uvm_swap.c revision 1.145 1 1.145 mrg /* $NetBSD: uvm_swap.c,v 1.145 2009/03/01 01:13:14 mrg Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.144 mrg * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg *
16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 mrg * SUCH DAMAGE.
27 1.3 mrg *
28 1.3 mrg * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 1.3 mrg * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 1.1 mrg */
31 1.57 lukem
32 1.57 lukem #include <sys/cdefs.h>
33 1.145 mrg __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.145 2009/03/01 01:13:14 mrg Exp $");
34 1.5 mrg
35 1.6 thorpej #include "fs_nfs.h"
36 1.5 mrg #include "opt_uvmhist.h"
37 1.16 mrg #include "opt_compat_netbsd.h"
38 1.41 chs #include "opt_ddb.h"
39 1.1 mrg
40 1.1 mrg #include <sys/param.h>
41 1.1 mrg #include <sys/systm.h>
42 1.1 mrg #include <sys/buf.h>
43 1.89 yamt #include <sys/bufq.h>
44 1.36 mrg #include <sys/conf.h>
45 1.1 mrg #include <sys/proc.h>
46 1.1 mrg #include <sys/namei.h>
47 1.1 mrg #include <sys/disklabel.h>
48 1.1 mrg #include <sys/errno.h>
49 1.1 mrg #include <sys/kernel.h>
50 1.111 yamt #include <sys/malloc.h>
51 1.1 mrg #include <sys/vnode.h>
52 1.1 mrg #include <sys/file.h>
53 1.110 yamt #include <sys/vmem.h>
54 1.90 yamt #include <sys/blist.h>
55 1.1 mrg #include <sys/mount.h>
56 1.12 pk #include <sys/pool.h>
57 1.1 mrg #include <sys/syscallargs.h>
58 1.17 mrg #include <sys/swap.h>
59 1.100 elad #include <sys/kauth.h>
60 1.125 ad #include <sys/sysctl.h>
61 1.130 hannken #include <sys/workqueue.h>
62 1.1 mrg
63 1.1 mrg #include <uvm/uvm.h>
64 1.1 mrg
65 1.1 mrg #include <miscfs/specfs/specdev.h>
66 1.1 mrg
67 1.1 mrg /*
68 1.1 mrg * uvm_swap.c: manage configuration and i/o to swap space.
69 1.1 mrg */
70 1.1 mrg
71 1.1 mrg /*
72 1.1 mrg * swap space is managed in the following way:
73 1.51 chs *
74 1.1 mrg * each swap partition or file is described by a "swapdev" structure.
75 1.1 mrg * each "swapdev" structure contains a "swapent" structure which contains
76 1.1 mrg * information that is passed up to the user (via system calls).
77 1.1 mrg *
78 1.1 mrg * each swap partition is assigned a "priority" (int) which controls
79 1.1 mrg * swap parition usage.
80 1.1 mrg *
81 1.1 mrg * the system maintains a global data structure describing all swap
82 1.1 mrg * partitions/files. there is a sorted LIST of "swappri" structures
83 1.1 mrg * which describe "swapdev"'s at that priority. this LIST is headed
84 1.51 chs * by the "swap_priority" global var. each "swappri" contains a
85 1.1 mrg * CIRCLEQ of "swapdev" structures at that priority.
86 1.1 mrg *
87 1.1 mrg * locking:
88 1.127 ad * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
89 1.1 mrg * system call and prevents the swap priority list from changing
90 1.1 mrg * while we are in the middle of a system call (e.g. SWAP_STATS).
91 1.127 ad * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
92 1.1 mrg * structures including the priority list, the swapdev structures,
93 1.110 yamt * and the swapmap arena.
94 1.1 mrg *
95 1.1 mrg * each swap device has the following info:
96 1.1 mrg * - swap device in use (could be disabled, preventing future use)
97 1.1 mrg * - swap enabled (allows new allocations on swap)
98 1.1 mrg * - map info in /dev/drum
99 1.1 mrg * - vnode pointer
100 1.1 mrg * for swap files only:
101 1.1 mrg * - block size
102 1.1 mrg * - max byte count in buffer
103 1.1 mrg * - buffer
104 1.1 mrg *
105 1.1 mrg * userland controls and configures swap with the swapctl(2) system call.
106 1.1 mrg * the sys_swapctl performs the following operations:
107 1.1 mrg * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 1.51 chs * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 1.1 mrg * (passed in via "arg") of a size passed in via "misc" ... we load
110 1.85 junyoung * the current swap config into the array. The actual work is done
111 1.63 manu * in the uvm_swap_stats(9) function.
112 1.1 mrg * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 1.1 mrg * priority in "misc", start swapping on it.
114 1.1 mrg * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 1.1 mrg * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 1.1 mrg * "misc")
117 1.1 mrg */
118 1.1 mrg
119 1.1 mrg /*
120 1.1 mrg * swapdev: describes a single swap partition/file
121 1.1 mrg *
122 1.1 mrg * note the following should be true:
123 1.1 mrg * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
124 1.1 mrg * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125 1.1 mrg */
126 1.1 mrg struct swapdev {
127 1.144 mrg dev_t swd_dev; /* device id */
128 1.144 mrg int swd_flags; /* flags:inuse/enable/fake */
129 1.144 mrg int swd_priority; /* our priority */
130 1.144 mrg int swd_nblks; /* blocks in this device */
131 1.16 mrg char *swd_path; /* saved pathname of device */
132 1.16 mrg int swd_pathlen; /* length of pathname */
133 1.16 mrg int swd_npages; /* #pages we can use */
134 1.16 mrg int swd_npginuse; /* #pages in use */
135 1.32 chs int swd_npgbad; /* #pages bad */
136 1.16 mrg int swd_drumoffset; /* page0 offset in drum */
137 1.16 mrg int swd_drumsize; /* #pages in drum */
138 1.90 yamt blist_t swd_blist; /* blist for this swapdev */
139 1.16 mrg struct vnode *swd_vp; /* backing vnode */
140 1.16 mrg CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
141 1.1 mrg
142 1.16 mrg int swd_bsize; /* blocksize (bytes) */
143 1.16 mrg int swd_maxactive; /* max active i/o reqs */
144 1.96 yamt struct bufq_state *swd_tab; /* buffer list */
145 1.33 thorpej int swd_active; /* number of active buffers */
146 1.1 mrg };
147 1.1 mrg
148 1.1 mrg /*
149 1.1 mrg * swap device priority entry; the list is kept sorted on `spi_priority'.
150 1.1 mrg */
151 1.1 mrg struct swappri {
152 1.1 mrg int spi_priority; /* priority */
153 1.1 mrg CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
154 1.1 mrg /* circleq of swapdevs at this priority */
155 1.1 mrg LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
156 1.1 mrg };
157 1.1 mrg
158 1.1 mrg /*
159 1.1 mrg * The following two structures are used to keep track of data transfers
160 1.1 mrg * on swap devices associated with regular files.
161 1.1 mrg * NOTE: this code is more or less a copy of vnd.c; we use the same
162 1.1 mrg * structure names here to ease porting..
163 1.1 mrg */
164 1.1 mrg struct vndxfer {
165 1.1 mrg struct buf *vx_bp; /* Pointer to parent buffer */
166 1.1 mrg struct swapdev *vx_sdp;
167 1.1 mrg int vx_error;
168 1.1 mrg int vx_pending; /* # of pending aux buffers */
169 1.1 mrg int vx_flags;
170 1.1 mrg #define VX_BUSY 1
171 1.1 mrg #define VX_DEAD 2
172 1.1 mrg };
173 1.1 mrg
174 1.1 mrg struct vndbuf {
175 1.1 mrg struct buf vb_buf;
176 1.1 mrg struct vndxfer *vb_xfer;
177 1.1 mrg };
178 1.1 mrg
179 1.144 mrg /*
180 1.144 mrg * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
181 1.144 mrg * dev_t and has no se_path[] member.
182 1.144 mrg */
183 1.144 mrg struct swapent13 {
184 1.144 mrg int32_t se13_dev; /* device id */
185 1.144 mrg int se13_flags; /* flags */
186 1.144 mrg int se13_nblks; /* total blocks */
187 1.144 mrg int se13_inuse; /* blocks in use */
188 1.144 mrg int se13_priority; /* priority of this device */
189 1.144 mrg };
190 1.144 mrg
191 1.144 mrg /*
192 1.144 mrg * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
193 1.144 mrg * dev_t.
194 1.144 mrg */
195 1.144 mrg struct swapent50 {
196 1.144 mrg int32_t se50_dev; /* device id */
197 1.144 mrg int se50_flags; /* flags */
198 1.144 mrg int se50_nblks; /* total blocks */
199 1.144 mrg int se50_inuse; /* blocks in use */
200 1.144 mrg int se50_priority; /* priority of this device */
201 1.144 mrg char se50_path[PATH_MAX+1]; /* path name */
202 1.144 mrg };
203 1.12 pk
204 1.1 mrg /*
205 1.12 pk * We keep a of pool vndbuf's and vndxfer structures.
206 1.1 mrg */
207 1.123 ad POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
208 1.123 ad IPL_BIO);
209 1.123 ad POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
210 1.123 ad IPL_BIO);
211 1.1 mrg
212 1.1 mrg /*
213 1.1 mrg * local variables
214 1.1 mrg */
215 1.111 yamt MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
216 1.110 yamt static vmem_t *swapmap; /* controls the mapping of /dev/drum */
217 1.1 mrg
218 1.1 mrg /* list of all active swap devices [by priority] */
219 1.1 mrg LIST_HEAD(swap_priority, swappri);
220 1.1 mrg static struct swap_priority swap_priority;
221 1.1 mrg
222 1.1 mrg /* locks */
223 1.117 ad static krwlock_t swap_syscall_lock;
224 1.1 mrg
225 1.130 hannken /* workqueue and use counter for swap to regular files */
226 1.130 hannken static int sw_reg_count = 0;
227 1.130 hannken static struct workqueue *sw_reg_workqueue;
228 1.130 hannken
229 1.141 ad /* tuneables */
230 1.141 ad u_int uvm_swapisfull_factor = 99;
231 1.141 ad
232 1.1 mrg /*
233 1.1 mrg * prototypes
234 1.1 mrg */
235 1.85 junyoung static struct swapdev *swapdrum_getsdp(int);
236 1.1 mrg
237 1.120 matt static struct swapdev *swaplist_find(struct vnode *, bool);
238 1.85 junyoung static void swaplist_insert(struct swapdev *,
239 1.85 junyoung struct swappri *, int);
240 1.85 junyoung static void swaplist_trim(void);
241 1.1 mrg
242 1.97 christos static int swap_on(struct lwp *, struct swapdev *);
243 1.97 christos static int swap_off(struct lwp *, struct swapdev *);
244 1.1 mrg
245 1.95 yamt static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
246 1.95 yamt
247 1.85 junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
248 1.130 hannken static void sw_reg_biodone(struct buf *);
249 1.130 hannken static void sw_reg_iodone(struct work *wk, void *dummy);
250 1.85 junyoung static void sw_reg_start(struct swapdev *);
251 1.1 mrg
252 1.85 junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
253 1.1 mrg
254 1.1 mrg /*
255 1.1 mrg * uvm_swap_init: init the swap system data structures and locks
256 1.1 mrg *
257 1.51 chs * => called at boot time from init_main.c after the filesystems
258 1.1 mrg * are brought up (which happens after uvm_init())
259 1.1 mrg */
260 1.1 mrg void
261 1.93 thorpej uvm_swap_init(void)
262 1.1 mrg {
263 1.1 mrg UVMHIST_FUNC("uvm_swap_init");
264 1.1 mrg
265 1.1 mrg UVMHIST_CALLED(pdhist);
266 1.1 mrg /*
267 1.1 mrg * first, init the swap list, its counter, and its lock.
268 1.1 mrg * then get a handle on the vnode for /dev/drum by using
269 1.1 mrg * the its dev_t number ("swapdev", from MD conf.c).
270 1.1 mrg */
271 1.1 mrg
272 1.1 mrg LIST_INIT(&swap_priority);
273 1.1 mrg uvmexp.nswapdev = 0;
274 1.117 ad rw_init(&swap_syscall_lock);
275 1.117 ad cv_init(&uvm.scheduler_cv, "schedule");
276 1.134 ad mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
277 1.12 pk
278 1.117 ad /* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
279 1.126 ad mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
280 1.117 ad
281 1.1 mrg if (bdevvp(swapdev, &swapdev_vp))
282 1.145 mrg panic("%s: can't get vnode for swap device", __func__);
283 1.136 hannken if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
284 1.145 mrg panic("%s: can't lock swap device", __func__);
285 1.135 hannken if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
286 1.145 mrg panic("%s: can't open swap device", __func__);
287 1.136 hannken VOP_UNLOCK(swapdev_vp, 0);
288 1.1 mrg
289 1.1 mrg /*
290 1.1 mrg * create swap block resource map to map /dev/drum. the range
291 1.1 mrg * from 1 to INT_MAX allows 2 gigablocks of swap space. note
292 1.51 chs * that block 0 is reserved (used to indicate an allocation
293 1.1 mrg * failure, or no allocation).
294 1.1 mrg */
295 1.110 yamt swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
296 1.126 ad VM_NOSLEEP, IPL_NONE);
297 1.1 mrg if (swapmap == 0)
298 1.145 mrg panic("%s: vmem_create failed", __func__);
299 1.1 mrg
300 1.1 mrg /*
301 1.1 mrg * done!
302 1.1 mrg */
303 1.121 thorpej uvm.swap_running = true;
304 1.140 ad #ifdef __SWAP_BROKEN
305 1.140 ad uvm.swapout_enabled = 0;
306 1.140 ad #else
307 1.125 ad uvm.swapout_enabled = 1;
308 1.140 ad #endif
309 1.1 mrg UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
310 1.125 ad
311 1.125 ad sysctl_createv(NULL, 0, NULL, NULL,
312 1.125 ad CTLFLAG_READWRITE,
313 1.125 ad CTLTYPE_INT, "swapout",
314 1.125 ad SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
315 1.125 ad NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
316 1.1 mrg }
317 1.1 mrg
318 1.1 mrg /*
319 1.1 mrg * swaplist functions: functions that operate on the list of swap
320 1.1 mrg * devices on the system.
321 1.1 mrg */
322 1.1 mrg
323 1.1 mrg /*
324 1.1 mrg * swaplist_insert: insert swap device "sdp" into the global list
325 1.1 mrg *
326 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
327 1.1 mrg * => caller must provide a newly malloc'd swappri structure (we will
328 1.1 mrg * FREE it if we don't need it... this it to prevent malloc blocking
329 1.1 mrg * here while adding swap)
330 1.1 mrg */
331 1.1 mrg static void
332 1.93 thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
333 1.1 mrg {
334 1.1 mrg struct swappri *spp, *pspp;
335 1.1 mrg UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
336 1.1 mrg
337 1.1 mrg /*
338 1.1 mrg * find entry at or after which to insert the new device.
339 1.1 mrg */
340 1.55 chs pspp = NULL;
341 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
342 1.1 mrg if (priority <= spp->spi_priority)
343 1.1 mrg break;
344 1.1 mrg pspp = spp;
345 1.1 mrg }
346 1.1 mrg
347 1.1 mrg /*
348 1.1 mrg * new priority?
349 1.1 mrg */
350 1.1 mrg if (spp == NULL || spp->spi_priority != priority) {
351 1.1 mrg spp = newspp; /* use newspp! */
352 1.32 chs UVMHIST_LOG(pdhist, "created new swappri = %d",
353 1.32 chs priority, 0, 0, 0);
354 1.1 mrg
355 1.1 mrg spp->spi_priority = priority;
356 1.1 mrg CIRCLEQ_INIT(&spp->spi_swapdev);
357 1.1 mrg
358 1.1 mrg if (pspp)
359 1.1 mrg LIST_INSERT_AFTER(pspp, spp, spi_swappri);
360 1.1 mrg else
361 1.1 mrg LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
362 1.1 mrg } else {
363 1.1 mrg /* we don't need a new priority structure, free it */
364 1.142 cegger free(newspp, M_VMSWAP);
365 1.1 mrg }
366 1.1 mrg
367 1.1 mrg /*
368 1.1 mrg * priority found (or created). now insert on the priority's
369 1.1 mrg * circleq list and bump the total number of swapdevs.
370 1.1 mrg */
371 1.1 mrg sdp->swd_priority = priority;
372 1.1 mrg CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
373 1.1 mrg uvmexp.nswapdev++;
374 1.1 mrg }
375 1.1 mrg
376 1.1 mrg /*
377 1.1 mrg * swaplist_find: find and optionally remove a swap device from the
378 1.1 mrg * global list.
379 1.1 mrg *
380 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
381 1.1 mrg * => we return the swapdev we found (and removed)
382 1.1 mrg */
383 1.1 mrg static struct swapdev *
384 1.119 thorpej swaplist_find(struct vnode *vp, bool remove)
385 1.1 mrg {
386 1.1 mrg struct swapdev *sdp;
387 1.1 mrg struct swappri *spp;
388 1.1 mrg
389 1.1 mrg /*
390 1.1 mrg * search the lists for the requested vp
391 1.1 mrg */
392 1.55 chs
393 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
394 1.55 chs CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
395 1.1 mrg if (sdp->swd_vp == vp) {
396 1.1 mrg if (remove) {
397 1.1 mrg CIRCLEQ_REMOVE(&spp->spi_swapdev,
398 1.1 mrg sdp, swd_next);
399 1.1 mrg uvmexp.nswapdev--;
400 1.1 mrg }
401 1.1 mrg return(sdp);
402 1.1 mrg }
403 1.55 chs }
404 1.1 mrg }
405 1.1 mrg return (NULL);
406 1.1 mrg }
407 1.1 mrg
408 1.113 elad /*
409 1.1 mrg * swaplist_trim: scan priority list for empty priority entries and kill
410 1.1 mrg * them.
411 1.1 mrg *
412 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
413 1.1 mrg */
414 1.1 mrg static void
415 1.93 thorpej swaplist_trim(void)
416 1.1 mrg {
417 1.1 mrg struct swappri *spp, *nextspp;
418 1.1 mrg
419 1.32 chs for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
420 1.32 chs nextspp = LIST_NEXT(spp, spi_swappri);
421 1.32 chs if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
422 1.32 chs (void *)&spp->spi_swapdev)
423 1.1 mrg continue;
424 1.1 mrg LIST_REMOVE(spp, spi_swappri);
425 1.111 yamt free(spp, M_VMSWAP);
426 1.1 mrg }
427 1.1 mrg }
428 1.1 mrg
429 1.1 mrg /*
430 1.1 mrg * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
431 1.1 mrg * to the "swapdev" that maps that section of the drum.
432 1.1 mrg *
433 1.1 mrg * => each swapdev takes one big contig chunk of the drum
434 1.127 ad * => caller must hold uvm_swap_data_lock
435 1.1 mrg */
436 1.1 mrg static struct swapdev *
437 1.93 thorpej swapdrum_getsdp(int pgno)
438 1.1 mrg {
439 1.1 mrg struct swapdev *sdp;
440 1.1 mrg struct swappri *spp;
441 1.51 chs
442 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
443 1.55 chs CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
444 1.48 fvdl if (sdp->swd_flags & SWF_FAKE)
445 1.48 fvdl continue;
446 1.1 mrg if (pgno >= sdp->swd_drumoffset &&
447 1.1 mrg pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
448 1.1 mrg return sdp;
449 1.1 mrg }
450 1.48 fvdl }
451 1.55 chs }
452 1.1 mrg return NULL;
453 1.1 mrg }
454 1.1 mrg
455 1.1 mrg
456 1.1 mrg /*
457 1.1 mrg * sys_swapctl: main entry point for swapctl(2) system call
458 1.1 mrg * [with two helper functions: swap_on and swap_off]
459 1.1 mrg */
460 1.1 mrg int
461 1.133 dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
462 1.1 mrg {
463 1.133 dsl /* {
464 1.1 mrg syscallarg(int) cmd;
465 1.1 mrg syscallarg(void *) arg;
466 1.1 mrg syscallarg(int) misc;
467 1.133 dsl } */
468 1.1 mrg struct vnode *vp;
469 1.1 mrg struct nameidata nd;
470 1.1 mrg struct swappri *spp;
471 1.1 mrg struct swapdev *sdp;
472 1.1 mrg struct swapent *sep;
473 1.101 christos #define SWAP_PATH_MAX (PATH_MAX + 1)
474 1.101 christos char *userpath;
475 1.18 enami size_t len;
476 1.61 manu int error, misc;
477 1.1 mrg int priority;
478 1.1 mrg UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
479 1.1 mrg
480 1.1 mrg misc = SCARG(uap, misc);
481 1.1 mrg
482 1.1 mrg /*
483 1.1 mrg * ensure serialized syscall access by grabbing the swap_syscall_lock
484 1.1 mrg */
485 1.117 ad rw_enter(&swap_syscall_lock, RW_WRITER);
486 1.24 mrg
487 1.111 yamt userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
488 1.1 mrg /*
489 1.1 mrg * we handle the non-priv NSWAP and STATS request first.
490 1.1 mrg *
491 1.51 chs * SWAP_NSWAP: return number of config'd swap devices
492 1.1 mrg * [can also be obtained with uvmexp sysctl]
493 1.1 mrg */
494 1.1 mrg if (SCARG(uap, cmd) == SWAP_NSWAP) {
495 1.8 mrg UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
496 1.8 mrg 0, 0, 0);
497 1.1 mrg *retval = uvmexp.nswapdev;
498 1.16 mrg error = 0;
499 1.16 mrg goto out;
500 1.1 mrg }
501 1.1 mrg
502 1.1 mrg /*
503 1.1 mrg * SWAP_STATS: get stats on current # of configured swap devs
504 1.1 mrg *
505 1.51 chs * note that the swap_priority list can't change as long
506 1.1 mrg * as we are holding the swap_syscall_lock. we don't want
507 1.127 ad * to grab the uvm_swap_data_lock because we may fault&sleep during
508 1.1 mrg * copyout() and we don't want to be holding that lock then!
509 1.1 mrg */
510 1.16 mrg if (SCARG(uap, cmd) == SWAP_STATS
511 1.144 mrg #if defined(COMPAT_50)
512 1.144 mrg || SCARG(uap, cmd) == SWAP_STATS50
513 1.144 mrg #endif
514 1.16 mrg #if defined(COMPAT_13)
515 1.144 mrg || SCARG(uap, cmd) == SWAP_STATS13
516 1.16 mrg #endif
517 1.16 mrg ) {
518 1.88 christos if ((size_t)misc > (size_t)uvmexp.nswapdev)
519 1.88 christos misc = uvmexp.nswapdev;
520 1.16 mrg #if defined(COMPAT_13)
521 1.144 mrg if (SCARG(uap, cmd) == SWAP_STATS13)
522 1.144 mrg len = sizeof(struct swapent13) * misc;
523 1.144 mrg else
524 1.144 mrg #endif
525 1.144 mrg #if defined(COMPAT_50)
526 1.144 mrg if (SCARG(uap, cmd) == SWAP_STATS50)
527 1.144 mrg len = sizeof(struct swapent50) * misc;
528 1.62 manu else
529 1.16 mrg #endif
530 1.62 manu len = sizeof(struct swapent) * misc;
531 1.111 yamt sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
532 1.62 manu
533 1.95 yamt uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
534 1.92 christos error = copyout(sep, SCARG(uap, arg), len);
535 1.1 mrg
536 1.111 yamt free(sep, M_TEMP);
537 1.16 mrg UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
538 1.16 mrg goto out;
539 1.51 chs }
540 1.55 chs if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
541 1.55 chs dev_t *devp = (dev_t *)SCARG(uap, arg);
542 1.55 chs
543 1.55 chs error = copyout(&dumpdev, devp, sizeof(dumpdev));
544 1.55 chs goto out;
545 1.55 chs }
546 1.1 mrg
547 1.1 mrg /*
548 1.1 mrg * all other requests require superuser privs. verify.
549 1.1 mrg */
550 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
551 1.106 elad 0, NULL, NULL, NULL)))
552 1.16 mrg goto out;
553 1.1 mrg
554 1.104 martin if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
555 1.104 martin /* drop the current dump device */
556 1.104 martin dumpdev = NODEV;
557 1.138 kardel dumpcdev = NODEV;
558 1.104 martin cpu_dumpconf();
559 1.104 martin goto out;
560 1.104 martin }
561 1.104 martin
562 1.1 mrg /*
563 1.1 mrg * at this point we expect a path name in arg. we will
564 1.1 mrg * use namei() to gain a vnode reference (vref), and lock
565 1.1 mrg * the vnode (VOP_LOCK).
566 1.1 mrg *
567 1.1 mrg * XXX: a NULL arg means use the root vnode pointer (e.g. for
568 1.16 mrg * miniroot)
569 1.1 mrg */
570 1.1 mrg if (SCARG(uap, arg) == NULL) {
571 1.1 mrg vp = rootvp; /* miniroot */
572 1.79 thorpej if (vget(vp, LK_EXCLUSIVE)) {
573 1.16 mrg error = EBUSY;
574 1.16 mrg goto out;
575 1.1 mrg }
576 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON &&
577 1.101 christos copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
578 1.16 mrg panic("swapctl: miniroot copy failed");
579 1.1 mrg } else {
580 1.16 mrg int space;
581 1.16 mrg char *where;
582 1.16 mrg
583 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON) {
584 1.16 mrg if ((error = copyinstr(SCARG(uap, arg), userpath,
585 1.101 christos SWAP_PATH_MAX, &len)))
586 1.16 mrg goto out;
587 1.16 mrg space = UIO_SYSSPACE;
588 1.16 mrg where = userpath;
589 1.16 mrg } else {
590 1.16 mrg space = UIO_USERSPACE;
591 1.16 mrg where = (char *)SCARG(uap, arg);
592 1.1 mrg }
593 1.132 pooka NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
594 1.132 pooka space, where);
595 1.16 mrg if ((error = namei(&nd)))
596 1.16 mrg goto out;
597 1.1 mrg vp = nd.ni_vp;
598 1.1 mrg }
599 1.1 mrg /* note: "vp" is referenced and locked */
600 1.1 mrg
601 1.1 mrg error = 0; /* assume no error */
602 1.1 mrg switch(SCARG(uap, cmd)) {
603 1.40 mrg
604 1.24 mrg case SWAP_DUMPDEV:
605 1.24 mrg if (vp->v_type != VBLK) {
606 1.24 mrg error = ENOTBLK;
607 1.45 pk break;
608 1.24 mrg }
609 1.138 kardel if (bdevsw_lookup(vp->v_rdev)) {
610 1.109 mrg dumpdev = vp->v_rdev;
611 1.138 kardel dumpcdev = devsw_blk2chr(dumpdev);
612 1.138 kardel } else
613 1.109 mrg dumpdev = NODEV;
614 1.68 drochner cpu_dumpconf();
615 1.24 mrg break;
616 1.24 mrg
617 1.1 mrg case SWAP_CTL:
618 1.1 mrg /*
619 1.1 mrg * get new priority, remove old entry (if any) and then
620 1.1 mrg * reinsert it in the correct place. finally, prune out
621 1.1 mrg * any empty priority structures.
622 1.1 mrg */
623 1.1 mrg priority = SCARG(uap, misc);
624 1.111 yamt spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
625 1.127 ad mutex_enter(&uvm_swap_data_lock);
626 1.120 matt if ((sdp = swaplist_find(vp, true)) == NULL) {
627 1.1 mrg error = ENOENT;
628 1.1 mrg } else {
629 1.1 mrg swaplist_insert(sdp, spp, priority);
630 1.1 mrg swaplist_trim();
631 1.1 mrg }
632 1.127 ad mutex_exit(&uvm_swap_data_lock);
633 1.1 mrg if (error)
634 1.111 yamt free(spp, M_VMSWAP);
635 1.1 mrg break;
636 1.1 mrg
637 1.1 mrg case SWAP_ON:
638 1.32 chs
639 1.1 mrg /*
640 1.1 mrg * check for duplicates. if none found, then insert a
641 1.1 mrg * dummy entry on the list to prevent someone else from
642 1.1 mrg * trying to enable this device while we are working on
643 1.1 mrg * it.
644 1.1 mrg */
645 1.32 chs
646 1.1 mrg priority = SCARG(uap, misc);
647 1.111 yamt sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
648 1.111 yamt spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
649 1.111 yamt memset(sdp, 0, sizeof(*sdp));
650 1.67 chs sdp->swd_flags = SWF_FAKE;
651 1.67 chs sdp->swd_vp = vp;
652 1.67 chs sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
653 1.96 yamt bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
654 1.127 ad mutex_enter(&uvm_swap_data_lock);
655 1.120 matt if (swaplist_find(vp, false) != NULL) {
656 1.1 mrg error = EBUSY;
657 1.127 ad mutex_exit(&uvm_swap_data_lock);
658 1.96 yamt bufq_free(sdp->swd_tab);
659 1.111 yamt free(sdp, M_VMSWAP);
660 1.111 yamt free(spp, M_VMSWAP);
661 1.16 mrg break;
662 1.1 mrg }
663 1.1 mrg swaplist_insert(sdp, spp, priority);
664 1.127 ad mutex_exit(&uvm_swap_data_lock);
665 1.1 mrg
666 1.16 mrg sdp->swd_pathlen = len;
667 1.111 yamt sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
668 1.19 pk if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
669 1.19 pk panic("swapctl: copystr");
670 1.32 chs
671 1.1 mrg /*
672 1.1 mrg * we've now got a FAKE placeholder in the swap list.
673 1.1 mrg * now attempt to enable swap on it. if we fail, undo
674 1.1 mrg * what we've done and kill the fake entry we just inserted.
675 1.1 mrg * if swap_on is a success, it will clear the SWF_FAKE flag
676 1.1 mrg */
677 1.32 chs
678 1.97 christos if ((error = swap_on(l, sdp)) != 0) {
679 1.127 ad mutex_enter(&uvm_swap_data_lock);
680 1.120 matt (void) swaplist_find(vp, true); /* kill fake entry */
681 1.1 mrg swaplist_trim();
682 1.127 ad mutex_exit(&uvm_swap_data_lock);
683 1.96 yamt bufq_free(sdp->swd_tab);
684 1.111 yamt free(sdp->swd_path, M_VMSWAP);
685 1.111 yamt free(sdp, M_VMSWAP);
686 1.1 mrg break;
687 1.1 mrg }
688 1.1 mrg break;
689 1.1 mrg
690 1.1 mrg case SWAP_OFF:
691 1.127 ad mutex_enter(&uvm_swap_data_lock);
692 1.120 matt if ((sdp = swaplist_find(vp, false)) == NULL) {
693 1.127 ad mutex_exit(&uvm_swap_data_lock);
694 1.1 mrg error = ENXIO;
695 1.1 mrg break;
696 1.1 mrg }
697 1.32 chs
698 1.1 mrg /*
699 1.1 mrg * If a device isn't in use or enabled, we
700 1.1 mrg * can't stop swapping from it (again).
701 1.1 mrg */
702 1.1 mrg if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
703 1.127 ad mutex_exit(&uvm_swap_data_lock);
704 1.1 mrg error = EBUSY;
705 1.16 mrg break;
706 1.1 mrg }
707 1.1 mrg
708 1.1 mrg /*
709 1.32 chs * do the real work.
710 1.1 mrg */
711 1.97 christos error = swap_off(l, sdp);
712 1.1 mrg break;
713 1.1 mrg
714 1.1 mrg default:
715 1.1 mrg error = EINVAL;
716 1.1 mrg }
717 1.1 mrg
718 1.1 mrg /*
719 1.39 chs * done! release the ref gained by namei() and unlock.
720 1.1 mrg */
721 1.1 mrg vput(vp);
722 1.39 chs
723 1.16 mrg out:
724 1.111 yamt free(userpath, M_TEMP);
725 1.117 ad rw_exit(&swap_syscall_lock);
726 1.1 mrg
727 1.1 mrg UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
728 1.1 mrg return (error);
729 1.61 manu }
730 1.61 manu
731 1.85 junyoung /*
732 1.61 manu * swap_stats: implements swapctl(SWAP_STATS). The function is kept
733 1.85 junyoung * away from sys_swapctl() in order to allow COMPAT_* swapctl()
734 1.61 manu * emulation to use it directly without going through sys_swapctl().
735 1.61 manu * The problem with using sys_swapctl() there is that it involves
736 1.61 manu * copying the swapent array to the stackgap, and this array's size
737 1.85 junyoung * is not known at build time. Hence it would not be possible to
738 1.61 manu * ensure it would fit in the stackgap in any case.
739 1.61 manu */
740 1.61 manu void
741 1.93 thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
742 1.61 manu {
743 1.95 yamt
744 1.117 ad rw_enter(&swap_syscall_lock, RW_READER);
745 1.95 yamt uvm_swap_stats_locked(cmd, sep, sec, retval);
746 1.117 ad rw_exit(&swap_syscall_lock);
747 1.95 yamt }
748 1.95 yamt
749 1.95 yamt static void
750 1.95 yamt uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
751 1.95 yamt {
752 1.61 manu struct swappri *spp;
753 1.61 manu struct swapdev *sdp;
754 1.61 manu int count = 0;
755 1.61 manu
756 1.61 manu LIST_FOREACH(spp, &swap_priority, spi_swappri) {
757 1.61 manu for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
758 1.61 manu sdp != (void *)&spp->spi_swapdev && sec-- > 0;
759 1.61 manu sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
760 1.144 mrg int inuse;
761 1.144 mrg
762 1.61 manu /*
763 1.61 manu * backwards compatibility for system call.
764 1.144 mrg * For NetBSD 1.3 and 5.0, we have to use
765 1.144 mrg * the 32 bit dev_t. For 5.0 and -current
766 1.144 mrg * we have to add the path.
767 1.61 manu */
768 1.144 mrg inuse = btodb((uint64_t)sdp->swd_npginuse <<
769 1.61 manu PAGE_SHIFT);
770 1.85 junyoung
771 1.144 mrg #if defined(COMPAT_13) || defined(COMPAT_50)
772 1.144 mrg if (cmd == SWAP_STATS) {
773 1.108 thorpej #endif
774 1.144 mrg sep->se_dev = sdp->swd_dev;
775 1.144 mrg sep->se_flags = sdp->swd_flags;
776 1.144 mrg sep->se_nblks = sdp->swd_nblks;
777 1.144 mrg sep->se_inuse = inuse;
778 1.144 mrg sep->se_priority = sdp->swd_priority;
779 1.144 mrg memcpy(&sep->se_path, sdp->swd_path,
780 1.144 mrg sizeof sep->se_path);
781 1.144 mrg sep++;
782 1.61 manu #if defined(COMPAT_13)
783 1.144 mrg } else if (cmd == SWAP_STATS13) {
784 1.144 mrg struct swapent13 *sep13 =
785 1.144 mrg (struct swapent13 *)sep;
786 1.144 mrg
787 1.144 mrg sep13->se13_dev = sdp->swd_dev;
788 1.144 mrg sep13->se13_flags = sdp->swd_flags;
789 1.144 mrg sep13->se13_nblks = sdp->swd_nblks;
790 1.144 mrg sep13->se13_inuse = inuse;
791 1.144 mrg sep13->se13_priority = sdp->swd_priority;
792 1.144 mrg sep = (struct swapent *)(sep13 + 1);
793 1.144 mrg #endif
794 1.144 mrg #if defined(COMPAT_50)
795 1.144 mrg } else if (cmd == SWAP_STATS50) {
796 1.144 mrg struct swapent50 *sep50 =
797 1.144 mrg (struct swapent50 *)sep;
798 1.144 mrg
799 1.144 mrg sep50->se50_dev = sdp->swd_dev;
800 1.144 mrg sep50->se50_flags = sdp->swd_flags;
801 1.144 mrg sep50->se50_nblks = sdp->swd_nblks;
802 1.144 mrg sep50->se50_inuse = inuse;
803 1.144 mrg sep50->se50_priority = sdp->swd_priority;
804 1.144 mrg memcpy(&sep50->se50_path, sdp->swd_path,
805 1.144 mrg sizeof sep50->se50_path);
806 1.144 mrg sep = (struct swapent *)(sep50 + 1);
807 1.144 mrg }
808 1.61 manu #endif
809 1.61 manu count++;
810 1.61 manu }
811 1.61 manu }
812 1.61 manu
813 1.61 manu *retval = count;
814 1.61 manu return;
815 1.1 mrg }
816 1.1 mrg
817 1.1 mrg /*
818 1.1 mrg * swap_on: attempt to enable a swapdev for swapping. note that the
819 1.1 mrg * swapdev is already on the global list, but disabled (marked
820 1.1 mrg * SWF_FAKE).
821 1.1 mrg *
822 1.1 mrg * => we avoid the start of the disk (to protect disk labels)
823 1.1 mrg * => we also avoid the miniroot, if we are swapping to root.
824 1.127 ad * => caller should leave uvm_swap_data_lock unlocked, we may lock it
825 1.1 mrg * if needed.
826 1.1 mrg */
827 1.1 mrg static int
828 1.97 christos swap_on(struct lwp *l, struct swapdev *sdp)
829 1.1 mrg {
830 1.1 mrg struct vnode *vp;
831 1.1 mrg int error, npages, nblocks, size;
832 1.1 mrg long addr;
833 1.48 fvdl u_long result;
834 1.1 mrg struct vattr va;
835 1.1 mrg #ifdef NFS
836 1.85 junyoung extern int (**nfsv2_vnodeop_p)(void *);
837 1.1 mrg #endif /* NFS */
838 1.69 gehenna const struct bdevsw *bdev;
839 1.1 mrg dev_t dev;
840 1.1 mrg UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
841 1.1 mrg
842 1.1 mrg /*
843 1.1 mrg * we want to enable swapping on sdp. the swd_vp contains
844 1.1 mrg * the vnode we want (locked and ref'd), and the swd_dev
845 1.1 mrg * contains the dev_t of the file, if it a block device.
846 1.1 mrg */
847 1.1 mrg
848 1.1 mrg vp = sdp->swd_vp;
849 1.1 mrg dev = sdp->swd_dev;
850 1.1 mrg
851 1.1 mrg /*
852 1.1 mrg * open the swap file (mostly useful for block device files to
853 1.1 mrg * let device driver know what is up).
854 1.1 mrg *
855 1.1 mrg * we skip the open/close for root on swap because the root
856 1.1 mrg * has already been opened when root was mounted (mountroot).
857 1.1 mrg */
858 1.1 mrg if (vp != rootvp) {
859 1.131 pooka if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
860 1.1 mrg return (error);
861 1.1 mrg }
862 1.1 mrg
863 1.1 mrg /* XXX this only works for block devices */
864 1.1 mrg UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
865 1.1 mrg
866 1.1 mrg /*
867 1.1 mrg * we now need to determine the size of the swap area. for
868 1.1 mrg * block specials we can call the d_psize function.
869 1.1 mrg * for normal files, we must stat [get attrs].
870 1.1 mrg *
871 1.1 mrg * we put the result in nblks.
872 1.1 mrg * for normal files, we also want the filesystem block size
873 1.1 mrg * (which we get with statfs).
874 1.1 mrg */
875 1.1 mrg switch (vp->v_type) {
876 1.1 mrg case VBLK:
877 1.69 gehenna bdev = bdevsw_lookup(dev);
878 1.69 gehenna if (bdev == NULL || bdev->d_psize == NULL ||
879 1.69 gehenna (nblocks = (*bdev->d_psize)(dev)) == -1) {
880 1.1 mrg error = ENXIO;
881 1.1 mrg goto bad;
882 1.1 mrg }
883 1.1 mrg break;
884 1.1 mrg
885 1.1 mrg case VREG:
886 1.131 pooka if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
887 1.1 mrg goto bad;
888 1.1 mrg nblocks = (int)btodb(va.va_size);
889 1.1 mrg if ((error =
890 1.131 pooka VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
891 1.1 mrg goto bad;
892 1.1 mrg
893 1.1 mrg sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
894 1.1 mrg /*
895 1.1 mrg * limit the max # of outstanding I/O requests we issue
896 1.1 mrg * at any one time. take it easy on NFS servers.
897 1.1 mrg */
898 1.1 mrg #ifdef NFS
899 1.1 mrg if (vp->v_op == nfsv2_vnodeop_p)
900 1.1 mrg sdp->swd_maxactive = 2; /* XXX */
901 1.1 mrg else
902 1.1 mrg #endif /* NFS */
903 1.1 mrg sdp->swd_maxactive = 8; /* XXX */
904 1.1 mrg break;
905 1.1 mrg
906 1.1 mrg default:
907 1.1 mrg error = ENXIO;
908 1.1 mrg goto bad;
909 1.1 mrg }
910 1.1 mrg
911 1.1 mrg /*
912 1.1 mrg * save nblocks in a safe place and convert to pages.
913 1.1 mrg */
914 1.1 mrg
915 1.144 mrg sdp->swd_nblks = nblocks;
916 1.99 matt npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
917 1.1 mrg
918 1.1 mrg /*
919 1.1 mrg * for block special files, we want to make sure that leave
920 1.1 mrg * the disklabel and bootblocks alone, so we arrange to skip
921 1.32 chs * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
922 1.1 mrg * note that because of this the "size" can be less than the
923 1.1 mrg * actual number of blocks on the device.
924 1.1 mrg */
925 1.1 mrg if (vp->v_type == VBLK) {
926 1.1 mrg /* we use pages 1 to (size - 1) [inclusive] */
927 1.1 mrg size = npages - 1;
928 1.1 mrg addr = 1;
929 1.1 mrg } else {
930 1.1 mrg /* we use pages 0 to (size - 1) [inclusive] */
931 1.1 mrg size = npages;
932 1.1 mrg addr = 0;
933 1.1 mrg }
934 1.1 mrg
935 1.1 mrg /*
936 1.1 mrg * make sure we have enough blocks for a reasonable sized swap
937 1.1 mrg * area. we want at least one page.
938 1.1 mrg */
939 1.1 mrg
940 1.1 mrg if (size < 1) {
941 1.1 mrg UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
942 1.1 mrg error = EINVAL;
943 1.1 mrg goto bad;
944 1.1 mrg }
945 1.1 mrg
946 1.1 mrg UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
947 1.1 mrg
948 1.1 mrg /*
949 1.1 mrg * now we need to allocate an extent to manage this swap device
950 1.1 mrg */
951 1.1 mrg
952 1.90 yamt sdp->swd_blist = blist_create(npages);
953 1.90 yamt /* mark all expect the `saved' region free. */
954 1.90 yamt blist_free(sdp->swd_blist, addr, size);
955 1.1 mrg
956 1.1 mrg /*
957 1.51 chs * if the vnode we are swapping to is the root vnode
958 1.1 mrg * (i.e. we are swapping to the miniroot) then we want
959 1.51 chs * to make sure we don't overwrite it. do a statfs to
960 1.1 mrg * find its size and skip over it.
961 1.1 mrg */
962 1.1 mrg if (vp == rootvp) {
963 1.1 mrg struct mount *mp;
964 1.86 christos struct statvfs *sp;
965 1.1 mrg int rootblocks, rootpages;
966 1.1 mrg
967 1.1 mrg mp = rootvnode->v_mount;
968 1.1 mrg sp = &mp->mnt_stat;
969 1.86 christos rootblocks = sp->f_blocks * btodb(sp->f_frsize);
970 1.64 fredette /*
971 1.64 fredette * XXX: sp->f_blocks isn't the total number of
972 1.64 fredette * blocks in the filesystem, it's the number of
973 1.64 fredette * data blocks. so, our rootblocks almost
974 1.85 junyoung * definitely underestimates the total size
975 1.64 fredette * of the filesystem - how badly depends on the
976 1.85 junyoung * details of the filesystem type. there isn't
977 1.64 fredette * an obvious way to deal with this cleanly
978 1.85 junyoung * and perfectly, so for now we just pad our
979 1.64 fredette * rootblocks estimate with an extra 5 percent.
980 1.64 fredette */
981 1.64 fredette rootblocks += (rootblocks >> 5) +
982 1.64 fredette (rootblocks >> 6) +
983 1.64 fredette (rootblocks >> 7);
984 1.20 chs rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
985 1.32 chs if (rootpages > size)
986 1.1 mrg panic("swap_on: miniroot larger than swap?");
987 1.1 mrg
988 1.90 yamt if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
989 1.1 mrg panic("swap_on: unable to preserve miniroot");
990 1.90 yamt }
991 1.1 mrg
992 1.32 chs size -= rootpages;
993 1.1 mrg printf("Preserved %d pages of miniroot ", rootpages);
994 1.32 chs printf("leaving %d pages of swap\n", size);
995 1.1 mrg }
996 1.1 mrg
997 1.39 chs /*
998 1.39 chs * add a ref to vp to reflect usage as a swap device.
999 1.39 chs */
1000 1.39 chs vref(vp);
1001 1.39 chs
1002 1.1 mrg /*
1003 1.1 mrg * now add the new swapdev to the drum and enable.
1004 1.1 mrg */
1005 1.110 yamt result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
1006 1.110 yamt if (result == 0)
1007 1.48 fvdl panic("swapdrum_add");
1008 1.130 hannken /*
1009 1.130 hannken * If this is the first regular swap create the workqueue.
1010 1.130 hannken * => Protected by swap_syscall_lock.
1011 1.130 hannken */
1012 1.130 hannken if (vp->v_type != VBLK) {
1013 1.130 hannken if (sw_reg_count++ == 0) {
1014 1.130 hannken KASSERT(sw_reg_workqueue == NULL);
1015 1.130 hannken if (workqueue_create(&sw_reg_workqueue, "swapiod",
1016 1.130 hannken sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1017 1.145 mrg panic("%s: workqueue_create failed", __func__);
1018 1.130 hannken }
1019 1.130 hannken }
1020 1.48 fvdl
1021 1.48 fvdl sdp->swd_drumoffset = (int)result;
1022 1.48 fvdl sdp->swd_drumsize = npages;
1023 1.48 fvdl sdp->swd_npages = size;
1024 1.127 ad mutex_enter(&uvm_swap_data_lock);
1025 1.1 mrg sdp->swd_flags &= ~SWF_FAKE; /* going live */
1026 1.1 mrg sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1027 1.32 chs uvmexp.swpages += size;
1028 1.81 pk uvmexp.swpgavail += size;
1029 1.127 ad mutex_exit(&uvm_swap_data_lock);
1030 1.1 mrg return (0);
1031 1.1 mrg
1032 1.1 mrg /*
1033 1.43 chs * failure: clean up and return error.
1034 1.1 mrg */
1035 1.43 chs
1036 1.43 chs bad:
1037 1.90 yamt if (sdp->swd_blist) {
1038 1.90 yamt blist_destroy(sdp->swd_blist);
1039 1.43 chs }
1040 1.43 chs if (vp != rootvp) {
1041 1.131 pooka (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1042 1.43 chs }
1043 1.1 mrg return (error);
1044 1.1 mrg }
1045 1.1 mrg
1046 1.1 mrg /*
1047 1.1 mrg * swap_off: stop swapping on swapdev
1048 1.1 mrg *
1049 1.32 chs * => swap data should be locked, we will unlock.
1050 1.1 mrg */
1051 1.1 mrg static int
1052 1.97 christos swap_off(struct lwp *l, struct swapdev *sdp)
1053 1.1 mrg {
1054 1.91 yamt int npages = sdp->swd_npages;
1055 1.91 yamt int error = 0;
1056 1.81 pk
1057 1.1 mrg UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1058 1.81 pk UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1059 1.1 mrg
1060 1.32 chs /* disable the swap area being removed */
1061 1.1 mrg sdp->swd_flags &= ~SWF_ENABLE;
1062 1.81 pk uvmexp.swpgavail -= npages;
1063 1.127 ad mutex_exit(&uvm_swap_data_lock);
1064 1.32 chs
1065 1.32 chs /*
1066 1.32 chs * the idea is to find all the pages that are paged out to this
1067 1.32 chs * device, and page them all in. in uvm, swap-backed pageable
1068 1.32 chs * memory can take two forms: aobjs and anons. call the
1069 1.32 chs * swapoff hook for each subsystem to bring in pages.
1070 1.32 chs */
1071 1.1 mrg
1072 1.32 chs if (uao_swap_off(sdp->swd_drumoffset,
1073 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize) ||
1074 1.91 yamt amap_swap_off(sdp->swd_drumoffset,
1075 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize)) {
1076 1.91 yamt error = ENOMEM;
1077 1.91 yamt } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1078 1.91 yamt error = EBUSY;
1079 1.91 yamt }
1080 1.51 chs
1081 1.91 yamt if (error) {
1082 1.127 ad mutex_enter(&uvm_swap_data_lock);
1083 1.32 chs sdp->swd_flags |= SWF_ENABLE;
1084 1.81 pk uvmexp.swpgavail += npages;
1085 1.127 ad mutex_exit(&uvm_swap_data_lock);
1086 1.91 yamt
1087 1.91 yamt return error;
1088 1.32 chs }
1089 1.1 mrg
1090 1.1 mrg /*
1091 1.130 hannken * If this is the last regular swap destroy the workqueue.
1092 1.130 hannken * => Protected by swap_syscall_lock.
1093 1.130 hannken */
1094 1.130 hannken if (sdp->swd_vp->v_type != VBLK) {
1095 1.130 hannken KASSERT(sw_reg_count > 0);
1096 1.130 hannken KASSERT(sw_reg_workqueue != NULL);
1097 1.130 hannken if (--sw_reg_count == 0) {
1098 1.130 hannken workqueue_destroy(sw_reg_workqueue);
1099 1.130 hannken sw_reg_workqueue = NULL;
1100 1.130 hannken }
1101 1.130 hannken }
1102 1.130 hannken
1103 1.130 hannken /*
1104 1.58 enami * done with the vnode.
1105 1.39 chs * drop our ref on the vnode before calling VOP_CLOSE()
1106 1.39 chs * so that spec_close() can tell if this is the last close.
1107 1.1 mrg */
1108 1.39 chs vrele(sdp->swd_vp);
1109 1.32 chs if (sdp->swd_vp != rootvp) {
1110 1.131 pooka (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1111 1.32 chs }
1112 1.32 chs
1113 1.127 ad mutex_enter(&uvm_swap_data_lock);
1114 1.81 pk uvmexp.swpages -= npages;
1115 1.82 pk uvmexp.swpginuse -= sdp->swd_npgbad;
1116 1.1 mrg
1117 1.120 matt if (swaplist_find(sdp->swd_vp, true) == NULL)
1118 1.145 mrg panic("%s: swapdev not in list", __func__);
1119 1.32 chs swaplist_trim();
1120 1.127 ad mutex_exit(&uvm_swap_data_lock);
1121 1.1 mrg
1122 1.32 chs /*
1123 1.32 chs * free all resources!
1124 1.32 chs */
1125 1.110 yamt vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1126 1.90 yamt blist_destroy(sdp->swd_blist);
1127 1.96 yamt bufq_free(sdp->swd_tab);
1128 1.111 yamt free(sdp, M_VMSWAP);
1129 1.1 mrg return (0);
1130 1.1 mrg }
1131 1.1 mrg
1132 1.1 mrg /*
1133 1.1 mrg * /dev/drum interface and i/o functions
1134 1.1 mrg */
1135 1.1 mrg
1136 1.1 mrg /*
1137 1.1 mrg * swstrategy: perform I/O on the drum
1138 1.1 mrg *
1139 1.1 mrg * => we must map the i/o request from the drum to the correct swapdev.
1140 1.1 mrg */
1141 1.94 thorpej static void
1142 1.93 thorpej swstrategy(struct buf *bp)
1143 1.1 mrg {
1144 1.1 mrg struct swapdev *sdp;
1145 1.1 mrg struct vnode *vp;
1146 1.134 ad int pageno, bn;
1147 1.1 mrg UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1148 1.1 mrg
1149 1.1 mrg /*
1150 1.1 mrg * convert block number to swapdev. note that swapdev can't
1151 1.1 mrg * be yanked out from under us because we are holding resources
1152 1.1 mrg * in it (i.e. the blocks we are doing I/O on).
1153 1.1 mrg */
1154 1.41 chs pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1155 1.127 ad mutex_enter(&uvm_swap_data_lock);
1156 1.1 mrg sdp = swapdrum_getsdp(pageno);
1157 1.127 ad mutex_exit(&uvm_swap_data_lock);
1158 1.1 mrg if (sdp == NULL) {
1159 1.1 mrg bp->b_error = EINVAL;
1160 1.1 mrg biodone(bp);
1161 1.1 mrg UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1162 1.1 mrg return;
1163 1.1 mrg }
1164 1.1 mrg
1165 1.1 mrg /*
1166 1.1 mrg * convert drum page number to block number on this swapdev.
1167 1.1 mrg */
1168 1.1 mrg
1169 1.32 chs pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1170 1.99 matt bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1171 1.1 mrg
1172 1.41 chs UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1173 1.1 mrg ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1174 1.1 mrg sdp->swd_drumoffset, bn, bp->b_bcount);
1175 1.1 mrg
1176 1.1 mrg /*
1177 1.1 mrg * for block devices we finish up here.
1178 1.32 chs * for regular files we have to do more work which we delegate
1179 1.1 mrg * to sw_reg_strategy().
1180 1.1 mrg */
1181 1.1 mrg
1182 1.134 ad vp = sdp->swd_vp; /* swapdev vnode pointer */
1183 1.134 ad switch (vp->v_type) {
1184 1.1 mrg default:
1185 1.145 mrg panic("%s: vnode type 0x%x", __func__, vp->v_type);
1186 1.32 chs
1187 1.1 mrg case VBLK:
1188 1.1 mrg
1189 1.1 mrg /*
1190 1.1 mrg * must convert "bp" from an I/O on /dev/drum to an I/O
1191 1.1 mrg * on the swapdev (sdp).
1192 1.1 mrg */
1193 1.1 mrg bp->b_blkno = bn; /* swapdev block number */
1194 1.1 mrg bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1195 1.1 mrg
1196 1.1 mrg /*
1197 1.1 mrg * if we are doing a write, we have to redirect the i/o on
1198 1.1 mrg * drum's v_numoutput counter to the swapdevs.
1199 1.1 mrg */
1200 1.1 mrg if ((bp->b_flags & B_READ) == 0) {
1201 1.134 ad mutex_enter(bp->b_objlock);
1202 1.1 mrg vwakeup(bp); /* kills one 'v_numoutput' on drum */
1203 1.134 ad mutex_exit(bp->b_objlock);
1204 1.134 ad mutex_enter(&vp->v_interlock);
1205 1.134 ad vp->v_numoutput++; /* put it on swapdev */
1206 1.134 ad mutex_exit(&vp->v_interlock);
1207 1.1 mrg }
1208 1.1 mrg
1209 1.41 chs /*
1210 1.1 mrg * finally plug in swapdev vnode and start I/O
1211 1.1 mrg */
1212 1.1 mrg bp->b_vp = vp;
1213 1.134 ad bp->b_objlock = &vp->v_interlock;
1214 1.84 hannken VOP_STRATEGY(vp, bp);
1215 1.1 mrg return;
1216 1.32 chs
1217 1.1 mrg case VREG:
1218 1.1 mrg /*
1219 1.32 chs * delegate to sw_reg_strategy function.
1220 1.1 mrg */
1221 1.1 mrg sw_reg_strategy(sdp, bp, bn);
1222 1.1 mrg return;
1223 1.1 mrg }
1224 1.1 mrg /* NOTREACHED */
1225 1.1 mrg }
1226 1.1 mrg
1227 1.1 mrg /*
1228 1.94 thorpej * swread: the read function for the drum (just a call to physio)
1229 1.94 thorpej */
1230 1.94 thorpej /*ARGSUSED*/
1231 1.94 thorpej static int
1232 1.112 yamt swread(dev_t dev, struct uio *uio, int ioflag)
1233 1.94 thorpej {
1234 1.94 thorpej UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1235 1.94 thorpej
1236 1.94 thorpej UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1237 1.94 thorpej return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1238 1.94 thorpej }
1239 1.94 thorpej
1240 1.94 thorpej /*
1241 1.94 thorpej * swwrite: the write function for the drum (just a call to physio)
1242 1.94 thorpej */
1243 1.94 thorpej /*ARGSUSED*/
1244 1.94 thorpej static int
1245 1.112 yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
1246 1.94 thorpej {
1247 1.94 thorpej UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1248 1.94 thorpej
1249 1.94 thorpej UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1250 1.94 thorpej return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1251 1.94 thorpej }
1252 1.94 thorpej
1253 1.94 thorpej const struct bdevsw swap_bdevsw = {
1254 1.135 hannken nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1255 1.94 thorpej };
1256 1.94 thorpej
1257 1.94 thorpej const struct cdevsw swap_cdevsw = {
1258 1.94 thorpej nullopen, nullclose, swread, swwrite, noioctl,
1259 1.105 christos nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1260 1.94 thorpej };
1261 1.94 thorpej
1262 1.94 thorpej /*
1263 1.1 mrg * sw_reg_strategy: handle swap i/o to regular files
1264 1.1 mrg */
1265 1.1 mrg static void
1266 1.93 thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1267 1.1 mrg {
1268 1.1 mrg struct vnode *vp;
1269 1.1 mrg struct vndxfer *vnx;
1270 1.44 enami daddr_t nbn;
1271 1.122 christos char *addr;
1272 1.44 enami off_t byteoff;
1273 1.9 mrg int s, off, nra, error, sz, resid;
1274 1.1 mrg UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1275 1.1 mrg
1276 1.1 mrg /*
1277 1.1 mrg * allocate a vndxfer head for this transfer and point it to
1278 1.1 mrg * our buffer.
1279 1.1 mrg */
1280 1.134 ad vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1281 1.1 mrg vnx->vx_flags = VX_BUSY;
1282 1.1 mrg vnx->vx_error = 0;
1283 1.1 mrg vnx->vx_pending = 0;
1284 1.1 mrg vnx->vx_bp = bp;
1285 1.1 mrg vnx->vx_sdp = sdp;
1286 1.1 mrg
1287 1.1 mrg /*
1288 1.1 mrg * setup for main loop where we read filesystem blocks into
1289 1.1 mrg * our buffer.
1290 1.1 mrg */
1291 1.1 mrg error = 0;
1292 1.1 mrg bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1293 1.1 mrg addr = bp->b_data; /* current position in buffer */
1294 1.99 matt byteoff = dbtob((uint64_t)bn);
1295 1.1 mrg
1296 1.1 mrg for (resid = bp->b_resid; resid; resid -= sz) {
1297 1.1 mrg struct vndbuf *nbp;
1298 1.1 mrg
1299 1.1 mrg /*
1300 1.1 mrg * translate byteoffset into block number. return values:
1301 1.1 mrg * vp = vnode of underlying device
1302 1.1 mrg * nbn = new block number (on underlying vnode dev)
1303 1.1 mrg * nra = num blocks we can read-ahead (excludes requested
1304 1.1 mrg * block)
1305 1.1 mrg */
1306 1.1 mrg nra = 0;
1307 1.1 mrg error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1308 1.1 mrg &vp, &nbn, &nra);
1309 1.1 mrg
1310 1.32 chs if (error == 0 && nbn == (daddr_t)-1) {
1311 1.51 chs /*
1312 1.23 marc * this used to just set error, but that doesn't
1313 1.23 marc * do the right thing. Instead, it causes random
1314 1.23 marc * memory errors. The panic() should remain until
1315 1.23 marc * this condition doesn't destabilize the system.
1316 1.23 marc */
1317 1.23 marc #if 1
1318 1.145 mrg panic("%s: swap to sparse file", __func__);
1319 1.23 marc #else
1320 1.1 mrg error = EIO; /* failure */
1321 1.23 marc #endif
1322 1.23 marc }
1323 1.1 mrg
1324 1.1 mrg /*
1325 1.1 mrg * punt if there was an error or a hole in the file.
1326 1.1 mrg * we must wait for any i/o ops we have already started
1327 1.1 mrg * to finish before returning.
1328 1.1 mrg *
1329 1.1 mrg * XXX we could deal with holes here but it would be
1330 1.1 mrg * a hassle (in the write case).
1331 1.1 mrg */
1332 1.1 mrg if (error) {
1333 1.1 mrg s = splbio();
1334 1.1 mrg vnx->vx_error = error; /* pass error up */
1335 1.1 mrg goto out;
1336 1.1 mrg }
1337 1.1 mrg
1338 1.1 mrg /*
1339 1.1 mrg * compute the size ("sz") of this transfer (in bytes).
1340 1.1 mrg */
1341 1.41 chs off = byteoff % sdp->swd_bsize;
1342 1.41 chs sz = (1 + nra) * sdp->swd_bsize - off;
1343 1.41 chs if (sz > resid)
1344 1.1 mrg sz = resid;
1345 1.1 mrg
1346 1.41 chs UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1347 1.41 chs "vp %p/%p offset 0x%x/0x%x",
1348 1.41 chs sdp->swd_vp, vp, byteoff, nbn);
1349 1.1 mrg
1350 1.1 mrg /*
1351 1.1 mrg * now get a buf structure. note that the vb_buf is
1352 1.1 mrg * at the front of the nbp structure so that you can
1353 1.1 mrg * cast pointers between the two structure easily.
1354 1.1 mrg */
1355 1.134 ad nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1356 1.134 ad buf_init(&nbp->vb_buf);
1357 1.134 ad nbp->vb_buf.b_flags = bp->b_flags;
1358 1.134 ad nbp->vb_buf.b_cflags = bp->b_cflags;
1359 1.134 ad nbp->vb_buf.b_oflags = bp->b_oflags;
1360 1.1 mrg nbp->vb_buf.b_bcount = sz;
1361 1.12 pk nbp->vb_buf.b_bufsize = sz;
1362 1.1 mrg nbp->vb_buf.b_error = 0;
1363 1.1 mrg nbp->vb_buf.b_data = addr;
1364 1.41 chs nbp->vb_buf.b_lblkno = 0;
1365 1.1 mrg nbp->vb_buf.b_blkno = nbn + btodb(off);
1366 1.34 thorpej nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1367 1.130 hannken nbp->vb_buf.b_iodone = sw_reg_biodone;
1368 1.53 chs nbp->vb_buf.b_vp = vp;
1369 1.134 ad nbp->vb_buf.b_objlock = &vp->v_interlock;
1370 1.53 chs if (vp->v_type == VBLK) {
1371 1.53 chs nbp->vb_buf.b_dev = vp->v_rdev;
1372 1.53 chs }
1373 1.1 mrg
1374 1.1 mrg nbp->vb_xfer = vnx; /* patch it back in to vnx */
1375 1.1 mrg
1376 1.1 mrg /*
1377 1.1 mrg * Just sort by block number
1378 1.1 mrg */
1379 1.1 mrg s = splbio();
1380 1.1 mrg if (vnx->vx_error != 0) {
1381 1.134 ad buf_destroy(&nbp->vb_buf);
1382 1.134 ad pool_put(&vndbuf_pool, nbp);
1383 1.1 mrg goto out;
1384 1.1 mrg }
1385 1.1 mrg vnx->vx_pending++;
1386 1.1 mrg
1387 1.1 mrg /* sort it in and start I/O if we are not over our limit */
1388 1.134 ad /* XXXAD locking */
1389 1.143 yamt bufq_put(sdp->swd_tab, &nbp->vb_buf);
1390 1.1 mrg sw_reg_start(sdp);
1391 1.1 mrg splx(s);
1392 1.1 mrg
1393 1.1 mrg /*
1394 1.1 mrg * advance to the next I/O
1395 1.1 mrg */
1396 1.9 mrg byteoff += sz;
1397 1.1 mrg addr += sz;
1398 1.1 mrg }
1399 1.1 mrg
1400 1.1 mrg s = splbio();
1401 1.1 mrg
1402 1.1 mrg out: /* Arrive here at splbio */
1403 1.1 mrg vnx->vx_flags &= ~VX_BUSY;
1404 1.1 mrg if (vnx->vx_pending == 0) {
1405 1.134 ad error = vnx->vx_error;
1406 1.134 ad pool_put(&vndxfer_pool, vnx);
1407 1.134 ad bp->b_error = error;
1408 1.1 mrg biodone(bp);
1409 1.1 mrg }
1410 1.1 mrg splx(s);
1411 1.1 mrg }
1412 1.1 mrg
1413 1.1 mrg /*
1414 1.1 mrg * sw_reg_start: start an I/O request on the requested swapdev
1415 1.1 mrg *
1416 1.65 hannken * => reqs are sorted by b_rawblkno (above)
1417 1.1 mrg */
1418 1.1 mrg static void
1419 1.93 thorpej sw_reg_start(struct swapdev *sdp)
1420 1.1 mrg {
1421 1.1 mrg struct buf *bp;
1422 1.134 ad struct vnode *vp;
1423 1.1 mrg UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1424 1.1 mrg
1425 1.8 mrg /* recursion control */
1426 1.1 mrg if ((sdp->swd_flags & SWF_BUSY) != 0)
1427 1.1 mrg return;
1428 1.1 mrg
1429 1.1 mrg sdp->swd_flags |= SWF_BUSY;
1430 1.1 mrg
1431 1.33 thorpej while (sdp->swd_active < sdp->swd_maxactive) {
1432 1.143 yamt bp = bufq_get(sdp->swd_tab);
1433 1.1 mrg if (bp == NULL)
1434 1.1 mrg break;
1435 1.33 thorpej sdp->swd_active++;
1436 1.1 mrg
1437 1.1 mrg UVMHIST_LOG(pdhist,
1438 1.1 mrg "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1439 1.1 mrg bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1440 1.134 ad vp = bp->b_vp;
1441 1.134 ad KASSERT(bp->b_objlock == &vp->v_interlock);
1442 1.134 ad if ((bp->b_flags & B_READ) == 0) {
1443 1.134 ad mutex_enter(&vp->v_interlock);
1444 1.134 ad vp->v_numoutput++;
1445 1.134 ad mutex_exit(&vp->v_interlock);
1446 1.134 ad }
1447 1.134 ad VOP_STRATEGY(vp, bp);
1448 1.1 mrg }
1449 1.1 mrg sdp->swd_flags &= ~SWF_BUSY;
1450 1.1 mrg }
1451 1.1 mrg
1452 1.1 mrg /*
1453 1.130 hannken * sw_reg_biodone: one of our i/o's has completed
1454 1.130 hannken */
1455 1.130 hannken static void
1456 1.130 hannken sw_reg_biodone(struct buf *bp)
1457 1.130 hannken {
1458 1.130 hannken workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1459 1.130 hannken }
1460 1.130 hannken
1461 1.130 hannken /*
1462 1.1 mrg * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1463 1.1 mrg *
1464 1.1 mrg * => note that we can recover the vndbuf struct by casting the buf ptr
1465 1.1 mrg */
1466 1.1 mrg static void
1467 1.130 hannken sw_reg_iodone(struct work *wk, void *dummy)
1468 1.1 mrg {
1469 1.130 hannken struct vndbuf *vbp = (void *)wk;
1470 1.1 mrg struct vndxfer *vnx = vbp->vb_xfer;
1471 1.1 mrg struct buf *pbp = vnx->vx_bp; /* parent buffer */
1472 1.1 mrg struct swapdev *sdp = vnx->vx_sdp;
1473 1.72 chs int s, resid, error;
1474 1.130 hannken KASSERT(&vbp->vb_buf.b_work == wk);
1475 1.1 mrg UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1476 1.1 mrg
1477 1.1 mrg UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1478 1.1 mrg vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1479 1.1 mrg UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1480 1.1 mrg vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1481 1.1 mrg
1482 1.1 mrg /*
1483 1.1 mrg * protect vbp at splbio and update.
1484 1.1 mrg */
1485 1.1 mrg
1486 1.1 mrg s = splbio();
1487 1.1 mrg resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1488 1.1 mrg pbp->b_resid -= resid;
1489 1.1 mrg vnx->vx_pending--;
1490 1.1 mrg
1491 1.129 ad if (vbp->vb_buf.b_error != 0) {
1492 1.1 mrg /* pass error upward */
1493 1.134 ad error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1494 1.72 chs UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1495 1.72 chs vnx->vx_error = error;
1496 1.35 chs }
1497 1.35 chs
1498 1.35 chs /*
1499 1.1 mrg * kill vbp structure
1500 1.1 mrg */
1501 1.134 ad buf_destroy(&vbp->vb_buf);
1502 1.134 ad pool_put(&vndbuf_pool, vbp);
1503 1.1 mrg
1504 1.1 mrg /*
1505 1.1 mrg * wrap up this transaction if it has run to completion or, in
1506 1.1 mrg * case of an error, when all auxiliary buffers have returned.
1507 1.1 mrg */
1508 1.1 mrg if (vnx->vx_error != 0) {
1509 1.1 mrg /* pass error upward */
1510 1.134 ad error = vnx->vx_error;
1511 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1512 1.134 ad pbp->b_error = error;
1513 1.1 mrg biodone(pbp);
1514 1.134 ad pool_put(&vndxfer_pool, vnx);
1515 1.1 mrg }
1516 1.11 pk } else if (pbp->b_resid == 0) {
1517 1.46 chs KASSERT(vnx->vx_pending == 0);
1518 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0) {
1519 1.8 mrg UVMHIST_LOG(pdhist, " iodone error=%d !",
1520 1.8 mrg pbp, vnx->vx_error, 0, 0);
1521 1.1 mrg biodone(pbp);
1522 1.134 ad pool_put(&vndxfer_pool, vnx);
1523 1.1 mrg }
1524 1.1 mrg }
1525 1.1 mrg
1526 1.1 mrg /*
1527 1.1 mrg * done! start next swapdev I/O if one is pending
1528 1.1 mrg */
1529 1.33 thorpej sdp->swd_active--;
1530 1.1 mrg sw_reg_start(sdp);
1531 1.1 mrg splx(s);
1532 1.1 mrg }
1533 1.1 mrg
1534 1.1 mrg
1535 1.1 mrg /*
1536 1.1 mrg * uvm_swap_alloc: allocate space on swap
1537 1.1 mrg *
1538 1.1 mrg * => allocation is done "round robin" down the priority list, as we
1539 1.1 mrg * allocate in a priority we "rotate" the circle queue.
1540 1.1 mrg * => space can be freed with uvm_swap_free
1541 1.1 mrg * => we return the page slot number in /dev/drum (0 == invalid slot)
1542 1.127 ad * => we lock uvm_swap_data_lock
1543 1.1 mrg * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1544 1.1 mrg */
1545 1.1 mrg int
1546 1.119 thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1547 1.1 mrg {
1548 1.1 mrg struct swapdev *sdp;
1549 1.1 mrg struct swappri *spp;
1550 1.1 mrg UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1551 1.1 mrg
1552 1.1 mrg /*
1553 1.1 mrg * no swap devices configured yet? definite failure.
1554 1.1 mrg */
1555 1.1 mrg if (uvmexp.nswapdev < 1)
1556 1.1 mrg return 0;
1557 1.51 chs
1558 1.1 mrg /*
1559 1.1 mrg * lock data lock, convert slots into blocks, and enter loop
1560 1.1 mrg */
1561 1.127 ad mutex_enter(&uvm_swap_data_lock);
1562 1.1 mrg
1563 1.1 mrg ReTry: /* XXXMRG */
1564 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1565 1.55 chs CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1566 1.90 yamt uint64_t result;
1567 1.90 yamt
1568 1.1 mrg /* if it's not enabled, then we can't swap from it */
1569 1.1 mrg if ((sdp->swd_flags & SWF_ENABLE) == 0)
1570 1.1 mrg continue;
1571 1.1 mrg if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1572 1.1 mrg continue;
1573 1.90 yamt result = blist_alloc(sdp->swd_blist, *nslots);
1574 1.90 yamt if (result == BLIST_NONE) {
1575 1.1 mrg continue;
1576 1.1 mrg }
1577 1.90 yamt KASSERT(result < sdp->swd_drumsize);
1578 1.1 mrg
1579 1.1 mrg /*
1580 1.1 mrg * successful allocation! now rotate the circleq.
1581 1.1 mrg */
1582 1.1 mrg CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1583 1.1 mrg CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1584 1.1 mrg sdp->swd_npginuse += *nslots;
1585 1.1 mrg uvmexp.swpginuse += *nslots;
1586 1.127 ad mutex_exit(&uvm_swap_data_lock);
1587 1.1 mrg /* done! return drum slot number */
1588 1.1 mrg UVMHIST_LOG(pdhist,
1589 1.1 mrg "success! returning %d slots starting at %d",
1590 1.1 mrg *nslots, result + sdp->swd_drumoffset, 0, 0);
1591 1.55 chs return (result + sdp->swd_drumoffset);
1592 1.1 mrg }
1593 1.1 mrg }
1594 1.1 mrg
1595 1.1 mrg /* XXXMRG: BEGIN HACK */
1596 1.1 mrg if (*nslots > 1 && lessok) {
1597 1.1 mrg *nslots = 1;
1598 1.90 yamt /* XXXMRG: ugh! blist should support this for us */
1599 1.90 yamt goto ReTry;
1600 1.1 mrg }
1601 1.1 mrg /* XXXMRG: END HACK */
1602 1.1 mrg
1603 1.127 ad mutex_exit(&uvm_swap_data_lock);
1604 1.55 chs return 0;
1605 1.1 mrg }
1606 1.1 mrg
1607 1.141 ad /*
1608 1.141 ad * uvm_swapisfull: return true if most of available swap is allocated
1609 1.141 ad * and in use. we don't count some small portion as it may be inaccessible
1610 1.141 ad * to us at any given moment, for example if there is lock contention or if
1611 1.141 ad * pages are busy.
1612 1.141 ad */
1613 1.119 thorpej bool
1614 1.81 pk uvm_swapisfull(void)
1615 1.81 pk {
1616 1.141 ad int swpgonly;
1617 1.119 thorpej bool rv;
1618 1.81 pk
1619 1.127 ad mutex_enter(&uvm_swap_data_lock);
1620 1.81 pk KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1621 1.141 ad swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1622 1.141 ad uvm_swapisfull_factor);
1623 1.141 ad rv = (swpgonly >= uvmexp.swpgavail);
1624 1.127 ad mutex_exit(&uvm_swap_data_lock);
1625 1.81 pk
1626 1.81 pk return (rv);
1627 1.81 pk }
1628 1.81 pk
1629 1.1 mrg /*
1630 1.32 chs * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1631 1.32 chs *
1632 1.127 ad * => we lock uvm_swap_data_lock
1633 1.32 chs */
1634 1.32 chs void
1635 1.93 thorpej uvm_swap_markbad(int startslot, int nslots)
1636 1.32 chs {
1637 1.32 chs struct swapdev *sdp;
1638 1.32 chs UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1639 1.32 chs
1640 1.127 ad mutex_enter(&uvm_swap_data_lock);
1641 1.32 chs sdp = swapdrum_getsdp(startslot);
1642 1.82 pk KASSERT(sdp != NULL);
1643 1.32 chs
1644 1.32 chs /*
1645 1.32 chs * we just keep track of how many pages have been marked bad
1646 1.32 chs * in this device, to make everything add up in swap_off().
1647 1.32 chs * we assume here that the range of slots will all be within
1648 1.32 chs * one swap device.
1649 1.32 chs */
1650 1.41 chs
1651 1.82 pk KASSERT(uvmexp.swpgonly >= nslots);
1652 1.82 pk uvmexp.swpgonly -= nslots;
1653 1.32 chs sdp->swd_npgbad += nslots;
1654 1.41 chs UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1655 1.127 ad mutex_exit(&uvm_swap_data_lock);
1656 1.32 chs }
1657 1.32 chs
1658 1.32 chs /*
1659 1.1 mrg * uvm_swap_free: free swap slots
1660 1.1 mrg *
1661 1.1 mrg * => this can be all or part of an allocation made by uvm_swap_alloc
1662 1.127 ad * => we lock uvm_swap_data_lock
1663 1.1 mrg */
1664 1.1 mrg void
1665 1.93 thorpej uvm_swap_free(int startslot, int nslots)
1666 1.1 mrg {
1667 1.1 mrg struct swapdev *sdp;
1668 1.1 mrg UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1669 1.1 mrg
1670 1.1 mrg UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1671 1.1 mrg startslot, 0, 0);
1672 1.32 chs
1673 1.32 chs /*
1674 1.32 chs * ignore attempts to free the "bad" slot.
1675 1.32 chs */
1676 1.46 chs
1677 1.32 chs if (startslot == SWSLOT_BAD) {
1678 1.32 chs return;
1679 1.32 chs }
1680 1.32 chs
1681 1.1 mrg /*
1682 1.51 chs * convert drum slot offset back to sdp, free the blocks
1683 1.51 chs * in the extent, and return. must hold pri lock to do
1684 1.1 mrg * lookup and access the extent.
1685 1.1 mrg */
1686 1.46 chs
1687 1.127 ad mutex_enter(&uvm_swap_data_lock);
1688 1.1 mrg sdp = swapdrum_getsdp(startslot);
1689 1.46 chs KASSERT(uvmexp.nswapdev >= 1);
1690 1.46 chs KASSERT(sdp != NULL);
1691 1.46 chs KASSERT(sdp->swd_npginuse >= nslots);
1692 1.90 yamt blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1693 1.1 mrg sdp->swd_npginuse -= nslots;
1694 1.1 mrg uvmexp.swpginuse -= nslots;
1695 1.127 ad mutex_exit(&uvm_swap_data_lock);
1696 1.1 mrg }
1697 1.1 mrg
1698 1.1 mrg /*
1699 1.1 mrg * uvm_swap_put: put any number of pages into a contig place on swap
1700 1.1 mrg *
1701 1.1 mrg * => can be sync or async
1702 1.1 mrg */
1703 1.54 chs
1704 1.1 mrg int
1705 1.93 thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1706 1.1 mrg {
1707 1.56 chs int error;
1708 1.1 mrg
1709 1.56 chs error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1710 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1711 1.56 chs return error;
1712 1.1 mrg }
1713 1.1 mrg
1714 1.1 mrg /*
1715 1.1 mrg * uvm_swap_get: get a single page from swap
1716 1.1 mrg *
1717 1.1 mrg * => usually a sync op (from fault)
1718 1.1 mrg */
1719 1.54 chs
1720 1.1 mrg int
1721 1.93 thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
1722 1.1 mrg {
1723 1.56 chs int error;
1724 1.1 mrg
1725 1.1 mrg uvmexp.nswget++;
1726 1.46 chs KASSERT(flags & PGO_SYNCIO);
1727 1.32 chs if (swslot == SWSLOT_BAD) {
1728 1.47 chs return EIO;
1729 1.32 chs }
1730 1.81 pk
1731 1.56 chs error = uvm_swap_io(&page, swslot, 1, B_READ |
1732 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1733 1.56 chs if (error == 0) {
1734 1.47 chs
1735 1.26 chs /*
1736 1.54 chs * this page is no longer only in swap.
1737 1.26 chs */
1738 1.47 chs
1739 1.127 ad mutex_enter(&uvm_swap_data_lock);
1740 1.56 chs KASSERT(uvmexp.swpgonly > 0);
1741 1.54 chs uvmexp.swpgonly--;
1742 1.127 ad mutex_exit(&uvm_swap_data_lock);
1743 1.26 chs }
1744 1.56 chs return error;
1745 1.1 mrg }
1746 1.1 mrg
1747 1.1 mrg /*
1748 1.1 mrg * uvm_swap_io: do an i/o operation to swap
1749 1.1 mrg */
1750 1.1 mrg
1751 1.1 mrg static int
1752 1.93 thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1753 1.1 mrg {
1754 1.1 mrg daddr_t startblk;
1755 1.1 mrg struct buf *bp;
1756 1.15 eeh vaddr_t kva;
1757 1.134 ad int error, mapinflags;
1758 1.119 thorpej bool write, async;
1759 1.1 mrg UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1760 1.1 mrg
1761 1.1 mrg UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1762 1.1 mrg startslot, npages, flags, 0);
1763 1.32 chs
1764 1.41 chs write = (flags & B_READ) == 0;
1765 1.41 chs async = (flags & B_ASYNC) != 0;
1766 1.41 chs
1767 1.1 mrg /*
1768 1.137 yamt * allocate a buf for the i/o.
1769 1.137 yamt */
1770 1.137 yamt
1771 1.137 yamt KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1772 1.137 yamt bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1773 1.137 yamt if (bp == NULL) {
1774 1.137 yamt uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1775 1.137 yamt return ENOMEM;
1776 1.137 yamt }
1777 1.137 yamt
1778 1.137 yamt /*
1779 1.1 mrg * convert starting drum slot to block number
1780 1.1 mrg */
1781 1.54 chs
1782 1.99 matt startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1783 1.1 mrg
1784 1.1 mrg /*
1785 1.54 chs * first, map the pages into the kernel.
1786 1.41 chs */
1787 1.41 chs
1788 1.54 chs mapinflags = !write ?
1789 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1790 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1791 1.41 chs kva = uvm_pagermapin(pps, npages, mapinflags);
1792 1.1 mrg
1793 1.51 chs /*
1794 1.1 mrg * fill in the bp/sbp. we currently route our i/o through
1795 1.1 mrg * /dev/drum's vnode [swapdev_vp].
1796 1.1 mrg */
1797 1.54 chs
1798 1.134 ad bp->b_cflags = BC_BUSY | BC_NOCACHE;
1799 1.134 ad bp->b_flags = (flags & (B_READ|B_ASYNC));
1800 1.1 mrg bp->b_proc = &proc0; /* XXX */
1801 1.12 pk bp->b_vnbufs.le_next = NOLIST;
1802 1.122 christos bp->b_data = (void *)kva;
1803 1.1 mrg bp->b_blkno = startblk;
1804 1.41 chs bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1805 1.1 mrg
1806 1.51 chs /*
1807 1.41 chs * bump v_numoutput (counter of number of active outputs).
1808 1.1 mrg */
1809 1.54 chs
1810 1.41 chs if (write) {
1811 1.134 ad mutex_enter(&swapdev_vp->v_interlock);
1812 1.134 ad swapdev_vp->v_numoutput++;
1813 1.134 ad mutex_exit(&swapdev_vp->v_interlock);
1814 1.1 mrg }
1815 1.1 mrg
1816 1.1 mrg /*
1817 1.41 chs * for async ops we must set up the iodone handler.
1818 1.1 mrg */
1819 1.54 chs
1820 1.41 chs if (async) {
1821 1.41 chs bp->b_iodone = uvm_aio_biodone;
1822 1.1 mrg UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1823 1.126 ad if (curlwp == uvm.pagedaemon_lwp)
1824 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1825 1.83 yamt else
1826 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1827 1.83 yamt } else {
1828 1.134 ad bp->b_iodone = NULL;
1829 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1830 1.1 mrg }
1831 1.1 mrg UVMHIST_LOG(pdhist,
1832 1.41 chs "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1833 1.1 mrg bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1834 1.1 mrg
1835 1.1 mrg /*
1836 1.1 mrg * now we start the I/O, and if async, return.
1837 1.1 mrg */
1838 1.54 chs
1839 1.84 hannken VOP_STRATEGY(swapdev_vp, bp);
1840 1.41 chs if (async)
1841 1.47 chs return 0;
1842 1.1 mrg
1843 1.1 mrg /*
1844 1.1 mrg * must be sync i/o. wait for it to finish
1845 1.1 mrg */
1846 1.54 chs
1847 1.47 chs error = biowait(bp);
1848 1.1 mrg
1849 1.1 mrg /*
1850 1.1 mrg * kill the pager mapping
1851 1.1 mrg */
1852 1.54 chs
1853 1.1 mrg uvm_pagermapout(kva, npages);
1854 1.1 mrg
1855 1.1 mrg /*
1856 1.54 chs * now dispose of the buf and we're done.
1857 1.1 mrg */
1858 1.54 chs
1859 1.134 ad if (write) {
1860 1.134 ad mutex_enter(&swapdev_vp->v_interlock);
1861 1.41 chs vwakeup(bp);
1862 1.134 ad mutex_exit(&swapdev_vp->v_interlock);
1863 1.134 ad }
1864 1.98 yamt putiobuf(bp);
1865 1.47 chs UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1866 1.134 ad
1867 1.47 chs return (error);
1868 1.1 mrg }
1869