Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.143
      1  1.143      yamt /*	$NetBSD: uvm_swap.c,v 1.143 2009/01/13 13:35:54 yamt Exp $	*/
      2    1.1       mrg 
      3    1.1       mrg /*
      4    1.1       mrg  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5    1.1       mrg  * All rights reserved.
      6    1.1       mrg  *
      7    1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8    1.1       mrg  * modification, are permitted provided that the following conditions
      9    1.1       mrg  * are met:
     10    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15    1.1       mrg  *
     16    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17    1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18    1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19    1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20    1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21    1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22    1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23    1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24    1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26    1.1       mrg  * SUCH DAMAGE.
     27    1.3       mrg  *
     28    1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29    1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30    1.1       mrg  */
     31   1.57     lukem 
     32   1.57     lukem #include <sys/cdefs.h>
     33  1.143      yamt __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.143 2009/01/13 13:35:54 yamt Exp $");
     34    1.5       mrg 
     35    1.6   thorpej #include "fs_nfs.h"
     36    1.5       mrg #include "opt_uvmhist.h"
     37   1.16       mrg #include "opt_compat_netbsd.h"
     38   1.41       chs #include "opt_ddb.h"
     39    1.1       mrg 
     40    1.1       mrg #include <sys/param.h>
     41    1.1       mrg #include <sys/systm.h>
     42    1.1       mrg #include <sys/buf.h>
     43   1.89      yamt #include <sys/bufq.h>
     44   1.36       mrg #include <sys/conf.h>
     45    1.1       mrg #include <sys/proc.h>
     46    1.1       mrg #include <sys/namei.h>
     47    1.1       mrg #include <sys/disklabel.h>
     48    1.1       mrg #include <sys/errno.h>
     49    1.1       mrg #include <sys/kernel.h>
     50  1.111      yamt #include <sys/malloc.h>
     51    1.1       mrg #include <sys/vnode.h>
     52    1.1       mrg #include <sys/file.h>
     53  1.110      yamt #include <sys/vmem.h>
     54   1.90      yamt #include <sys/blist.h>
     55    1.1       mrg #include <sys/mount.h>
     56   1.12        pk #include <sys/pool.h>
     57    1.1       mrg #include <sys/syscallargs.h>
     58   1.17       mrg #include <sys/swap.h>
     59  1.100      elad #include <sys/kauth.h>
     60  1.125        ad #include <sys/sysctl.h>
     61  1.130   hannken #include <sys/workqueue.h>
     62    1.1       mrg 
     63    1.1       mrg #include <uvm/uvm.h>
     64    1.1       mrg 
     65    1.1       mrg #include <miscfs/specfs/specdev.h>
     66    1.1       mrg 
     67    1.1       mrg /*
     68    1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     69    1.1       mrg  */
     70    1.1       mrg 
     71    1.1       mrg /*
     72    1.1       mrg  * swap space is managed in the following way:
     73   1.51       chs  *
     74    1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     75    1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     76    1.1       mrg  * information that is passed up to the user (via system calls).
     77    1.1       mrg  *
     78    1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     79    1.1       mrg  * swap parition usage.
     80    1.1       mrg  *
     81    1.1       mrg  * the system maintains a global data structure describing all swap
     82    1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     83    1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     84   1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     85    1.1       mrg  * CIRCLEQ of "swapdev" structures at that priority.
     86    1.1       mrg  *
     87    1.1       mrg  * locking:
     88  1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89    1.1       mrg  *    system call and prevents the swap priority list from changing
     90    1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92    1.1       mrg  *    structures including the priority list, the swapdev structures,
     93  1.110      yamt  *    and the swapmap arena.
     94    1.1       mrg  *
     95    1.1       mrg  * each swap device has the following info:
     96    1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     97    1.1       mrg  *  - swap enabled (allows new allocations on swap)
     98    1.1       mrg  *  - map info in /dev/drum
     99    1.1       mrg  *  - vnode pointer
    100    1.1       mrg  * for swap files only:
    101    1.1       mrg  *  - block size
    102    1.1       mrg  *  - max byte count in buffer
    103    1.1       mrg  *  - buffer
    104    1.1       mrg  *
    105    1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    106    1.1       mrg  * the sys_swapctl performs the following operations:
    107    1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108   1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109    1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110   1.85  junyoung  *	the current swap config into the array. The actual work is done
    111   1.63      manu  *	in the uvm_swap_stats(9) function.
    112    1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113    1.1       mrg  *	priority in "misc", start swapping on it.
    114    1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115    1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116    1.1       mrg  *	"misc")
    117    1.1       mrg  */
    118    1.1       mrg 
    119    1.1       mrg /*
    120    1.1       mrg  * swapdev: describes a single swap partition/file
    121    1.1       mrg  *
    122    1.1       mrg  * note the following should be true:
    123    1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124    1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125    1.1       mrg  */
    126    1.1       mrg struct swapdev {
    127   1.16       mrg 	struct oswapent swd_ose;
    128   1.16       mrg #define	swd_dev		swd_ose.ose_dev		/* device id */
    129   1.16       mrg #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    130   1.16       mrg #define	swd_priority	swd_ose.ose_priority	/* our priority */
    131   1.16       mrg 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    132   1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    133   1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    134   1.16       mrg 	int			swd_npages;	/* #pages we can use */
    135   1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    136   1.32       chs 	int			swd_npgbad;	/* #pages bad */
    137   1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    138   1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    139   1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    140   1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    141   1.16       mrg 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    142    1.1       mrg 
    143   1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    144   1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    145   1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    146   1.33   thorpej 	int			swd_active;	/* number of active buffers */
    147    1.1       mrg };
    148    1.1       mrg 
    149    1.1       mrg /*
    150    1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151    1.1       mrg  */
    152    1.1       mrg struct swappri {
    153    1.1       mrg 	int			spi_priority;     /* priority */
    154    1.1       mrg 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155    1.1       mrg 	/* circleq of swapdevs at this priority */
    156    1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157    1.1       mrg };
    158    1.1       mrg 
    159    1.1       mrg /*
    160    1.1       mrg  * The following two structures are used to keep track of data transfers
    161    1.1       mrg  * on swap devices associated with regular files.
    162    1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163    1.1       mrg  * structure names here to ease porting..
    164    1.1       mrg  */
    165    1.1       mrg struct vndxfer {
    166    1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167    1.1       mrg 	struct swapdev	*vx_sdp;
    168    1.1       mrg 	int		vx_error;
    169    1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    170    1.1       mrg 	int		vx_flags;
    171    1.1       mrg #define VX_BUSY		1
    172    1.1       mrg #define VX_DEAD		2
    173    1.1       mrg };
    174    1.1       mrg 
    175    1.1       mrg struct vndbuf {
    176    1.1       mrg 	struct buf	vb_buf;
    177    1.1       mrg 	struct vndxfer	*vb_xfer;
    178    1.1       mrg };
    179    1.1       mrg 
    180   1.12        pk 
    181    1.1       mrg /*
    182   1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    183    1.1       mrg  */
    184  1.123        ad POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
    185  1.123        ad     IPL_BIO);
    186  1.123        ad POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
    187  1.123        ad     IPL_BIO);
    188    1.1       mrg 
    189    1.1       mrg /*
    190    1.1       mrg  * local variables
    191    1.1       mrg  */
    192  1.111      yamt MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    193  1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    194    1.1       mrg 
    195    1.1       mrg /* list of all active swap devices [by priority] */
    196    1.1       mrg LIST_HEAD(swap_priority, swappri);
    197    1.1       mrg static struct swap_priority swap_priority;
    198    1.1       mrg 
    199    1.1       mrg /* locks */
    200  1.117        ad static krwlock_t swap_syscall_lock;
    201    1.1       mrg 
    202  1.130   hannken /* workqueue and use counter for swap to regular files */
    203  1.130   hannken static int sw_reg_count = 0;
    204  1.130   hannken static struct workqueue *sw_reg_workqueue;
    205  1.130   hannken 
    206  1.141        ad /* tuneables */
    207  1.141        ad u_int uvm_swapisfull_factor = 99;
    208  1.141        ad 
    209    1.1       mrg /*
    210    1.1       mrg  * prototypes
    211    1.1       mrg  */
    212   1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    213    1.1       mrg 
    214  1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    215   1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    216   1.85  junyoung 					 struct swappri *, int);
    217   1.85  junyoung static void		 swaplist_trim(void);
    218    1.1       mrg 
    219   1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    220   1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    221    1.1       mrg 
    222   1.95      yamt static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    223   1.95      yamt 
    224   1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    225  1.130   hannken static void sw_reg_biodone(struct buf *);
    226  1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    227   1.85  junyoung static void sw_reg_start(struct swapdev *);
    228    1.1       mrg 
    229   1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    230    1.1       mrg 
    231    1.1       mrg /*
    232    1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    233    1.1       mrg  *
    234   1.51       chs  * => called at boot time from init_main.c after the filesystems
    235    1.1       mrg  *	are brought up (which happens after uvm_init())
    236    1.1       mrg  */
    237    1.1       mrg void
    238   1.93   thorpej uvm_swap_init(void)
    239    1.1       mrg {
    240    1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    241    1.1       mrg 
    242    1.1       mrg 	UVMHIST_CALLED(pdhist);
    243    1.1       mrg 	/*
    244    1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    245    1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    246    1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    247    1.1       mrg 	 */
    248    1.1       mrg 
    249    1.1       mrg 	LIST_INIT(&swap_priority);
    250    1.1       mrg 	uvmexp.nswapdev = 0;
    251  1.117        ad 	rw_init(&swap_syscall_lock);
    252  1.117        ad 	cv_init(&uvm.scheduler_cv, "schedule");
    253  1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    254   1.12        pk 
    255  1.117        ad 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    256  1.126        ad 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    257  1.117        ad 
    258    1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    259    1.1       mrg 		panic("uvm_swap_init: can't get vnode for swap device");
    260  1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    261  1.136   hannken 		panic("uvm_swap_init: can't lock swap device");
    262  1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    263  1.135   hannken 		panic("uvm_swap_init: can't open swap device");
    264  1.136   hannken 	VOP_UNLOCK(swapdev_vp, 0);
    265    1.1       mrg 
    266    1.1       mrg 	/*
    267    1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    268    1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    269   1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    270    1.1       mrg 	 * failure, or no allocation).
    271    1.1       mrg 	 */
    272  1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    273  1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    274    1.1       mrg 	if (swapmap == 0)
    275    1.1       mrg 		panic("uvm_swap_init: extent_create failed");
    276    1.1       mrg 
    277    1.1       mrg 	/*
    278    1.1       mrg 	 * done!
    279    1.1       mrg 	 */
    280  1.121   thorpej 	uvm.swap_running = true;
    281  1.140        ad #ifdef __SWAP_BROKEN
    282  1.140        ad 	uvm.swapout_enabled = 0;
    283  1.140        ad #else
    284  1.125        ad 	uvm.swapout_enabled = 1;
    285  1.140        ad #endif
    286    1.1       mrg 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    287  1.125        ad 
    288  1.125        ad         sysctl_createv(NULL, 0, NULL, NULL,
    289  1.125        ad             CTLFLAG_READWRITE,
    290  1.125        ad             CTLTYPE_INT, "swapout",
    291  1.125        ad             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
    292  1.125        ad             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
    293    1.1       mrg }
    294    1.1       mrg 
    295    1.1       mrg /*
    296    1.1       mrg  * swaplist functions: functions that operate on the list of swap
    297    1.1       mrg  * devices on the system.
    298    1.1       mrg  */
    299    1.1       mrg 
    300    1.1       mrg /*
    301    1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    302    1.1       mrg  *
    303  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    304    1.1       mrg  * => caller must provide a newly malloc'd swappri structure (we will
    305    1.1       mrg  *	FREE it if we don't need it... this it to prevent malloc blocking
    306    1.1       mrg  *	here while adding swap)
    307    1.1       mrg  */
    308    1.1       mrg static void
    309   1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    310    1.1       mrg {
    311    1.1       mrg 	struct swappri *spp, *pspp;
    312    1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    313    1.1       mrg 
    314    1.1       mrg 	/*
    315    1.1       mrg 	 * find entry at or after which to insert the new device.
    316    1.1       mrg 	 */
    317   1.55       chs 	pspp = NULL;
    318   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    319    1.1       mrg 		if (priority <= spp->spi_priority)
    320    1.1       mrg 			break;
    321    1.1       mrg 		pspp = spp;
    322    1.1       mrg 	}
    323    1.1       mrg 
    324    1.1       mrg 	/*
    325    1.1       mrg 	 * new priority?
    326    1.1       mrg 	 */
    327    1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    328    1.1       mrg 		spp = newspp;  /* use newspp! */
    329   1.32       chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    330   1.32       chs 			    priority, 0, 0, 0);
    331    1.1       mrg 
    332    1.1       mrg 		spp->spi_priority = priority;
    333    1.1       mrg 		CIRCLEQ_INIT(&spp->spi_swapdev);
    334    1.1       mrg 
    335    1.1       mrg 		if (pspp)
    336    1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    337    1.1       mrg 		else
    338    1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    339    1.1       mrg 	} else {
    340    1.1       mrg 	  	/* we don't need a new priority structure, free it */
    341  1.142    cegger 		free(newspp, M_VMSWAP);
    342    1.1       mrg 	}
    343    1.1       mrg 
    344    1.1       mrg 	/*
    345    1.1       mrg 	 * priority found (or created).   now insert on the priority's
    346    1.1       mrg 	 * circleq list and bump the total number of swapdevs.
    347    1.1       mrg 	 */
    348    1.1       mrg 	sdp->swd_priority = priority;
    349    1.1       mrg 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    350    1.1       mrg 	uvmexp.nswapdev++;
    351    1.1       mrg }
    352    1.1       mrg 
    353    1.1       mrg /*
    354    1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    355    1.1       mrg  *	global list.
    356    1.1       mrg  *
    357  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    358    1.1       mrg  * => we return the swapdev we found (and removed)
    359    1.1       mrg  */
    360    1.1       mrg static struct swapdev *
    361  1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    362    1.1       mrg {
    363    1.1       mrg 	struct swapdev *sdp;
    364    1.1       mrg 	struct swappri *spp;
    365    1.1       mrg 
    366    1.1       mrg 	/*
    367    1.1       mrg 	 * search the lists for the requested vp
    368    1.1       mrg 	 */
    369   1.55       chs 
    370   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    371   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    372    1.1       mrg 			if (sdp->swd_vp == vp) {
    373    1.1       mrg 				if (remove) {
    374    1.1       mrg 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    375    1.1       mrg 					    sdp, swd_next);
    376    1.1       mrg 					uvmexp.nswapdev--;
    377    1.1       mrg 				}
    378    1.1       mrg 				return(sdp);
    379    1.1       mrg 			}
    380   1.55       chs 		}
    381    1.1       mrg 	}
    382    1.1       mrg 	return (NULL);
    383    1.1       mrg }
    384    1.1       mrg 
    385  1.113      elad /*
    386    1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    387    1.1       mrg  *	them.
    388    1.1       mrg  *
    389  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    390    1.1       mrg  */
    391    1.1       mrg static void
    392   1.93   thorpej swaplist_trim(void)
    393    1.1       mrg {
    394    1.1       mrg 	struct swappri *spp, *nextspp;
    395    1.1       mrg 
    396   1.32       chs 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    397   1.32       chs 		nextspp = LIST_NEXT(spp, spi_swappri);
    398   1.32       chs 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    399   1.32       chs 		    (void *)&spp->spi_swapdev)
    400    1.1       mrg 			continue;
    401    1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    402  1.111      yamt 		free(spp, M_VMSWAP);
    403    1.1       mrg 	}
    404    1.1       mrg }
    405    1.1       mrg 
    406    1.1       mrg /*
    407    1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    408    1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    409    1.1       mrg  *
    410    1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    411  1.127        ad  * => caller must hold uvm_swap_data_lock
    412    1.1       mrg  */
    413    1.1       mrg static struct swapdev *
    414   1.93   thorpej swapdrum_getsdp(int pgno)
    415    1.1       mrg {
    416    1.1       mrg 	struct swapdev *sdp;
    417    1.1       mrg 	struct swappri *spp;
    418   1.51       chs 
    419   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    420   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    421   1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    422   1.48      fvdl 				continue;
    423    1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    424    1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    425    1.1       mrg 				return sdp;
    426    1.1       mrg 			}
    427   1.48      fvdl 		}
    428   1.55       chs 	}
    429    1.1       mrg 	return NULL;
    430    1.1       mrg }
    431    1.1       mrg 
    432    1.1       mrg 
    433    1.1       mrg /*
    434    1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    435    1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    436    1.1       mrg  */
    437    1.1       mrg int
    438  1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    439    1.1       mrg {
    440  1.133       dsl 	/* {
    441    1.1       mrg 		syscallarg(int) cmd;
    442    1.1       mrg 		syscallarg(void *) arg;
    443    1.1       mrg 		syscallarg(int) misc;
    444  1.133       dsl 	} */
    445    1.1       mrg 	struct vnode *vp;
    446    1.1       mrg 	struct nameidata nd;
    447    1.1       mrg 	struct swappri *spp;
    448    1.1       mrg 	struct swapdev *sdp;
    449    1.1       mrg 	struct swapent *sep;
    450  1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    451  1.101  christos 	char	*userpath;
    452   1.18     enami 	size_t	len;
    453   1.61      manu 	int	error, misc;
    454    1.1       mrg 	int	priority;
    455    1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    456    1.1       mrg 
    457    1.1       mrg 	misc = SCARG(uap, misc);
    458    1.1       mrg 
    459    1.1       mrg 	/*
    460    1.1       mrg 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    461    1.1       mrg 	 */
    462  1.117        ad 	rw_enter(&swap_syscall_lock, RW_WRITER);
    463   1.24       mrg 
    464  1.111      yamt 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    465    1.1       mrg 	/*
    466    1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    467    1.1       mrg 	 *
    468   1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    469    1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    470    1.1       mrg 	 */
    471    1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    472    1.8       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    473    1.8       mrg 		    0, 0, 0);
    474    1.1       mrg 		*retval = uvmexp.nswapdev;
    475   1.16       mrg 		error = 0;
    476   1.16       mrg 		goto out;
    477    1.1       mrg 	}
    478    1.1       mrg 
    479    1.1       mrg 	/*
    480    1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    481    1.1       mrg 	 *
    482   1.51       chs 	 * note that the swap_priority list can't change as long
    483    1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    484  1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    485    1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    486    1.1       mrg 	 */
    487   1.16       mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    488   1.16       mrg #if defined(COMPAT_13)
    489   1.16       mrg 	    || SCARG(uap, cmd) == SWAP_OSTATS
    490   1.16       mrg #endif
    491   1.16       mrg 	    ) {
    492   1.88  christos 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    493   1.88  christos 			misc = uvmexp.nswapdev;
    494   1.16       mrg #if defined(COMPAT_13)
    495   1.61      manu 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    496   1.61      manu 			len = sizeof(struct oswapent) * misc;
    497   1.62      manu 		else
    498   1.16       mrg #endif
    499   1.62      manu 			len = sizeof(struct swapent) * misc;
    500  1.111      yamt 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    501   1.62      manu 
    502   1.95      yamt 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    503   1.92  christos 		error = copyout(sep, SCARG(uap, arg), len);
    504    1.1       mrg 
    505  1.111      yamt 		free(sep, M_TEMP);
    506   1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    507   1.16       mrg 		goto out;
    508   1.51       chs 	}
    509   1.55       chs 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    510   1.55       chs 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    511   1.55       chs 
    512   1.55       chs 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    513   1.55       chs 		goto out;
    514   1.55       chs 	}
    515    1.1       mrg 
    516    1.1       mrg 	/*
    517    1.1       mrg 	 * all other requests require superuser privs.   verify.
    518    1.1       mrg 	 */
    519  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    520  1.106      elad 	    0, NULL, NULL, NULL)))
    521   1.16       mrg 		goto out;
    522    1.1       mrg 
    523  1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    524  1.104    martin 		/* drop the current dump device */
    525  1.104    martin 		dumpdev = NODEV;
    526  1.138    kardel 		dumpcdev = NODEV;
    527  1.104    martin 		cpu_dumpconf();
    528  1.104    martin 		goto out;
    529  1.104    martin 	}
    530  1.104    martin 
    531    1.1       mrg 	/*
    532    1.1       mrg 	 * at this point we expect a path name in arg.   we will
    533    1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    534    1.1       mrg 	 * the vnode (VOP_LOCK).
    535    1.1       mrg 	 *
    536    1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    537   1.16       mrg 	 * miniroot)
    538    1.1       mrg 	 */
    539    1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    540    1.1       mrg 		vp = rootvp;		/* miniroot */
    541   1.79   thorpej 		if (vget(vp, LK_EXCLUSIVE)) {
    542   1.16       mrg 			error = EBUSY;
    543   1.16       mrg 			goto out;
    544    1.1       mrg 		}
    545   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    546  1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    547   1.16       mrg 			panic("swapctl: miniroot copy failed");
    548    1.1       mrg 	} else {
    549   1.16       mrg 		int	space;
    550   1.16       mrg 		char	*where;
    551   1.16       mrg 
    552   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    553   1.16       mrg 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    554  1.101  christos 			    SWAP_PATH_MAX, &len)))
    555   1.16       mrg 				goto out;
    556   1.16       mrg 			space = UIO_SYSSPACE;
    557   1.16       mrg 			where = userpath;
    558   1.16       mrg 		} else {
    559   1.16       mrg 			space = UIO_USERSPACE;
    560   1.16       mrg 			where = (char *)SCARG(uap, arg);
    561    1.1       mrg 		}
    562  1.132     pooka 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    563  1.132     pooka 		    space, where);
    564   1.16       mrg 		if ((error = namei(&nd)))
    565   1.16       mrg 			goto out;
    566    1.1       mrg 		vp = nd.ni_vp;
    567    1.1       mrg 	}
    568    1.1       mrg 	/* note: "vp" is referenced and locked */
    569    1.1       mrg 
    570    1.1       mrg 	error = 0;		/* assume no error */
    571    1.1       mrg 	switch(SCARG(uap, cmd)) {
    572   1.40       mrg 
    573   1.24       mrg 	case SWAP_DUMPDEV:
    574   1.24       mrg 		if (vp->v_type != VBLK) {
    575   1.24       mrg 			error = ENOTBLK;
    576   1.45        pk 			break;
    577   1.24       mrg 		}
    578  1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    579  1.109       mrg 			dumpdev = vp->v_rdev;
    580  1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    581  1.138    kardel 		} else
    582  1.109       mrg 			dumpdev = NODEV;
    583   1.68  drochner 		cpu_dumpconf();
    584   1.24       mrg 		break;
    585   1.24       mrg 
    586    1.1       mrg 	case SWAP_CTL:
    587    1.1       mrg 		/*
    588    1.1       mrg 		 * get new priority, remove old entry (if any) and then
    589    1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    590    1.1       mrg 		 * any empty priority structures.
    591    1.1       mrg 		 */
    592    1.1       mrg 		priority = SCARG(uap, misc);
    593  1.111      yamt 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    594  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    595  1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    596    1.1       mrg 			error = ENOENT;
    597    1.1       mrg 		} else {
    598    1.1       mrg 			swaplist_insert(sdp, spp, priority);
    599    1.1       mrg 			swaplist_trim();
    600    1.1       mrg 		}
    601  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    602    1.1       mrg 		if (error)
    603  1.111      yamt 			free(spp, M_VMSWAP);
    604    1.1       mrg 		break;
    605    1.1       mrg 
    606    1.1       mrg 	case SWAP_ON:
    607   1.32       chs 
    608    1.1       mrg 		/*
    609    1.1       mrg 		 * check for duplicates.   if none found, then insert a
    610    1.1       mrg 		 * dummy entry on the list to prevent someone else from
    611    1.1       mrg 		 * trying to enable this device while we are working on
    612    1.1       mrg 		 * it.
    613    1.1       mrg 		 */
    614   1.32       chs 
    615    1.1       mrg 		priority = SCARG(uap, misc);
    616  1.111      yamt 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    617  1.111      yamt 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    618  1.111      yamt 		memset(sdp, 0, sizeof(*sdp));
    619   1.67       chs 		sdp->swd_flags = SWF_FAKE;
    620   1.67       chs 		sdp->swd_vp = vp;
    621   1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    622   1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    623  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    624  1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    625    1.1       mrg 			error = EBUSY;
    626  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    627   1.96      yamt 			bufq_free(sdp->swd_tab);
    628  1.111      yamt 			free(sdp, M_VMSWAP);
    629  1.111      yamt 			free(spp, M_VMSWAP);
    630   1.16       mrg 			break;
    631    1.1       mrg 		}
    632    1.1       mrg 		swaplist_insert(sdp, spp, priority);
    633  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    634    1.1       mrg 
    635   1.16       mrg 		sdp->swd_pathlen = len;
    636  1.111      yamt 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    637   1.19        pk 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    638   1.19        pk 			panic("swapctl: copystr");
    639   1.32       chs 
    640    1.1       mrg 		/*
    641    1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    642    1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    643    1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    644    1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    645    1.1       mrg 		 */
    646   1.32       chs 
    647   1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    648  1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    649  1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    650    1.1       mrg 			swaplist_trim();
    651  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    652   1.96      yamt 			bufq_free(sdp->swd_tab);
    653  1.111      yamt 			free(sdp->swd_path, M_VMSWAP);
    654  1.111      yamt 			free(sdp, M_VMSWAP);
    655    1.1       mrg 			break;
    656    1.1       mrg 		}
    657    1.1       mrg 		break;
    658    1.1       mrg 
    659    1.1       mrg 	case SWAP_OFF:
    660  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    661  1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    662  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    663    1.1       mrg 			error = ENXIO;
    664    1.1       mrg 			break;
    665    1.1       mrg 		}
    666   1.32       chs 
    667    1.1       mrg 		/*
    668    1.1       mrg 		 * If a device isn't in use or enabled, we
    669    1.1       mrg 		 * can't stop swapping from it (again).
    670    1.1       mrg 		 */
    671    1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    672  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    673    1.1       mrg 			error = EBUSY;
    674   1.16       mrg 			break;
    675    1.1       mrg 		}
    676    1.1       mrg 
    677    1.1       mrg 		/*
    678   1.32       chs 		 * do the real work.
    679    1.1       mrg 		 */
    680   1.97  christos 		error = swap_off(l, sdp);
    681    1.1       mrg 		break;
    682    1.1       mrg 
    683    1.1       mrg 	default:
    684    1.1       mrg 		error = EINVAL;
    685    1.1       mrg 	}
    686    1.1       mrg 
    687    1.1       mrg 	/*
    688   1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    689    1.1       mrg 	 */
    690    1.1       mrg 	vput(vp);
    691   1.39       chs 
    692   1.16       mrg out:
    693  1.111      yamt 	free(userpath, M_TEMP);
    694  1.117        ad 	rw_exit(&swap_syscall_lock);
    695    1.1       mrg 
    696    1.1       mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    697    1.1       mrg 	return (error);
    698   1.61      manu }
    699   1.61      manu 
    700   1.85  junyoung /*
    701   1.61      manu  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    702   1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    703   1.61      manu  * emulation to use it directly without going through sys_swapctl().
    704   1.61      manu  * The problem with using sys_swapctl() there is that it involves
    705   1.61      manu  * copying the swapent array to the stackgap, and this array's size
    706   1.85  junyoung  * is not known at build time. Hence it would not be possible to
    707   1.61      manu  * ensure it would fit in the stackgap in any case.
    708   1.61      manu  */
    709   1.61      manu void
    710   1.93   thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    711   1.61      manu {
    712   1.95      yamt 
    713  1.117        ad 	rw_enter(&swap_syscall_lock, RW_READER);
    714   1.95      yamt 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    715  1.117        ad 	rw_exit(&swap_syscall_lock);
    716   1.95      yamt }
    717   1.95      yamt 
    718   1.95      yamt static void
    719   1.95      yamt uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    720   1.95      yamt {
    721   1.61      manu 	struct swappri *spp;
    722   1.61      manu 	struct swapdev *sdp;
    723   1.61      manu 	int count = 0;
    724   1.61      manu 
    725   1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    726   1.61      manu 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    727   1.61      manu 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    728   1.61      manu 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    729   1.61      manu 		  	/*
    730   1.61      manu 			 * backwards compatibility for system call.
    731   1.61      manu 			 * note that we use 'struct oswapent' as an
    732   1.61      manu 			 * overlay into both 'struct swapdev' and
    733   1.61      manu 			 * the userland 'struct swapent', as we
    734   1.61      manu 			 * want to retain backwards compatibility
    735   1.61      manu 			 * with NetBSD 1.3.
    736   1.61      manu 			 */
    737   1.61      manu 			sdp->swd_ose.ose_inuse =
    738   1.99      matt 			    btodb((uint64_t)sdp->swd_npginuse <<
    739   1.61      manu 			    PAGE_SHIFT);
    740   1.85  junyoung 			(void)memcpy(sep, &sdp->swd_ose,
    741   1.61      manu 			    sizeof(struct oswapent));
    742   1.85  junyoung 
    743   1.61      manu 			/* now copy out the path if necessary */
    744  1.108   thorpej #if !defined(COMPAT_13)
    745  1.108   thorpej 			(void) cmd;
    746  1.108   thorpej #endif
    747   1.61      manu #if defined(COMPAT_13)
    748   1.61      manu 			if (cmd == SWAP_STATS)
    749   1.61      manu #endif
    750   1.61      manu 				(void)memcpy(&sep->se_path, sdp->swd_path,
    751   1.61      manu 				    sdp->swd_pathlen);
    752   1.61      manu 
    753   1.61      manu 			count++;
    754   1.61      manu #if defined(COMPAT_13)
    755   1.61      manu 			if (cmd == SWAP_OSTATS)
    756   1.61      manu 				sep = (struct swapent *)
    757   1.61      manu 				    ((struct oswapent *)sep + 1);
    758   1.61      manu 			else
    759   1.61      manu #endif
    760   1.61      manu 				sep++;
    761   1.61      manu 		}
    762   1.61      manu 	}
    763   1.61      manu 
    764   1.61      manu 	*retval = count;
    765   1.61      manu 	return;
    766    1.1       mrg }
    767    1.1       mrg 
    768    1.1       mrg /*
    769    1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    770    1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    771    1.1       mrg  *	SWF_FAKE).
    772    1.1       mrg  *
    773    1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    774    1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    775  1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    776    1.1       mrg  *	if needed.
    777    1.1       mrg  */
    778    1.1       mrg static int
    779   1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    780    1.1       mrg {
    781    1.1       mrg 	struct vnode *vp;
    782    1.1       mrg 	int error, npages, nblocks, size;
    783    1.1       mrg 	long addr;
    784   1.48      fvdl 	u_long result;
    785    1.1       mrg 	struct vattr va;
    786    1.1       mrg #ifdef NFS
    787   1.85  junyoung 	extern int (**nfsv2_vnodeop_p)(void *);
    788    1.1       mrg #endif /* NFS */
    789   1.69   gehenna 	const struct bdevsw *bdev;
    790    1.1       mrg 	dev_t dev;
    791    1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    792    1.1       mrg 
    793    1.1       mrg 	/*
    794    1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    795    1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    796    1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    797    1.1       mrg 	 */
    798    1.1       mrg 
    799    1.1       mrg 	vp = sdp->swd_vp;
    800    1.1       mrg 	dev = sdp->swd_dev;
    801    1.1       mrg 
    802    1.1       mrg 	/*
    803    1.1       mrg 	 * open the swap file (mostly useful for block device files to
    804    1.1       mrg 	 * let device driver know what is up).
    805    1.1       mrg 	 *
    806    1.1       mrg 	 * we skip the open/close for root on swap because the root
    807    1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    808    1.1       mrg 	 */
    809    1.1       mrg 	if (vp != rootvp) {
    810  1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    811    1.1       mrg 			return (error);
    812    1.1       mrg 	}
    813    1.1       mrg 
    814    1.1       mrg 	/* XXX this only works for block devices */
    815    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    816    1.1       mrg 
    817    1.1       mrg 	/*
    818    1.1       mrg 	 * we now need to determine the size of the swap area.   for
    819    1.1       mrg 	 * block specials we can call the d_psize function.
    820    1.1       mrg 	 * for normal files, we must stat [get attrs].
    821    1.1       mrg 	 *
    822    1.1       mrg 	 * we put the result in nblks.
    823    1.1       mrg 	 * for normal files, we also want the filesystem block size
    824    1.1       mrg 	 * (which we get with statfs).
    825    1.1       mrg 	 */
    826    1.1       mrg 	switch (vp->v_type) {
    827    1.1       mrg 	case VBLK:
    828   1.69   gehenna 		bdev = bdevsw_lookup(dev);
    829   1.69   gehenna 		if (bdev == NULL || bdev->d_psize == NULL ||
    830   1.69   gehenna 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    831    1.1       mrg 			error = ENXIO;
    832    1.1       mrg 			goto bad;
    833    1.1       mrg 		}
    834    1.1       mrg 		break;
    835    1.1       mrg 
    836    1.1       mrg 	case VREG:
    837  1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    838    1.1       mrg 			goto bad;
    839    1.1       mrg 		nblocks = (int)btodb(va.va_size);
    840    1.1       mrg 		if ((error =
    841  1.131     pooka 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
    842    1.1       mrg 			goto bad;
    843    1.1       mrg 
    844    1.1       mrg 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    845    1.1       mrg 		/*
    846    1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    847    1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    848    1.1       mrg 		 */
    849    1.1       mrg #ifdef NFS
    850    1.1       mrg 		if (vp->v_op == nfsv2_vnodeop_p)
    851    1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    852    1.1       mrg 		else
    853    1.1       mrg #endif /* NFS */
    854    1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    855    1.1       mrg 		break;
    856    1.1       mrg 
    857    1.1       mrg 	default:
    858    1.1       mrg 		error = ENXIO;
    859    1.1       mrg 		goto bad;
    860    1.1       mrg 	}
    861    1.1       mrg 
    862    1.1       mrg 	/*
    863    1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    864    1.1       mrg 	 */
    865    1.1       mrg 
    866   1.16       mrg 	sdp->swd_ose.ose_nblks = nblocks;
    867   1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    868    1.1       mrg 
    869    1.1       mrg 	/*
    870    1.1       mrg 	 * for block special files, we want to make sure that leave
    871    1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    872   1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    873    1.1       mrg 	 * note that because of this the "size" can be less than the
    874    1.1       mrg 	 * actual number of blocks on the device.
    875    1.1       mrg 	 */
    876    1.1       mrg 	if (vp->v_type == VBLK) {
    877    1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    878    1.1       mrg 		size = npages - 1;
    879    1.1       mrg 		addr = 1;
    880    1.1       mrg 	} else {
    881    1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    882    1.1       mrg 		size = npages;
    883    1.1       mrg 		addr = 0;
    884    1.1       mrg 	}
    885    1.1       mrg 
    886    1.1       mrg 	/*
    887    1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    888    1.1       mrg 	 * area.   we want at least one page.
    889    1.1       mrg 	 */
    890    1.1       mrg 
    891    1.1       mrg 	if (size < 1) {
    892    1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    893    1.1       mrg 		error = EINVAL;
    894    1.1       mrg 		goto bad;
    895    1.1       mrg 	}
    896    1.1       mrg 
    897    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    898    1.1       mrg 
    899    1.1       mrg 	/*
    900    1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    901    1.1       mrg 	 */
    902    1.1       mrg 
    903   1.90      yamt 	sdp->swd_blist = blist_create(npages);
    904   1.90      yamt 	/* mark all expect the `saved' region free. */
    905   1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    906    1.1       mrg 
    907    1.1       mrg 	/*
    908   1.51       chs 	 * if the vnode we are swapping to is the root vnode
    909    1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    910   1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    911    1.1       mrg 	 * find its size and skip over it.
    912    1.1       mrg 	 */
    913    1.1       mrg 	if (vp == rootvp) {
    914    1.1       mrg 		struct mount *mp;
    915   1.86  christos 		struct statvfs *sp;
    916    1.1       mrg 		int rootblocks, rootpages;
    917    1.1       mrg 
    918    1.1       mrg 		mp = rootvnode->v_mount;
    919    1.1       mrg 		sp = &mp->mnt_stat;
    920   1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    921   1.64  fredette 		/*
    922   1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    923   1.64  fredette 		 * blocks in the filesystem, it's the number of
    924   1.64  fredette 		 * data blocks.  so, our rootblocks almost
    925   1.85  junyoung 		 * definitely underestimates the total size
    926   1.64  fredette 		 * of the filesystem - how badly depends on the
    927   1.85  junyoung 		 * details of the filesystem type.  there isn't
    928   1.64  fredette 		 * an obvious way to deal with this cleanly
    929   1.85  junyoung 		 * and perfectly, so for now we just pad our
    930   1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    931   1.64  fredette 		 */
    932   1.64  fredette 		rootblocks += (rootblocks >> 5) +
    933   1.64  fredette 			(rootblocks >> 6) +
    934   1.64  fredette 			(rootblocks >> 7);
    935   1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    936   1.32       chs 		if (rootpages > size)
    937    1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    938    1.1       mrg 
    939   1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    940    1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    941   1.90      yamt 		}
    942    1.1       mrg 
    943   1.32       chs 		size -= rootpages;
    944    1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    945   1.32       chs 		printf("leaving %d pages of swap\n", size);
    946    1.1       mrg 	}
    947    1.1       mrg 
    948   1.39       chs 	/*
    949   1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    950   1.39       chs 	 */
    951   1.39       chs 	vref(vp);
    952   1.39       chs 
    953    1.1       mrg 	/*
    954    1.1       mrg 	 * now add the new swapdev to the drum and enable.
    955    1.1       mrg 	 */
    956  1.110      yamt 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    957  1.110      yamt 	if (result == 0)
    958   1.48      fvdl 		panic("swapdrum_add");
    959  1.130   hannken 	/*
    960  1.130   hannken 	 * If this is the first regular swap create the workqueue.
    961  1.130   hannken 	 * => Protected by swap_syscall_lock.
    962  1.130   hannken 	 */
    963  1.130   hannken 	if (vp->v_type != VBLK) {
    964  1.130   hannken 		if (sw_reg_count++ == 0) {
    965  1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
    966  1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    967  1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    968  1.130   hannken 				panic("swap_add: workqueue_create failed");
    969  1.130   hannken 		}
    970  1.130   hannken 	}
    971   1.48      fvdl 
    972   1.48      fvdl 	sdp->swd_drumoffset = (int)result;
    973   1.48      fvdl 	sdp->swd_drumsize = npages;
    974   1.48      fvdl 	sdp->swd_npages = size;
    975  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
    976    1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    977    1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    978   1.32       chs 	uvmexp.swpages += size;
    979   1.81        pk 	uvmexp.swpgavail += size;
    980  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
    981    1.1       mrg 	return (0);
    982    1.1       mrg 
    983    1.1       mrg 	/*
    984   1.43       chs 	 * failure: clean up and return error.
    985    1.1       mrg 	 */
    986   1.43       chs 
    987   1.43       chs bad:
    988   1.90      yamt 	if (sdp->swd_blist) {
    989   1.90      yamt 		blist_destroy(sdp->swd_blist);
    990   1.43       chs 	}
    991   1.43       chs 	if (vp != rootvp) {
    992  1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
    993   1.43       chs 	}
    994    1.1       mrg 	return (error);
    995    1.1       mrg }
    996    1.1       mrg 
    997    1.1       mrg /*
    998    1.1       mrg  * swap_off: stop swapping on swapdev
    999    1.1       mrg  *
   1000   1.32       chs  * => swap data should be locked, we will unlock.
   1001    1.1       mrg  */
   1002    1.1       mrg static int
   1003   1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1004    1.1       mrg {
   1005   1.91      yamt 	int npages = sdp->swd_npages;
   1006   1.91      yamt 	int error = 0;
   1007   1.81        pk 
   1008    1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1009   1.81        pk 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1010    1.1       mrg 
   1011   1.32       chs 	/* disable the swap area being removed */
   1012    1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1013   1.81        pk 	uvmexp.swpgavail -= npages;
   1014  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1015   1.32       chs 
   1016   1.32       chs 	/*
   1017   1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1018   1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1019   1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1020   1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1021   1.32       chs 	 */
   1022    1.1       mrg 
   1023   1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1024   1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1025   1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1026   1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1027   1.91      yamt 		error = ENOMEM;
   1028   1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1029   1.91      yamt 		error = EBUSY;
   1030   1.91      yamt 	}
   1031   1.51       chs 
   1032   1.91      yamt 	if (error) {
   1033  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1034   1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1035   1.81        pk 		uvmexp.swpgavail += npages;
   1036  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1037   1.91      yamt 
   1038   1.91      yamt 		return error;
   1039   1.32       chs 	}
   1040    1.1       mrg 
   1041    1.1       mrg 	/*
   1042  1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1043  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1044  1.130   hannken 	 */
   1045  1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1046  1.130   hannken 		KASSERT(sw_reg_count > 0);
   1047  1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1048  1.130   hannken 		if (--sw_reg_count == 0) {
   1049  1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1050  1.130   hannken 			sw_reg_workqueue = NULL;
   1051  1.130   hannken 		}
   1052  1.130   hannken 	}
   1053  1.130   hannken 
   1054  1.130   hannken 	/*
   1055   1.58     enami 	 * done with the vnode.
   1056   1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1057   1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1058    1.1       mrg 	 */
   1059   1.39       chs 	vrele(sdp->swd_vp);
   1060   1.32       chs 	if (sdp->swd_vp != rootvp) {
   1061  1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1062   1.32       chs 	}
   1063   1.32       chs 
   1064  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1065   1.81        pk 	uvmexp.swpages -= npages;
   1066   1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1067    1.1       mrg 
   1068  1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1069   1.70    provos 		panic("swap_off: swapdev not in list");
   1070   1.32       chs 	swaplist_trim();
   1071  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1072    1.1       mrg 
   1073   1.32       chs 	/*
   1074   1.32       chs 	 * free all resources!
   1075   1.32       chs 	 */
   1076  1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1077   1.90      yamt 	blist_destroy(sdp->swd_blist);
   1078   1.96      yamt 	bufq_free(sdp->swd_tab);
   1079  1.111      yamt 	free(sdp, M_VMSWAP);
   1080    1.1       mrg 	return (0);
   1081    1.1       mrg }
   1082    1.1       mrg 
   1083    1.1       mrg /*
   1084    1.1       mrg  * /dev/drum interface and i/o functions
   1085    1.1       mrg  */
   1086    1.1       mrg 
   1087    1.1       mrg /*
   1088    1.1       mrg  * swstrategy: perform I/O on the drum
   1089    1.1       mrg  *
   1090    1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1091    1.1       mrg  */
   1092   1.94   thorpej static void
   1093   1.93   thorpej swstrategy(struct buf *bp)
   1094    1.1       mrg {
   1095    1.1       mrg 	struct swapdev *sdp;
   1096    1.1       mrg 	struct vnode *vp;
   1097  1.134        ad 	int pageno, bn;
   1098    1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1099    1.1       mrg 
   1100    1.1       mrg 	/*
   1101    1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1102    1.1       mrg 	 * be yanked out from under us because we are holding resources
   1103    1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1104    1.1       mrg 	 */
   1105   1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1106  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1107    1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1108  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1109    1.1       mrg 	if (sdp == NULL) {
   1110    1.1       mrg 		bp->b_error = EINVAL;
   1111    1.1       mrg 		biodone(bp);
   1112    1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1113    1.1       mrg 		return;
   1114    1.1       mrg 	}
   1115    1.1       mrg 
   1116    1.1       mrg 	/*
   1117    1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1118    1.1       mrg 	 */
   1119    1.1       mrg 
   1120   1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1121   1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1122    1.1       mrg 
   1123   1.41       chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1124    1.1       mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1125    1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1126    1.1       mrg 
   1127    1.1       mrg 	/*
   1128    1.1       mrg 	 * for block devices we finish up here.
   1129   1.32       chs 	 * for regular files we have to do more work which we delegate
   1130    1.1       mrg 	 * to sw_reg_strategy().
   1131    1.1       mrg 	 */
   1132    1.1       mrg 
   1133  1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1134  1.134        ad 	switch (vp->v_type) {
   1135    1.1       mrg 	default:
   1136  1.134        ad 		panic("swstrategy: vnode type 0x%x", vp->v_type);
   1137   1.32       chs 
   1138    1.1       mrg 	case VBLK:
   1139    1.1       mrg 
   1140    1.1       mrg 		/*
   1141    1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1142    1.1       mrg 		 * on the swapdev (sdp).
   1143    1.1       mrg 		 */
   1144    1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1145    1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1146    1.1       mrg 
   1147    1.1       mrg 		/*
   1148    1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1149    1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1150    1.1       mrg 		 */
   1151    1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1152  1.134        ad 			mutex_enter(bp->b_objlock);
   1153    1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1154  1.134        ad 			mutex_exit(bp->b_objlock);
   1155  1.134        ad 			mutex_enter(&vp->v_interlock);
   1156  1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1157  1.134        ad 			mutex_exit(&vp->v_interlock);
   1158    1.1       mrg 		}
   1159    1.1       mrg 
   1160   1.41       chs 		/*
   1161    1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1162    1.1       mrg 		 */
   1163    1.1       mrg 		bp->b_vp = vp;
   1164  1.134        ad 		bp->b_objlock = &vp->v_interlock;
   1165   1.84   hannken 		VOP_STRATEGY(vp, bp);
   1166    1.1       mrg 		return;
   1167   1.32       chs 
   1168    1.1       mrg 	case VREG:
   1169    1.1       mrg 		/*
   1170   1.32       chs 		 * delegate to sw_reg_strategy function.
   1171    1.1       mrg 		 */
   1172    1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1173    1.1       mrg 		return;
   1174    1.1       mrg 	}
   1175    1.1       mrg 	/* NOTREACHED */
   1176    1.1       mrg }
   1177    1.1       mrg 
   1178    1.1       mrg /*
   1179   1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1180   1.94   thorpej  */
   1181   1.94   thorpej /*ARGSUSED*/
   1182   1.94   thorpej static int
   1183  1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1184   1.94   thorpej {
   1185   1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1186   1.94   thorpej 
   1187   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1188   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1189   1.94   thorpej }
   1190   1.94   thorpej 
   1191   1.94   thorpej /*
   1192   1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1193   1.94   thorpej  */
   1194   1.94   thorpej /*ARGSUSED*/
   1195   1.94   thorpej static int
   1196  1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1197   1.94   thorpej {
   1198   1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1199   1.94   thorpej 
   1200   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1201   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1202   1.94   thorpej }
   1203   1.94   thorpej 
   1204   1.94   thorpej const struct bdevsw swap_bdevsw = {
   1205  1.135   hannken 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1206   1.94   thorpej };
   1207   1.94   thorpej 
   1208   1.94   thorpej const struct cdevsw swap_cdevsw = {
   1209   1.94   thorpej 	nullopen, nullclose, swread, swwrite, noioctl,
   1210  1.105  christos 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1211   1.94   thorpej };
   1212   1.94   thorpej 
   1213   1.94   thorpej /*
   1214    1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1215    1.1       mrg  */
   1216    1.1       mrg static void
   1217   1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1218    1.1       mrg {
   1219    1.1       mrg 	struct vnode	*vp;
   1220    1.1       mrg 	struct vndxfer	*vnx;
   1221   1.44     enami 	daddr_t		nbn;
   1222  1.122  christos 	char 		*addr;
   1223   1.44     enami 	off_t		byteoff;
   1224    1.9       mrg 	int		s, off, nra, error, sz, resid;
   1225    1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1226    1.1       mrg 
   1227    1.1       mrg 	/*
   1228    1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1229    1.1       mrg 	 * our buffer.
   1230    1.1       mrg 	 */
   1231  1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1232    1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1233    1.1       mrg 	vnx->vx_error = 0;
   1234    1.1       mrg 	vnx->vx_pending = 0;
   1235    1.1       mrg 	vnx->vx_bp = bp;
   1236    1.1       mrg 	vnx->vx_sdp = sdp;
   1237    1.1       mrg 
   1238    1.1       mrg 	/*
   1239    1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1240    1.1       mrg 	 * our buffer.
   1241    1.1       mrg 	 */
   1242    1.1       mrg 	error = 0;
   1243    1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1244    1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1245   1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1246    1.1       mrg 
   1247    1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1248    1.1       mrg 		struct vndbuf	*nbp;
   1249    1.1       mrg 
   1250    1.1       mrg 		/*
   1251    1.1       mrg 		 * translate byteoffset into block number.  return values:
   1252    1.1       mrg 		 *   vp = vnode of underlying device
   1253    1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1254    1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1255    1.1       mrg 		 *	block)
   1256    1.1       mrg 		 */
   1257    1.1       mrg 		nra = 0;
   1258    1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1259    1.1       mrg 				 	&vp, &nbn, &nra);
   1260    1.1       mrg 
   1261   1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1262   1.51       chs 			/*
   1263   1.23      marc 			 * this used to just set error, but that doesn't
   1264   1.23      marc 			 * do the right thing.  Instead, it causes random
   1265   1.23      marc 			 * memory errors.  The panic() should remain until
   1266   1.23      marc 			 * this condition doesn't destabilize the system.
   1267   1.23      marc 			 */
   1268   1.23      marc #if 1
   1269   1.23      marc 			panic("sw_reg_strategy: swap to sparse file");
   1270   1.23      marc #else
   1271    1.1       mrg 			error = EIO;	/* failure */
   1272   1.23      marc #endif
   1273   1.23      marc 		}
   1274    1.1       mrg 
   1275    1.1       mrg 		/*
   1276    1.1       mrg 		 * punt if there was an error or a hole in the file.
   1277    1.1       mrg 		 * we must wait for any i/o ops we have already started
   1278    1.1       mrg 		 * to finish before returning.
   1279    1.1       mrg 		 *
   1280    1.1       mrg 		 * XXX we could deal with holes here but it would be
   1281    1.1       mrg 		 * a hassle (in the write case).
   1282    1.1       mrg 		 */
   1283    1.1       mrg 		if (error) {
   1284    1.1       mrg 			s = splbio();
   1285    1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1286    1.1       mrg 			goto out;
   1287    1.1       mrg 		}
   1288    1.1       mrg 
   1289    1.1       mrg 		/*
   1290    1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1291    1.1       mrg 		 */
   1292   1.41       chs 		off = byteoff % sdp->swd_bsize;
   1293   1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1294   1.41       chs 		if (sz > resid)
   1295    1.1       mrg 			sz = resid;
   1296    1.1       mrg 
   1297   1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1298   1.41       chs 			    "vp %p/%p offset 0x%x/0x%x",
   1299   1.41       chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1300    1.1       mrg 
   1301    1.1       mrg 		/*
   1302    1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1303    1.1       mrg 		 * at the front of the nbp structure so that you can
   1304    1.1       mrg 		 * cast pointers between the two structure easily.
   1305    1.1       mrg 		 */
   1306  1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1307  1.134        ad 		buf_init(&nbp->vb_buf);
   1308  1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1309  1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1310  1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1311    1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1312   1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1313    1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1314    1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1315   1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1316    1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1317   1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1318  1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1319   1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1320  1.134        ad 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1321   1.53       chs 		if (vp->v_type == VBLK) {
   1322   1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1323   1.53       chs 		}
   1324    1.1       mrg 
   1325    1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1326    1.1       mrg 
   1327    1.1       mrg 		/*
   1328    1.1       mrg 		 * Just sort by block number
   1329    1.1       mrg 		 */
   1330    1.1       mrg 		s = splbio();
   1331    1.1       mrg 		if (vnx->vx_error != 0) {
   1332  1.134        ad 			buf_destroy(&nbp->vb_buf);
   1333  1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1334    1.1       mrg 			goto out;
   1335    1.1       mrg 		}
   1336    1.1       mrg 		vnx->vx_pending++;
   1337    1.1       mrg 
   1338    1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1339  1.134        ad 		/* XXXAD locking */
   1340  1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1341    1.1       mrg 		sw_reg_start(sdp);
   1342    1.1       mrg 		splx(s);
   1343    1.1       mrg 
   1344    1.1       mrg 		/*
   1345    1.1       mrg 		 * advance to the next I/O
   1346    1.1       mrg 		 */
   1347    1.9       mrg 		byteoff += sz;
   1348    1.1       mrg 		addr += sz;
   1349    1.1       mrg 	}
   1350    1.1       mrg 
   1351    1.1       mrg 	s = splbio();
   1352    1.1       mrg 
   1353    1.1       mrg out: /* Arrive here at splbio */
   1354    1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1355    1.1       mrg 	if (vnx->vx_pending == 0) {
   1356  1.134        ad 		error = vnx->vx_error;
   1357  1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1358  1.134        ad 		bp->b_error = error;
   1359    1.1       mrg 		biodone(bp);
   1360    1.1       mrg 	}
   1361    1.1       mrg 	splx(s);
   1362    1.1       mrg }
   1363    1.1       mrg 
   1364    1.1       mrg /*
   1365    1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1366    1.1       mrg  *
   1367   1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1368    1.1       mrg  */
   1369    1.1       mrg static void
   1370   1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1371    1.1       mrg {
   1372    1.1       mrg 	struct buf	*bp;
   1373  1.134        ad 	struct vnode	*vp;
   1374    1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1375    1.1       mrg 
   1376    1.8       mrg 	/* recursion control */
   1377    1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1378    1.1       mrg 		return;
   1379    1.1       mrg 
   1380    1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1381    1.1       mrg 
   1382   1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1383  1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1384    1.1       mrg 		if (bp == NULL)
   1385    1.1       mrg 			break;
   1386   1.33   thorpej 		sdp->swd_active++;
   1387    1.1       mrg 
   1388    1.1       mrg 		UVMHIST_LOG(pdhist,
   1389    1.1       mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1390    1.1       mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1391  1.134        ad 		vp = bp->b_vp;
   1392  1.134        ad 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1393  1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1394  1.134        ad 			mutex_enter(&vp->v_interlock);
   1395  1.134        ad 			vp->v_numoutput++;
   1396  1.134        ad 			mutex_exit(&vp->v_interlock);
   1397  1.134        ad 		}
   1398  1.134        ad 		VOP_STRATEGY(vp, bp);
   1399    1.1       mrg 	}
   1400    1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1401    1.1       mrg }
   1402    1.1       mrg 
   1403    1.1       mrg /*
   1404  1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1405  1.130   hannken  */
   1406  1.130   hannken static void
   1407  1.130   hannken sw_reg_biodone(struct buf *bp)
   1408  1.130   hannken {
   1409  1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1410  1.130   hannken }
   1411  1.130   hannken 
   1412  1.130   hannken /*
   1413    1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1414    1.1       mrg  *
   1415    1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1416    1.1       mrg  */
   1417    1.1       mrg static void
   1418  1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1419    1.1       mrg {
   1420  1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1421    1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1422    1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1423    1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1424   1.72       chs 	int s, resid, error;
   1425  1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1426    1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1427    1.1       mrg 
   1428    1.1       mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1429    1.1       mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1430    1.1       mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1431    1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1432    1.1       mrg 
   1433    1.1       mrg 	/*
   1434    1.1       mrg 	 * protect vbp at splbio and update.
   1435    1.1       mrg 	 */
   1436    1.1       mrg 
   1437    1.1       mrg 	s = splbio();
   1438    1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1439    1.1       mrg 	pbp->b_resid -= resid;
   1440    1.1       mrg 	vnx->vx_pending--;
   1441    1.1       mrg 
   1442  1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1443    1.1       mrg 		/* pass error upward */
   1444  1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1445   1.72       chs 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1446   1.72       chs 		vnx->vx_error = error;
   1447   1.35       chs 	}
   1448   1.35       chs 
   1449   1.35       chs 	/*
   1450    1.1       mrg 	 * kill vbp structure
   1451    1.1       mrg 	 */
   1452  1.134        ad 	buf_destroy(&vbp->vb_buf);
   1453  1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1454    1.1       mrg 
   1455    1.1       mrg 	/*
   1456    1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1457    1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1458    1.1       mrg 	 */
   1459    1.1       mrg 	if (vnx->vx_error != 0) {
   1460    1.1       mrg 		/* pass error upward */
   1461  1.134        ad 		error = vnx->vx_error;
   1462    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1463  1.134        ad 			pbp->b_error = error;
   1464    1.1       mrg 			biodone(pbp);
   1465  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1466    1.1       mrg 		}
   1467   1.11        pk 	} else if (pbp->b_resid == 0) {
   1468   1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1469    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1470    1.8       mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1471    1.8       mrg 			    pbp, vnx->vx_error, 0, 0);
   1472    1.1       mrg 			biodone(pbp);
   1473  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1474    1.1       mrg 		}
   1475    1.1       mrg 	}
   1476    1.1       mrg 
   1477    1.1       mrg 	/*
   1478    1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1479    1.1       mrg 	 */
   1480   1.33   thorpej 	sdp->swd_active--;
   1481    1.1       mrg 	sw_reg_start(sdp);
   1482    1.1       mrg 	splx(s);
   1483    1.1       mrg }
   1484    1.1       mrg 
   1485    1.1       mrg 
   1486    1.1       mrg /*
   1487    1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1488    1.1       mrg  *
   1489    1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1490    1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1491    1.1       mrg  * => space can be freed with uvm_swap_free
   1492    1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1493  1.127        ad  * => we lock uvm_swap_data_lock
   1494    1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1495    1.1       mrg  */
   1496    1.1       mrg int
   1497  1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1498    1.1       mrg {
   1499    1.1       mrg 	struct swapdev *sdp;
   1500    1.1       mrg 	struct swappri *spp;
   1501    1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1502    1.1       mrg 
   1503    1.1       mrg 	/*
   1504    1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1505    1.1       mrg 	 */
   1506    1.1       mrg 	if (uvmexp.nswapdev < 1)
   1507    1.1       mrg 		return 0;
   1508   1.51       chs 
   1509    1.1       mrg 	/*
   1510    1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1511    1.1       mrg 	 */
   1512  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1513    1.1       mrg 
   1514    1.1       mrg ReTry:	/* XXXMRG */
   1515   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1516   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1517   1.90      yamt 			uint64_t result;
   1518   1.90      yamt 
   1519    1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1520    1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1521    1.1       mrg 				continue;
   1522    1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1523    1.1       mrg 				continue;
   1524   1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1525   1.90      yamt 			if (result == BLIST_NONE) {
   1526    1.1       mrg 				continue;
   1527    1.1       mrg 			}
   1528   1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1529    1.1       mrg 
   1530    1.1       mrg 			/*
   1531    1.1       mrg 			 * successful allocation!  now rotate the circleq.
   1532    1.1       mrg 			 */
   1533    1.1       mrg 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1534    1.1       mrg 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1535    1.1       mrg 			sdp->swd_npginuse += *nslots;
   1536    1.1       mrg 			uvmexp.swpginuse += *nslots;
   1537  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1538    1.1       mrg 			/* done!  return drum slot number */
   1539    1.1       mrg 			UVMHIST_LOG(pdhist,
   1540    1.1       mrg 			    "success!  returning %d slots starting at %d",
   1541    1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1542   1.55       chs 			return (result + sdp->swd_drumoffset);
   1543    1.1       mrg 		}
   1544    1.1       mrg 	}
   1545    1.1       mrg 
   1546    1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1547    1.1       mrg 	if (*nslots > 1 && lessok) {
   1548    1.1       mrg 		*nslots = 1;
   1549   1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1550   1.90      yamt 		goto ReTry;
   1551    1.1       mrg 	}
   1552    1.1       mrg 	/* XXXMRG: END HACK */
   1553    1.1       mrg 
   1554  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1555   1.55       chs 	return 0;
   1556    1.1       mrg }
   1557    1.1       mrg 
   1558  1.141        ad /*
   1559  1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1560  1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1561  1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1562  1.141        ad  * pages are busy.
   1563  1.141        ad  */
   1564  1.119   thorpej bool
   1565   1.81        pk uvm_swapisfull(void)
   1566   1.81        pk {
   1567  1.141        ad 	int swpgonly;
   1568  1.119   thorpej 	bool rv;
   1569   1.81        pk 
   1570  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1571   1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1572  1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1573  1.141        ad 	    uvm_swapisfull_factor);
   1574  1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1575  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1576   1.81        pk 
   1577   1.81        pk 	return (rv);
   1578   1.81        pk }
   1579   1.81        pk 
   1580    1.1       mrg /*
   1581   1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1582   1.32       chs  *
   1583  1.127        ad  * => we lock uvm_swap_data_lock
   1584   1.32       chs  */
   1585   1.32       chs void
   1586   1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1587   1.32       chs {
   1588   1.32       chs 	struct swapdev *sdp;
   1589   1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1590   1.32       chs 
   1591  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1592   1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1593   1.82        pk 	KASSERT(sdp != NULL);
   1594   1.32       chs 
   1595   1.32       chs 	/*
   1596   1.32       chs 	 * we just keep track of how many pages have been marked bad
   1597   1.32       chs 	 * in this device, to make everything add up in swap_off().
   1598   1.32       chs 	 * we assume here that the range of slots will all be within
   1599   1.32       chs 	 * one swap device.
   1600   1.32       chs 	 */
   1601   1.41       chs 
   1602   1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1603   1.82        pk 	uvmexp.swpgonly -= nslots;
   1604   1.32       chs 	sdp->swd_npgbad += nslots;
   1605   1.41       chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1606  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1607   1.32       chs }
   1608   1.32       chs 
   1609   1.32       chs /*
   1610    1.1       mrg  * uvm_swap_free: free swap slots
   1611    1.1       mrg  *
   1612    1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1613  1.127        ad  * => we lock uvm_swap_data_lock
   1614    1.1       mrg  */
   1615    1.1       mrg void
   1616   1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1617    1.1       mrg {
   1618    1.1       mrg 	struct swapdev *sdp;
   1619    1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1620    1.1       mrg 
   1621    1.1       mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1622    1.1       mrg 	    startslot, 0, 0);
   1623   1.32       chs 
   1624   1.32       chs 	/*
   1625   1.32       chs 	 * ignore attempts to free the "bad" slot.
   1626   1.32       chs 	 */
   1627   1.46       chs 
   1628   1.32       chs 	if (startslot == SWSLOT_BAD) {
   1629   1.32       chs 		return;
   1630   1.32       chs 	}
   1631   1.32       chs 
   1632    1.1       mrg 	/*
   1633   1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1634   1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1635    1.1       mrg 	 * lookup and access the extent.
   1636    1.1       mrg 	 */
   1637   1.46       chs 
   1638  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1639    1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1640   1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1641   1.46       chs 	KASSERT(sdp != NULL);
   1642   1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1643   1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1644    1.1       mrg 	sdp->swd_npginuse -= nslots;
   1645    1.1       mrg 	uvmexp.swpginuse -= nslots;
   1646  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1647    1.1       mrg }
   1648    1.1       mrg 
   1649    1.1       mrg /*
   1650    1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1651    1.1       mrg  *
   1652    1.1       mrg  * => can be sync or async
   1653    1.1       mrg  */
   1654   1.54       chs 
   1655    1.1       mrg int
   1656   1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1657    1.1       mrg {
   1658   1.56       chs 	int error;
   1659    1.1       mrg 
   1660   1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1661    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1662   1.56       chs 	return error;
   1663    1.1       mrg }
   1664    1.1       mrg 
   1665    1.1       mrg /*
   1666    1.1       mrg  * uvm_swap_get: get a single page from swap
   1667    1.1       mrg  *
   1668    1.1       mrg  * => usually a sync op (from fault)
   1669    1.1       mrg  */
   1670   1.54       chs 
   1671    1.1       mrg int
   1672   1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1673    1.1       mrg {
   1674   1.56       chs 	int error;
   1675    1.1       mrg 
   1676    1.1       mrg 	uvmexp.nswget++;
   1677   1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1678   1.32       chs 	if (swslot == SWSLOT_BAD) {
   1679   1.47       chs 		return EIO;
   1680   1.32       chs 	}
   1681   1.81        pk 
   1682   1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1683    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1684   1.56       chs 	if (error == 0) {
   1685   1.47       chs 
   1686   1.26       chs 		/*
   1687   1.54       chs 		 * this page is no longer only in swap.
   1688   1.26       chs 		 */
   1689   1.47       chs 
   1690  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1691   1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1692   1.54       chs 		uvmexp.swpgonly--;
   1693  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1694   1.26       chs 	}
   1695   1.56       chs 	return error;
   1696    1.1       mrg }
   1697    1.1       mrg 
   1698    1.1       mrg /*
   1699    1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1700    1.1       mrg  */
   1701    1.1       mrg 
   1702    1.1       mrg static int
   1703   1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1704    1.1       mrg {
   1705    1.1       mrg 	daddr_t startblk;
   1706    1.1       mrg 	struct	buf *bp;
   1707   1.15       eeh 	vaddr_t kva;
   1708  1.134        ad 	int	error, mapinflags;
   1709  1.119   thorpej 	bool write, async;
   1710    1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1711    1.1       mrg 
   1712    1.1       mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1713    1.1       mrg 	    startslot, npages, flags, 0);
   1714   1.32       chs 
   1715   1.41       chs 	write = (flags & B_READ) == 0;
   1716   1.41       chs 	async = (flags & B_ASYNC) != 0;
   1717   1.41       chs 
   1718    1.1       mrg 	/*
   1719  1.137      yamt 	 * allocate a buf for the i/o.
   1720  1.137      yamt 	 */
   1721  1.137      yamt 
   1722  1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1723  1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1724  1.137      yamt 	if (bp == NULL) {
   1725  1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1726  1.137      yamt 		return ENOMEM;
   1727  1.137      yamt 	}
   1728  1.137      yamt 
   1729  1.137      yamt 	/*
   1730    1.1       mrg 	 * convert starting drum slot to block number
   1731    1.1       mrg 	 */
   1732   1.54       chs 
   1733   1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1734    1.1       mrg 
   1735    1.1       mrg 	/*
   1736   1.54       chs 	 * first, map the pages into the kernel.
   1737   1.41       chs 	 */
   1738   1.41       chs 
   1739   1.54       chs 	mapinflags = !write ?
   1740   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1741   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1742   1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1743    1.1       mrg 
   1744   1.51       chs 	/*
   1745    1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1746    1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1747    1.1       mrg 	 */
   1748   1.54       chs 
   1749  1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1750  1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1751    1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1752   1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1753  1.122  christos 	bp->b_data = (void *)kva;
   1754    1.1       mrg 	bp->b_blkno = startblk;
   1755   1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1756    1.1       mrg 
   1757   1.51       chs 	/*
   1758   1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1759    1.1       mrg 	 */
   1760   1.54       chs 
   1761   1.41       chs 	if (write) {
   1762  1.134        ad 		mutex_enter(&swapdev_vp->v_interlock);
   1763  1.134        ad 		swapdev_vp->v_numoutput++;
   1764  1.134        ad 		mutex_exit(&swapdev_vp->v_interlock);
   1765    1.1       mrg 	}
   1766    1.1       mrg 
   1767    1.1       mrg 	/*
   1768   1.41       chs 	 * for async ops we must set up the iodone handler.
   1769    1.1       mrg 	 */
   1770   1.54       chs 
   1771   1.41       chs 	if (async) {
   1772   1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1773    1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1774  1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1775   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1776   1.83      yamt 		else
   1777   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1778   1.83      yamt 	} else {
   1779  1.134        ad 		bp->b_iodone = NULL;
   1780   1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1781    1.1       mrg 	}
   1782    1.1       mrg 	UVMHIST_LOG(pdhist,
   1783   1.41       chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1784    1.1       mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1785    1.1       mrg 
   1786    1.1       mrg 	/*
   1787    1.1       mrg 	 * now we start the I/O, and if async, return.
   1788    1.1       mrg 	 */
   1789   1.54       chs 
   1790   1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1791   1.41       chs 	if (async)
   1792   1.47       chs 		return 0;
   1793    1.1       mrg 
   1794    1.1       mrg 	/*
   1795    1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1796    1.1       mrg 	 */
   1797   1.54       chs 
   1798   1.47       chs 	error = biowait(bp);
   1799    1.1       mrg 
   1800    1.1       mrg 	/*
   1801    1.1       mrg 	 * kill the pager mapping
   1802    1.1       mrg 	 */
   1803   1.54       chs 
   1804    1.1       mrg 	uvm_pagermapout(kva, npages);
   1805    1.1       mrg 
   1806    1.1       mrg 	/*
   1807   1.54       chs 	 * now dispose of the buf and we're done.
   1808    1.1       mrg 	 */
   1809   1.54       chs 
   1810  1.134        ad 	if (write) {
   1811  1.134        ad 		mutex_enter(&swapdev_vp->v_interlock);
   1812   1.41       chs 		vwakeup(bp);
   1813  1.134        ad 		mutex_exit(&swapdev_vp->v_interlock);
   1814  1.134        ad 	}
   1815   1.98      yamt 	putiobuf(bp);
   1816   1.47       chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1817  1.134        ad 
   1818   1.47       chs 	return (error);
   1819    1.1       mrg }
   1820