uvm_swap.c revision 1.146 1 1.146 pooka /* $NetBSD: uvm_swap.c,v 1.146 2009/09/13 18:45:12 pooka Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.144 mrg * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg *
16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 mrg * SUCH DAMAGE.
27 1.3 mrg *
28 1.3 mrg * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 1.3 mrg * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 1.1 mrg */
31 1.57 lukem
32 1.57 lukem #include <sys/cdefs.h>
33 1.146 pooka __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.146 2009/09/13 18:45:12 pooka Exp $");
34 1.5 mrg
35 1.6 thorpej #include "fs_nfs.h"
36 1.5 mrg #include "opt_uvmhist.h"
37 1.16 mrg #include "opt_compat_netbsd.h"
38 1.41 chs #include "opt_ddb.h"
39 1.1 mrg
40 1.1 mrg #include <sys/param.h>
41 1.1 mrg #include <sys/systm.h>
42 1.1 mrg #include <sys/buf.h>
43 1.89 yamt #include <sys/bufq.h>
44 1.36 mrg #include <sys/conf.h>
45 1.1 mrg #include <sys/proc.h>
46 1.1 mrg #include <sys/namei.h>
47 1.1 mrg #include <sys/disklabel.h>
48 1.1 mrg #include <sys/errno.h>
49 1.1 mrg #include <sys/kernel.h>
50 1.111 yamt #include <sys/malloc.h>
51 1.1 mrg #include <sys/vnode.h>
52 1.1 mrg #include <sys/file.h>
53 1.110 yamt #include <sys/vmem.h>
54 1.90 yamt #include <sys/blist.h>
55 1.1 mrg #include <sys/mount.h>
56 1.12 pk #include <sys/pool.h>
57 1.1 mrg #include <sys/syscallargs.h>
58 1.17 mrg #include <sys/swap.h>
59 1.100 elad #include <sys/kauth.h>
60 1.125 ad #include <sys/sysctl.h>
61 1.130 hannken #include <sys/workqueue.h>
62 1.1 mrg
63 1.1 mrg #include <uvm/uvm.h>
64 1.1 mrg
65 1.1 mrg #include <miscfs/specfs/specdev.h>
66 1.1 mrg
67 1.1 mrg /*
68 1.1 mrg * uvm_swap.c: manage configuration and i/o to swap space.
69 1.1 mrg */
70 1.1 mrg
71 1.1 mrg /*
72 1.1 mrg * swap space is managed in the following way:
73 1.51 chs *
74 1.1 mrg * each swap partition or file is described by a "swapdev" structure.
75 1.1 mrg * each "swapdev" structure contains a "swapent" structure which contains
76 1.1 mrg * information that is passed up to the user (via system calls).
77 1.1 mrg *
78 1.1 mrg * each swap partition is assigned a "priority" (int) which controls
79 1.1 mrg * swap parition usage.
80 1.1 mrg *
81 1.1 mrg * the system maintains a global data structure describing all swap
82 1.1 mrg * partitions/files. there is a sorted LIST of "swappri" structures
83 1.1 mrg * which describe "swapdev"'s at that priority. this LIST is headed
84 1.51 chs * by the "swap_priority" global var. each "swappri" contains a
85 1.1 mrg * CIRCLEQ of "swapdev" structures at that priority.
86 1.1 mrg *
87 1.1 mrg * locking:
88 1.127 ad * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
89 1.1 mrg * system call and prevents the swap priority list from changing
90 1.1 mrg * while we are in the middle of a system call (e.g. SWAP_STATS).
91 1.127 ad * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
92 1.1 mrg * structures including the priority list, the swapdev structures,
93 1.110 yamt * and the swapmap arena.
94 1.1 mrg *
95 1.1 mrg * each swap device has the following info:
96 1.1 mrg * - swap device in use (could be disabled, preventing future use)
97 1.1 mrg * - swap enabled (allows new allocations on swap)
98 1.1 mrg * - map info in /dev/drum
99 1.1 mrg * - vnode pointer
100 1.1 mrg * for swap files only:
101 1.1 mrg * - block size
102 1.1 mrg * - max byte count in buffer
103 1.1 mrg * - buffer
104 1.1 mrg *
105 1.1 mrg * userland controls and configures swap with the swapctl(2) system call.
106 1.1 mrg * the sys_swapctl performs the following operations:
107 1.1 mrg * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 1.51 chs * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 1.1 mrg * (passed in via "arg") of a size passed in via "misc" ... we load
110 1.85 junyoung * the current swap config into the array. The actual work is done
111 1.63 manu * in the uvm_swap_stats(9) function.
112 1.1 mrg * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 1.1 mrg * priority in "misc", start swapping on it.
114 1.1 mrg * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 1.1 mrg * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 1.1 mrg * "misc")
117 1.1 mrg */
118 1.1 mrg
119 1.1 mrg /*
120 1.1 mrg * swapdev: describes a single swap partition/file
121 1.1 mrg *
122 1.1 mrg * note the following should be true:
123 1.1 mrg * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
124 1.1 mrg * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125 1.1 mrg */
126 1.1 mrg struct swapdev {
127 1.144 mrg dev_t swd_dev; /* device id */
128 1.144 mrg int swd_flags; /* flags:inuse/enable/fake */
129 1.144 mrg int swd_priority; /* our priority */
130 1.144 mrg int swd_nblks; /* blocks in this device */
131 1.16 mrg char *swd_path; /* saved pathname of device */
132 1.16 mrg int swd_pathlen; /* length of pathname */
133 1.16 mrg int swd_npages; /* #pages we can use */
134 1.16 mrg int swd_npginuse; /* #pages in use */
135 1.32 chs int swd_npgbad; /* #pages bad */
136 1.16 mrg int swd_drumoffset; /* page0 offset in drum */
137 1.16 mrg int swd_drumsize; /* #pages in drum */
138 1.90 yamt blist_t swd_blist; /* blist for this swapdev */
139 1.16 mrg struct vnode *swd_vp; /* backing vnode */
140 1.16 mrg CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
141 1.1 mrg
142 1.16 mrg int swd_bsize; /* blocksize (bytes) */
143 1.16 mrg int swd_maxactive; /* max active i/o reqs */
144 1.96 yamt struct bufq_state *swd_tab; /* buffer list */
145 1.33 thorpej int swd_active; /* number of active buffers */
146 1.1 mrg };
147 1.1 mrg
148 1.1 mrg /*
149 1.1 mrg * swap device priority entry; the list is kept sorted on `spi_priority'.
150 1.1 mrg */
151 1.1 mrg struct swappri {
152 1.1 mrg int spi_priority; /* priority */
153 1.1 mrg CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
154 1.1 mrg /* circleq of swapdevs at this priority */
155 1.1 mrg LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
156 1.1 mrg };
157 1.1 mrg
158 1.1 mrg /*
159 1.1 mrg * The following two structures are used to keep track of data transfers
160 1.1 mrg * on swap devices associated with regular files.
161 1.1 mrg * NOTE: this code is more or less a copy of vnd.c; we use the same
162 1.1 mrg * structure names here to ease porting..
163 1.1 mrg */
164 1.1 mrg struct vndxfer {
165 1.1 mrg struct buf *vx_bp; /* Pointer to parent buffer */
166 1.1 mrg struct swapdev *vx_sdp;
167 1.1 mrg int vx_error;
168 1.1 mrg int vx_pending; /* # of pending aux buffers */
169 1.1 mrg int vx_flags;
170 1.1 mrg #define VX_BUSY 1
171 1.1 mrg #define VX_DEAD 2
172 1.1 mrg };
173 1.1 mrg
174 1.1 mrg struct vndbuf {
175 1.1 mrg struct buf vb_buf;
176 1.1 mrg struct vndxfer *vb_xfer;
177 1.1 mrg };
178 1.1 mrg
179 1.144 mrg /*
180 1.144 mrg * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
181 1.144 mrg * dev_t and has no se_path[] member.
182 1.144 mrg */
183 1.144 mrg struct swapent13 {
184 1.144 mrg int32_t se13_dev; /* device id */
185 1.144 mrg int se13_flags; /* flags */
186 1.144 mrg int se13_nblks; /* total blocks */
187 1.144 mrg int se13_inuse; /* blocks in use */
188 1.144 mrg int se13_priority; /* priority of this device */
189 1.144 mrg };
190 1.144 mrg
191 1.144 mrg /*
192 1.144 mrg * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
193 1.144 mrg * dev_t.
194 1.144 mrg */
195 1.144 mrg struct swapent50 {
196 1.144 mrg int32_t se50_dev; /* device id */
197 1.144 mrg int se50_flags; /* flags */
198 1.144 mrg int se50_nblks; /* total blocks */
199 1.144 mrg int se50_inuse; /* blocks in use */
200 1.144 mrg int se50_priority; /* priority of this device */
201 1.144 mrg char se50_path[PATH_MAX+1]; /* path name */
202 1.144 mrg };
203 1.12 pk
204 1.1 mrg /*
205 1.12 pk * We keep a of pool vndbuf's and vndxfer structures.
206 1.1 mrg */
207 1.146 pooka static struct pool vndxfer_pool, vndbuf_pool;
208 1.1 mrg
209 1.1 mrg /*
210 1.1 mrg * local variables
211 1.1 mrg */
212 1.111 yamt MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213 1.110 yamt static vmem_t *swapmap; /* controls the mapping of /dev/drum */
214 1.1 mrg
215 1.1 mrg /* list of all active swap devices [by priority] */
216 1.1 mrg LIST_HEAD(swap_priority, swappri);
217 1.1 mrg static struct swap_priority swap_priority;
218 1.1 mrg
219 1.1 mrg /* locks */
220 1.117 ad static krwlock_t swap_syscall_lock;
221 1.1 mrg
222 1.130 hannken /* workqueue and use counter for swap to regular files */
223 1.130 hannken static int sw_reg_count = 0;
224 1.130 hannken static struct workqueue *sw_reg_workqueue;
225 1.130 hannken
226 1.141 ad /* tuneables */
227 1.141 ad u_int uvm_swapisfull_factor = 99;
228 1.141 ad
229 1.1 mrg /*
230 1.1 mrg * prototypes
231 1.1 mrg */
232 1.85 junyoung static struct swapdev *swapdrum_getsdp(int);
233 1.1 mrg
234 1.120 matt static struct swapdev *swaplist_find(struct vnode *, bool);
235 1.85 junyoung static void swaplist_insert(struct swapdev *,
236 1.85 junyoung struct swappri *, int);
237 1.85 junyoung static void swaplist_trim(void);
238 1.1 mrg
239 1.97 christos static int swap_on(struct lwp *, struct swapdev *);
240 1.97 christos static int swap_off(struct lwp *, struct swapdev *);
241 1.1 mrg
242 1.95 yamt static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
243 1.95 yamt
244 1.85 junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
245 1.130 hannken static void sw_reg_biodone(struct buf *);
246 1.130 hannken static void sw_reg_iodone(struct work *wk, void *dummy);
247 1.85 junyoung static void sw_reg_start(struct swapdev *);
248 1.1 mrg
249 1.85 junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
250 1.1 mrg
251 1.1 mrg /*
252 1.1 mrg * uvm_swap_init: init the swap system data structures and locks
253 1.1 mrg *
254 1.51 chs * => called at boot time from init_main.c after the filesystems
255 1.1 mrg * are brought up (which happens after uvm_init())
256 1.1 mrg */
257 1.1 mrg void
258 1.93 thorpej uvm_swap_init(void)
259 1.1 mrg {
260 1.1 mrg UVMHIST_FUNC("uvm_swap_init");
261 1.1 mrg
262 1.1 mrg UVMHIST_CALLED(pdhist);
263 1.1 mrg /*
264 1.1 mrg * first, init the swap list, its counter, and its lock.
265 1.1 mrg * then get a handle on the vnode for /dev/drum by using
266 1.1 mrg * the its dev_t number ("swapdev", from MD conf.c).
267 1.1 mrg */
268 1.1 mrg
269 1.1 mrg LIST_INIT(&swap_priority);
270 1.1 mrg uvmexp.nswapdev = 0;
271 1.117 ad rw_init(&swap_syscall_lock);
272 1.117 ad cv_init(&uvm.scheduler_cv, "schedule");
273 1.134 ad mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
274 1.12 pk
275 1.117 ad /* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
276 1.126 ad mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
277 1.117 ad
278 1.1 mrg if (bdevvp(swapdev, &swapdev_vp))
279 1.145 mrg panic("%s: can't get vnode for swap device", __func__);
280 1.136 hannken if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
281 1.145 mrg panic("%s: can't lock swap device", __func__);
282 1.135 hannken if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
283 1.145 mrg panic("%s: can't open swap device", __func__);
284 1.136 hannken VOP_UNLOCK(swapdev_vp, 0);
285 1.1 mrg
286 1.1 mrg /*
287 1.1 mrg * create swap block resource map to map /dev/drum. the range
288 1.1 mrg * from 1 to INT_MAX allows 2 gigablocks of swap space. note
289 1.51 chs * that block 0 is reserved (used to indicate an allocation
290 1.1 mrg * failure, or no allocation).
291 1.1 mrg */
292 1.110 yamt swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
293 1.126 ad VM_NOSLEEP, IPL_NONE);
294 1.1 mrg if (swapmap == 0)
295 1.145 mrg panic("%s: vmem_create failed", __func__);
296 1.1 mrg
297 1.1 mrg /*
298 1.1 mrg * done!
299 1.1 mrg */
300 1.121 thorpej uvm.swap_running = true;
301 1.140 ad #ifdef __SWAP_BROKEN
302 1.140 ad uvm.swapout_enabled = 0;
303 1.140 ad #else
304 1.125 ad uvm.swapout_enabled = 1;
305 1.140 ad #endif
306 1.1 mrg UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
307 1.125 ad
308 1.125 ad sysctl_createv(NULL, 0, NULL, NULL,
309 1.125 ad CTLFLAG_READWRITE,
310 1.125 ad CTLTYPE_INT, "swapout",
311 1.125 ad SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
312 1.125 ad NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
313 1.146 pooka
314 1.146 pooka pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
315 1.146 pooka NULL, IPL_BIO);
316 1.146 pooka pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
317 1.146 pooka NULL, IPL_BIO);
318 1.1 mrg }
319 1.1 mrg
320 1.1 mrg /*
321 1.1 mrg * swaplist functions: functions that operate on the list of swap
322 1.1 mrg * devices on the system.
323 1.1 mrg */
324 1.1 mrg
325 1.1 mrg /*
326 1.1 mrg * swaplist_insert: insert swap device "sdp" into the global list
327 1.1 mrg *
328 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
329 1.1 mrg * => caller must provide a newly malloc'd swappri structure (we will
330 1.1 mrg * FREE it if we don't need it... this it to prevent malloc blocking
331 1.1 mrg * here while adding swap)
332 1.1 mrg */
333 1.1 mrg static void
334 1.93 thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
335 1.1 mrg {
336 1.1 mrg struct swappri *spp, *pspp;
337 1.1 mrg UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
338 1.1 mrg
339 1.1 mrg /*
340 1.1 mrg * find entry at or after which to insert the new device.
341 1.1 mrg */
342 1.55 chs pspp = NULL;
343 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
344 1.1 mrg if (priority <= spp->spi_priority)
345 1.1 mrg break;
346 1.1 mrg pspp = spp;
347 1.1 mrg }
348 1.1 mrg
349 1.1 mrg /*
350 1.1 mrg * new priority?
351 1.1 mrg */
352 1.1 mrg if (spp == NULL || spp->spi_priority != priority) {
353 1.1 mrg spp = newspp; /* use newspp! */
354 1.32 chs UVMHIST_LOG(pdhist, "created new swappri = %d",
355 1.32 chs priority, 0, 0, 0);
356 1.1 mrg
357 1.1 mrg spp->spi_priority = priority;
358 1.1 mrg CIRCLEQ_INIT(&spp->spi_swapdev);
359 1.1 mrg
360 1.1 mrg if (pspp)
361 1.1 mrg LIST_INSERT_AFTER(pspp, spp, spi_swappri);
362 1.1 mrg else
363 1.1 mrg LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
364 1.1 mrg } else {
365 1.1 mrg /* we don't need a new priority structure, free it */
366 1.142 cegger free(newspp, M_VMSWAP);
367 1.1 mrg }
368 1.1 mrg
369 1.1 mrg /*
370 1.1 mrg * priority found (or created). now insert on the priority's
371 1.1 mrg * circleq list and bump the total number of swapdevs.
372 1.1 mrg */
373 1.1 mrg sdp->swd_priority = priority;
374 1.1 mrg CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
375 1.1 mrg uvmexp.nswapdev++;
376 1.1 mrg }
377 1.1 mrg
378 1.1 mrg /*
379 1.1 mrg * swaplist_find: find and optionally remove a swap device from the
380 1.1 mrg * global list.
381 1.1 mrg *
382 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
383 1.1 mrg * => we return the swapdev we found (and removed)
384 1.1 mrg */
385 1.1 mrg static struct swapdev *
386 1.119 thorpej swaplist_find(struct vnode *vp, bool remove)
387 1.1 mrg {
388 1.1 mrg struct swapdev *sdp;
389 1.1 mrg struct swappri *spp;
390 1.1 mrg
391 1.1 mrg /*
392 1.1 mrg * search the lists for the requested vp
393 1.1 mrg */
394 1.55 chs
395 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
396 1.55 chs CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
397 1.1 mrg if (sdp->swd_vp == vp) {
398 1.1 mrg if (remove) {
399 1.1 mrg CIRCLEQ_REMOVE(&spp->spi_swapdev,
400 1.1 mrg sdp, swd_next);
401 1.1 mrg uvmexp.nswapdev--;
402 1.1 mrg }
403 1.1 mrg return(sdp);
404 1.1 mrg }
405 1.55 chs }
406 1.1 mrg }
407 1.1 mrg return (NULL);
408 1.1 mrg }
409 1.1 mrg
410 1.113 elad /*
411 1.1 mrg * swaplist_trim: scan priority list for empty priority entries and kill
412 1.1 mrg * them.
413 1.1 mrg *
414 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
415 1.1 mrg */
416 1.1 mrg static void
417 1.93 thorpej swaplist_trim(void)
418 1.1 mrg {
419 1.1 mrg struct swappri *spp, *nextspp;
420 1.1 mrg
421 1.32 chs for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
422 1.32 chs nextspp = LIST_NEXT(spp, spi_swappri);
423 1.32 chs if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
424 1.32 chs (void *)&spp->spi_swapdev)
425 1.1 mrg continue;
426 1.1 mrg LIST_REMOVE(spp, spi_swappri);
427 1.111 yamt free(spp, M_VMSWAP);
428 1.1 mrg }
429 1.1 mrg }
430 1.1 mrg
431 1.1 mrg /*
432 1.1 mrg * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
433 1.1 mrg * to the "swapdev" that maps that section of the drum.
434 1.1 mrg *
435 1.1 mrg * => each swapdev takes one big contig chunk of the drum
436 1.127 ad * => caller must hold uvm_swap_data_lock
437 1.1 mrg */
438 1.1 mrg static struct swapdev *
439 1.93 thorpej swapdrum_getsdp(int pgno)
440 1.1 mrg {
441 1.1 mrg struct swapdev *sdp;
442 1.1 mrg struct swappri *spp;
443 1.51 chs
444 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
445 1.55 chs CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
446 1.48 fvdl if (sdp->swd_flags & SWF_FAKE)
447 1.48 fvdl continue;
448 1.1 mrg if (pgno >= sdp->swd_drumoffset &&
449 1.1 mrg pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
450 1.1 mrg return sdp;
451 1.1 mrg }
452 1.48 fvdl }
453 1.55 chs }
454 1.1 mrg return NULL;
455 1.1 mrg }
456 1.1 mrg
457 1.1 mrg
458 1.1 mrg /*
459 1.1 mrg * sys_swapctl: main entry point for swapctl(2) system call
460 1.1 mrg * [with two helper functions: swap_on and swap_off]
461 1.1 mrg */
462 1.1 mrg int
463 1.133 dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
464 1.1 mrg {
465 1.133 dsl /* {
466 1.1 mrg syscallarg(int) cmd;
467 1.1 mrg syscallarg(void *) arg;
468 1.1 mrg syscallarg(int) misc;
469 1.133 dsl } */
470 1.1 mrg struct vnode *vp;
471 1.1 mrg struct nameidata nd;
472 1.1 mrg struct swappri *spp;
473 1.1 mrg struct swapdev *sdp;
474 1.1 mrg struct swapent *sep;
475 1.101 christos #define SWAP_PATH_MAX (PATH_MAX + 1)
476 1.101 christos char *userpath;
477 1.18 enami size_t len;
478 1.61 manu int error, misc;
479 1.1 mrg int priority;
480 1.1 mrg UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
481 1.1 mrg
482 1.1 mrg misc = SCARG(uap, misc);
483 1.1 mrg
484 1.1 mrg /*
485 1.1 mrg * ensure serialized syscall access by grabbing the swap_syscall_lock
486 1.1 mrg */
487 1.117 ad rw_enter(&swap_syscall_lock, RW_WRITER);
488 1.24 mrg
489 1.111 yamt userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
490 1.1 mrg /*
491 1.1 mrg * we handle the non-priv NSWAP and STATS request first.
492 1.1 mrg *
493 1.51 chs * SWAP_NSWAP: return number of config'd swap devices
494 1.1 mrg * [can also be obtained with uvmexp sysctl]
495 1.1 mrg */
496 1.1 mrg if (SCARG(uap, cmd) == SWAP_NSWAP) {
497 1.8 mrg UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
498 1.8 mrg 0, 0, 0);
499 1.1 mrg *retval = uvmexp.nswapdev;
500 1.16 mrg error = 0;
501 1.16 mrg goto out;
502 1.1 mrg }
503 1.1 mrg
504 1.1 mrg /*
505 1.1 mrg * SWAP_STATS: get stats on current # of configured swap devs
506 1.1 mrg *
507 1.51 chs * note that the swap_priority list can't change as long
508 1.1 mrg * as we are holding the swap_syscall_lock. we don't want
509 1.127 ad * to grab the uvm_swap_data_lock because we may fault&sleep during
510 1.1 mrg * copyout() and we don't want to be holding that lock then!
511 1.1 mrg */
512 1.16 mrg if (SCARG(uap, cmd) == SWAP_STATS
513 1.144 mrg #if defined(COMPAT_50)
514 1.144 mrg || SCARG(uap, cmd) == SWAP_STATS50
515 1.144 mrg #endif
516 1.16 mrg #if defined(COMPAT_13)
517 1.144 mrg || SCARG(uap, cmd) == SWAP_STATS13
518 1.16 mrg #endif
519 1.16 mrg ) {
520 1.88 christos if ((size_t)misc > (size_t)uvmexp.nswapdev)
521 1.88 christos misc = uvmexp.nswapdev;
522 1.16 mrg #if defined(COMPAT_13)
523 1.144 mrg if (SCARG(uap, cmd) == SWAP_STATS13)
524 1.144 mrg len = sizeof(struct swapent13) * misc;
525 1.144 mrg else
526 1.144 mrg #endif
527 1.144 mrg #if defined(COMPAT_50)
528 1.144 mrg if (SCARG(uap, cmd) == SWAP_STATS50)
529 1.144 mrg len = sizeof(struct swapent50) * misc;
530 1.62 manu else
531 1.16 mrg #endif
532 1.62 manu len = sizeof(struct swapent) * misc;
533 1.111 yamt sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
534 1.62 manu
535 1.95 yamt uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
536 1.92 christos error = copyout(sep, SCARG(uap, arg), len);
537 1.1 mrg
538 1.111 yamt free(sep, M_TEMP);
539 1.16 mrg UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
540 1.16 mrg goto out;
541 1.51 chs }
542 1.55 chs if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
543 1.55 chs dev_t *devp = (dev_t *)SCARG(uap, arg);
544 1.55 chs
545 1.55 chs error = copyout(&dumpdev, devp, sizeof(dumpdev));
546 1.55 chs goto out;
547 1.55 chs }
548 1.1 mrg
549 1.1 mrg /*
550 1.1 mrg * all other requests require superuser privs. verify.
551 1.1 mrg */
552 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
553 1.106 elad 0, NULL, NULL, NULL)))
554 1.16 mrg goto out;
555 1.1 mrg
556 1.104 martin if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
557 1.104 martin /* drop the current dump device */
558 1.104 martin dumpdev = NODEV;
559 1.138 kardel dumpcdev = NODEV;
560 1.104 martin cpu_dumpconf();
561 1.104 martin goto out;
562 1.104 martin }
563 1.104 martin
564 1.1 mrg /*
565 1.1 mrg * at this point we expect a path name in arg. we will
566 1.1 mrg * use namei() to gain a vnode reference (vref), and lock
567 1.1 mrg * the vnode (VOP_LOCK).
568 1.1 mrg *
569 1.1 mrg * XXX: a NULL arg means use the root vnode pointer (e.g. for
570 1.16 mrg * miniroot)
571 1.1 mrg */
572 1.1 mrg if (SCARG(uap, arg) == NULL) {
573 1.1 mrg vp = rootvp; /* miniroot */
574 1.79 thorpej if (vget(vp, LK_EXCLUSIVE)) {
575 1.16 mrg error = EBUSY;
576 1.16 mrg goto out;
577 1.1 mrg }
578 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON &&
579 1.101 christos copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
580 1.16 mrg panic("swapctl: miniroot copy failed");
581 1.1 mrg } else {
582 1.16 mrg int space;
583 1.16 mrg char *where;
584 1.16 mrg
585 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON) {
586 1.16 mrg if ((error = copyinstr(SCARG(uap, arg), userpath,
587 1.101 christos SWAP_PATH_MAX, &len)))
588 1.16 mrg goto out;
589 1.16 mrg space = UIO_SYSSPACE;
590 1.16 mrg where = userpath;
591 1.16 mrg } else {
592 1.16 mrg space = UIO_USERSPACE;
593 1.16 mrg where = (char *)SCARG(uap, arg);
594 1.1 mrg }
595 1.132 pooka NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
596 1.132 pooka space, where);
597 1.16 mrg if ((error = namei(&nd)))
598 1.16 mrg goto out;
599 1.1 mrg vp = nd.ni_vp;
600 1.1 mrg }
601 1.1 mrg /* note: "vp" is referenced and locked */
602 1.1 mrg
603 1.1 mrg error = 0; /* assume no error */
604 1.1 mrg switch(SCARG(uap, cmd)) {
605 1.40 mrg
606 1.24 mrg case SWAP_DUMPDEV:
607 1.24 mrg if (vp->v_type != VBLK) {
608 1.24 mrg error = ENOTBLK;
609 1.45 pk break;
610 1.24 mrg }
611 1.138 kardel if (bdevsw_lookup(vp->v_rdev)) {
612 1.109 mrg dumpdev = vp->v_rdev;
613 1.138 kardel dumpcdev = devsw_blk2chr(dumpdev);
614 1.138 kardel } else
615 1.109 mrg dumpdev = NODEV;
616 1.68 drochner cpu_dumpconf();
617 1.24 mrg break;
618 1.24 mrg
619 1.1 mrg case SWAP_CTL:
620 1.1 mrg /*
621 1.1 mrg * get new priority, remove old entry (if any) and then
622 1.1 mrg * reinsert it in the correct place. finally, prune out
623 1.1 mrg * any empty priority structures.
624 1.1 mrg */
625 1.1 mrg priority = SCARG(uap, misc);
626 1.111 yamt spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
627 1.127 ad mutex_enter(&uvm_swap_data_lock);
628 1.120 matt if ((sdp = swaplist_find(vp, true)) == NULL) {
629 1.1 mrg error = ENOENT;
630 1.1 mrg } else {
631 1.1 mrg swaplist_insert(sdp, spp, priority);
632 1.1 mrg swaplist_trim();
633 1.1 mrg }
634 1.127 ad mutex_exit(&uvm_swap_data_lock);
635 1.1 mrg if (error)
636 1.111 yamt free(spp, M_VMSWAP);
637 1.1 mrg break;
638 1.1 mrg
639 1.1 mrg case SWAP_ON:
640 1.32 chs
641 1.1 mrg /*
642 1.1 mrg * check for duplicates. if none found, then insert a
643 1.1 mrg * dummy entry on the list to prevent someone else from
644 1.1 mrg * trying to enable this device while we are working on
645 1.1 mrg * it.
646 1.1 mrg */
647 1.32 chs
648 1.1 mrg priority = SCARG(uap, misc);
649 1.111 yamt sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
650 1.111 yamt spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
651 1.111 yamt memset(sdp, 0, sizeof(*sdp));
652 1.67 chs sdp->swd_flags = SWF_FAKE;
653 1.67 chs sdp->swd_vp = vp;
654 1.67 chs sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
655 1.96 yamt bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
656 1.127 ad mutex_enter(&uvm_swap_data_lock);
657 1.120 matt if (swaplist_find(vp, false) != NULL) {
658 1.1 mrg error = EBUSY;
659 1.127 ad mutex_exit(&uvm_swap_data_lock);
660 1.96 yamt bufq_free(sdp->swd_tab);
661 1.111 yamt free(sdp, M_VMSWAP);
662 1.111 yamt free(spp, M_VMSWAP);
663 1.16 mrg break;
664 1.1 mrg }
665 1.1 mrg swaplist_insert(sdp, spp, priority);
666 1.127 ad mutex_exit(&uvm_swap_data_lock);
667 1.1 mrg
668 1.16 mrg sdp->swd_pathlen = len;
669 1.111 yamt sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
670 1.19 pk if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
671 1.19 pk panic("swapctl: copystr");
672 1.32 chs
673 1.1 mrg /*
674 1.1 mrg * we've now got a FAKE placeholder in the swap list.
675 1.1 mrg * now attempt to enable swap on it. if we fail, undo
676 1.1 mrg * what we've done and kill the fake entry we just inserted.
677 1.1 mrg * if swap_on is a success, it will clear the SWF_FAKE flag
678 1.1 mrg */
679 1.32 chs
680 1.97 christos if ((error = swap_on(l, sdp)) != 0) {
681 1.127 ad mutex_enter(&uvm_swap_data_lock);
682 1.120 matt (void) swaplist_find(vp, true); /* kill fake entry */
683 1.1 mrg swaplist_trim();
684 1.127 ad mutex_exit(&uvm_swap_data_lock);
685 1.96 yamt bufq_free(sdp->swd_tab);
686 1.111 yamt free(sdp->swd_path, M_VMSWAP);
687 1.111 yamt free(sdp, M_VMSWAP);
688 1.1 mrg break;
689 1.1 mrg }
690 1.1 mrg break;
691 1.1 mrg
692 1.1 mrg case SWAP_OFF:
693 1.127 ad mutex_enter(&uvm_swap_data_lock);
694 1.120 matt if ((sdp = swaplist_find(vp, false)) == NULL) {
695 1.127 ad mutex_exit(&uvm_swap_data_lock);
696 1.1 mrg error = ENXIO;
697 1.1 mrg break;
698 1.1 mrg }
699 1.32 chs
700 1.1 mrg /*
701 1.1 mrg * If a device isn't in use or enabled, we
702 1.1 mrg * can't stop swapping from it (again).
703 1.1 mrg */
704 1.1 mrg if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
705 1.127 ad mutex_exit(&uvm_swap_data_lock);
706 1.1 mrg error = EBUSY;
707 1.16 mrg break;
708 1.1 mrg }
709 1.1 mrg
710 1.1 mrg /*
711 1.32 chs * do the real work.
712 1.1 mrg */
713 1.97 christos error = swap_off(l, sdp);
714 1.1 mrg break;
715 1.1 mrg
716 1.1 mrg default:
717 1.1 mrg error = EINVAL;
718 1.1 mrg }
719 1.1 mrg
720 1.1 mrg /*
721 1.39 chs * done! release the ref gained by namei() and unlock.
722 1.1 mrg */
723 1.1 mrg vput(vp);
724 1.39 chs
725 1.16 mrg out:
726 1.111 yamt free(userpath, M_TEMP);
727 1.117 ad rw_exit(&swap_syscall_lock);
728 1.1 mrg
729 1.1 mrg UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
730 1.1 mrg return (error);
731 1.61 manu }
732 1.61 manu
733 1.85 junyoung /*
734 1.61 manu * swap_stats: implements swapctl(SWAP_STATS). The function is kept
735 1.85 junyoung * away from sys_swapctl() in order to allow COMPAT_* swapctl()
736 1.61 manu * emulation to use it directly without going through sys_swapctl().
737 1.61 manu * The problem with using sys_swapctl() there is that it involves
738 1.61 manu * copying the swapent array to the stackgap, and this array's size
739 1.85 junyoung * is not known at build time. Hence it would not be possible to
740 1.61 manu * ensure it would fit in the stackgap in any case.
741 1.61 manu */
742 1.61 manu void
743 1.93 thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
744 1.61 manu {
745 1.95 yamt
746 1.117 ad rw_enter(&swap_syscall_lock, RW_READER);
747 1.95 yamt uvm_swap_stats_locked(cmd, sep, sec, retval);
748 1.117 ad rw_exit(&swap_syscall_lock);
749 1.95 yamt }
750 1.95 yamt
751 1.95 yamt static void
752 1.95 yamt uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
753 1.95 yamt {
754 1.61 manu struct swappri *spp;
755 1.61 manu struct swapdev *sdp;
756 1.61 manu int count = 0;
757 1.61 manu
758 1.61 manu LIST_FOREACH(spp, &swap_priority, spi_swappri) {
759 1.61 manu for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
760 1.61 manu sdp != (void *)&spp->spi_swapdev && sec-- > 0;
761 1.61 manu sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
762 1.144 mrg int inuse;
763 1.144 mrg
764 1.61 manu /*
765 1.61 manu * backwards compatibility for system call.
766 1.144 mrg * For NetBSD 1.3 and 5.0, we have to use
767 1.144 mrg * the 32 bit dev_t. For 5.0 and -current
768 1.144 mrg * we have to add the path.
769 1.61 manu */
770 1.144 mrg inuse = btodb((uint64_t)sdp->swd_npginuse <<
771 1.61 manu PAGE_SHIFT);
772 1.85 junyoung
773 1.144 mrg #if defined(COMPAT_13) || defined(COMPAT_50)
774 1.144 mrg if (cmd == SWAP_STATS) {
775 1.108 thorpej #endif
776 1.144 mrg sep->se_dev = sdp->swd_dev;
777 1.144 mrg sep->se_flags = sdp->swd_flags;
778 1.144 mrg sep->se_nblks = sdp->swd_nblks;
779 1.144 mrg sep->se_inuse = inuse;
780 1.144 mrg sep->se_priority = sdp->swd_priority;
781 1.144 mrg memcpy(&sep->se_path, sdp->swd_path,
782 1.144 mrg sizeof sep->se_path);
783 1.144 mrg sep++;
784 1.61 manu #if defined(COMPAT_13)
785 1.144 mrg } else if (cmd == SWAP_STATS13) {
786 1.144 mrg struct swapent13 *sep13 =
787 1.144 mrg (struct swapent13 *)sep;
788 1.144 mrg
789 1.144 mrg sep13->se13_dev = sdp->swd_dev;
790 1.144 mrg sep13->se13_flags = sdp->swd_flags;
791 1.144 mrg sep13->se13_nblks = sdp->swd_nblks;
792 1.144 mrg sep13->se13_inuse = inuse;
793 1.144 mrg sep13->se13_priority = sdp->swd_priority;
794 1.144 mrg sep = (struct swapent *)(sep13 + 1);
795 1.144 mrg #endif
796 1.144 mrg #if defined(COMPAT_50)
797 1.144 mrg } else if (cmd == SWAP_STATS50) {
798 1.144 mrg struct swapent50 *sep50 =
799 1.144 mrg (struct swapent50 *)sep;
800 1.144 mrg
801 1.144 mrg sep50->se50_dev = sdp->swd_dev;
802 1.144 mrg sep50->se50_flags = sdp->swd_flags;
803 1.144 mrg sep50->se50_nblks = sdp->swd_nblks;
804 1.144 mrg sep50->se50_inuse = inuse;
805 1.144 mrg sep50->se50_priority = sdp->swd_priority;
806 1.144 mrg memcpy(&sep50->se50_path, sdp->swd_path,
807 1.144 mrg sizeof sep50->se50_path);
808 1.144 mrg sep = (struct swapent *)(sep50 + 1);
809 1.144 mrg }
810 1.61 manu #endif
811 1.61 manu count++;
812 1.61 manu }
813 1.61 manu }
814 1.61 manu
815 1.61 manu *retval = count;
816 1.61 manu return;
817 1.1 mrg }
818 1.1 mrg
819 1.1 mrg /*
820 1.1 mrg * swap_on: attempt to enable a swapdev for swapping. note that the
821 1.1 mrg * swapdev is already on the global list, but disabled (marked
822 1.1 mrg * SWF_FAKE).
823 1.1 mrg *
824 1.1 mrg * => we avoid the start of the disk (to protect disk labels)
825 1.1 mrg * => we also avoid the miniroot, if we are swapping to root.
826 1.127 ad * => caller should leave uvm_swap_data_lock unlocked, we may lock it
827 1.1 mrg * if needed.
828 1.1 mrg */
829 1.1 mrg static int
830 1.97 christos swap_on(struct lwp *l, struct swapdev *sdp)
831 1.1 mrg {
832 1.1 mrg struct vnode *vp;
833 1.1 mrg int error, npages, nblocks, size;
834 1.1 mrg long addr;
835 1.48 fvdl u_long result;
836 1.1 mrg struct vattr va;
837 1.1 mrg #ifdef NFS
838 1.85 junyoung extern int (**nfsv2_vnodeop_p)(void *);
839 1.1 mrg #endif /* NFS */
840 1.69 gehenna const struct bdevsw *bdev;
841 1.1 mrg dev_t dev;
842 1.1 mrg UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
843 1.1 mrg
844 1.1 mrg /*
845 1.1 mrg * we want to enable swapping on sdp. the swd_vp contains
846 1.1 mrg * the vnode we want (locked and ref'd), and the swd_dev
847 1.1 mrg * contains the dev_t of the file, if it a block device.
848 1.1 mrg */
849 1.1 mrg
850 1.1 mrg vp = sdp->swd_vp;
851 1.1 mrg dev = sdp->swd_dev;
852 1.1 mrg
853 1.1 mrg /*
854 1.1 mrg * open the swap file (mostly useful for block device files to
855 1.1 mrg * let device driver know what is up).
856 1.1 mrg *
857 1.1 mrg * we skip the open/close for root on swap because the root
858 1.1 mrg * has already been opened when root was mounted (mountroot).
859 1.1 mrg */
860 1.1 mrg if (vp != rootvp) {
861 1.131 pooka if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
862 1.1 mrg return (error);
863 1.1 mrg }
864 1.1 mrg
865 1.1 mrg /* XXX this only works for block devices */
866 1.1 mrg UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
867 1.1 mrg
868 1.1 mrg /*
869 1.1 mrg * we now need to determine the size of the swap area. for
870 1.1 mrg * block specials we can call the d_psize function.
871 1.1 mrg * for normal files, we must stat [get attrs].
872 1.1 mrg *
873 1.1 mrg * we put the result in nblks.
874 1.1 mrg * for normal files, we also want the filesystem block size
875 1.1 mrg * (which we get with statfs).
876 1.1 mrg */
877 1.1 mrg switch (vp->v_type) {
878 1.1 mrg case VBLK:
879 1.69 gehenna bdev = bdevsw_lookup(dev);
880 1.69 gehenna if (bdev == NULL || bdev->d_psize == NULL ||
881 1.69 gehenna (nblocks = (*bdev->d_psize)(dev)) == -1) {
882 1.1 mrg error = ENXIO;
883 1.1 mrg goto bad;
884 1.1 mrg }
885 1.1 mrg break;
886 1.1 mrg
887 1.1 mrg case VREG:
888 1.131 pooka if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
889 1.1 mrg goto bad;
890 1.1 mrg nblocks = (int)btodb(va.va_size);
891 1.1 mrg if ((error =
892 1.131 pooka VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
893 1.1 mrg goto bad;
894 1.1 mrg
895 1.1 mrg sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
896 1.1 mrg /*
897 1.1 mrg * limit the max # of outstanding I/O requests we issue
898 1.1 mrg * at any one time. take it easy on NFS servers.
899 1.1 mrg */
900 1.1 mrg #ifdef NFS
901 1.1 mrg if (vp->v_op == nfsv2_vnodeop_p)
902 1.1 mrg sdp->swd_maxactive = 2; /* XXX */
903 1.1 mrg else
904 1.1 mrg #endif /* NFS */
905 1.1 mrg sdp->swd_maxactive = 8; /* XXX */
906 1.1 mrg break;
907 1.1 mrg
908 1.1 mrg default:
909 1.1 mrg error = ENXIO;
910 1.1 mrg goto bad;
911 1.1 mrg }
912 1.1 mrg
913 1.1 mrg /*
914 1.1 mrg * save nblocks in a safe place and convert to pages.
915 1.1 mrg */
916 1.1 mrg
917 1.144 mrg sdp->swd_nblks = nblocks;
918 1.99 matt npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
919 1.1 mrg
920 1.1 mrg /*
921 1.1 mrg * for block special files, we want to make sure that leave
922 1.1 mrg * the disklabel and bootblocks alone, so we arrange to skip
923 1.32 chs * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
924 1.1 mrg * note that because of this the "size" can be less than the
925 1.1 mrg * actual number of blocks on the device.
926 1.1 mrg */
927 1.1 mrg if (vp->v_type == VBLK) {
928 1.1 mrg /* we use pages 1 to (size - 1) [inclusive] */
929 1.1 mrg size = npages - 1;
930 1.1 mrg addr = 1;
931 1.1 mrg } else {
932 1.1 mrg /* we use pages 0 to (size - 1) [inclusive] */
933 1.1 mrg size = npages;
934 1.1 mrg addr = 0;
935 1.1 mrg }
936 1.1 mrg
937 1.1 mrg /*
938 1.1 mrg * make sure we have enough blocks for a reasonable sized swap
939 1.1 mrg * area. we want at least one page.
940 1.1 mrg */
941 1.1 mrg
942 1.1 mrg if (size < 1) {
943 1.1 mrg UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
944 1.1 mrg error = EINVAL;
945 1.1 mrg goto bad;
946 1.1 mrg }
947 1.1 mrg
948 1.1 mrg UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
949 1.1 mrg
950 1.1 mrg /*
951 1.1 mrg * now we need to allocate an extent to manage this swap device
952 1.1 mrg */
953 1.1 mrg
954 1.90 yamt sdp->swd_blist = blist_create(npages);
955 1.90 yamt /* mark all expect the `saved' region free. */
956 1.90 yamt blist_free(sdp->swd_blist, addr, size);
957 1.1 mrg
958 1.1 mrg /*
959 1.51 chs * if the vnode we are swapping to is the root vnode
960 1.1 mrg * (i.e. we are swapping to the miniroot) then we want
961 1.51 chs * to make sure we don't overwrite it. do a statfs to
962 1.1 mrg * find its size and skip over it.
963 1.1 mrg */
964 1.1 mrg if (vp == rootvp) {
965 1.1 mrg struct mount *mp;
966 1.86 christos struct statvfs *sp;
967 1.1 mrg int rootblocks, rootpages;
968 1.1 mrg
969 1.1 mrg mp = rootvnode->v_mount;
970 1.1 mrg sp = &mp->mnt_stat;
971 1.86 christos rootblocks = sp->f_blocks * btodb(sp->f_frsize);
972 1.64 fredette /*
973 1.64 fredette * XXX: sp->f_blocks isn't the total number of
974 1.64 fredette * blocks in the filesystem, it's the number of
975 1.64 fredette * data blocks. so, our rootblocks almost
976 1.85 junyoung * definitely underestimates the total size
977 1.64 fredette * of the filesystem - how badly depends on the
978 1.85 junyoung * details of the filesystem type. there isn't
979 1.64 fredette * an obvious way to deal with this cleanly
980 1.85 junyoung * and perfectly, so for now we just pad our
981 1.64 fredette * rootblocks estimate with an extra 5 percent.
982 1.64 fredette */
983 1.64 fredette rootblocks += (rootblocks >> 5) +
984 1.64 fredette (rootblocks >> 6) +
985 1.64 fredette (rootblocks >> 7);
986 1.20 chs rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
987 1.32 chs if (rootpages > size)
988 1.1 mrg panic("swap_on: miniroot larger than swap?");
989 1.1 mrg
990 1.90 yamt if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
991 1.1 mrg panic("swap_on: unable to preserve miniroot");
992 1.90 yamt }
993 1.1 mrg
994 1.32 chs size -= rootpages;
995 1.1 mrg printf("Preserved %d pages of miniroot ", rootpages);
996 1.32 chs printf("leaving %d pages of swap\n", size);
997 1.1 mrg }
998 1.1 mrg
999 1.39 chs /*
1000 1.39 chs * add a ref to vp to reflect usage as a swap device.
1001 1.39 chs */
1002 1.39 chs vref(vp);
1003 1.39 chs
1004 1.1 mrg /*
1005 1.1 mrg * now add the new swapdev to the drum and enable.
1006 1.1 mrg */
1007 1.110 yamt result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
1008 1.110 yamt if (result == 0)
1009 1.48 fvdl panic("swapdrum_add");
1010 1.130 hannken /*
1011 1.130 hannken * If this is the first regular swap create the workqueue.
1012 1.130 hannken * => Protected by swap_syscall_lock.
1013 1.130 hannken */
1014 1.130 hannken if (vp->v_type != VBLK) {
1015 1.130 hannken if (sw_reg_count++ == 0) {
1016 1.130 hannken KASSERT(sw_reg_workqueue == NULL);
1017 1.130 hannken if (workqueue_create(&sw_reg_workqueue, "swapiod",
1018 1.130 hannken sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1019 1.145 mrg panic("%s: workqueue_create failed", __func__);
1020 1.130 hannken }
1021 1.130 hannken }
1022 1.48 fvdl
1023 1.48 fvdl sdp->swd_drumoffset = (int)result;
1024 1.48 fvdl sdp->swd_drumsize = npages;
1025 1.48 fvdl sdp->swd_npages = size;
1026 1.127 ad mutex_enter(&uvm_swap_data_lock);
1027 1.1 mrg sdp->swd_flags &= ~SWF_FAKE; /* going live */
1028 1.1 mrg sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1029 1.32 chs uvmexp.swpages += size;
1030 1.81 pk uvmexp.swpgavail += size;
1031 1.127 ad mutex_exit(&uvm_swap_data_lock);
1032 1.1 mrg return (0);
1033 1.1 mrg
1034 1.1 mrg /*
1035 1.43 chs * failure: clean up and return error.
1036 1.1 mrg */
1037 1.43 chs
1038 1.43 chs bad:
1039 1.90 yamt if (sdp->swd_blist) {
1040 1.90 yamt blist_destroy(sdp->swd_blist);
1041 1.43 chs }
1042 1.43 chs if (vp != rootvp) {
1043 1.131 pooka (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1044 1.43 chs }
1045 1.1 mrg return (error);
1046 1.1 mrg }
1047 1.1 mrg
1048 1.1 mrg /*
1049 1.1 mrg * swap_off: stop swapping on swapdev
1050 1.1 mrg *
1051 1.32 chs * => swap data should be locked, we will unlock.
1052 1.1 mrg */
1053 1.1 mrg static int
1054 1.97 christos swap_off(struct lwp *l, struct swapdev *sdp)
1055 1.1 mrg {
1056 1.91 yamt int npages = sdp->swd_npages;
1057 1.91 yamt int error = 0;
1058 1.81 pk
1059 1.1 mrg UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1060 1.81 pk UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1061 1.1 mrg
1062 1.32 chs /* disable the swap area being removed */
1063 1.1 mrg sdp->swd_flags &= ~SWF_ENABLE;
1064 1.81 pk uvmexp.swpgavail -= npages;
1065 1.127 ad mutex_exit(&uvm_swap_data_lock);
1066 1.32 chs
1067 1.32 chs /*
1068 1.32 chs * the idea is to find all the pages that are paged out to this
1069 1.32 chs * device, and page them all in. in uvm, swap-backed pageable
1070 1.32 chs * memory can take two forms: aobjs and anons. call the
1071 1.32 chs * swapoff hook for each subsystem to bring in pages.
1072 1.32 chs */
1073 1.1 mrg
1074 1.32 chs if (uao_swap_off(sdp->swd_drumoffset,
1075 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize) ||
1076 1.91 yamt amap_swap_off(sdp->swd_drumoffset,
1077 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize)) {
1078 1.91 yamt error = ENOMEM;
1079 1.91 yamt } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1080 1.91 yamt error = EBUSY;
1081 1.91 yamt }
1082 1.51 chs
1083 1.91 yamt if (error) {
1084 1.127 ad mutex_enter(&uvm_swap_data_lock);
1085 1.32 chs sdp->swd_flags |= SWF_ENABLE;
1086 1.81 pk uvmexp.swpgavail += npages;
1087 1.127 ad mutex_exit(&uvm_swap_data_lock);
1088 1.91 yamt
1089 1.91 yamt return error;
1090 1.32 chs }
1091 1.1 mrg
1092 1.1 mrg /*
1093 1.130 hannken * If this is the last regular swap destroy the workqueue.
1094 1.130 hannken * => Protected by swap_syscall_lock.
1095 1.130 hannken */
1096 1.130 hannken if (sdp->swd_vp->v_type != VBLK) {
1097 1.130 hannken KASSERT(sw_reg_count > 0);
1098 1.130 hannken KASSERT(sw_reg_workqueue != NULL);
1099 1.130 hannken if (--sw_reg_count == 0) {
1100 1.130 hannken workqueue_destroy(sw_reg_workqueue);
1101 1.130 hannken sw_reg_workqueue = NULL;
1102 1.130 hannken }
1103 1.130 hannken }
1104 1.130 hannken
1105 1.130 hannken /*
1106 1.58 enami * done with the vnode.
1107 1.39 chs * drop our ref on the vnode before calling VOP_CLOSE()
1108 1.39 chs * so that spec_close() can tell if this is the last close.
1109 1.1 mrg */
1110 1.39 chs vrele(sdp->swd_vp);
1111 1.32 chs if (sdp->swd_vp != rootvp) {
1112 1.131 pooka (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1113 1.32 chs }
1114 1.32 chs
1115 1.127 ad mutex_enter(&uvm_swap_data_lock);
1116 1.81 pk uvmexp.swpages -= npages;
1117 1.82 pk uvmexp.swpginuse -= sdp->swd_npgbad;
1118 1.1 mrg
1119 1.120 matt if (swaplist_find(sdp->swd_vp, true) == NULL)
1120 1.145 mrg panic("%s: swapdev not in list", __func__);
1121 1.32 chs swaplist_trim();
1122 1.127 ad mutex_exit(&uvm_swap_data_lock);
1123 1.1 mrg
1124 1.32 chs /*
1125 1.32 chs * free all resources!
1126 1.32 chs */
1127 1.110 yamt vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1128 1.90 yamt blist_destroy(sdp->swd_blist);
1129 1.96 yamt bufq_free(sdp->swd_tab);
1130 1.111 yamt free(sdp, M_VMSWAP);
1131 1.1 mrg return (0);
1132 1.1 mrg }
1133 1.1 mrg
1134 1.1 mrg /*
1135 1.1 mrg * /dev/drum interface and i/o functions
1136 1.1 mrg */
1137 1.1 mrg
1138 1.1 mrg /*
1139 1.1 mrg * swstrategy: perform I/O on the drum
1140 1.1 mrg *
1141 1.1 mrg * => we must map the i/o request from the drum to the correct swapdev.
1142 1.1 mrg */
1143 1.94 thorpej static void
1144 1.93 thorpej swstrategy(struct buf *bp)
1145 1.1 mrg {
1146 1.1 mrg struct swapdev *sdp;
1147 1.1 mrg struct vnode *vp;
1148 1.134 ad int pageno, bn;
1149 1.1 mrg UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1150 1.1 mrg
1151 1.1 mrg /*
1152 1.1 mrg * convert block number to swapdev. note that swapdev can't
1153 1.1 mrg * be yanked out from under us because we are holding resources
1154 1.1 mrg * in it (i.e. the blocks we are doing I/O on).
1155 1.1 mrg */
1156 1.41 chs pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1157 1.127 ad mutex_enter(&uvm_swap_data_lock);
1158 1.1 mrg sdp = swapdrum_getsdp(pageno);
1159 1.127 ad mutex_exit(&uvm_swap_data_lock);
1160 1.1 mrg if (sdp == NULL) {
1161 1.1 mrg bp->b_error = EINVAL;
1162 1.1 mrg biodone(bp);
1163 1.1 mrg UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1164 1.1 mrg return;
1165 1.1 mrg }
1166 1.1 mrg
1167 1.1 mrg /*
1168 1.1 mrg * convert drum page number to block number on this swapdev.
1169 1.1 mrg */
1170 1.1 mrg
1171 1.32 chs pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1172 1.99 matt bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1173 1.1 mrg
1174 1.41 chs UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1175 1.1 mrg ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1176 1.1 mrg sdp->swd_drumoffset, bn, bp->b_bcount);
1177 1.1 mrg
1178 1.1 mrg /*
1179 1.1 mrg * for block devices we finish up here.
1180 1.32 chs * for regular files we have to do more work which we delegate
1181 1.1 mrg * to sw_reg_strategy().
1182 1.1 mrg */
1183 1.1 mrg
1184 1.134 ad vp = sdp->swd_vp; /* swapdev vnode pointer */
1185 1.134 ad switch (vp->v_type) {
1186 1.1 mrg default:
1187 1.145 mrg panic("%s: vnode type 0x%x", __func__, vp->v_type);
1188 1.32 chs
1189 1.1 mrg case VBLK:
1190 1.1 mrg
1191 1.1 mrg /*
1192 1.1 mrg * must convert "bp" from an I/O on /dev/drum to an I/O
1193 1.1 mrg * on the swapdev (sdp).
1194 1.1 mrg */
1195 1.1 mrg bp->b_blkno = bn; /* swapdev block number */
1196 1.1 mrg bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1197 1.1 mrg
1198 1.1 mrg /*
1199 1.1 mrg * if we are doing a write, we have to redirect the i/o on
1200 1.1 mrg * drum's v_numoutput counter to the swapdevs.
1201 1.1 mrg */
1202 1.1 mrg if ((bp->b_flags & B_READ) == 0) {
1203 1.134 ad mutex_enter(bp->b_objlock);
1204 1.1 mrg vwakeup(bp); /* kills one 'v_numoutput' on drum */
1205 1.134 ad mutex_exit(bp->b_objlock);
1206 1.134 ad mutex_enter(&vp->v_interlock);
1207 1.134 ad vp->v_numoutput++; /* put it on swapdev */
1208 1.134 ad mutex_exit(&vp->v_interlock);
1209 1.1 mrg }
1210 1.1 mrg
1211 1.41 chs /*
1212 1.1 mrg * finally plug in swapdev vnode and start I/O
1213 1.1 mrg */
1214 1.1 mrg bp->b_vp = vp;
1215 1.134 ad bp->b_objlock = &vp->v_interlock;
1216 1.84 hannken VOP_STRATEGY(vp, bp);
1217 1.1 mrg return;
1218 1.32 chs
1219 1.1 mrg case VREG:
1220 1.1 mrg /*
1221 1.32 chs * delegate to sw_reg_strategy function.
1222 1.1 mrg */
1223 1.1 mrg sw_reg_strategy(sdp, bp, bn);
1224 1.1 mrg return;
1225 1.1 mrg }
1226 1.1 mrg /* NOTREACHED */
1227 1.1 mrg }
1228 1.1 mrg
1229 1.1 mrg /*
1230 1.94 thorpej * swread: the read function for the drum (just a call to physio)
1231 1.94 thorpej */
1232 1.94 thorpej /*ARGSUSED*/
1233 1.94 thorpej static int
1234 1.112 yamt swread(dev_t dev, struct uio *uio, int ioflag)
1235 1.94 thorpej {
1236 1.94 thorpej UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1237 1.94 thorpej
1238 1.94 thorpej UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1239 1.94 thorpej return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1240 1.94 thorpej }
1241 1.94 thorpej
1242 1.94 thorpej /*
1243 1.94 thorpej * swwrite: the write function for the drum (just a call to physio)
1244 1.94 thorpej */
1245 1.94 thorpej /*ARGSUSED*/
1246 1.94 thorpej static int
1247 1.112 yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
1248 1.94 thorpej {
1249 1.94 thorpej UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1250 1.94 thorpej
1251 1.94 thorpej UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1252 1.94 thorpej return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1253 1.94 thorpej }
1254 1.94 thorpej
1255 1.94 thorpej const struct bdevsw swap_bdevsw = {
1256 1.135 hannken nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1257 1.94 thorpej };
1258 1.94 thorpej
1259 1.94 thorpej const struct cdevsw swap_cdevsw = {
1260 1.94 thorpej nullopen, nullclose, swread, swwrite, noioctl,
1261 1.105 christos nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1262 1.94 thorpej };
1263 1.94 thorpej
1264 1.94 thorpej /*
1265 1.1 mrg * sw_reg_strategy: handle swap i/o to regular files
1266 1.1 mrg */
1267 1.1 mrg static void
1268 1.93 thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1269 1.1 mrg {
1270 1.1 mrg struct vnode *vp;
1271 1.1 mrg struct vndxfer *vnx;
1272 1.44 enami daddr_t nbn;
1273 1.122 christos char *addr;
1274 1.44 enami off_t byteoff;
1275 1.9 mrg int s, off, nra, error, sz, resid;
1276 1.1 mrg UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1277 1.1 mrg
1278 1.1 mrg /*
1279 1.1 mrg * allocate a vndxfer head for this transfer and point it to
1280 1.1 mrg * our buffer.
1281 1.1 mrg */
1282 1.134 ad vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1283 1.1 mrg vnx->vx_flags = VX_BUSY;
1284 1.1 mrg vnx->vx_error = 0;
1285 1.1 mrg vnx->vx_pending = 0;
1286 1.1 mrg vnx->vx_bp = bp;
1287 1.1 mrg vnx->vx_sdp = sdp;
1288 1.1 mrg
1289 1.1 mrg /*
1290 1.1 mrg * setup for main loop where we read filesystem blocks into
1291 1.1 mrg * our buffer.
1292 1.1 mrg */
1293 1.1 mrg error = 0;
1294 1.1 mrg bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1295 1.1 mrg addr = bp->b_data; /* current position in buffer */
1296 1.99 matt byteoff = dbtob((uint64_t)bn);
1297 1.1 mrg
1298 1.1 mrg for (resid = bp->b_resid; resid; resid -= sz) {
1299 1.1 mrg struct vndbuf *nbp;
1300 1.1 mrg
1301 1.1 mrg /*
1302 1.1 mrg * translate byteoffset into block number. return values:
1303 1.1 mrg * vp = vnode of underlying device
1304 1.1 mrg * nbn = new block number (on underlying vnode dev)
1305 1.1 mrg * nra = num blocks we can read-ahead (excludes requested
1306 1.1 mrg * block)
1307 1.1 mrg */
1308 1.1 mrg nra = 0;
1309 1.1 mrg error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1310 1.1 mrg &vp, &nbn, &nra);
1311 1.1 mrg
1312 1.32 chs if (error == 0 && nbn == (daddr_t)-1) {
1313 1.51 chs /*
1314 1.23 marc * this used to just set error, but that doesn't
1315 1.23 marc * do the right thing. Instead, it causes random
1316 1.23 marc * memory errors. The panic() should remain until
1317 1.23 marc * this condition doesn't destabilize the system.
1318 1.23 marc */
1319 1.23 marc #if 1
1320 1.145 mrg panic("%s: swap to sparse file", __func__);
1321 1.23 marc #else
1322 1.1 mrg error = EIO; /* failure */
1323 1.23 marc #endif
1324 1.23 marc }
1325 1.1 mrg
1326 1.1 mrg /*
1327 1.1 mrg * punt if there was an error or a hole in the file.
1328 1.1 mrg * we must wait for any i/o ops we have already started
1329 1.1 mrg * to finish before returning.
1330 1.1 mrg *
1331 1.1 mrg * XXX we could deal with holes here but it would be
1332 1.1 mrg * a hassle (in the write case).
1333 1.1 mrg */
1334 1.1 mrg if (error) {
1335 1.1 mrg s = splbio();
1336 1.1 mrg vnx->vx_error = error; /* pass error up */
1337 1.1 mrg goto out;
1338 1.1 mrg }
1339 1.1 mrg
1340 1.1 mrg /*
1341 1.1 mrg * compute the size ("sz") of this transfer (in bytes).
1342 1.1 mrg */
1343 1.41 chs off = byteoff % sdp->swd_bsize;
1344 1.41 chs sz = (1 + nra) * sdp->swd_bsize - off;
1345 1.41 chs if (sz > resid)
1346 1.1 mrg sz = resid;
1347 1.1 mrg
1348 1.41 chs UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1349 1.41 chs "vp %p/%p offset 0x%x/0x%x",
1350 1.41 chs sdp->swd_vp, vp, byteoff, nbn);
1351 1.1 mrg
1352 1.1 mrg /*
1353 1.1 mrg * now get a buf structure. note that the vb_buf is
1354 1.1 mrg * at the front of the nbp structure so that you can
1355 1.1 mrg * cast pointers between the two structure easily.
1356 1.1 mrg */
1357 1.134 ad nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1358 1.134 ad buf_init(&nbp->vb_buf);
1359 1.134 ad nbp->vb_buf.b_flags = bp->b_flags;
1360 1.134 ad nbp->vb_buf.b_cflags = bp->b_cflags;
1361 1.134 ad nbp->vb_buf.b_oflags = bp->b_oflags;
1362 1.1 mrg nbp->vb_buf.b_bcount = sz;
1363 1.12 pk nbp->vb_buf.b_bufsize = sz;
1364 1.1 mrg nbp->vb_buf.b_error = 0;
1365 1.1 mrg nbp->vb_buf.b_data = addr;
1366 1.41 chs nbp->vb_buf.b_lblkno = 0;
1367 1.1 mrg nbp->vb_buf.b_blkno = nbn + btodb(off);
1368 1.34 thorpej nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1369 1.130 hannken nbp->vb_buf.b_iodone = sw_reg_biodone;
1370 1.53 chs nbp->vb_buf.b_vp = vp;
1371 1.134 ad nbp->vb_buf.b_objlock = &vp->v_interlock;
1372 1.53 chs if (vp->v_type == VBLK) {
1373 1.53 chs nbp->vb_buf.b_dev = vp->v_rdev;
1374 1.53 chs }
1375 1.1 mrg
1376 1.1 mrg nbp->vb_xfer = vnx; /* patch it back in to vnx */
1377 1.1 mrg
1378 1.1 mrg /*
1379 1.1 mrg * Just sort by block number
1380 1.1 mrg */
1381 1.1 mrg s = splbio();
1382 1.1 mrg if (vnx->vx_error != 0) {
1383 1.134 ad buf_destroy(&nbp->vb_buf);
1384 1.134 ad pool_put(&vndbuf_pool, nbp);
1385 1.1 mrg goto out;
1386 1.1 mrg }
1387 1.1 mrg vnx->vx_pending++;
1388 1.1 mrg
1389 1.1 mrg /* sort it in and start I/O if we are not over our limit */
1390 1.134 ad /* XXXAD locking */
1391 1.143 yamt bufq_put(sdp->swd_tab, &nbp->vb_buf);
1392 1.1 mrg sw_reg_start(sdp);
1393 1.1 mrg splx(s);
1394 1.1 mrg
1395 1.1 mrg /*
1396 1.1 mrg * advance to the next I/O
1397 1.1 mrg */
1398 1.9 mrg byteoff += sz;
1399 1.1 mrg addr += sz;
1400 1.1 mrg }
1401 1.1 mrg
1402 1.1 mrg s = splbio();
1403 1.1 mrg
1404 1.1 mrg out: /* Arrive here at splbio */
1405 1.1 mrg vnx->vx_flags &= ~VX_BUSY;
1406 1.1 mrg if (vnx->vx_pending == 0) {
1407 1.134 ad error = vnx->vx_error;
1408 1.134 ad pool_put(&vndxfer_pool, vnx);
1409 1.134 ad bp->b_error = error;
1410 1.1 mrg biodone(bp);
1411 1.1 mrg }
1412 1.1 mrg splx(s);
1413 1.1 mrg }
1414 1.1 mrg
1415 1.1 mrg /*
1416 1.1 mrg * sw_reg_start: start an I/O request on the requested swapdev
1417 1.1 mrg *
1418 1.65 hannken * => reqs are sorted by b_rawblkno (above)
1419 1.1 mrg */
1420 1.1 mrg static void
1421 1.93 thorpej sw_reg_start(struct swapdev *sdp)
1422 1.1 mrg {
1423 1.1 mrg struct buf *bp;
1424 1.134 ad struct vnode *vp;
1425 1.1 mrg UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1426 1.1 mrg
1427 1.8 mrg /* recursion control */
1428 1.1 mrg if ((sdp->swd_flags & SWF_BUSY) != 0)
1429 1.1 mrg return;
1430 1.1 mrg
1431 1.1 mrg sdp->swd_flags |= SWF_BUSY;
1432 1.1 mrg
1433 1.33 thorpej while (sdp->swd_active < sdp->swd_maxactive) {
1434 1.143 yamt bp = bufq_get(sdp->swd_tab);
1435 1.1 mrg if (bp == NULL)
1436 1.1 mrg break;
1437 1.33 thorpej sdp->swd_active++;
1438 1.1 mrg
1439 1.1 mrg UVMHIST_LOG(pdhist,
1440 1.1 mrg "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1441 1.1 mrg bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1442 1.134 ad vp = bp->b_vp;
1443 1.134 ad KASSERT(bp->b_objlock == &vp->v_interlock);
1444 1.134 ad if ((bp->b_flags & B_READ) == 0) {
1445 1.134 ad mutex_enter(&vp->v_interlock);
1446 1.134 ad vp->v_numoutput++;
1447 1.134 ad mutex_exit(&vp->v_interlock);
1448 1.134 ad }
1449 1.134 ad VOP_STRATEGY(vp, bp);
1450 1.1 mrg }
1451 1.1 mrg sdp->swd_flags &= ~SWF_BUSY;
1452 1.1 mrg }
1453 1.1 mrg
1454 1.1 mrg /*
1455 1.130 hannken * sw_reg_biodone: one of our i/o's has completed
1456 1.130 hannken */
1457 1.130 hannken static void
1458 1.130 hannken sw_reg_biodone(struct buf *bp)
1459 1.130 hannken {
1460 1.130 hannken workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1461 1.130 hannken }
1462 1.130 hannken
1463 1.130 hannken /*
1464 1.1 mrg * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1465 1.1 mrg *
1466 1.1 mrg * => note that we can recover the vndbuf struct by casting the buf ptr
1467 1.1 mrg */
1468 1.1 mrg static void
1469 1.130 hannken sw_reg_iodone(struct work *wk, void *dummy)
1470 1.1 mrg {
1471 1.130 hannken struct vndbuf *vbp = (void *)wk;
1472 1.1 mrg struct vndxfer *vnx = vbp->vb_xfer;
1473 1.1 mrg struct buf *pbp = vnx->vx_bp; /* parent buffer */
1474 1.1 mrg struct swapdev *sdp = vnx->vx_sdp;
1475 1.72 chs int s, resid, error;
1476 1.130 hannken KASSERT(&vbp->vb_buf.b_work == wk);
1477 1.1 mrg UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1478 1.1 mrg
1479 1.1 mrg UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1480 1.1 mrg vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1481 1.1 mrg UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1482 1.1 mrg vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1483 1.1 mrg
1484 1.1 mrg /*
1485 1.1 mrg * protect vbp at splbio and update.
1486 1.1 mrg */
1487 1.1 mrg
1488 1.1 mrg s = splbio();
1489 1.1 mrg resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1490 1.1 mrg pbp->b_resid -= resid;
1491 1.1 mrg vnx->vx_pending--;
1492 1.1 mrg
1493 1.129 ad if (vbp->vb_buf.b_error != 0) {
1494 1.1 mrg /* pass error upward */
1495 1.134 ad error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1496 1.72 chs UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1497 1.72 chs vnx->vx_error = error;
1498 1.35 chs }
1499 1.35 chs
1500 1.35 chs /*
1501 1.1 mrg * kill vbp structure
1502 1.1 mrg */
1503 1.134 ad buf_destroy(&vbp->vb_buf);
1504 1.134 ad pool_put(&vndbuf_pool, vbp);
1505 1.1 mrg
1506 1.1 mrg /*
1507 1.1 mrg * wrap up this transaction if it has run to completion or, in
1508 1.1 mrg * case of an error, when all auxiliary buffers have returned.
1509 1.1 mrg */
1510 1.1 mrg if (vnx->vx_error != 0) {
1511 1.1 mrg /* pass error upward */
1512 1.134 ad error = vnx->vx_error;
1513 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1514 1.134 ad pbp->b_error = error;
1515 1.1 mrg biodone(pbp);
1516 1.134 ad pool_put(&vndxfer_pool, vnx);
1517 1.1 mrg }
1518 1.11 pk } else if (pbp->b_resid == 0) {
1519 1.46 chs KASSERT(vnx->vx_pending == 0);
1520 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0) {
1521 1.8 mrg UVMHIST_LOG(pdhist, " iodone error=%d !",
1522 1.8 mrg pbp, vnx->vx_error, 0, 0);
1523 1.1 mrg biodone(pbp);
1524 1.134 ad pool_put(&vndxfer_pool, vnx);
1525 1.1 mrg }
1526 1.1 mrg }
1527 1.1 mrg
1528 1.1 mrg /*
1529 1.1 mrg * done! start next swapdev I/O if one is pending
1530 1.1 mrg */
1531 1.33 thorpej sdp->swd_active--;
1532 1.1 mrg sw_reg_start(sdp);
1533 1.1 mrg splx(s);
1534 1.1 mrg }
1535 1.1 mrg
1536 1.1 mrg
1537 1.1 mrg /*
1538 1.1 mrg * uvm_swap_alloc: allocate space on swap
1539 1.1 mrg *
1540 1.1 mrg * => allocation is done "round robin" down the priority list, as we
1541 1.1 mrg * allocate in a priority we "rotate" the circle queue.
1542 1.1 mrg * => space can be freed with uvm_swap_free
1543 1.1 mrg * => we return the page slot number in /dev/drum (0 == invalid slot)
1544 1.127 ad * => we lock uvm_swap_data_lock
1545 1.1 mrg * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1546 1.1 mrg */
1547 1.1 mrg int
1548 1.119 thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1549 1.1 mrg {
1550 1.1 mrg struct swapdev *sdp;
1551 1.1 mrg struct swappri *spp;
1552 1.1 mrg UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1553 1.1 mrg
1554 1.1 mrg /*
1555 1.1 mrg * no swap devices configured yet? definite failure.
1556 1.1 mrg */
1557 1.1 mrg if (uvmexp.nswapdev < 1)
1558 1.1 mrg return 0;
1559 1.51 chs
1560 1.1 mrg /*
1561 1.1 mrg * lock data lock, convert slots into blocks, and enter loop
1562 1.1 mrg */
1563 1.127 ad mutex_enter(&uvm_swap_data_lock);
1564 1.1 mrg
1565 1.1 mrg ReTry: /* XXXMRG */
1566 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1567 1.55 chs CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1568 1.90 yamt uint64_t result;
1569 1.90 yamt
1570 1.1 mrg /* if it's not enabled, then we can't swap from it */
1571 1.1 mrg if ((sdp->swd_flags & SWF_ENABLE) == 0)
1572 1.1 mrg continue;
1573 1.1 mrg if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1574 1.1 mrg continue;
1575 1.90 yamt result = blist_alloc(sdp->swd_blist, *nslots);
1576 1.90 yamt if (result == BLIST_NONE) {
1577 1.1 mrg continue;
1578 1.1 mrg }
1579 1.90 yamt KASSERT(result < sdp->swd_drumsize);
1580 1.1 mrg
1581 1.1 mrg /*
1582 1.1 mrg * successful allocation! now rotate the circleq.
1583 1.1 mrg */
1584 1.1 mrg CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1585 1.1 mrg CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1586 1.1 mrg sdp->swd_npginuse += *nslots;
1587 1.1 mrg uvmexp.swpginuse += *nslots;
1588 1.127 ad mutex_exit(&uvm_swap_data_lock);
1589 1.1 mrg /* done! return drum slot number */
1590 1.1 mrg UVMHIST_LOG(pdhist,
1591 1.1 mrg "success! returning %d slots starting at %d",
1592 1.1 mrg *nslots, result + sdp->swd_drumoffset, 0, 0);
1593 1.55 chs return (result + sdp->swd_drumoffset);
1594 1.1 mrg }
1595 1.1 mrg }
1596 1.1 mrg
1597 1.1 mrg /* XXXMRG: BEGIN HACK */
1598 1.1 mrg if (*nslots > 1 && lessok) {
1599 1.1 mrg *nslots = 1;
1600 1.90 yamt /* XXXMRG: ugh! blist should support this for us */
1601 1.90 yamt goto ReTry;
1602 1.1 mrg }
1603 1.1 mrg /* XXXMRG: END HACK */
1604 1.1 mrg
1605 1.127 ad mutex_exit(&uvm_swap_data_lock);
1606 1.55 chs return 0;
1607 1.1 mrg }
1608 1.1 mrg
1609 1.141 ad /*
1610 1.141 ad * uvm_swapisfull: return true if most of available swap is allocated
1611 1.141 ad * and in use. we don't count some small portion as it may be inaccessible
1612 1.141 ad * to us at any given moment, for example if there is lock contention or if
1613 1.141 ad * pages are busy.
1614 1.141 ad */
1615 1.119 thorpej bool
1616 1.81 pk uvm_swapisfull(void)
1617 1.81 pk {
1618 1.141 ad int swpgonly;
1619 1.119 thorpej bool rv;
1620 1.81 pk
1621 1.127 ad mutex_enter(&uvm_swap_data_lock);
1622 1.81 pk KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1623 1.141 ad swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1624 1.141 ad uvm_swapisfull_factor);
1625 1.141 ad rv = (swpgonly >= uvmexp.swpgavail);
1626 1.127 ad mutex_exit(&uvm_swap_data_lock);
1627 1.81 pk
1628 1.81 pk return (rv);
1629 1.81 pk }
1630 1.81 pk
1631 1.1 mrg /*
1632 1.32 chs * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1633 1.32 chs *
1634 1.127 ad * => we lock uvm_swap_data_lock
1635 1.32 chs */
1636 1.32 chs void
1637 1.93 thorpej uvm_swap_markbad(int startslot, int nslots)
1638 1.32 chs {
1639 1.32 chs struct swapdev *sdp;
1640 1.32 chs UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1641 1.32 chs
1642 1.127 ad mutex_enter(&uvm_swap_data_lock);
1643 1.32 chs sdp = swapdrum_getsdp(startslot);
1644 1.82 pk KASSERT(sdp != NULL);
1645 1.32 chs
1646 1.32 chs /*
1647 1.32 chs * we just keep track of how many pages have been marked bad
1648 1.32 chs * in this device, to make everything add up in swap_off().
1649 1.32 chs * we assume here that the range of slots will all be within
1650 1.32 chs * one swap device.
1651 1.32 chs */
1652 1.41 chs
1653 1.82 pk KASSERT(uvmexp.swpgonly >= nslots);
1654 1.82 pk uvmexp.swpgonly -= nslots;
1655 1.32 chs sdp->swd_npgbad += nslots;
1656 1.41 chs UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1657 1.127 ad mutex_exit(&uvm_swap_data_lock);
1658 1.32 chs }
1659 1.32 chs
1660 1.32 chs /*
1661 1.1 mrg * uvm_swap_free: free swap slots
1662 1.1 mrg *
1663 1.1 mrg * => this can be all or part of an allocation made by uvm_swap_alloc
1664 1.127 ad * => we lock uvm_swap_data_lock
1665 1.1 mrg */
1666 1.1 mrg void
1667 1.93 thorpej uvm_swap_free(int startslot, int nslots)
1668 1.1 mrg {
1669 1.1 mrg struct swapdev *sdp;
1670 1.1 mrg UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1671 1.1 mrg
1672 1.1 mrg UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1673 1.1 mrg startslot, 0, 0);
1674 1.32 chs
1675 1.32 chs /*
1676 1.32 chs * ignore attempts to free the "bad" slot.
1677 1.32 chs */
1678 1.46 chs
1679 1.32 chs if (startslot == SWSLOT_BAD) {
1680 1.32 chs return;
1681 1.32 chs }
1682 1.32 chs
1683 1.1 mrg /*
1684 1.51 chs * convert drum slot offset back to sdp, free the blocks
1685 1.51 chs * in the extent, and return. must hold pri lock to do
1686 1.1 mrg * lookup and access the extent.
1687 1.1 mrg */
1688 1.46 chs
1689 1.127 ad mutex_enter(&uvm_swap_data_lock);
1690 1.1 mrg sdp = swapdrum_getsdp(startslot);
1691 1.46 chs KASSERT(uvmexp.nswapdev >= 1);
1692 1.46 chs KASSERT(sdp != NULL);
1693 1.46 chs KASSERT(sdp->swd_npginuse >= nslots);
1694 1.90 yamt blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1695 1.1 mrg sdp->swd_npginuse -= nslots;
1696 1.1 mrg uvmexp.swpginuse -= nslots;
1697 1.127 ad mutex_exit(&uvm_swap_data_lock);
1698 1.1 mrg }
1699 1.1 mrg
1700 1.1 mrg /*
1701 1.1 mrg * uvm_swap_put: put any number of pages into a contig place on swap
1702 1.1 mrg *
1703 1.1 mrg * => can be sync or async
1704 1.1 mrg */
1705 1.54 chs
1706 1.1 mrg int
1707 1.93 thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1708 1.1 mrg {
1709 1.56 chs int error;
1710 1.1 mrg
1711 1.56 chs error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1712 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1713 1.56 chs return error;
1714 1.1 mrg }
1715 1.1 mrg
1716 1.1 mrg /*
1717 1.1 mrg * uvm_swap_get: get a single page from swap
1718 1.1 mrg *
1719 1.1 mrg * => usually a sync op (from fault)
1720 1.1 mrg */
1721 1.54 chs
1722 1.1 mrg int
1723 1.93 thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
1724 1.1 mrg {
1725 1.56 chs int error;
1726 1.1 mrg
1727 1.1 mrg uvmexp.nswget++;
1728 1.46 chs KASSERT(flags & PGO_SYNCIO);
1729 1.32 chs if (swslot == SWSLOT_BAD) {
1730 1.47 chs return EIO;
1731 1.32 chs }
1732 1.81 pk
1733 1.56 chs error = uvm_swap_io(&page, swslot, 1, B_READ |
1734 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1735 1.56 chs if (error == 0) {
1736 1.47 chs
1737 1.26 chs /*
1738 1.54 chs * this page is no longer only in swap.
1739 1.26 chs */
1740 1.47 chs
1741 1.127 ad mutex_enter(&uvm_swap_data_lock);
1742 1.56 chs KASSERT(uvmexp.swpgonly > 0);
1743 1.54 chs uvmexp.swpgonly--;
1744 1.127 ad mutex_exit(&uvm_swap_data_lock);
1745 1.26 chs }
1746 1.56 chs return error;
1747 1.1 mrg }
1748 1.1 mrg
1749 1.1 mrg /*
1750 1.1 mrg * uvm_swap_io: do an i/o operation to swap
1751 1.1 mrg */
1752 1.1 mrg
1753 1.1 mrg static int
1754 1.93 thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1755 1.1 mrg {
1756 1.1 mrg daddr_t startblk;
1757 1.1 mrg struct buf *bp;
1758 1.15 eeh vaddr_t kva;
1759 1.134 ad int error, mapinflags;
1760 1.119 thorpej bool write, async;
1761 1.1 mrg UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1762 1.1 mrg
1763 1.1 mrg UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1764 1.1 mrg startslot, npages, flags, 0);
1765 1.32 chs
1766 1.41 chs write = (flags & B_READ) == 0;
1767 1.41 chs async = (flags & B_ASYNC) != 0;
1768 1.41 chs
1769 1.1 mrg /*
1770 1.137 yamt * allocate a buf for the i/o.
1771 1.137 yamt */
1772 1.137 yamt
1773 1.137 yamt KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1774 1.137 yamt bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1775 1.137 yamt if (bp == NULL) {
1776 1.137 yamt uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1777 1.137 yamt return ENOMEM;
1778 1.137 yamt }
1779 1.137 yamt
1780 1.137 yamt /*
1781 1.1 mrg * convert starting drum slot to block number
1782 1.1 mrg */
1783 1.54 chs
1784 1.99 matt startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1785 1.1 mrg
1786 1.1 mrg /*
1787 1.54 chs * first, map the pages into the kernel.
1788 1.41 chs */
1789 1.41 chs
1790 1.54 chs mapinflags = !write ?
1791 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1792 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1793 1.41 chs kva = uvm_pagermapin(pps, npages, mapinflags);
1794 1.1 mrg
1795 1.51 chs /*
1796 1.1 mrg * fill in the bp/sbp. we currently route our i/o through
1797 1.1 mrg * /dev/drum's vnode [swapdev_vp].
1798 1.1 mrg */
1799 1.54 chs
1800 1.134 ad bp->b_cflags = BC_BUSY | BC_NOCACHE;
1801 1.134 ad bp->b_flags = (flags & (B_READ|B_ASYNC));
1802 1.1 mrg bp->b_proc = &proc0; /* XXX */
1803 1.12 pk bp->b_vnbufs.le_next = NOLIST;
1804 1.122 christos bp->b_data = (void *)kva;
1805 1.1 mrg bp->b_blkno = startblk;
1806 1.41 chs bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1807 1.1 mrg
1808 1.51 chs /*
1809 1.41 chs * bump v_numoutput (counter of number of active outputs).
1810 1.1 mrg */
1811 1.54 chs
1812 1.41 chs if (write) {
1813 1.134 ad mutex_enter(&swapdev_vp->v_interlock);
1814 1.134 ad swapdev_vp->v_numoutput++;
1815 1.134 ad mutex_exit(&swapdev_vp->v_interlock);
1816 1.1 mrg }
1817 1.1 mrg
1818 1.1 mrg /*
1819 1.41 chs * for async ops we must set up the iodone handler.
1820 1.1 mrg */
1821 1.54 chs
1822 1.41 chs if (async) {
1823 1.41 chs bp->b_iodone = uvm_aio_biodone;
1824 1.1 mrg UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1825 1.126 ad if (curlwp == uvm.pagedaemon_lwp)
1826 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1827 1.83 yamt else
1828 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1829 1.83 yamt } else {
1830 1.134 ad bp->b_iodone = NULL;
1831 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1832 1.1 mrg }
1833 1.1 mrg UVMHIST_LOG(pdhist,
1834 1.41 chs "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1835 1.1 mrg bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1836 1.1 mrg
1837 1.1 mrg /*
1838 1.1 mrg * now we start the I/O, and if async, return.
1839 1.1 mrg */
1840 1.54 chs
1841 1.84 hannken VOP_STRATEGY(swapdev_vp, bp);
1842 1.41 chs if (async)
1843 1.47 chs return 0;
1844 1.1 mrg
1845 1.1 mrg /*
1846 1.1 mrg * must be sync i/o. wait for it to finish
1847 1.1 mrg */
1848 1.54 chs
1849 1.47 chs error = biowait(bp);
1850 1.1 mrg
1851 1.1 mrg /*
1852 1.1 mrg * kill the pager mapping
1853 1.1 mrg */
1854 1.54 chs
1855 1.1 mrg uvm_pagermapout(kva, npages);
1856 1.1 mrg
1857 1.1 mrg /*
1858 1.54 chs * now dispose of the buf and we're done.
1859 1.1 mrg */
1860 1.54 chs
1861 1.134 ad if (write) {
1862 1.134 ad mutex_enter(&swapdev_vp->v_interlock);
1863 1.41 chs vwakeup(bp);
1864 1.134 ad mutex_exit(&swapdev_vp->v_interlock);
1865 1.134 ad }
1866 1.98 yamt putiobuf(bp);
1867 1.47 chs UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1868 1.134 ad
1869 1.47 chs return (error);
1870 1.1 mrg }
1871