*
    942   1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    943   1.39       chs 	 */
    944   1.39       chs 	vref(vp);
    945   1.39       chs 
    946    1.1       mrg 	/*
    947    1.1       mrg 	 * now add the new swapdev to the drum and enable.
    948    1.1       mrg 	 */
    949  1.110      yamt 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    950  1.110      yamt 	if (result == 0)
    951   1.48      fvdl 		panic("swapdrum_add");
    952  1.130   hannken 	/*
    953  1.130   hannken 	 * If this is the first regular swap create the workqueue.
    954  1.130   hannken 	 * => Protected by swap_syscall_lock.
    955  1.130   hannken 	 */
    956  1.130   hannken 	if (vp->v_type != VBLK) {
    957  1.130   hannken 		if (sw_reg_count++ == 0) {
    958  1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
    959  1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    960  1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    961  1.130   hannken 				panic("swap_add: workqueue_create failed");
    962  1.130   hannken 		}
    963  1.130   hannken 	}
    964   1.48      fvdl 
    965   1.48      fvdl 	sdp->swd_drumoffset = (int)result;
    966   1.48      fvdl 	sdp->swd_drumsize = npages;
    967   1.48      fvdl 	sdp->swd_npages = size;
    968  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
    969    1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    970    1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    971   1.32       chs 	uvmexp.swpages += size;
    972   1.81        pk 	uvmexp.swpgavail += size;
    973  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
    974    1.1       mrg 	return (0);
    975    1.1       mrg 
    976    1.1       mrg 	/*
    977   1.43       chs 	 * failure: clean up and return error.
    978    1.1       mrg 	 */
    979   1.43       chs 
    980   1.43       chs bad:
    981   1.90      yamt 	if (sdp->swd_blist) {
    982   1.90      yamt 		blist_destroy(sdp->swd_blist);
    983   1.43       chs 	}
    984   1.43       chs 	if (vp != rootvp) {
    985  1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
    986   1.43       chs 	}
    987    1.1       mrg 	return (error);
    988    1.1       mrg }
    989    1.1       mrg 
    990    1.1       mrg /*
    991    1.1       mrg  * swap_off: stop swapping on swapdev
    992    1.1       mrg  *
    993   1.32       chs  * => swap data should be locked, we will unlock.
    994    1.1       mrg  */
    995    1.1       mrg static int
    996   1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
    997    1.1       mrg {
    998   1.91      yamt 	int npages = sdp->swd_npages;
    999   1.91      yamt 	int error = 0;
   1000   1.81        pk 
   1001    1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1002   1.81        pk 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1003    1.1       mrg 
   1004   1.32       chs 	/* disable the swap area being removed */
   1005    1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1006   1.81        pk 	uvmexp.swpgavail -= npages;
   1007  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1008   1.32       chs 
   1009   1.32       chs 	/*
   1010   1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1011   1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1012   1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1013   1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1014   1.32       chs 	 */
   1015    1.1       mrg 
   1016   1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1017   1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1018   1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1019   1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1020   1.91      yamt 		error = ENOMEM;
   1021   1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1022   1.91      yamt 		error = EBUSY;
   1023   1.91      yamt 	}
   1024   1.51       chs 
   1025   1.91      yamt 	if (error) {
   1026  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1027   1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1028   1.81        pk 		uvmexp.swpgavail += npages;
   1029  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1030   1.91      yamt 
   1031   1.91      yamt 		return error;
   1032   1.32       chs 	}
   1033    1.1       mrg 
   1034    1.1       mrg 	/*
   1035  1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1036  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1037  1.130   hannken 	 */
   1038  1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1039  1.130   hannken 		KASSERT(sw_reg_count > 0);
   1040  1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1041  1.130   hannken 		if (--sw_reg_count == 0) {
   1042  1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1043  1.130   hannken 			sw_reg_workqueue = NULL;
   1044  1.130   hannken 		}
   1045  1.130   hannken 	}
   1046  1.130   hannken 
   1047  1.130   hannken 	/*
   1048   1.58     enami 	 * done with the vnode.
   1049   1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1050   1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1051    1.1       mrg 	 */
   1052   1.39       chs 	vrele(sdp->swd_vp);
   1053   1.32       chs 	if (sdp->swd_vp != rootvp) {
   1054  1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1055   1.32       chs 	}
   1056   1.32       chs 
   1057  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1058   1.81        pk 	uvmexp.swpages -= npages;
   1059   1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1060    1.1       mrg 
   1061  1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1062   1.70    provos 		panic("swap_off: swapdev not in list");
   1063   1.32       chs 	swaplist_trim();
   1064  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1065    1.1       mrg 
   1066   1.32       chs 	/*
   1067   1.32       chs 	 * free all resources!
   1068   1.32       chs 	 */
   1069  1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1070   1.90      yamt 	blist_destroy(sdp->swd_blist);
   1071   1.96      yamt 	bufq_free(sdp->swd_tab);
   1072  1.111      yamt 	free(sdp, M_VMSWAP);
   1073    1.1       mrg 	return (0);
   1074    1.1       mrg }
   1075    1.1       mrg 
   1076    1.1       mrg /*
   1077    1.1       mrg  * /dev/drum interface and i/o functions
   1078    1.1       mrg  */
   1079    1.1       mrg 
   1080    1.1       mrg /*
   1081    1.1       mrg  * swstrategy: perform I/O on the drum
   1082    1.1       mrg  *
   1083    1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1084    1.1       mrg  */
   1085   1.94   thorpej static void
   1086   1.93   thorpej swstrategy(struct buf *bp)
   1087    1.1       mrg {
   1088    1.1       mrg 	struct swapdev *sdp;
   1089    1.1       mrg 	struct vnode *vp;
   1090  1.134        ad 	int pageno, bn;
   1091    1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1092    1.1       mrg 
   1093    1.1       mrg 	/*
   1094    1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1095    1.1       mrg 	 * be yanked out from under us because we are holding resources
   1096    1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1097    1.1       mrg 	 */
   1098   1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1099  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1100    1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1101  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1102    1.1       mrg 	if (sdp == NULL) {
   1103    1.1       mrg 		bp->b_error = EINVAL;
   1104    1.1       mrg 		biodone(bp);
   1105    1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1106    1.1       mrg 		return;
   1107    1.1       mrg 	}
   1108    1.1       mrg 
   1109    1.1       mrg 	/*
   1110    1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1111    1.1       mrg 	 */
   1112    1.1       mrg 
   1113   1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1114   1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1115    1.1       mrg 
   1116   1.41       chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1117    1.1       mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1118    1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1119    1.1       mrg 
   1120    1.1       mrg 	/*
   1121    1.1       mrg 	 * for block devices we finish up here.
   1122   1.32       chs 	 * for regular files we have to do more work which we delegate
   1123    1.1       mrg 	 * to sw_reg_strategy().
   1124    1.1       mrg 	 */
   1125    1.1       mrg 
   1126  1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1127  1.134        ad 	switch (vp->v_type) {
   1128    1.1       mrg 	default:
   1129  1.134        ad 		panic("swstrategy: vnode type 0x%x", vp->v_type);
   1130   1.32       chs 
   1131    1.1       mrg 	case VBLK:
   1132    1.1       mrg 
   1133    1.1       mrg 		/*
   1134    1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1135    1.1       mrg 		 * on the swapdev (sdp).
   1136    1.1       mrg 		 */
   1137    1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1138    1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1139    1.1       mrg 
   1140    1.1       mrg 		/*
   1141    1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1142    1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1143    1.1       mrg 		 */
   1144    1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1145  1.134        ad 			mutex_enter(bp->b_objlock);
   1146    1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1147  1.134        ad 			mutex_exit(bp->b_objlock);
   1148  1.134        ad 			mutex_enter(&vp->v_interlock);
   1149  1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1150  1.134        ad 			mutex_exit(&vp->v_interlock);
   1151    1.1       mrg 		}
   1152    1.1       mrg 
   1153   1.41       chs 		/*
   1154    1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1155    1.1       mrg 		 */
   1156    1.1       mrg 		bp->b_vp = vp;
   1157  1.134        ad 		bp->b_objlock = &vp->v_interlock;
   1158   1.84   hannken 		VOP_STRATEGY(vp, bp);
   1159    1.1       mrg 		return;
   1160   1.32       chs 
   1161    1.1       mrg 	case VREG:
   1162    1.1       mrg 		/*
   1163   1.32       chs 		 * delegate to sw_reg_strategy function.
   1164    1.1       mrg 		 */
   1165    1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1166    1.1       mrg 		return;
   1167    1.1       mrg 	}
   1168    1.1       mrg 	/* NOTREACHED */
   1169    1.1       mrg }
   1170    1.1       mrg 
   1171    1.1       mrg /*
   1172   1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1173   1.94   thorpej  */
   1174   1.94   thorpej /*ARGSUSED*/
   1175   1.94   thorpej static int
   1176  1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1177   1.94   thorpej {
   1178   1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1179   1.94   thorpej 
   1180   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1181   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1182   1.94   thorpej }
   1183   1.94   thorpej 
   1184   1.94   thorpej /*
   1185   1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1186   1.94   thorpej  */
   1187   1.94   thorpej /*ARGSUSED*/
   1188   1.94   thorpej static int
   1189  1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1190   1.94   thorpej {
   1191   1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1192   1.94   thorpej 
   1193   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1194   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1195   1.94   thorpej }
   1196   1.94   thorpej 
   1197   1.94   thorpej const struct bdevsw swap_bdevsw = {
   1198  1.135   hannken 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1199   1.94   thorpej };
   1200   1.94   thorpej 
   1201   1.94   thorpej const struct cdevsw swap_cdevsw = {
   1202   1.94   thorpej 	nullopen, nullclose, swread, swwrite, noioctl,
   1203  1.105  christos 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1204   1.94   thorpej };
   1205   1.94   thorpej 
   1206   1.94   thorpej /*
   1207    1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1208    1.1       mrg  */
   1209    1.1       mrg static void
   1210   1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1211    1.1       mrg {
   1212    1.1       mrg 	struct vnode	*vp;
   1213    1.1       mrg 	struct vndxfer	*vnx;
   1214   1.44     enami 	daddr_t		nbn;
   1215  1.122  christos 	char 		*addr;
   1216   1.44     enami 	off_t		byteoff;
   1217    1.9       mrg 	int		s, off, nra, error, sz, resid;
   1218    1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1219    1.1       mrg 
   1220    1.1       mrg 	/*
   1221    1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1222    1.1       mrg 	 * our buffer.
   1223    1.1       mrg 	 */
   1224  1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1225    1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1226    1.1       mrg 	vnx->vx_error = 0;
   1227    1.1       mrg 	vnx->vx_pending = 0;
   1228    1.1       mrg 	vnx->vx_bp = bp;
   1229    1.1       mrg 	vnx->vx_sdp = sdp;
   1230    1.1       mrg 
   1231    1.1       mrg 	/*
   1232    1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1233    1.1       mrg 	 * our buffer.
   1234    1.1       mrg 	 */
   1235    1.1       mrg 	error = 0;
   1236    1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1237    1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1238   1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1239    1.1       mrg 
   1240    1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1241    1.1       mrg 		struct vndbuf	*nbp;
   1242    1.1       mrg 
   1243    1.1       mrg 		/*
   1244    1.1       mrg 		 * translate byteoffset into block number.  return values:
   1245    1.1       mrg 		 *   vp = vnode of underlying device
   1246    1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1247    1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1248    1.1       mrg 		 *	block)
   1249    1.1       mrg 		 */
   1250    1.1       mrg 		nra = 0;
   1251    1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1252    1.1       mrg 				 	&vp, &nbn, &nra);
   1253    1.1       mrg 
   1254   1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1255   1.51       chs 			/*
   1256   1.23      marc 			 * this used to just set error, but that doesn't
   1257   1.23      marc 			 * do the right thing.  Instead, it causes random
   1258   1.23      marc 			 * memory errors.  The panic() should remain until
   1259   1.23      marc 			 * this condition doesn't destabilize the system.
   1260   1.23      marc 			 */
   1261   1.23      marc #if 1
   1262   1.23      marc 			panic("sw_reg_strategy: swap to sparse file");
   1263   1.23      marc #else
   1264    1.1       mrg 			error = EIO;	/* failure */
   1265   1.23      marc #endif
   1266   1.23      marc 		}
   1267    1.1       mrg 
   1268    1.1       mrg 		/*
   1269    1.1       mrg 		 * punt if there was an error or a hole in the file.
   1270    1.1       mrg 		 * we must wait for any i/o ops we have already started
   1271    1.1       mrg 		 * to finish before returning.
   1272    1.1       mrg 		 *
   1273    1.1       mrg 		 * XXX we could deal with holes here but it would be
   1274    1.1       mrg 		 * a hassle (in the write case).
   1275    1.1       mrg 		 */
   1276    1.1       mrg 		if (error) {
   1277    1.1       mrg 			s = splbio();
   1278    1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1279    1.1       mrg 			goto out;
   1280    1.1       mrg 		}
   1281    1.1       mrg 
   1282    1.1       mrg 		/*
   1283    1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1284    1.1       mrg 		 */
   1285   1.41       chs 		off = byteoff % sdp->swd_bsize;
   1286   1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1287   1.41       chs 		if (sz > resid)
   1288    1.1       mrg 			sz = resid;
   1289    1.1       mrg 
   1290   1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1291   1.41       chs 			    "vp %p/%p offset 0x%x/0x%x",
   1292   1.41       chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1293    1.1       mrg 
   1294    1.1       mrg 		/*
   1295    1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1296    1.1       mrg 		 * at the front of the nbp structure so that you can
   1297    1.1       mrg 		 * cast pointers between the two structure easily.
   1298    1.1       mrg 		 */
   1299  1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1300  1.134        ad 		buf_init(&nbp->vb_buf);
   1301  1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1302  1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1303  1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1304    1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1305   1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1306    1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1307    1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1308   1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1309    1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1310   1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1311  1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1312   1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1313  1.134        ad 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1314   1.53       chs 		if (vp->v_type == VBLK) {
   1315   1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1316   1.53       chs 		}
   1317    1.1       mrg 
   1318    1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1319    1.1       mrg 
   1320    1.1       mrg 		/*
   1321    1.1       mrg 		 * Just sort by block number
   1322    1.1       mrg 		 */
   1323    1.1       mrg 		s = splbio();
   1324    1.1       mrg 		if (vnx->vx_error != 0) {
   1325  1.134        ad 			buf_destroy(&nbp->vb_buf);
   1326  1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1327    1.1       mrg 			goto out;
   1328    1.1       mrg 		}
   1329    1.1       mrg 		vnx->vx_pending++;
   1330    1.1       mrg 
   1331    1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1332  1.134        ad 		/* XXXAD locking */
   1333   1.96      yamt 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
   1334    1.1       mrg 		sw_reg_start(sdp);
   1335    1.1       mrg 		splx(s);
   1336    1.1       mrg 
   1337    1.1       mrg 		/*
   1338    1.1       mrg 		 * advance to the next I/O
   1339    1.1       mrg 		 */
   1340    1.9       mrg 		byteoff += sz;
   1341    1.1       mrg 		addr += sz;
   1342    1.1       mrg 	}
   1343    1.1       mrg 
   1344    1.1       mrg 	s = splbio();
   1345    1.1       mrg 
   1346    1.1       mrg out: /* Arrive here at splbio */
   1347    1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1348    1.1       mrg 	if (vnx->vx_pending == 0) {
   1349  1.134        ad 		error = vnx->vx_error;
   1350  1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1351  1.134        ad 		bp->b_error = error;
   1352    1.1       mrg 		biodone(bp);
   1353    1.1       mrg 	}
   1354    1.1       mrg 	splx(s);
   1355    1.1       mrg }
   1356    1.1       mrg 
   1357    1.1       mrg /*
   1358    1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1359    1.1       mrg  *
   1360   1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1361    1.1       mrg  */
   1362    1.1       mrg static void
   1363   1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1364    1.1       mrg {
   1365    1.1       mrg 	struct buf	*bp;
   1366  1.134        ad 	struct vnode	*vp;
   1367    1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1368    1.1       mrg 
   1369    1.8       mrg 	/* recursion control */
   1370    1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1371    1.1       mrg 		return;
   1372    1.1       mrg 
   1373    1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1374    1.1       mrg 
   1375   1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1376   1.96      yamt 		bp = BUFQ_GET(sdp->swd_tab);
   1377    1.1       mrg 		if (bp == NULL)
   1378    1.1       mrg 			break;
   1379   1.33   thorpej 		sdp->swd_active++;
   1380    1.1       mrg 
   1381    1.1       mrg 		UVMHIST_LOG(pdhist,
   1382    1.1       mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1383    1.1       mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1384  1.134        ad 		vp = bp->b_vp;
   1385  1.134        ad 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1386  1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1387  1.134        ad 			mutex_enter(&vp->v_interlock);
   1388  1.134        ad 			vp->v_numoutput++;
   1389  1.134        ad 			mutex_exit(&vp->v_interlock);
   1390  1.134        ad 		}
   1391  1.134        ad 		VOP_STRATEGY(vp, bp);
   1392    1.1       mrg 	}
   1393    1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1394    1.1       mrg }
   1395    1.1       mrg 
   1396    1.1       mrg /*
   1397  1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1398  1.130   hannken  */
   1399  1.130   hannken static void
   1400  1.130   hannken sw_reg_biodone(struct buf *bp)
   1401  1.130   hannken {
   1402  1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1403  1.130   hannken }
   1404  1.130   hannken 
   1405  1.130   hannken /*
   1406    1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1407    1.1       mrg  *
   1408    1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1409    1.1       mrg  */
   1410    1.1       mrg static void
   1411  1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1412    1.1       mrg {
   1413  1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1414    1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1415    1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1416    1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1417   1.72       chs 	int s, resid, error;
   1418  1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1419    1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1420    1.1       mrg 
   1421    1.1       mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1422    1.1       mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1423    1.1       mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1424    1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1425    1.1       mrg 
   1426    1.1       mrg 	/*
   1427    1.1       mrg 	 * protect vbp at splbio and update.
   1428    1.1       mrg 	 */
   1429    1.1       mrg 
   1430    1.1       mrg 	s = splbio();
   1431    1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1432    1.1       mrg 	pbp->b_resid -= resid;
   1433    1.1       mrg 	vnx->vx_pending--;
   1434    1.1       mrg 
   1435  1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1436    1.1       mrg 		/* pass error upward */
   1437  1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1438   1.72       chs 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1439   1.72       chs 		vnx->vx_error = error;
   1440   1.35       chs 	}
   1441   1.35       chs 
   1442   1.35       chs 	/*
   1443    1.1       mrg 	 * kill vbp structure
   1444    1.1       mrg 	 */
   1445  1.134        ad 	buf_destroy(&vbp->vb_buf);
   1446  1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1447    1.1       mrg 
   1448    1.1       mrg 	/*
   1449    1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1450    1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1451    1.1       mrg 	 */
   1452    1.1       mrg 	if (vnx->vx_error != 0) {
   1453    1.1       mrg 		/* pass error upward */
   1454  1.134        ad 		error = vnx->vx_error;
   1455    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1456  1.134        ad 			pbp->b_error = error;
   1457    1.1       mrg 			biodone(pbp);
   1458  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1459    1.1       mrg 		}
   1460   1.11        pk 	} else if (pbp->b_resid == 0) {
   1461   1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1462    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1463    1.8       mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1464    1.8       mrg 			    pbp, vnx->vx_error, 0, 0);
   1465    1.1       mrg 			biodone(pbp);
   1466  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1467    1.1       mrg 		}
   1468    1.1       mrg 	}
   1469    1.1       mrg 
   1470    1.1       mrg 	/*
   1471    1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1472    1.1       mrg 	 */
   1473   1.33   thorpej 	sdp->swd_active--;
   1474    1.1       mrg 	sw_reg_start(sdp);
   1475    1.1       mrg 	splx(s);
   1476    1.1       mrg }
   1477    1.1       mrg 
   1478    1.1       mrg 
   1479    1.1       mrg /*
   1480    1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1481    1.1       mrg  *
   1482    1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1483    1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1484    1.1       mrg  * => space can be freed with uvm_swap_free
   1485    1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1486  1.127        ad  * => we lock uvm_swap_data_lock
   1487    1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1488    1.1       mrg  */
   1489    1.1       mrg int
   1490  1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1491    1.1       mrg {
   1492    1.1       mrg 	struct swapdev *sdp;
   1493    1.1       mrg 	struct swappri *spp;
   1494    1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1495    1.1       mrg 
   1496    1.1       mrg 	/*
   1497    1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1498    1.1       mrg 	 */
   1499    1.1       mrg 	if (uvmexp.nswapdev < 1)
   1500    1.1       mrg 		return 0;
   1501   1.51       chs 
   1502    1.1       mrg 	/*
   1503    1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1504    1.1       mrg 	 */
   1505  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1506    1.1       mrg 
   1507    1.1       mrg ReTry:	/* XXXMRG */
   1508   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1509   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1510   1.90      yamt 			uint64_t result;
   1511   1.90      yamt 
   1512    1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1513    1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1514    1.1       mrg 				continue;
   1515    1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1516    1.1       mrg 				continue;
   1517   1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1518   1.90      yamt 			if (result == BLIST_NONE) {
   1519    1.1       mrg 				continue;
   1520    1.1       mrg 			}
   1521   1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1522    1.1       mrg 
   1523    1.1       mrg 			/*
   1524    1.1       mrg 			 * successful allocation!  now rotate the circleq.
   1525    1.1       mrg 			 */
   1526    1.1       mrg 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1527    1.1       mrg 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1528    1.1       mrg 			sdp->swd_npginuse += *nslots;
   1529    1.1       mrg 			uvmexp.swpginuse += *nslots;
   1530  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1531    1.1       mrg 			/* done!  return drum slot number */
   1532    1.1       mrg 			UVMHIST_LOG(pdhist,
   1533    1.1       mrg 			    "success!  returning %d slots starting at %d",
   1534    1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1535   1.55       chs 			return (result + sdp->swd_drumoffset);
   1536    1.1       mrg 		}
   1537    1.1       mrg 	}
   1538    1.1       mrg 
   1539    1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1540    1.1       mrg 	if (*nslots > 1 && lessok) {
   1541    1.1       mrg 		*nslots = 1;
   1542   1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1543   1.90      yamt 		goto ReTry;
   1544    1.1       mrg 	}
   1545    1.1       mrg 	/* XXXMRG: END HACK */
   1546    1.1       mrg 
   1547  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1548   1.55       chs 	return 0;
   1549    1.1       mrg }
   1550    1.1       mrg 
   1551  1.119   thorpej bool
   1552   1.81        pk uvm_swapisfull(void)
   1553   1.81        pk {
   1554  1.119   thorpej 	bool rv;
   1555   1.81        pk 
   1556  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1557   1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1558   1.81        pk 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1559  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1560   1.81        pk 
   1561   1.81        pk 	return (rv);
   1562   1.81        pk }
   1563   1.81        pk 
   1564    1.1       mrg /*
   1565   1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1566   1.32       chs  *
   1567  1.127        ad  * => we lock uvm_swap_data_lock
   1568   1.32       chs  */
   1569   1.32       chs void
   1570   1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1571   1.32       chs {
   1572   1.32       chs 	struct swapdev *sdp;
   1573   1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1574   1.32       chs 
   1575  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1576   1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1577   1.82        pk 	KASSERT(sdp != NULL);
   1578   1.32       chs 
   1579   1.32       chs 	/*
   1580   1.32       chs 	 * we just keep track of how many pages have been marked bad
   1581   1.32       chs 	 * in this device, to make everything add up in swap_off().
   1582   1.32       chs 	 * we assume here that the range of slots will all be within
   1583   1.32       chs 	 * one swap device.
   1584   1.32       chs 	 */
   1585   1.41       chs 
   1586   1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1587   1.82        pk 	uvmexp.swpgonly -= nslots;
   1588   1.32       chs 	sdp->swd_npgbad += nslots;
   1589   1.41       chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1590  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1591   1.32       chs }
   1592   1.32       chs 
   1593   1.32       chs /*
   1594    1.1       mrg  * uvm_swap_free: free swap slots
   1595    1.1       mrg  *
   1596    1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1597  1.127        ad  * => we lock uvm_swap_data_lock
   1598    1.1       mrg  */
   1599    1.1       mrg void
   1600   1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1601    1.1       mrg {
   1602    1.1       mrg 	struct swapdev *sdp;
   1603    1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1604    1.1       mrg 
   1605    1.1       mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1606    1.1       mrg 	    startslot, 0, 0);
   1607   1.32       chs 
   1608   1.32       chs 	/*
   1609   1.32       chs 	 * ignore attempts to free the "bad" slot.
   1610   1.32       chs 	 */
   1611   1.46       chs 
   1612   1.32       chs 	if (startslot == SWSLOT_BAD) {
   1613   1.32       chs 		return;
   1614   1.32       chs 	}
   1615   1.32       chs 
   1616    1.1       mrg 	/*
   1617   1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1618   1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1619    1.1       mrg 	 * lookup and access the extent.
   1620    1.1       mrg 	 */
   1621   1.46       chs 
   1622  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1623    1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1624   1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1625   1.46       chs 	KASSERT(sdp != NULL);
   1626   1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1627   1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1628    1.1       mrg 	sdp->swd_npginuse -= nslots;
   1629    1.1       mrg 	uvmexp.swpginuse -= nslots;
   1630  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1631    1.1       mrg }
   1632    1.1       mrg 
   1633    1.1       mrg /*
   1634    1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1635    1.1       mrg  *
   1636    1.1       mrg  * => can be sync or async
   1637    1.1       mrg  */
   1638   1.54       chs 
   1639    1.1       mrg int
   1640   1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1641    1.1       mrg {
   1642   1.56       chs 	int error;
   1643    1.1       mrg 
   1644   1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1645    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1646   1.56       chs 	return error;
   1647    1.1       mrg }
   1648    1.1       mrg 
   1649    1.1       mrg /*
   1650    1.1       mrg  * uvm_swap_get: get a single page from swap
   1651    1.1       mrg  *
   1652    1.1       mrg  * => usually a sync op (from fault)
   1653    1.1       mrg  */
   1654   1.54       chs 
   1655    1.1       mrg int
   1656   1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1657    1.1       mrg {
   1658   1.56       chs 	int error;
   1659    1.1       mrg 
   1660    1.1       mrg 	uvmexp.nswget++;
   1661   1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1662   1.32       chs 	if (swslot == SWSLOT_BAD) {
   1663   1.47       chs 		return EIO;
   1664   1.32       chs 	}
   1665   1.81        pk 
   1666   1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1667    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1668   1.56       chs 	if (error == 0) {
   1669   1.47       chs 
   1670   1.26       chs 		/*
   1671   1.54       chs 		 * this page is no longer only in swap.
   1672   1.26       chs 		 */
   1673   1.47       chs 
   1674  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1675   1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1676   1.54       chs 		uvmexp.swpgonly--;
   1677  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1678   1.26       chs 	}
   1679   1.56       chs 	return error;
   1680    1.1       mrg }
   1681    1.1       mrg 
   1682    1.1       mrg /*
   1683    1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1684    1.1       mrg  */
   1685    1.1       mrg 
   1686    1.1       mrg static int
   1687   1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1688    1.1       mrg {
   1689    1.1       mrg 	daddr_t startblk;
   1690    1.1       mrg 	struct	buf *bp;
   1691   1.15       eeh 	vaddr_t kva;
   1692  1.134        ad 	int	error, mapinflags;
   1693  1.119   thorpej 	bool write, async;
   1694    1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1695    1.1       mrg 
   1696    1.1       mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1697    1.1       mrg 	    startslot, npages, flags, 0);
   1698   1.32       chs 
   1699   1.41       chs 	write = (flags & B_READ) == 0;
   1700   1.41       chs 	async = (flags & B_ASYNC) != 0;
   1701   1.41       chs 
   1702    1.1       mrg 	/*
   1703  1.137      yamt 	 * allocate a buf for the i/o.
   1704  1.137      yamt 	 */
   1705  1.137      yamt 
   1706  1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1707  1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1708  1.137      yamt 	if (bp == NULL) {
   1709  1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1710  1.137      yamt 		return ENOMEM;
   1711  1.137      yamt 	}
   1712  1.137      yamt 
   1713  1.137      yamt 	/*
   1714    1.1       mrg 	 * convert starting drum slot to block number
   1715    1.1       mrg 	 */
   1716   1.54       chs 
   1717   1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1718    1.1       mrg 
   1719    1.1       mrg 	/*
   1720   1.54       chs 	 * first, map the pages into the kernel.
   1721   1.41       chs 	 */
   1722   1.41       chs 
   1723   1.54       chs 	mapinflags = !write ?
   1724   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1725   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1726   1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1727    1.1       mrg 
   1728   1.51       chs 	/*
   1729    1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1730    1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1731    1.1       mrg 	 */
   1732   1.54       chs 
   1733  1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1734  1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1735    1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1736   1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1737  1.122  christos 	bp->b_data = (void *)kva;
   1738    1.1       mrg 	bp->b_blkno = startblk;
   1739   1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1740    1.1       mrg 
   1741   1.51       chs 	/*
   1742   1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1743    1.1       mrg 	 */
   1744   1.54       chs 
   1745   1.41       chs 	if (write) {
   1746  1.134        ad 		mutex_enter(&swapdev_vp->v_interlock);
   1747  1.134        ad 		swapdev_vp->v_numoutput++;
   1748  1.134        ad 		mutex_exit(&swapdev_vp->v_interlock);
   1749    1.1       mrg 	}
   1750    1.1       mrg 
   1751    1.1       mrg 	/*
   1752   1.41       chs 	 * for async ops we must set up the iodone handler.
   1753    1.1       mrg 	 */
   1754   1.54       chs 
   1755   1.41       chs 	if (async) {
   1756   1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1757    1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1758  1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1759   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1760   1.83      yamt 		else
   1761   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1762   1.83      yamt 	} else {
   1763  1.134        ad 		bp->b_iodone = NULL;
   1764   1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1765    1.1       mrg 	}
   1766    1.1       mrg 	UVMHIST_LOG(pdhist,
   1767   1.41       chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1768    1.1       mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1769    1.1       mrg 
   1770    1.1       mrg 	/*
   1771    1.1       mrg 	 * now we start the I/O, and if async, return.
   1772    1.1       mrg 	 */
   1773   1.54       chs 
   1774   1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1775   1.41       chs 	if (async)
   1776   1.47       chs 		return 0;
   1777    1.1       mrg 
   1778    1.1       mrg 	/*
   1779    1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1780    1.1       mrg 	 */
   1781   1.54       chs 
   1782   1.47       chs 	error = biowait(bp);
   1783    1.1       mrg 
   1784    1.1       mrg 	/*
   1785    1.1       mrg 	 * kill the pager mapping
   1786    1.1       mrg 	 */
   1787   1.54       chs 
   1788    1.1       mrg 	uvm_pagermapout(kva, npages);
   1789    1.1       mrg 
   1790    1.1       mrg 	/*
   1791   1.54       chs 	 * now dispose of the buf and we're done.
   1792    1.1       mrg 	 */
   1793   1.54       chs 
   1794  1.134        ad 	if (write) {
   1795  1.134        ad 		mutex_enter(&swapdev_vp->v_interlock);
   1796   1.41       chs 		vwakeup(bp);
   1797  1.134        ad 		mutex_exit(&swapdev_vp->v_interlock);
   1798  1.134        ad 	}
   1799   1.98      yamt 	putiobuf(bp);
   1800   1.47       chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1801  1.134        ad 
   1802   1.47       chs 	return (error);
   1803    1.1       mrg }
   1804