Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.144
      1  1.144       mrg /*	$NetBSD: uvm_swap.c,v 1.144 2009/01/14 02:20:45 mrg Exp $	*/
      2    1.1       mrg 
      3    1.1       mrg /*
      4  1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5    1.1       mrg  * All rights reserved.
      6    1.1       mrg  *
      7    1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8    1.1       mrg  * modification, are permitted provided that the following conditions
      9    1.1       mrg  * are met:
     10    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15    1.1       mrg  *
     16    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17    1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18    1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19    1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20    1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21    1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22    1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23    1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24    1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26    1.1       mrg  * SUCH DAMAGE.
     27    1.3       mrg  *
     28    1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29    1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30    1.1       mrg  */
     31   1.57     lukem 
     32   1.57     lukem #include <sys/cdefs.h>
     33  1.144       mrg __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.144 2009/01/14 02:20:45 mrg Exp $");
     34    1.5       mrg 
     35    1.6   thorpej #include "fs_nfs.h"
     36    1.5       mrg #include "opt_uvmhist.h"
     37   1.16       mrg #include "opt_compat_netbsd.h"
     38   1.41       chs #include "opt_ddb.h"
     39    1.1       mrg 
     40    1.1       mrg #include <sys/param.h>
     41    1.1       mrg #include <sys/systm.h>
     42    1.1       mrg #include <sys/buf.h>
     43   1.89      yamt #include <sys/bufq.h>
     44   1.36       mrg #include <sys/conf.h>
     45    1.1       mrg #include <sys/proc.h>
     46    1.1       mrg #include <sys/namei.h>
     47    1.1       mrg #include <sys/disklabel.h>
     48    1.1       mrg #include <sys/errno.h>
     49    1.1       mrg #include <sys/kernel.h>
     50  1.111      yamt #include <sys/malloc.h>
     51    1.1       mrg #include <sys/vnode.h>
     52    1.1       mrg #include <sys/file.h>
     53  1.110      yamt #include <sys/vmem.h>
     54   1.90      yamt #include <sys/blist.h>
     55    1.1       mrg #include <sys/mount.h>
     56   1.12        pk #include <sys/pool.h>
     57    1.1       mrg #include <sys/syscallargs.h>
     58   1.17       mrg #include <sys/swap.h>
     59  1.100      elad #include <sys/kauth.h>
     60  1.125        ad #include <sys/sysctl.h>
     61  1.130   hannken #include <sys/workqueue.h>
     62    1.1       mrg 
     63    1.1       mrg #include <uvm/uvm.h>
     64    1.1       mrg 
     65    1.1       mrg #include <miscfs/specfs/specdev.h>
     66    1.1       mrg 
     67    1.1       mrg /*
     68    1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     69    1.1       mrg  */
     70    1.1       mrg 
     71    1.1       mrg /*
     72    1.1       mrg  * swap space is managed in the following way:
     73   1.51       chs  *
     74    1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     75    1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     76    1.1       mrg  * information that is passed up to the user (via system calls).
     77    1.1       mrg  *
     78    1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     79    1.1       mrg  * swap parition usage.
     80    1.1       mrg  *
     81    1.1       mrg  * the system maintains a global data structure describing all swap
     82    1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     83    1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     84   1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     85    1.1       mrg  * CIRCLEQ of "swapdev" structures at that priority.
     86    1.1       mrg  *
     87    1.1       mrg  * locking:
     88  1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89    1.1       mrg  *    system call and prevents the swap priority list from changing
     90    1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92    1.1       mrg  *    structures including the priority list, the swapdev structures,
     93  1.110      yamt  *    and the swapmap arena.
     94    1.1       mrg  *
     95    1.1       mrg  * each swap device has the following info:
     96    1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     97    1.1       mrg  *  - swap enabled (allows new allocations on swap)
     98    1.1       mrg  *  - map info in /dev/drum
     99    1.1       mrg  *  - vnode pointer
    100    1.1       mrg  * for swap files only:
    101    1.1       mrg  *  - block size
    102    1.1       mrg  *  - max byte count in buffer
    103    1.1       mrg  *  - buffer
    104    1.1       mrg  *
    105    1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    106    1.1       mrg  * the sys_swapctl performs the following operations:
    107    1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108   1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109    1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110   1.85  junyoung  *	the current swap config into the array. The actual work is done
    111   1.63      manu  *	in the uvm_swap_stats(9) function.
    112    1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113    1.1       mrg  *	priority in "misc", start swapping on it.
    114    1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115    1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116    1.1       mrg  *	"misc")
    117    1.1       mrg  */
    118    1.1       mrg 
    119    1.1       mrg /*
    120    1.1       mrg  * swapdev: describes a single swap partition/file
    121    1.1       mrg  *
    122    1.1       mrg  * note the following should be true:
    123    1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124    1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125    1.1       mrg  */
    126    1.1       mrg struct swapdev {
    127  1.144       mrg 	dev_t			swd_dev;	/* device id */
    128  1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    129  1.144       mrg 	int			swd_priority;	/* our priority */
    130  1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    131   1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    132   1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    133   1.16       mrg 	int			swd_npages;	/* #pages we can use */
    134   1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    135   1.32       chs 	int			swd_npgbad;	/* #pages bad */
    136   1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    137   1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    138   1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    139   1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    140   1.16       mrg 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    141    1.1       mrg 
    142   1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    143   1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    144   1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    145   1.33   thorpej 	int			swd_active;	/* number of active buffers */
    146    1.1       mrg };
    147    1.1       mrg 
    148    1.1       mrg /*
    149    1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150    1.1       mrg  */
    151    1.1       mrg struct swappri {
    152    1.1       mrg 	int			spi_priority;     /* priority */
    153    1.1       mrg 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154    1.1       mrg 	/* circleq of swapdevs at this priority */
    155    1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156    1.1       mrg };
    157    1.1       mrg 
    158    1.1       mrg /*
    159    1.1       mrg  * The following two structures are used to keep track of data transfers
    160    1.1       mrg  * on swap devices associated with regular files.
    161    1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162    1.1       mrg  * structure names here to ease porting..
    163    1.1       mrg  */
    164    1.1       mrg struct vndxfer {
    165    1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166    1.1       mrg 	struct swapdev	*vx_sdp;
    167    1.1       mrg 	int		vx_error;
    168    1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    169    1.1       mrg 	int		vx_flags;
    170    1.1       mrg #define VX_BUSY		1
    171    1.1       mrg #define VX_DEAD		2
    172    1.1       mrg };
    173    1.1       mrg 
    174    1.1       mrg struct vndbuf {
    175    1.1       mrg 	struct buf	vb_buf;
    176    1.1       mrg 	struct vndxfer	*vb_xfer;
    177    1.1       mrg };
    178    1.1       mrg 
    179  1.144       mrg /*
    180  1.144       mrg  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    181  1.144       mrg  * dev_t and has no se_path[] member.
    182  1.144       mrg  */
    183  1.144       mrg struct swapent13 {
    184  1.144       mrg 	int32_t	se13_dev;		/* device id */
    185  1.144       mrg 	int	se13_flags;		/* flags */
    186  1.144       mrg 	int	se13_nblks;		/* total blocks */
    187  1.144       mrg 	int	se13_inuse;		/* blocks in use */
    188  1.144       mrg 	int	se13_priority;		/* priority of this device */
    189  1.144       mrg };
    190  1.144       mrg 
    191  1.144       mrg /*
    192  1.144       mrg  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    193  1.144       mrg  * dev_t.
    194  1.144       mrg  */
    195  1.144       mrg struct swapent50 {
    196  1.144       mrg 	int32_t	se50_dev;		/* device id */
    197  1.144       mrg 	int	se50_flags;		/* flags */
    198  1.144       mrg 	int	se50_nblks;		/* total blocks */
    199  1.144       mrg 	int	se50_inuse;		/* blocks in use */
    200  1.144       mrg 	int	se50_priority;		/* priority of this device */
    201  1.144       mrg 	char	se50_path[PATH_MAX+1];	/* path name */
    202  1.144       mrg };
    203   1.12        pk 
    204    1.1       mrg /*
    205   1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    206    1.1       mrg  */
    207  1.123        ad POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
    208  1.123        ad     IPL_BIO);
    209  1.123        ad POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
    210  1.123        ad     IPL_BIO);
    211    1.1       mrg 
    212    1.1       mrg /*
    213    1.1       mrg  * local variables
    214    1.1       mrg  */
    215  1.111      yamt MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    216  1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    217    1.1       mrg 
    218    1.1       mrg /* list of all active swap devices [by priority] */
    219    1.1       mrg LIST_HEAD(swap_priority, swappri);
    220    1.1       mrg static struct swap_priority swap_priority;
    221    1.1       mrg 
    222    1.1       mrg /* locks */
    223  1.117        ad static krwlock_t swap_syscall_lock;
    224    1.1       mrg 
    225  1.130   hannken /* workqueue and use counter for swap to regular files */
    226  1.130   hannken static int sw_reg_count = 0;
    227  1.130   hannken static struct workqueue *sw_reg_workqueue;
    228  1.130   hannken 
    229  1.141        ad /* tuneables */
    230  1.141        ad u_int uvm_swapisfull_factor = 99;
    231  1.141        ad 
    232    1.1       mrg /*
    233    1.1       mrg  * prototypes
    234    1.1       mrg  */
    235   1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    236    1.1       mrg 
    237  1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    238   1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    239   1.85  junyoung 					 struct swappri *, int);
    240   1.85  junyoung static void		 swaplist_trim(void);
    241    1.1       mrg 
    242   1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    243   1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    244    1.1       mrg 
    245   1.95      yamt static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    246   1.95      yamt 
    247   1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    248  1.130   hannken static void sw_reg_biodone(struct buf *);
    249  1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    250   1.85  junyoung static void sw_reg_start(struct swapdev *);
    251    1.1       mrg 
    252   1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    253    1.1       mrg 
    254    1.1       mrg /*
    255    1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    256    1.1       mrg  *
    257   1.51       chs  * => called at boot time from init_main.c after the filesystems
    258    1.1       mrg  *	are brought up (which happens after uvm_init())
    259    1.1       mrg  */
    260    1.1       mrg void
    261   1.93   thorpej uvm_swap_init(void)
    262    1.1       mrg {
    263    1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    264    1.1       mrg 
    265    1.1       mrg 	UVMHIST_CALLED(pdhist);
    266    1.1       mrg 	/*
    267    1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    268    1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    269    1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    270    1.1       mrg 	 */
    271    1.1       mrg 
    272    1.1       mrg 	LIST_INIT(&swap_priority);
    273    1.1       mrg 	uvmexp.nswapdev = 0;
    274  1.117        ad 	rw_init(&swap_syscall_lock);
    275  1.117        ad 	cv_init(&uvm.scheduler_cv, "schedule");
    276  1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    277   1.12        pk 
    278  1.117        ad 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    279  1.126        ad 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    280  1.117        ad 
    281    1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    282    1.1       mrg 		panic("uvm_swap_init: can't get vnode for swap device");
    283  1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    284  1.136   hannken 		panic("uvm_swap_init: can't lock swap device");
    285  1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    286  1.135   hannken 		panic("uvm_swap_init: can't open swap device");
    287  1.136   hannken 	VOP_UNLOCK(swapdev_vp, 0);
    288    1.1       mrg 
    289    1.1       mrg 	/*
    290    1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    291    1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    292   1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    293    1.1       mrg 	 * failure, or no allocation).
    294    1.1       mrg 	 */
    295  1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    296  1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    297    1.1       mrg 	if (swapmap == 0)
    298    1.1       mrg 		panic("uvm_swap_init: extent_create failed");
    299    1.1       mrg 
    300    1.1       mrg 	/*
    301    1.1       mrg 	 * done!
    302    1.1       mrg 	 */
    303  1.121   thorpej 	uvm.swap_running = true;
    304  1.140        ad #ifdef __SWAP_BROKEN
    305  1.140        ad 	uvm.swapout_enabled = 0;
    306  1.140        ad #else
    307  1.125        ad 	uvm.swapout_enabled = 1;
    308  1.140        ad #endif
    309    1.1       mrg 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    310  1.125        ad 
    311  1.125        ad         sysctl_createv(NULL, 0, NULL, NULL,
    312  1.125        ad             CTLFLAG_READWRITE,
    313  1.125        ad             CTLTYPE_INT, "swapout",
    314  1.125        ad             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
    315  1.125        ad             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
    316    1.1       mrg }
    317    1.1       mrg 
    318    1.1       mrg /*
    319    1.1       mrg  * swaplist functions: functions that operate on the list of swap
    320    1.1       mrg  * devices on the system.
    321    1.1       mrg  */
    322    1.1       mrg 
    323    1.1       mrg /*
    324    1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    325    1.1       mrg  *
    326  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    327    1.1       mrg  * => caller must provide a newly malloc'd swappri structure (we will
    328    1.1       mrg  *	FREE it if we don't need it... this it to prevent malloc blocking
    329    1.1       mrg  *	here while adding swap)
    330    1.1       mrg  */
    331    1.1       mrg static void
    332   1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    333    1.1       mrg {
    334    1.1       mrg 	struct swappri *spp, *pspp;
    335    1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    336    1.1       mrg 
    337    1.1       mrg 	/*
    338    1.1       mrg 	 * find entry at or after which to insert the new device.
    339    1.1       mrg 	 */
    340   1.55       chs 	pspp = NULL;
    341   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    342    1.1       mrg 		if (priority <= spp->spi_priority)
    343    1.1       mrg 			break;
    344    1.1       mrg 		pspp = spp;
    345    1.1       mrg 	}
    346    1.1       mrg 
    347    1.1       mrg 	/*
    348    1.1       mrg 	 * new priority?
    349    1.1       mrg 	 */
    350    1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    351    1.1       mrg 		spp = newspp;  /* use newspp! */
    352   1.32       chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    353   1.32       chs 			    priority, 0, 0, 0);
    354    1.1       mrg 
    355    1.1       mrg 		spp->spi_priority = priority;
    356    1.1       mrg 		CIRCLEQ_INIT(&spp->spi_swapdev);
    357    1.1       mrg 
    358    1.1       mrg 		if (pspp)
    359    1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    360    1.1       mrg 		else
    361    1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    362    1.1       mrg 	} else {
    363    1.1       mrg 	  	/* we don't need a new priority structure, free it */
    364  1.142    cegger 		free(newspp, M_VMSWAP);
    365    1.1       mrg 	}
    366    1.1       mrg 
    367    1.1       mrg 	/*
    368    1.1       mrg 	 * priority found (or created).   now insert on the priority's
    369    1.1       mrg 	 * circleq list and bump the total number of swapdevs.
    370    1.1       mrg 	 */
    371    1.1       mrg 	sdp->swd_priority = priority;
    372    1.1       mrg 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    373    1.1       mrg 	uvmexp.nswapdev++;
    374    1.1       mrg }
    375    1.1       mrg 
    376    1.1       mrg /*
    377    1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    378    1.1       mrg  *	global list.
    379    1.1       mrg  *
    380  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    381    1.1       mrg  * => we return the swapdev we found (and removed)
    382    1.1       mrg  */
    383    1.1       mrg static struct swapdev *
    384  1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    385    1.1       mrg {
    386    1.1       mrg 	struct swapdev *sdp;
    387    1.1       mrg 	struct swappri *spp;
    388    1.1       mrg 
    389    1.1       mrg 	/*
    390    1.1       mrg 	 * search the lists for the requested vp
    391    1.1       mrg 	 */
    392   1.55       chs 
    393   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    394   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    395    1.1       mrg 			if (sdp->swd_vp == vp) {
    396    1.1       mrg 				if (remove) {
    397    1.1       mrg 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    398    1.1       mrg 					    sdp, swd_next);
    399    1.1       mrg 					uvmexp.nswapdev--;
    400    1.1       mrg 				}
    401    1.1       mrg 				return(sdp);
    402    1.1       mrg 			}
    403   1.55       chs 		}
    404    1.1       mrg 	}
    405    1.1       mrg 	return (NULL);
    406    1.1       mrg }
    407    1.1       mrg 
    408  1.113      elad /*
    409    1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    410    1.1       mrg  *	them.
    411    1.1       mrg  *
    412  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    413    1.1       mrg  */
    414    1.1       mrg static void
    415   1.93   thorpej swaplist_trim(void)
    416    1.1       mrg {
    417    1.1       mrg 	struct swappri *spp, *nextspp;
    418    1.1       mrg 
    419   1.32       chs 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    420   1.32       chs 		nextspp = LIST_NEXT(spp, spi_swappri);
    421   1.32       chs 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    422   1.32       chs 		    (void *)&spp->spi_swapdev)
    423    1.1       mrg 			continue;
    424    1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    425  1.111      yamt 		free(spp, M_VMSWAP);
    426    1.1       mrg 	}
    427    1.1       mrg }
    428    1.1       mrg 
    429    1.1       mrg /*
    430    1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    431    1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    432    1.1       mrg  *
    433    1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    434  1.127        ad  * => caller must hold uvm_swap_data_lock
    435    1.1       mrg  */
    436    1.1       mrg static struct swapdev *
    437   1.93   thorpej swapdrum_getsdp(int pgno)
    438    1.1       mrg {
    439    1.1       mrg 	struct swapdev *sdp;
    440    1.1       mrg 	struct swappri *spp;
    441   1.51       chs 
    442   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    443   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    444   1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    445   1.48      fvdl 				continue;
    446    1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    447    1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    448    1.1       mrg 				return sdp;
    449    1.1       mrg 			}
    450   1.48      fvdl 		}
    451   1.55       chs 	}
    452    1.1       mrg 	return NULL;
    453    1.1       mrg }
    454    1.1       mrg 
    455    1.1       mrg 
    456    1.1       mrg /*
    457    1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    458    1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    459    1.1       mrg  */
    460    1.1       mrg int
    461  1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    462    1.1       mrg {
    463  1.133       dsl 	/* {
    464    1.1       mrg 		syscallarg(int) cmd;
    465    1.1       mrg 		syscallarg(void *) arg;
    466    1.1       mrg 		syscallarg(int) misc;
    467  1.133       dsl 	} */
    468    1.1       mrg 	struct vnode *vp;
    469    1.1       mrg 	struct nameidata nd;
    470    1.1       mrg 	struct swappri *spp;
    471    1.1       mrg 	struct swapdev *sdp;
    472    1.1       mrg 	struct swapent *sep;
    473  1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    474  1.101  christos 	char	*userpath;
    475   1.18     enami 	size_t	len;
    476   1.61      manu 	int	error, misc;
    477    1.1       mrg 	int	priority;
    478    1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    479    1.1       mrg 
    480    1.1       mrg 	misc = SCARG(uap, misc);
    481    1.1       mrg 
    482    1.1       mrg 	/*
    483    1.1       mrg 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    484    1.1       mrg 	 */
    485  1.117        ad 	rw_enter(&swap_syscall_lock, RW_WRITER);
    486   1.24       mrg 
    487  1.111      yamt 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    488    1.1       mrg 	/*
    489    1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    490    1.1       mrg 	 *
    491   1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    492    1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    493    1.1       mrg 	 */
    494    1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    495    1.8       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    496    1.8       mrg 		    0, 0, 0);
    497    1.1       mrg 		*retval = uvmexp.nswapdev;
    498   1.16       mrg 		error = 0;
    499   1.16       mrg 		goto out;
    500    1.1       mrg 	}
    501    1.1       mrg 
    502    1.1       mrg 	/*
    503    1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    504    1.1       mrg 	 *
    505   1.51       chs 	 * note that the swap_priority list can't change as long
    506    1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    507  1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    508    1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    509    1.1       mrg 	 */
    510   1.16       mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    511  1.144       mrg #if defined(COMPAT_50)
    512  1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS50
    513  1.144       mrg #endif
    514   1.16       mrg #if defined(COMPAT_13)
    515  1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS13
    516   1.16       mrg #endif
    517   1.16       mrg 	    ) {
    518   1.88  christos 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    519   1.88  christos 			misc = uvmexp.nswapdev;
    520   1.16       mrg #if defined(COMPAT_13)
    521  1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS13)
    522  1.144       mrg 			len = sizeof(struct swapent13) * misc;
    523  1.144       mrg 		else
    524  1.144       mrg #endif
    525  1.144       mrg #if defined(COMPAT_50)
    526  1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS50)
    527  1.144       mrg 			len = sizeof(struct swapent50) * misc;
    528   1.62      manu 		else
    529   1.16       mrg #endif
    530   1.62      manu 			len = sizeof(struct swapent) * misc;
    531  1.111      yamt 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    532   1.62      manu 
    533   1.95      yamt 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    534   1.92  christos 		error = copyout(sep, SCARG(uap, arg), len);
    535    1.1       mrg 
    536  1.111      yamt 		free(sep, M_TEMP);
    537   1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    538   1.16       mrg 		goto out;
    539   1.51       chs 	}
    540   1.55       chs 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    541   1.55       chs 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    542   1.55       chs 
    543   1.55       chs 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    544   1.55       chs 		goto out;
    545   1.55       chs 	}
    546    1.1       mrg 
    547    1.1       mrg 	/*
    548    1.1       mrg 	 * all other requests require superuser privs.   verify.
    549    1.1       mrg 	 */
    550  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    551  1.106      elad 	    0, NULL, NULL, NULL)))
    552   1.16       mrg 		goto out;
    553    1.1       mrg 
    554  1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    555  1.104    martin 		/* drop the current dump device */
    556  1.104    martin 		dumpdev = NODEV;
    557  1.138    kardel 		dumpcdev = NODEV;
    558  1.104    martin 		cpu_dumpconf();
    559  1.104    martin 		goto out;
    560  1.104    martin 	}
    561  1.104    martin 
    562    1.1       mrg 	/*
    563    1.1       mrg 	 * at this point we expect a path name in arg.   we will
    564    1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    565    1.1       mrg 	 * the vnode (VOP_LOCK).
    566    1.1       mrg 	 *
    567    1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    568   1.16       mrg 	 * miniroot)
    569    1.1       mrg 	 */
    570    1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    571    1.1       mrg 		vp = rootvp;		/* miniroot */
    572   1.79   thorpej 		if (vget(vp, LK_EXCLUSIVE)) {
    573   1.16       mrg 			error = EBUSY;
    574   1.16       mrg 			goto out;
    575    1.1       mrg 		}
    576   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    577  1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    578   1.16       mrg 			panic("swapctl: miniroot copy failed");
    579    1.1       mrg 	} else {
    580   1.16       mrg 		int	space;
    581   1.16       mrg 		char	*where;
    582   1.16       mrg 
    583   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    584   1.16       mrg 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    585  1.101  christos 			    SWAP_PATH_MAX, &len)))
    586   1.16       mrg 				goto out;
    587   1.16       mrg 			space = UIO_SYSSPACE;
    588   1.16       mrg 			where = userpath;
    589   1.16       mrg 		} else {
    590   1.16       mrg 			space = UIO_USERSPACE;
    591   1.16       mrg 			where = (char *)SCARG(uap, arg);
    592    1.1       mrg 		}
    593  1.132     pooka 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    594  1.132     pooka 		    space, where);
    595   1.16       mrg 		if ((error = namei(&nd)))
    596   1.16       mrg 			goto out;
    597    1.1       mrg 		vp = nd.ni_vp;
    598    1.1       mrg 	}
    599    1.1       mrg 	/* note: "vp" is referenced and locked */
    600    1.1       mrg 
    601    1.1       mrg 	error = 0;		/* assume no error */
    602    1.1       mrg 	switch(SCARG(uap, cmd)) {
    603   1.40       mrg 
    604   1.24       mrg 	case SWAP_DUMPDEV:
    605   1.24       mrg 		if (vp->v_type != VBLK) {
    606   1.24       mrg 			error = ENOTBLK;
    607   1.45        pk 			break;
    608   1.24       mrg 		}
    609  1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    610  1.109       mrg 			dumpdev = vp->v_rdev;
    611  1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    612  1.138    kardel 		} else
    613  1.109       mrg 			dumpdev = NODEV;
    614   1.68  drochner 		cpu_dumpconf();
    615   1.24       mrg 		break;
    616   1.24       mrg 
    617    1.1       mrg 	case SWAP_CTL:
    618    1.1       mrg 		/*
    619    1.1       mrg 		 * get new priority, remove old entry (if any) and then
    620    1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    621    1.1       mrg 		 * any empty priority structures.
    622    1.1       mrg 		 */
    623    1.1       mrg 		priority = SCARG(uap, misc);
    624  1.111      yamt 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    625  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    626  1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    627    1.1       mrg 			error = ENOENT;
    628    1.1       mrg 		} else {
    629    1.1       mrg 			swaplist_insert(sdp, spp, priority);
    630    1.1       mrg 			swaplist_trim();
    631    1.1       mrg 		}
    632  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    633    1.1       mrg 		if (error)
    634  1.111      yamt 			free(spp, M_VMSWAP);
    635    1.1       mrg 		break;
    636    1.1       mrg 
    637    1.1       mrg 	case SWAP_ON:
    638   1.32       chs 
    639    1.1       mrg 		/*
    640    1.1       mrg 		 * check for duplicates.   if none found, then insert a
    641    1.1       mrg 		 * dummy entry on the list to prevent someone else from
    642    1.1       mrg 		 * trying to enable this device while we are working on
    643    1.1       mrg 		 * it.
    644    1.1       mrg 		 */
    645   1.32       chs 
    646    1.1       mrg 		priority = SCARG(uap, misc);
    647  1.111      yamt 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    648  1.111      yamt 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    649  1.111      yamt 		memset(sdp, 0, sizeof(*sdp));
    650   1.67       chs 		sdp->swd_flags = SWF_FAKE;
    651   1.67       chs 		sdp->swd_vp = vp;
    652   1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    653   1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    654  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    655  1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    656    1.1       mrg 			error = EBUSY;
    657  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    658   1.96      yamt 			bufq_free(sdp->swd_tab);
    659  1.111      yamt 			free(sdp, M_VMSWAP);
    660  1.111      yamt 			free(spp, M_VMSWAP);
    661   1.16       mrg 			break;
    662    1.1       mrg 		}
    663    1.1       mrg 		swaplist_insert(sdp, spp, priority);
    664  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    665    1.1       mrg 
    666   1.16       mrg 		sdp->swd_pathlen = len;
    667  1.111      yamt 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    668   1.19        pk 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    669   1.19        pk 			panic("swapctl: copystr");
    670   1.32       chs 
    671    1.1       mrg 		/*
    672    1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    673    1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    674    1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    675    1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    676    1.1       mrg 		 */
    677   1.32       chs 
    678   1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    679  1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    680  1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    681    1.1       mrg 			swaplist_trim();
    682  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    683   1.96      yamt 			bufq_free(sdp->swd_tab);
    684  1.111      yamt 			free(sdp->swd_path, M_VMSWAP);
    685  1.111      yamt 			free(sdp, M_VMSWAP);
    686    1.1       mrg 			break;
    687    1.1       mrg 		}
    688    1.1       mrg 		break;
    689    1.1       mrg 
    690    1.1       mrg 	case SWAP_OFF:
    691  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    692  1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    693  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    694    1.1       mrg 			error = ENXIO;
    695    1.1       mrg 			break;
    696    1.1       mrg 		}
    697   1.32       chs 
    698    1.1       mrg 		/*
    699    1.1       mrg 		 * If a device isn't in use or enabled, we
    700    1.1       mrg 		 * can't stop swapping from it (again).
    701    1.1       mrg 		 */
    702    1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    703  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    704    1.1       mrg 			error = EBUSY;
    705   1.16       mrg 			break;
    706    1.1       mrg 		}
    707    1.1       mrg 
    708    1.1       mrg 		/*
    709   1.32       chs 		 * do the real work.
    710    1.1       mrg 		 */
    711   1.97  christos 		error = swap_off(l, sdp);
    712    1.1       mrg 		break;
    713    1.1       mrg 
    714    1.1       mrg 	default:
    715    1.1       mrg 		error = EINVAL;
    716    1.1       mrg 	}
    717    1.1       mrg 
    718    1.1       mrg 	/*
    719   1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    720    1.1       mrg 	 */
    721    1.1       mrg 	vput(vp);
    722   1.39       chs 
    723   1.16       mrg out:
    724  1.111      yamt 	free(userpath, M_TEMP);
    725  1.117        ad 	rw_exit(&swap_syscall_lock);
    726    1.1       mrg 
    727    1.1       mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    728    1.1       mrg 	return (error);
    729   1.61      manu }
    730   1.61      manu 
    731   1.85  junyoung /*
    732   1.61      manu  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    733   1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    734   1.61      manu  * emulation to use it directly without going through sys_swapctl().
    735   1.61      manu  * The problem with using sys_swapctl() there is that it involves
    736   1.61      manu  * copying the swapent array to the stackgap, and this array's size
    737   1.85  junyoung  * is not known at build time. Hence it would not be possible to
    738   1.61      manu  * ensure it would fit in the stackgap in any case.
    739   1.61      manu  */
    740   1.61      manu void
    741   1.93   thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    742   1.61      manu {
    743   1.95      yamt 
    744  1.117        ad 	rw_enter(&swap_syscall_lock, RW_READER);
    745   1.95      yamt 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    746  1.117        ad 	rw_exit(&swap_syscall_lock);
    747   1.95      yamt }
    748   1.95      yamt 
    749   1.95      yamt static void
    750   1.95      yamt uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    751   1.95      yamt {
    752   1.61      manu 	struct swappri *spp;
    753   1.61      manu 	struct swapdev *sdp;
    754   1.61      manu 	int count = 0;
    755   1.61      manu 
    756   1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    757   1.61      manu 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    758   1.61      manu 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    759   1.61      manu 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    760  1.144       mrg 			int inuse;
    761  1.144       mrg 
    762   1.61      manu 		  	/*
    763   1.61      manu 			 * backwards compatibility for system call.
    764  1.144       mrg 			 * For NetBSD 1.3 and 5.0, we have to use
    765  1.144       mrg 			 * the 32 bit dev_t.  For 5.0 and -current
    766  1.144       mrg 			 * we have to add the path.
    767   1.61      manu 			 */
    768  1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    769   1.61      manu 			    PAGE_SHIFT);
    770   1.85  junyoung 
    771  1.144       mrg #if defined(COMPAT_13) || defined(COMPAT_50)
    772  1.144       mrg 			if (cmd == SWAP_STATS) {
    773  1.108   thorpej #endif
    774  1.144       mrg 				sep->se_dev = sdp->swd_dev;
    775  1.144       mrg 				sep->se_flags = sdp->swd_flags;
    776  1.144       mrg 				sep->se_nblks = sdp->swd_nblks;
    777  1.144       mrg 				sep->se_inuse = inuse;
    778  1.144       mrg 				sep->se_priority = sdp->swd_priority;
    779  1.144       mrg 				memcpy(&sep->se_path, sdp->swd_path,
    780  1.144       mrg 				       sizeof sep->se_path);
    781  1.144       mrg 				sep++;
    782   1.61      manu #if defined(COMPAT_13)
    783  1.144       mrg 			} else if (cmd == SWAP_STATS13) {
    784  1.144       mrg 				struct swapent13 *sep13 =
    785  1.144       mrg 				    (struct swapent13 *)sep;
    786  1.144       mrg 
    787  1.144       mrg 				sep13->se13_dev = sdp->swd_dev;
    788  1.144       mrg 				sep13->se13_flags = sdp->swd_flags;
    789  1.144       mrg 				sep13->se13_nblks = sdp->swd_nblks;
    790  1.144       mrg 				sep13->se13_inuse = inuse;
    791  1.144       mrg 				sep13->se13_priority = sdp->swd_priority;
    792  1.144       mrg 				sep = (struct swapent *)(sep13 + 1);
    793  1.144       mrg #endif
    794  1.144       mrg #if defined(COMPAT_50)
    795  1.144       mrg 			} else if (cmd == SWAP_STATS50) {
    796  1.144       mrg 				struct swapent50 *sep50 =
    797  1.144       mrg 				    (struct swapent50 *)sep;
    798  1.144       mrg 
    799  1.144       mrg 				sep50->se50_dev = sdp->swd_dev;
    800  1.144       mrg 				sep50->se50_flags = sdp->swd_flags;
    801  1.144       mrg 				sep50->se50_nblks = sdp->swd_nblks;
    802  1.144       mrg 				sep50->se50_inuse = inuse;
    803  1.144       mrg 				sep50->se50_priority = sdp->swd_priority;
    804  1.144       mrg 				memcpy(&sep50->se50_path, sdp->swd_path,
    805  1.144       mrg 				       sizeof sep50->se50_path);
    806  1.144       mrg 				sep = (struct swapent *)(sep50 + 1);
    807  1.144       mrg 			}
    808   1.61      manu #endif
    809   1.61      manu 			count++;
    810   1.61      manu 		}
    811   1.61      manu 	}
    812   1.61      manu 
    813   1.61      manu 	*retval = count;
    814   1.61      manu 	return;
    815    1.1       mrg }
    816    1.1       mrg 
    817    1.1       mrg /*
    818    1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    819    1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    820    1.1       mrg  *	SWF_FAKE).
    821    1.1       mrg  *
    822    1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    823    1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    824  1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    825    1.1       mrg  *	if needed.
    826    1.1       mrg  */
    827    1.1       mrg static int
    828   1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    829    1.1       mrg {
    830    1.1       mrg 	struct vnode *vp;
    831    1.1       mrg 	int error, npages, nblocks, size;
    832    1.1       mrg 	long addr;
    833   1.48      fvdl 	u_long result;
    834    1.1       mrg 	struct vattr va;
    835    1.1       mrg #ifdef NFS
    836   1.85  junyoung 	extern int (**nfsv2_vnodeop_p)(void *);
    837    1.1       mrg #endif /* NFS */
    838   1.69   gehenna 	const struct bdevsw *bdev;
    839    1.1       mrg 	dev_t dev;
    840    1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    841    1.1       mrg 
    842    1.1       mrg 	/*
    843    1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    844    1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    845    1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    846    1.1       mrg 	 */
    847    1.1       mrg 
    848    1.1       mrg 	vp = sdp->swd_vp;
    849    1.1       mrg 	dev = sdp->swd_dev;
    850    1.1       mrg 
    851    1.1       mrg 	/*
    852    1.1       mrg 	 * open the swap file (mostly useful for block device files to
    853    1.1       mrg 	 * let device driver know what is up).
    854    1.1       mrg 	 *
    855    1.1       mrg 	 * we skip the open/close for root on swap because the root
    856    1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    857    1.1       mrg 	 */
    858    1.1       mrg 	if (vp != rootvp) {
    859  1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    860    1.1       mrg 			return (error);
    861    1.1       mrg 	}
    862    1.1       mrg 
    863    1.1       mrg 	/* XXX this only works for block devices */
    864    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    865    1.1       mrg 
    866    1.1       mrg 	/*
    867    1.1       mrg 	 * we now need to determine the size of the swap area.   for
    868    1.1       mrg 	 * block specials we can call the d_psize function.
    869    1.1       mrg 	 * for normal files, we must stat [get attrs].
    870    1.1       mrg 	 *
    871    1.1       mrg 	 * we put the result in nblks.
    872    1.1       mrg 	 * for normal files, we also want the filesystem block size
    873    1.1       mrg 	 * (which we get with statfs).
    874    1.1       mrg 	 */
    875    1.1       mrg 	switch (vp->v_type) {
    876    1.1       mrg 	case VBLK:
    877   1.69   gehenna 		bdev = bdevsw_lookup(dev);
    878   1.69   gehenna 		if (bdev == NULL || bdev->d_psize == NULL ||
    879   1.69   gehenna 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    880    1.1       mrg 			error = ENXIO;
    881    1.1       mrg 			goto bad;
    882    1.1       mrg 		}
    883    1.1       mrg 		break;
    884    1.1       mrg 
    885    1.1       mrg 	case VREG:
    886  1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    887    1.1       mrg 			goto bad;
    888    1.1       mrg 		nblocks = (int)btodb(va.va_size);
    889    1.1       mrg 		if ((error =
    890  1.131     pooka 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
    891    1.1       mrg 			goto bad;
    892    1.1       mrg 
    893    1.1       mrg 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    894    1.1       mrg 		/*
    895    1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    896    1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    897    1.1       mrg 		 */
    898    1.1       mrg #ifdef NFS
    899    1.1       mrg 		if (vp->v_op == nfsv2_vnodeop_p)
    900    1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    901    1.1       mrg 		else
    902    1.1       mrg #endif /* NFS */
    903    1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    904    1.1       mrg 		break;
    905    1.1       mrg 
    906    1.1       mrg 	default:
    907    1.1       mrg 		error = ENXIO;
    908    1.1       mrg 		goto bad;
    909    1.1       mrg 	}
    910    1.1       mrg 
    911    1.1       mrg 	/*
    912    1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    913    1.1       mrg 	 */
    914    1.1       mrg 
    915  1.144       mrg 	sdp->swd_nblks = nblocks;
    916   1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    917    1.1       mrg 
    918    1.1       mrg 	/*
    919    1.1       mrg 	 * for block special files, we want to make sure that leave
    920    1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    921   1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    922    1.1       mrg 	 * note that because of this the "size" can be less than the
    923    1.1       mrg 	 * actual number of blocks on the device.
    924    1.1       mrg 	 */
    925    1.1       mrg 	if (vp->v_type == VBLK) {
    926    1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    927    1.1       mrg 		size = npages - 1;
    928    1.1       mrg 		addr = 1;
    929    1.1       mrg 	} else {
    930    1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    931    1.1       mrg 		size = npages;
    932    1.1       mrg 		addr = 0;
    933    1.1       mrg 	}
    934    1.1       mrg 
    935    1.1       mrg 	/*
    936    1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    937    1.1       mrg 	 * area.   we want at least one page.
    938    1.1       mrg 	 */
    939    1.1       mrg 
    940    1.1       mrg 	if (size < 1) {
    941    1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    942    1.1       mrg 		error = EINVAL;
    943    1.1       mrg 		goto bad;
    944    1.1       mrg 	}
    945    1.1       mrg 
    946    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    947    1.1       mrg 
    948    1.1       mrg 	/*
    949    1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    950    1.1       mrg 	 */
    951    1.1       mrg 
    952   1.90      yamt 	sdp->swd_blist = blist_create(npages);
    953   1.90      yamt 	/* mark all expect the `saved' region free. */
    954   1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    955    1.1       mrg 
    956    1.1       mrg 	/*
    957   1.51       chs 	 * if the vnode we are swapping to is the root vnode
    958    1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    959   1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    960    1.1       mrg 	 * find its size and skip over it.
    961    1.1       mrg 	 */
    962    1.1       mrg 	if (vp == rootvp) {
    963    1.1       mrg 		struct mount *mp;
    964   1.86  christos 		struct statvfs *sp;
    965    1.1       mrg 		int rootblocks, rootpages;
    966    1.1       mrg 
    967    1.1       mrg 		mp = rootvnode->v_mount;
    968    1.1       mrg 		sp = &mp->mnt_stat;
    969   1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    970   1.64  fredette 		/*
    971   1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    972   1.64  fredette 		 * blocks in the filesystem, it's the number of
    973   1.64  fredette 		 * data blocks.  so, our rootblocks almost
    974   1.85  junyoung 		 * definitely underestimates the total size
    975   1.64  fredette 		 * of the filesystem - how badly depends on the
    976   1.85  junyoung 		 * details of the filesystem type.  there isn't
    977   1.64  fredette 		 * an obvious way to deal with this cleanly
    978   1.85  junyoung 		 * and perfectly, so for now we just pad our
    979   1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    980   1.64  fredette 		 */
    981   1.64  fredette 		rootblocks += (rootblocks >> 5) +
    982   1.64  fredette 			(rootblocks >> 6) +
    983   1.64  fredette 			(rootblocks >> 7);
    984   1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    985   1.32       chs 		if (rootpages > size)
    986    1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    987    1.1       mrg 
    988   1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    989    1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    990   1.90      yamt 		}
    991    1.1       mrg 
    992   1.32       chs 		size -= rootpages;
    993    1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    994   1.32       chs 		printf("leaving %d pages of swap\n", size);
    995    1.1       mrg 	}
    996    1.1       mrg 
    997   1.39       chs 	/*
    998   1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    999   1.39       chs 	 */
   1000   1.39       chs 	vref(vp);
   1001   1.39       chs 
   1002    1.1       mrg 	/*
   1003    1.1       mrg 	 * now add the new swapdev to the drum and enable.
   1004    1.1       mrg 	 */
   1005  1.110      yamt 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
   1006  1.110      yamt 	if (result == 0)
   1007   1.48      fvdl 		panic("swapdrum_add");
   1008  1.130   hannken 	/*
   1009  1.130   hannken 	 * If this is the first regular swap create the workqueue.
   1010  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1011  1.130   hannken 	 */
   1012  1.130   hannken 	if (vp->v_type != VBLK) {
   1013  1.130   hannken 		if (sw_reg_count++ == 0) {
   1014  1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
   1015  1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1016  1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1017  1.130   hannken 				panic("swap_add: workqueue_create failed");
   1018  1.130   hannken 		}
   1019  1.130   hannken 	}
   1020   1.48      fvdl 
   1021   1.48      fvdl 	sdp->swd_drumoffset = (int)result;
   1022   1.48      fvdl 	sdp->swd_drumsize = npages;
   1023   1.48      fvdl 	sdp->swd_npages = size;
   1024  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1025    1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1026    1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1027   1.32       chs 	uvmexp.swpages += size;
   1028   1.81        pk 	uvmexp.swpgavail += size;
   1029  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1030    1.1       mrg 	return (0);
   1031    1.1       mrg 
   1032    1.1       mrg 	/*
   1033   1.43       chs 	 * failure: clean up and return error.
   1034    1.1       mrg 	 */
   1035   1.43       chs 
   1036   1.43       chs bad:
   1037   1.90      yamt 	if (sdp->swd_blist) {
   1038   1.90      yamt 		blist_destroy(sdp->swd_blist);
   1039   1.43       chs 	}
   1040   1.43       chs 	if (vp != rootvp) {
   1041  1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1042   1.43       chs 	}
   1043    1.1       mrg 	return (error);
   1044    1.1       mrg }
   1045    1.1       mrg 
   1046    1.1       mrg /*
   1047    1.1       mrg  * swap_off: stop swapping on swapdev
   1048    1.1       mrg  *
   1049   1.32       chs  * => swap data should be locked, we will unlock.
   1050    1.1       mrg  */
   1051    1.1       mrg static int
   1052   1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1053    1.1       mrg {
   1054   1.91      yamt 	int npages = sdp->swd_npages;
   1055   1.91      yamt 	int error = 0;
   1056   1.81        pk 
   1057    1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1058   1.81        pk 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1059    1.1       mrg 
   1060   1.32       chs 	/* disable the swap area being removed */
   1061    1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1062   1.81        pk 	uvmexp.swpgavail -= npages;
   1063  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1064   1.32       chs 
   1065   1.32       chs 	/*
   1066   1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1067   1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1068   1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1069   1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1070   1.32       chs 	 */
   1071    1.1       mrg 
   1072   1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1073   1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1074   1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1075   1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1076   1.91      yamt 		error = ENOMEM;
   1077   1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1078   1.91      yamt 		error = EBUSY;
   1079   1.91      yamt 	}
   1080   1.51       chs 
   1081   1.91      yamt 	if (error) {
   1082  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1083   1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1084   1.81        pk 		uvmexp.swpgavail += npages;
   1085  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1086   1.91      yamt 
   1087   1.91      yamt 		return error;
   1088   1.32       chs 	}
   1089    1.1       mrg 
   1090    1.1       mrg 	/*
   1091  1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1092  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1093  1.130   hannken 	 */
   1094  1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1095  1.130   hannken 		KASSERT(sw_reg_count > 0);
   1096  1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1097  1.130   hannken 		if (--sw_reg_count == 0) {
   1098  1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1099  1.130   hannken 			sw_reg_workqueue = NULL;
   1100  1.130   hannken 		}
   1101  1.130   hannken 	}
   1102  1.130   hannken 
   1103  1.130   hannken 	/*
   1104   1.58     enami 	 * done with the vnode.
   1105   1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1106   1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1107    1.1       mrg 	 */
   1108   1.39       chs 	vrele(sdp->swd_vp);
   1109   1.32       chs 	if (sdp->swd_vp != rootvp) {
   1110  1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1111   1.32       chs 	}
   1112   1.32       chs 
   1113  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1114   1.81        pk 	uvmexp.swpages -= npages;
   1115   1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1116    1.1       mrg 
   1117  1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1118   1.70    provos 		panic("swap_off: swapdev not in list");
   1119   1.32       chs 	swaplist_trim();
   1120  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1121    1.1       mrg 
   1122   1.32       chs 	/*
   1123   1.32       chs 	 * free all resources!
   1124   1.32       chs 	 */
   1125  1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1126   1.90      yamt 	blist_destroy(sdp->swd_blist);
   1127   1.96      yamt 	bufq_free(sdp->swd_tab);
   1128  1.111      yamt 	free(sdp, M_VMSWAP);
   1129    1.1       mrg 	return (0);
   1130    1.1       mrg }
   1131    1.1       mrg 
   1132    1.1       mrg /*
   1133    1.1       mrg  * /dev/drum interface and i/o functions
   1134    1.1       mrg  */
   1135    1.1       mrg 
   1136    1.1       mrg /*
   1137    1.1       mrg  * swstrategy: perform I/O on the drum
   1138    1.1       mrg  *
   1139    1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1140    1.1       mrg  */
   1141   1.94   thorpej static void
   1142   1.93   thorpej swstrategy(struct buf *bp)
   1143    1.1       mrg {
   1144    1.1       mrg 	struct swapdev *sdp;
   1145    1.1       mrg 	struct vnode *vp;
   1146  1.134        ad 	int pageno, bn;
   1147    1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1148    1.1       mrg 
   1149    1.1       mrg 	/*
   1150    1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1151    1.1       mrg 	 * be yanked out from under us because we are holding resources
   1152    1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1153    1.1       mrg 	 */
   1154   1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1155  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1156    1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1157  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1158    1.1       mrg 	if (sdp == NULL) {
   1159    1.1       mrg 		bp->b_error = EINVAL;
   1160    1.1       mrg 		biodone(bp);
   1161    1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1162    1.1       mrg 		return;
   1163    1.1       mrg 	}
   1164    1.1       mrg 
   1165    1.1       mrg 	/*
   1166    1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1167    1.1       mrg 	 */
   1168    1.1       mrg 
   1169   1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1170   1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1171    1.1       mrg 
   1172   1.41       chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1173    1.1       mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1174    1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1175    1.1       mrg 
   1176    1.1       mrg 	/*
   1177    1.1       mrg 	 * for block devices we finish up here.
   1178   1.32       chs 	 * for regular files we have to do more work which we delegate
   1179    1.1       mrg 	 * to sw_reg_strategy().
   1180    1.1       mrg 	 */
   1181    1.1       mrg 
   1182  1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1183  1.134        ad 	switch (vp->v_type) {
   1184    1.1       mrg 	default:
   1185  1.134        ad 		panic("swstrategy: vnode type 0x%x", vp->v_type);
   1186   1.32       chs 
   1187    1.1       mrg 	case VBLK:
   1188    1.1       mrg 
   1189    1.1       mrg 		/*
   1190    1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1191    1.1       mrg 		 * on the swapdev (sdp).
   1192    1.1       mrg 		 */
   1193    1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1194    1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1195    1.1       mrg 
   1196    1.1       mrg 		/*
   1197    1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1198    1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1199    1.1       mrg 		 */
   1200    1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1201  1.134        ad 			mutex_enter(bp->b_objlock);
   1202    1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1203  1.134        ad 			mutex_exit(bp->b_objlock);
   1204  1.134        ad 			mutex_enter(&vp->v_interlock);
   1205  1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1206  1.134        ad 			mutex_exit(&vp->v_interlock);
   1207    1.1       mrg 		}
   1208    1.1       mrg 
   1209   1.41       chs 		/*
   1210    1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1211    1.1       mrg 		 */
   1212    1.1       mrg 		bp->b_vp = vp;
   1213  1.134        ad 		bp->b_objlock = &vp->v_interlock;
   1214   1.84   hannken 		VOP_STRATEGY(vp, bp);
   1215    1.1       mrg 		return;
   1216   1.32       chs 
   1217    1.1       mrg 	case VREG:
   1218    1.1       mrg 		/*
   1219   1.32       chs 		 * delegate to sw_reg_strategy function.
   1220    1.1       mrg 		 */
   1221    1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1222    1.1       mrg 		return;
   1223    1.1       mrg 	}
   1224    1.1       mrg 	/* NOTREACHED */
   1225    1.1       mrg }
   1226    1.1       mrg 
   1227    1.1       mrg /*
   1228   1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1229   1.94   thorpej  */
   1230   1.94   thorpej /*ARGSUSED*/
   1231   1.94   thorpej static int
   1232  1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1233   1.94   thorpej {
   1234   1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1235   1.94   thorpej 
   1236   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1237   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1238   1.94   thorpej }
   1239   1.94   thorpej 
   1240   1.94   thorpej /*
   1241   1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1242   1.94   thorpej  */
   1243   1.94   thorpej /*ARGSUSED*/
   1244   1.94   thorpej static int
   1245  1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1246   1.94   thorpej {
   1247   1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1248   1.94   thorpej 
   1249   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1250   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1251   1.94   thorpej }
   1252   1.94   thorpej 
   1253   1.94   thorpej const struct bdevsw swap_bdevsw = {
   1254  1.135   hannken 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1255   1.94   thorpej };
   1256   1.94   thorpej 
   1257   1.94   thorpej const struct cdevsw swap_cdevsw = {
   1258   1.94   thorpej 	nullopen, nullclose, swread, swwrite, noioctl,
   1259  1.105  christos 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1260   1.94   thorpej };
   1261   1.94   thorpej 
   1262   1.94   thorpej /*
   1263    1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1264    1.1       mrg  */
   1265    1.1       mrg static void
   1266   1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1267    1.1       mrg {
   1268    1.1       mrg 	struct vnode	*vp;
   1269    1.1       mrg 	struct vndxfer	*vnx;
   1270   1.44     enami 	daddr_t		nbn;
   1271  1.122  christos 	char 		*addr;
   1272   1.44     enami 	off_t		byteoff;
   1273    1.9       mrg 	int		s, off, nra, error, sz, resid;
   1274    1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1275    1.1       mrg 
   1276    1.1       mrg 	/*
   1277    1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1278    1.1       mrg 	 * our buffer.
   1279    1.1       mrg 	 */
   1280  1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1281    1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1282    1.1       mrg 	vnx->vx_error = 0;
   1283    1.1       mrg 	vnx->vx_pending = 0;
   1284    1.1       mrg 	vnx->vx_bp = bp;
   1285    1.1       mrg 	vnx->vx_sdp = sdp;
   1286    1.1       mrg 
   1287    1.1       mrg 	/*
   1288    1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1289    1.1       mrg 	 * our buffer.
   1290    1.1       mrg 	 */
   1291    1.1       mrg 	error = 0;
   1292    1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1293    1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1294   1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1295    1.1       mrg 
   1296    1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1297    1.1       mrg 		struct vndbuf	*nbp;
   1298    1.1       mrg 
   1299    1.1       mrg 		/*
   1300    1.1       mrg 		 * translate byteoffset into block number.  return values:
   1301    1.1       mrg 		 *   vp = vnode of underlying device
   1302    1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1303    1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1304    1.1       mrg 		 *	block)
   1305    1.1       mrg 		 */
   1306    1.1       mrg 		nra = 0;
   1307    1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1308    1.1       mrg 				 	&vp, &nbn, &nra);
   1309    1.1       mrg 
   1310   1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1311   1.51       chs 			/*
   1312   1.23      marc 			 * this used to just set error, but that doesn't
   1313   1.23      marc 			 * do the right thing.  Instead, it causes random
   1314   1.23      marc 			 * memory errors.  The panic() should remain until
   1315   1.23      marc 			 * this condition doesn't destabilize the system.
   1316   1.23      marc 			 */
   1317   1.23      marc #if 1
   1318   1.23      marc 			panic("sw_reg_strategy: swap to sparse file");
   1319   1.23      marc #else
   1320    1.1       mrg 			error = EIO;	/* failure */
   1321   1.23      marc #endif
   1322   1.23      marc 		}
   1323    1.1       mrg 
   1324    1.1       mrg 		/*
   1325    1.1       mrg 		 * punt if there was an error or a hole in the file.
   1326    1.1       mrg 		 * we must wait for any i/o ops we have already started
   1327    1.1       mrg 		 * to finish before returning.
   1328    1.1       mrg 		 *
   1329    1.1       mrg 		 * XXX we could deal with holes here but it would be
   1330    1.1       mrg 		 * a hassle (in the write case).
   1331    1.1       mrg 		 */
   1332    1.1       mrg 		if (error) {
   1333    1.1       mrg 			s = splbio();
   1334    1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1335    1.1       mrg 			goto out;
   1336    1.1       mrg 		}
   1337    1.1       mrg 
   1338    1.1       mrg 		/*
   1339    1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1340    1.1       mrg 		 */
   1341   1.41       chs 		off = byteoff % sdp->swd_bsize;
   1342   1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1343   1.41       chs 		if (sz > resid)
   1344    1.1       mrg 			sz = resid;
   1345    1.1       mrg 
   1346   1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1347   1.41       chs 			    "vp %p/%p offset 0x%x/0x%x",
   1348   1.41       chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1349    1.1       mrg 
   1350    1.1       mrg 		/*
   1351    1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1352    1.1       mrg 		 * at the front of the nbp structure so that you can
   1353    1.1       mrg 		 * cast pointers between the two structure easily.
   1354    1.1       mrg 		 */
   1355  1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1356  1.134        ad 		buf_init(&nbp->vb_buf);
   1357  1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1358  1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1359  1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1360    1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1361   1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1362    1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1363    1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1364   1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1365    1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1366   1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1367  1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1368   1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1369  1.134        ad 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1370   1.53       chs 		if (vp->v_type == VBLK) {
   1371   1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1372   1.53       chs 		}
   1373    1.1       mrg 
   1374    1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1375    1.1       mrg 
   1376    1.1       mrg 		/*
   1377    1.1       mrg 		 * Just sort by block number
   1378    1.1       mrg 		 */
   1379    1.1       mrg 		s = splbio();
   1380    1.1       mrg 		if (vnx->vx_error != 0) {
   1381  1.134        ad 			buf_destroy(&nbp->vb_buf);
   1382  1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1383    1.1       mrg 			goto out;
   1384    1.1       mrg 		}
   1385    1.1       mrg 		vnx->vx_pending++;
   1386    1.1       mrg 
   1387    1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1388  1.134        ad 		/* XXXAD locking */
   1389  1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1390    1.1       mrg 		sw_reg_start(sdp);
   1391    1.1       mrg 		splx(s);
   1392    1.1       mrg 
   1393    1.1       mrg 		/*
   1394    1.1       mrg 		 * advance to the next I/O
   1395    1.1       mrg 		 */
   1396    1.9       mrg 		byteoff += sz;
   1397    1.1       mrg 		addr += sz;
   1398    1.1       mrg 	}
   1399    1.1       mrg 
   1400    1.1       mrg 	s = splbio();
   1401    1.1       mrg 
   1402    1.1       mrg out: /* Arrive here at splbio */
   1403    1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1404    1.1       mrg 	if (vnx->vx_pending == 0) {
   1405  1.134        ad 		error = vnx->vx_error;
   1406  1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1407  1.134        ad 		bp->b_error = error;
   1408    1.1       mrg 		biodone(bp);
   1409    1.1       mrg 	}
   1410    1.1       mrg 	splx(s);
   1411    1.1       mrg }
   1412    1.1       mrg 
   1413    1.1       mrg /*
   1414    1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1415    1.1       mrg  *
   1416   1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1417    1.1       mrg  */
   1418    1.1       mrg static void
   1419   1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1420    1.1       mrg {
   1421    1.1       mrg 	struct buf	*bp;
   1422  1.134        ad 	struct vnode	*vp;
   1423    1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1424    1.1       mrg 
   1425    1.8       mrg 	/* recursion control */
   1426    1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1427    1.1       mrg 		return;
   1428    1.1       mrg 
   1429    1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1430    1.1       mrg 
   1431   1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1432  1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1433    1.1       mrg 		if (bp == NULL)
   1434    1.1       mrg 			break;
   1435   1.33   thorpej 		sdp->swd_active++;
   1436    1.1       mrg 
   1437    1.1       mrg 		UVMHIST_LOG(pdhist,
   1438    1.1       mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1439    1.1       mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1440  1.134        ad 		vp = bp->b_vp;
   1441  1.134        ad 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1442  1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1443  1.134        ad 			mutex_enter(&vp->v_interlock);
   1444  1.134        ad 			vp->v_numoutput++;
   1445  1.134        ad 			mutex_exit(&vp->v_interlock);
   1446  1.134        ad 		}
   1447  1.134        ad 		VOP_STRATEGY(vp, bp);
   1448    1.1       mrg 	}
   1449    1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1450    1.1       mrg }
   1451    1.1       mrg 
   1452    1.1       mrg /*
   1453  1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1454  1.130   hannken  */
   1455  1.130   hannken static void
   1456  1.130   hannken sw_reg_biodone(struct buf *bp)
   1457  1.130   hannken {
   1458  1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1459  1.130   hannken }
   1460  1.130   hannken 
   1461  1.130   hannken /*
   1462    1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1463    1.1       mrg  *
   1464    1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1465    1.1       mrg  */
   1466    1.1       mrg static void
   1467  1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1468    1.1       mrg {
   1469  1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1470    1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1471    1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1472    1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1473   1.72       chs 	int s, resid, error;
   1474  1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1475    1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1476    1.1       mrg 
   1477    1.1       mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1478    1.1       mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1479    1.1       mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1480    1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1481    1.1       mrg 
   1482    1.1       mrg 	/*
   1483    1.1       mrg 	 * protect vbp at splbio and update.
   1484    1.1       mrg 	 */
   1485    1.1       mrg 
   1486    1.1       mrg 	s = splbio();
   1487    1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1488    1.1       mrg 	pbp->b_resid -= resid;
   1489    1.1       mrg 	vnx->vx_pending--;
   1490    1.1       mrg 
   1491  1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1492    1.1       mrg 		/* pass error upward */
   1493  1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1494   1.72       chs 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1495   1.72       chs 		vnx->vx_error = error;
   1496   1.35       chs 	}
   1497   1.35       chs 
   1498   1.35       chs 	/*
   1499    1.1       mrg 	 * kill vbp structure
   1500    1.1       mrg 	 */
   1501  1.134        ad 	buf_destroy(&vbp->vb_buf);
   1502  1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1503    1.1       mrg 
   1504    1.1       mrg 	/*
   1505    1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1506    1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1507    1.1       mrg 	 */
   1508    1.1       mrg 	if (vnx->vx_error != 0) {
   1509    1.1       mrg 		/* pass error upward */
   1510  1.134        ad 		error = vnx->vx_error;
   1511    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1512  1.134        ad 			pbp->b_error = error;
   1513    1.1       mrg 			biodone(pbp);
   1514  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1515    1.1       mrg 		}
   1516   1.11        pk 	} else if (pbp->b_resid == 0) {
   1517   1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1518    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1519    1.8       mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1520    1.8       mrg 			    pbp, vnx->vx_error, 0, 0);
   1521    1.1       mrg 			biodone(pbp);
   1522  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1523    1.1       mrg 		}
   1524    1.1       mrg 	}
   1525    1.1       mrg 
   1526    1.1       mrg 	/*
   1527    1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1528    1.1       mrg 	 */
   1529   1.33   thorpej 	sdp->swd_active--;
   1530    1.1       mrg 	sw_reg_start(sdp);
   1531    1.1       mrg 	splx(s);
   1532    1.1       mrg }
   1533    1.1       mrg 
   1534    1.1       mrg 
   1535    1.1       mrg /*
   1536    1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1537    1.1       mrg  *
   1538    1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1539    1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1540    1.1       mrg  * => space can be freed with uvm_swap_free
   1541    1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1542  1.127        ad  * => we lock uvm_swap_data_lock
   1543    1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1544    1.1       mrg  */
   1545    1.1       mrg int
   1546  1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1547    1.1       mrg {
   1548    1.1       mrg 	struct swapdev *sdp;
   1549    1.1       mrg 	struct swappri *spp;
   1550    1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1551    1.1       mrg 
   1552    1.1       mrg 	/*
   1553    1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1554    1.1       mrg 	 */
   1555    1.1       mrg 	if (uvmexp.nswapdev < 1)
   1556    1.1       mrg 		return 0;
   1557   1.51       chs 
   1558    1.1       mrg 	/*
   1559    1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1560    1.1       mrg 	 */
   1561  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1562    1.1       mrg 
   1563    1.1       mrg ReTry:	/* XXXMRG */
   1564   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1565   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1566   1.90      yamt 			uint64_t result;
   1567   1.90      yamt 
   1568    1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1569    1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1570    1.1       mrg 				continue;
   1571    1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1572    1.1       mrg 				continue;
   1573   1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1574   1.90      yamt 			if (result == BLIST_NONE) {
   1575    1.1       mrg 				continue;
   1576    1.1       mrg 			}
   1577   1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1578    1.1       mrg 
   1579    1.1       mrg 			/*
   1580    1.1       mrg 			 * successful allocation!  now rotate the circleq.
   1581    1.1       mrg 			 */
   1582    1.1       mrg 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1583    1.1       mrg 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1584    1.1       mrg 			sdp->swd_npginuse += *nslots;
   1585    1.1       mrg 			uvmexp.swpginuse += *nslots;
   1586  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1587    1.1       mrg 			/* done!  return drum slot number */
   1588    1.1       mrg 			UVMHIST_LOG(pdhist,
   1589    1.1       mrg 			    "success!  returning %d slots starting at %d",
   1590    1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1591   1.55       chs 			return (result + sdp->swd_drumoffset);
   1592    1.1       mrg 		}
   1593    1.1       mrg 	}
   1594    1.1       mrg 
   1595    1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1596    1.1       mrg 	if (*nslots > 1 && lessok) {
   1597    1.1       mrg 		*nslots = 1;
   1598   1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1599   1.90      yamt 		goto ReTry;
   1600    1.1       mrg 	}
   1601    1.1       mrg 	/* XXXMRG: END HACK */
   1602    1.1       mrg 
   1603  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1604   1.55       chs 	return 0;
   1605    1.1       mrg }
   1606    1.1       mrg 
   1607  1.141        ad /*
   1608  1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1609  1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1610  1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1611  1.141        ad  * pages are busy.
   1612  1.141        ad  */
   1613  1.119   thorpej bool
   1614   1.81        pk uvm_swapisfull(void)
   1615   1.81        pk {
   1616  1.141        ad 	int swpgonly;
   1617  1.119   thorpej 	bool rv;
   1618   1.81        pk 
   1619  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1620   1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1621  1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1622  1.141        ad 	    uvm_swapisfull_factor);
   1623  1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1624  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1625   1.81        pk 
   1626   1.81        pk 	return (rv);
   1627   1.81        pk }
   1628   1.81        pk 
   1629    1.1       mrg /*
   1630   1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1631   1.32       chs  *
   1632  1.127        ad  * => we lock uvm_swap_data_lock
   1633   1.32       chs  */
   1634   1.32       chs void
   1635   1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1636   1.32       chs {
   1637   1.32       chs 	struct swapdev *sdp;
   1638   1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1639   1.32       chs 
   1640  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1641   1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1642   1.82        pk 	KASSERT(sdp != NULL);
   1643   1.32       chs 
   1644   1.32       chs 	/*
   1645   1.32       chs 	 * we just keep track of how many pages have been marked bad
   1646   1.32       chs 	 * in this device, to make everything add up in swap_off().
   1647   1.32       chs 	 * we assume here that the range of slots will all be within
   1648   1.32       chs 	 * one swap device.
   1649   1.32       chs 	 */
   1650   1.41       chs 
   1651   1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1652   1.82        pk 	uvmexp.swpgonly -= nslots;
   1653   1.32       chs 	sdp->swd_npgbad += nslots;
   1654   1.41       chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1655  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1656   1.32       chs }
   1657   1.32       chs 
   1658   1.32       chs /*
   1659    1.1       mrg  * uvm_swap_free: free swap slots
   1660    1.1       mrg  *
   1661    1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1662  1.127        ad  * => we lock uvm_swap_data_lock
   1663    1.1       mrg  */
   1664    1.1       mrg void
   1665   1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1666    1.1       mrg {
   1667    1.1       mrg 	struct swapdev *sdp;
   1668    1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1669    1.1       mrg 
   1670    1.1       mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1671    1.1       mrg 	    startslot, 0, 0);
   1672   1.32       chs 
   1673   1.32       chs 	/*
   1674   1.32       chs 	 * ignore attempts to free the "bad" slot.
   1675   1.32       chs 	 */
   1676   1.46       chs 
   1677   1.32       chs 	if (startslot == SWSLOT_BAD) {
   1678   1.32       chs 		return;
   1679   1.32       chs 	}
   1680   1.32       chs 
   1681    1.1       mrg 	/*
   1682   1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1683   1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1684    1.1       mrg 	 * lookup and access the extent.
   1685    1.1       mrg 	 */
   1686   1.46       chs 
   1687  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1688    1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1689   1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1690   1.46       chs 	KASSERT(sdp != NULL);
   1691   1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1692   1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1693    1.1       mrg 	sdp->swd_npginuse -= nslots;
   1694    1.1       mrg 	uvmexp.swpginuse -= nslots;
   1695  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1696    1.1       mrg }
   1697    1.1       mrg 
   1698    1.1       mrg /*
   1699    1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1700    1.1       mrg  *
   1701    1.1       mrg  * => can be sync or async
   1702    1.1       mrg  */
   1703   1.54       chs 
   1704    1.1       mrg int
   1705   1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1706    1.1       mrg {
   1707   1.56       chs 	int error;
   1708    1.1       mrg 
   1709   1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1710    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1711   1.56       chs 	return error;
   1712    1.1       mrg }
   1713    1.1       mrg 
   1714    1.1       mrg /*
   1715    1.1       mrg  * uvm_swap_get: get a single page from swap
   1716    1.1       mrg  *
   1717    1.1       mrg  * => usually a sync op (from fault)
   1718    1.1       mrg  */
   1719   1.54       chs 
   1720    1.1       mrg int
   1721   1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1722    1.1       mrg {
   1723   1.56       chs 	int error;
   1724    1.1       mrg 
   1725    1.1       mrg 	uvmexp.nswget++;
   1726   1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1727   1.32       chs 	if (swslot == SWSLOT_BAD) {
   1728   1.47       chs 		return EIO;
   1729   1.32       chs 	}
   1730   1.81        pk 
   1731   1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1732    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1733   1.56       chs 	if (error == 0) {
   1734   1.47       chs 
   1735   1.26       chs 		/*
   1736   1.54       chs 		 * this page is no longer only in swap.
   1737   1.26       chs 		 */
   1738   1.47       chs 
   1739  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1740   1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1741   1.54       chs 		uvmexp.swpgonly--;
   1742  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1743   1.26       chs 	}
   1744   1.56       chs 	return error;
   1745    1.1       mrg }
   1746    1.1       mrg 
   1747    1.1       mrg /*
   1748    1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1749    1.1       mrg  */
   1750    1.1       mrg 
   1751    1.1       mrg static int
   1752   1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1753    1.1       mrg {
   1754    1.1       mrg 	daddr_t startblk;
   1755    1.1       mrg 	struct	buf *bp;
   1756   1.15       eeh 	vaddr_t kva;
   1757  1.134        ad 	int	error, mapinflags;
   1758  1.119   thorpej 	bool write, async;
   1759    1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1760    1.1       mrg 
   1761    1.1       mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1762    1.1       mrg 	    startslot, npages, flags, 0);
   1763   1.32       chs 
   1764   1.41       chs 	write = (flags & B_READ) == 0;
   1765   1.41       chs 	async = (flags & B_ASYNC) != 0;
   1766   1.41       chs 
   1767    1.1       mrg 	/*
   1768  1.137      yamt 	 * allocate a buf for the i/o.
   1769  1.137      yamt 	 */
   1770  1.137      yamt 
   1771  1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1772  1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1773  1.137      yamt 	if (bp == NULL) {
   1774  1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1775  1.137      yamt 		return ENOMEM;
   1776  1.137      yamt 	}
   1777  1.137      yamt 
   1778  1.137      yamt 	/*
   1779    1.1       mrg 	 * convert starting drum slot to block number
   1780    1.1       mrg 	 */
   1781   1.54       chs 
   1782   1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1783    1.1       mrg 
   1784    1.1       mrg 	/*
   1785   1.54       chs 	 * first, map the pages into the kernel.
   1786   1.41       chs 	 */
   1787   1.41       chs 
   1788   1.54       chs 	mapinflags = !write ?
   1789   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1790   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1791   1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1792    1.1       mrg 
   1793   1.51       chs 	/*
   1794    1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1795    1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1796    1.1       mrg 	 */
   1797   1.54       chs 
   1798  1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1799  1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1800    1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1801   1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1802  1.122  christos 	bp->b_data = (void *)kva;
   1803    1.1       mrg 	bp->b_blkno = startblk;
   1804   1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1805    1.1       mrg 
   1806   1.51       chs 	/*
   1807   1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1808    1.1       mrg 	 */
   1809   1.54       chs 
   1810   1.41       chs 	if (write) {
   1811  1.134        ad 		mutex_enter(&swapdev_vp->v_interlock);
   1812  1.134        ad 		swapdev_vp->v_numoutput++;
   1813  1.134        ad 		mutex_exit(&swapdev_vp->v_interlock);
   1814    1.1       mrg 	}
   1815    1.1       mrg 
   1816    1.1       mrg 	/*
   1817   1.41       chs 	 * for async ops we must set up the iodone handler.
   1818    1.1       mrg 	 */
   1819   1.54       chs 
   1820   1.41       chs 	if (async) {
   1821   1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1822    1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1823  1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1824   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1825   1.83      yamt 		else
   1826   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1827   1.83      yamt 	} else {
   1828  1.134        ad 		bp->b_iodone = NULL;
   1829   1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1830    1.1       mrg 	}
   1831    1.1       mrg 	UVMHIST_LOG(pdhist,
   1832   1.41       chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1833    1.1       mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1834    1.1       mrg 
   1835    1.1       mrg 	/*
   1836    1.1       mrg 	 * now we start the I/O, and if async, return.
   1837    1.1       mrg 	 */
   1838   1.54       chs 
   1839   1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1840   1.41       chs 	if (async)
   1841   1.47       chs 		return 0;
   1842    1.1       mrg 
   1843    1.1       mrg 	/*
   1844    1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1845    1.1       mrg 	 */
   1846   1.54       chs 
   1847   1.47       chs 	error = biowait(bp);
   1848    1.1       mrg 
   1849    1.1       mrg 	/*
   1850    1.1       mrg 	 * kill the pager mapping
   1851    1.1       mrg 	 */
   1852   1.54       chs 
   1853    1.1       mrg 	uvm_pagermapout(kva, npages);
   1854    1.1       mrg 
   1855    1.1       mrg 	/*
   1856   1.54       chs 	 * now dispose of the buf and we're done.
   1857    1.1       mrg 	 */
   1858   1.54       chs 
   1859  1.134        ad 	if (write) {
   1860  1.134        ad 		mutex_enter(&swapdev_vp->v_interlock);
   1861   1.41       chs 		vwakeup(bp);
   1862  1.134        ad 		mutex_exit(&swapdev_vp->v_interlock);
   1863  1.134        ad 	}
   1864   1.98      yamt 	putiobuf(bp);
   1865   1.47       chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1866  1.134        ad 
   1867   1.47       chs 	return (error);
   1868    1.1       mrg }
   1869