Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.150
      1  1.150     pooka /*	$NetBSD: uvm_swap.c,v 1.150 2010/03/02 21:32:29 pooka Exp $	*/
      2    1.1       mrg 
      3    1.1       mrg /*
      4  1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5    1.1       mrg  * All rights reserved.
      6    1.1       mrg  *
      7    1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8    1.1       mrg  * modification, are permitted provided that the following conditions
      9    1.1       mrg  * are met:
     10    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15    1.1       mrg  *
     16    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17    1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18    1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19    1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20    1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21    1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22    1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23    1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24    1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26    1.1       mrg  * SUCH DAMAGE.
     27    1.3       mrg  *
     28    1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29    1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30    1.1       mrg  */
     31   1.57     lukem 
     32   1.57     lukem #include <sys/cdefs.h>
     33  1.150     pooka __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.150 2010/03/02 21:32:29 pooka Exp $");
     34    1.5       mrg 
     35    1.5       mrg #include "opt_uvmhist.h"
     36   1.16       mrg #include "opt_compat_netbsd.h"
     37   1.41       chs #include "opt_ddb.h"
     38    1.1       mrg 
     39    1.1       mrg #include <sys/param.h>
     40    1.1       mrg #include <sys/systm.h>
     41    1.1       mrg #include <sys/buf.h>
     42   1.89      yamt #include <sys/bufq.h>
     43   1.36       mrg #include <sys/conf.h>
     44    1.1       mrg #include <sys/proc.h>
     45    1.1       mrg #include <sys/namei.h>
     46    1.1       mrg #include <sys/disklabel.h>
     47    1.1       mrg #include <sys/errno.h>
     48    1.1       mrg #include <sys/kernel.h>
     49  1.111      yamt #include <sys/malloc.h>
     50    1.1       mrg #include <sys/vnode.h>
     51    1.1       mrg #include <sys/file.h>
     52  1.110      yamt #include <sys/vmem.h>
     53   1.90      yamt #include <sys/blist.h>
     54    1.1       mrg #include <sys/mount.h>
     55   1.12        pk #include <sys/pool.h>
     56    1.1       mrg #include <sys/syscallargs.h>
     57   1.17       mrg #include <sys/swap.h>
     58  1.100      elad #include <sys/kauth.h>
     59  1.125        ad #include <sys/sysctl.h>
     60  1.130   hannken #include <sys/workqueue.h>
     61    1.1       mrg 
     62    1.1       mrg #include <uvm/uvm.h>
     63    1.1       mrg 
     64    1.1       mrg #include <miscfs/specfs/specdev.h>
     65    1.1       mrg 
     66    1.1       mrg /*
     67    1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     68    1.1       mrg  */
     69    1.1       mrg 
     70    1.1       mrg /*
     71    1.1       mrg  * swap space is managed in the following way:
     72   1.51       chs  *
     73    1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     74    1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     75    1.1       mrg  * information that is passed up to the user (via system calls).
     76    1.1       mrg  *
     77    1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     78    1.1       mrg  * swap parition usage.
     79    1.1       mrg  *
     80    1.1       mrg  * the system maintains a global data structure describing all swap
     81    1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     82    1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     83   1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     84    1.1       mrg  * CIRCLEQ of "swapdev" structures at that priority.
     85    1.1       mrg  *
     86    1.1       mrg  * locking:
     87  1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88    1.1       mrg  *    system call and prevents the swap priority list from changing
     89    1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90  1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91    1.1       mrg  *    structures including the priority list, the swapdev structures,
     92  1.110      yamt  *    and the swapmap arena.
     93    1.1       mrg  *
     94    1.1       mrg  * each swap device has the following info:
     95    1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     96    1.1       mrg  *  - swap enabled (allows new allocations on swap)
     97    1.1       mrg  *  - map info in /dev/drum
     98    1.1       mrg  *  - vnode pointer
     99    1.1       mrg  * for swap files only:
    100    1.1       mrg  *  - block size
    101    1.1       mrg  *  - max byte count in buffer
    102    1.1       mrg  *  - buffer
    103    1.1       mrg  *
    104    1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    105    1.1       mrg  * the sys_swapctl performs the following operations:
    106    1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107   1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108    1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109   1.85  junyoung  *	the current swap config into the array. The actual work is done
    110   1.63      manu  *	in the uvm_swap_stats(9) function.
    111    1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112    1.1       mrg  *	priority in "misc", start swapping on it.
    113    1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114    1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115    1.1       mrg  *	"misc")
    116    1.1       mrg  */
    117    1.1       mrg 
    118    1.1       mrg /*
    119    1.1       mrg  * swapdev: describes a single swap partition/file
    120    1.1       mrg  *
    121    1.1       mrg  * note the following should be true:
    122    1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    123    1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    124    1.1       mrg  */
    125    1.1       mrg struct swapdev {
    126  1.144       mrg 	dev_t			swd_dev;	/* device id */
    127  1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    128  1.144       mrg 	int			swd_priority;	/* our priority */
    129  1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    130   1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    131   1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    132   1.16       mrg 	int			swd_npages;	/* #pages we can use */
    133   1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    134   1.32       chs 	int			swd_npgbad;	/* #pages bad */
    135   1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    136   1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    137   1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    138   1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    139   1.16       mrg 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    140    1.1       mrg 
    141   1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    142   1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    143   1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    144   1.33   thorpej 	int			swd_active;	/* number of active buffers */
    145    1.1       mrg };
    146    1.1       mrg 
    147    1.1       mrg /*
    148    1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149    1.1       mrg  */
    150    1.1       mrg struct swappri {
    151    1.1       mrg 	int			spi_priority;     /* priority */
    152    1.1       mrg 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153    1.1       mrg 	/* circleq of swapdevs at this priority */
    154    1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155    1.1       mrg };
    156    1.1       mrg 
    157    1.1       mrg /*
    158    1.1       mrg  * The following two structures are used to keep track of data transfers
    159    1.1       mrg  * on swap devices associated with regular files.
    160    1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161    1.1       mrg  * structure names here to ease porting..
    162    1.1       mrg  */
    163    1.1       mrg struct vndxfer {
    164    1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165    1.1       mrg 	struct swapdev	*vx_sdp;
    166    1.1       mrg 	int		vx_error;
    167    1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    168    1.1       mrg 	int		vx_flags;
    169    1.1       mrg #define VX_BUSY		1
    170    1.1       mrg #define VX_DEAD		2
    171    1.1       mrg };
    172    1.1       mrg 
    173    1.1       mrg struct vndbuf {
    174    1.1       mrg 	struct buf	vb_buf;
    175    1.1       mrg 	struct vndxfer	*vb_xfer;
    176    1.1       mrg };
    177    1.1       mrg 
    178  1.144       mrg /*
    179  1.144       mrg  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    180  1.144       mrg  * dev_t and has no se_path[] member.
    181  1.144       mrg  */
    182  1.144       mrg struct swapent13 {
    183  1.144       mrg 	int32_t	se13_dev;		/* device id */
    184  1.144       mrg 	int	se13_flags;		/* flags */
    185  1.144       mrg 	int	se13_nblks;		/* total blocks */
    186  1.144       mrg 	int	se13_inuse;		/* blocks in use */
    187  1.144       mrg 	int	se13_priority;		/* priority of this device */
    188  1.144       mrg };
    189  1.144       mrg 
    190  1.144       mrg /*
    191  1.144       mrg  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    192  1.144       mrg  * dev_t.
    193  1.144       mrg  */
    194  1.144       mrg struct swapent50 {
    195  1.144       mrg 	int32_t	se50_dev;		/* device id */
    196  1.144       mrg 	int	se50_flags;		/* flags */
    197  1.144       mrg 	int	se50_nblks;		/* total blocks */
    198  1.144       mrg 	int	se50_inuse;		/* blocks in use */
    199  1.144       mrg 	int	se50_priority;		/* priority of this device */
    200  1.144       mrg 	char	se50_path[PATH_MAX+1];	/* path name */
    201  1.144       mrg };
    202   1.12        pk 
    203    1.1       mrg /*
    204   1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    205    1.1       mrg  */
    206  1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    207    1.1       mrg 
    208    1.1       mrg /*
    209    1.1       mrg  * local variables
    210    1.1       mrg  */
    211  1.111      yamt MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    212  1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    213    1.1       mrg 
    214    1.1       mrg /* list of all active swap devices [by priority] */
    215    1.1       mrg LIST_HEAD(swap_priority, swappri);
    216    1.1       mrg static struct swap_priority swap_priority;
    217    1.1       mrg 
    218    1.1       mrg /* locks */
    219  1.117        ad static krwlock_t swap_syscall_lock;
    220    1.1       mrg 
    221  1.130   hannken /* workqueue and use counter for swap to regular files */
    222  1.130   hannken static int sw_reg_count = 0;
    223  1.130   hannken static struct workqueue *sw_reg_workqueue;
    224  1.130   hannken 
    225  1.141        ad /* tuneables */
    226  1.141        ad u_int uvm_swapisfull_factor = 99;
    227  1.141        ad 
    228    1.1       mrg /*
    229    1.1       mrg  * prototypes
    230    1.1       mrg  */
    231   1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    232    1.1       mrg 
    233  1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    234   1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    235   1.85  junyoung 					 struct swappri *, int);
    236   1.85  junyoung static void		 swaplist_trim(void);
    237    1.1       mrg 
    238   1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    239   1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    240    1.1       mrg 
    241   1.95      yamt static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    242   1.95      yamt 
    243   1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    244  1.130   hannken static void sw_reg_biodone(struct buf *);
    245  1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    246   1.85  junyoung static void sw_reg_start(struct swapdev *);
    247    1.1       mrg 
    248   1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    249    1.1       mrg 
    250    1.1       mrg /*
    251    1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    252    1.1       mrg  *
    253   1.51       chs  * => called at boot time from init_main.c after the filesystems
    254    1.1       mrg  *	are brought up (which happens after uvm_init())
    255    1.1       mrg  */
    256    1.1       mrg void
    257   1.93   thorpej uvm_swap_init(void)
    258    1.1       mrg {
    259    1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    260    1.1       mrg 
    261    1.1       mrg 	UVMHIST_CALLED(pdhist);
    262    1.1       mrg 	/*
    263    1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    264    1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    265    1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    266    1.1       mrg 	 */
    267    1.1       mrg 
    268    1.1       mrg 	LIST_INIT(&swap_priority);
    269    1.1       mrg 	uvmexp.nswapdev = 0;
    270  1.117        ad 	rw_init(&swap_syscall_lock);
    271  1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    272   1.12        pk 
    273    1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    274  1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    275  1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    276  1.145       mrg 		panic("%s: can't lock swap device", __func__);
    277  1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    278  1.145       mrg 		panic("%s: can't open swap device", __func__);
    279  1.136   hannken 	VOP_UNLOCK(swapdev_vp, 0);
    280    1.1       mrg 
    281    1.1       mrg 	/*
    282    1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    283    1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    284   1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    285    1.1       mrg 	 * failure, or no allocation).
    286    1.1       mrg 	 */
    287  1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    288  1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    289  1.147     rmind 	if (swapmap == 0) {
    290  1.145       mrg 		panic("%s: vmem_create failed", __func__);
    291  1.147     rmind 	}
    292  1.146     pooka 
    293  1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    294  1.146     pooka 	    NULL, IPL_BIO);
    295  1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    296  1.146     pooka 	    NULL, IPL_BIO);
    297  1.147     rmind 
    298  1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    299    1.1       mrg }
    300    1.1       mrg 
    301    1.1       mrg /*
    302    1.1       mrg  * swaplist functions: functions that operate on the list of swap
    303    1.1       mrg  * devices on the system.
    304    1.1       mrg  */
    305    1.1       mrg 
    306    1.1       mrg /*
    307    1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    308    1.1       mrg  *
    309  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    310    1.1       mrg  * => caller must provide a newly malloc'd swappri structure (we will
    311    1.1       mrg  *	FREE it if we don't need it... this it to prevent malloc blocking
    312    1.1       mrg  *	here while adding swap)
    313    1.1       mrg  */
    314    1.1       mrg static void
    315   1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    316    1.1       mrg {
    317    1.1       mrg 	struct swappri *spp, *pspp;
    318    1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    319    1.1       mrg 
    320    1.1       mrg 	/*
    321    1.1       mrg 	 * find entry at or after which to insert the new device.
    322    1.1       mrg 	 */
    323   1.55       chs 	pspp = NULL;
    324   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    325    1.1       mrg 		if (priority <= spp->spi_priority)
    326    1.1       mrg 			break;
    327    1.1       mrg 		pspp = spp;
    328    1.1       mrg 	}
    329    1.1       mrg 
    330    1.1       mrg 	/*
    331    1.1       mrg 	 * new priority?
    332    1.1       mrg 	 */
    333    1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    334    1.1       mrg 		spp = newspp;  /* use newspp! */
    335   1.32       chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    336   1.32       chs 			    priority, 0, 0, 0);
    337    1.1       mrg 
    338    1.1       mrg 		spp->spi_priority = priority;
    339    1.1       mrg 		CIRCLEQ_INIT(&spp->spi_swapdev);
    340    1.1       mrg 
    341    1.1       mrg 		if (pspp)
    342    1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    343    1.1       mrg 		else
    344    1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    345    1.1       mrg 	} else {
    346    1.1       mrg 	  	/* we don't need a new priority structure, free it */
    347  1.142    cegger 		free(newspp, M_VMSWAP);
    348    1.1       mrg 	}
    349    1.1       mrg 
    350    1.1       mrg 	/*
    351    1.1       mrg 	 * priority found (or created).   now insert on the priority's
    352    1.1       mrg 	 * circleq list and bump the total number of swapdevs.
    353    1.1       mrg 	 */
    354    1.1       mrg 	sdp->swd_priority = priority;
    355    1.1       mrg 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    356    1.1       mrg 	uvmexp.nswapdev++;
    357    1.1       mrg }
    358    1.1       mrg 
    359    1.1       mrg /*
    360    1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    361    1.1       mrg  *	global list.
    362    1.1       mrg  *
    363  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    364    1.1       mrg  * => we return the swapdev we found (and removed)
    365    1.1       mrg  */
    366    1.1       mrg static struct swapdev *
    367  1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    368    1.1       mrg {
    369    1.1       mrg 	struct swapdev *sdp;
    370    1.1       mrg 	struct swappri *spp;
    371    1.1       mrg 
    372    1.1       mrg 	/*
    373    1.1       mrg 	 * search the lists for the requested vp
    374    1.1       mrg 	 */
    375   1.55       chs 
    376   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    377   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    378    1.1       mrg 			if (sdp->swd_vp == vp) {
    379    1.1       mrg 				if (remove) {
    380    1.1       mrg 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    381    1.1       mrg 					    sdp, swd_next);
    382    1.1       mrg 					uvmexp.nswapdev--;
    383    1.1       mrg 				}
    384    1.1       mrg 				return(sdp);
    385    1.1       mrg 			}
    386   1.55       chs 		}
    387    1.1       mrg 	}
    388    1.1       mrg 	return (NULL);
    389    1.1       mrg }
    390    1.1       mrg 
    391  1.113      elad /*
    392    1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    393    1.1       mrg  *	them.
    394    1.1       mrg  *
    395  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    396    1.1       mrg  */
    397    1.1       mrg static void
    398   1.93   thorpej swaplist_trim(void)
    399    1.1       mrg {
    400    1.1       mrg 	struct swappri *spp, *nextspp;
    401    1.1       mrg 
    402   1.32       chs 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    403   1.32       chs 		nextspp = LIST_NEXT(spp, spi_swappri);
    404   1.32       chs 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    405   1.32       chs 		    (void *)&spp->spi_swapdev)
    406    1.1       mrg 			continue;
    407    1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    408  1.111      yamt 		free(spp, M_VMSWAP);
    409    1.1       mrg 	}
    410    1.1       mrg }
    411    1.1       mrg 
    412    1.1       mrg /*
    413    1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    414    1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    415    1.1       mrg  *
    416    1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    417  1.127        ad  * => caller must hold uvm_swap_data_lock
    418    1.1       mrg  */
    419    1.1       mrg static struct swapdev *
    420   1.93   thorpej swapdrum_getsdp(int pgno)
    421    1.1       mrg {
    422    1.1       mrg 	struct swapdev *sdp;
    423    1.1       mrg 	struct swappri *spp;
    424   1.51       chs 
    425   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    426   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    427   1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    428   1.48      fvdl 				continue;
    429    1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    430    1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    431    1.1       mrg 				return sdp;
    432    1.1       mrg 			}
    433   1.48      fvdl 		}
    434   1.55       chs 	}
    435    1.1       mrg 	return NULL;
    436    1.1       mrg }
    437    1.1       mrg 
    438    1.1       mrg 
    439    1.1       mrg /*
    440    1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    441    1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    442    1.1       mrg  */
    443    1.1       mrg int
    444  1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    445    1.1       mrg {
    446  1.133       dsl 	/* {
    447    1.1       mrg 		syscallarg(int) cmd;
    448    1.1       mrg 		syscallarg(void *) arg;
    449    1.1       mrg 		syscallarg(int) misc;
    450  1.133       dsl 	} */
    451    1.1       mrg 	struct vnode *vp;
    452    1.1       mrg 	struct nameidata nd;
    453    1.1       mrg 	struct swappri *spp;
    454    1.1       mrg 	struct swapdev *sdp;
    455    1.1       mrg 	struct swapent *sep;
    456  1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    457  1.101  christos 	char	*userpath;
    458   1.18     enami 	size_t	len;
    459   1.61      manu 	int	error, misc;
    460    1.1       mrg 	int	priority;
    461    1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    462    1.1       mrg 
    463    1.1       mrg 	misc = SCARG(uap, misc);
    464    1.1       mrg 
    465    1.1       mrg 	/*
    466    1.1       mrg 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    467    1.1       mrg 	 */
    468  1.117        ad 	rw_enter(&swap_syscall_lock, RW_WRITER);
    469   1.24       mrg 
    470  1.111      yamt 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    471    1.1       mrg 	/*
    472    1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    473    1.1       mrg 	 *
    474   1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    475    1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    476    1.1       mrg 	 */
    477    1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    478    1.8       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    479    1.8       mrg 		    0, 0, 0);
    480    1.1       mrg 		*retval = uvmexp.nswapdev;
    481   1.16       mrg 		error = 0;
    482   1.16       mrg 		goto out;
    483    1.1       mrg 	}
    484    1.1       mrg 
    485    1.1       mrg 	/*
    486    1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    487    1.1       mrg 	 *
    488   1.51       chs 	 * note that the swap_priority list can't change as long
    489    1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    490  1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    491    1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    492    1.1       mrg 	 */
    493   1.16       mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    494  1.144       mrg #if defined(COMPAT_50)
    495  1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS50
    496  1.144       mrg #endif
    497   1.16       mrg #if defined(COMPAT_13)
    498  1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS13
    499   1.16       mrg #endif
    500   1.16       mrg 	    ) {
    501   1.88  christos 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    502   1.88  christos 			misc = uvmexp.nswapdev;
    503   1.16       mrg #if defined(COMPAT_13)
    504  1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS13)
    505  1.144       mrg 			len = sizeof(struct swapent13) * misc;
    506  1.144       mrg 		else
    507  1.144       mrg #endif
    508  1.144       mrg #if defined(COMPAT_50)
    509  1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS50)
    510  1.144       mrg 			len = sizeof(struct swapent50) * misc;
    511   1.62      manu 		else
    512   1.16       mrg #endif
    513   1.62      manu 			len = sizeof(struct swapent) * misc;
    514  1.111      yamt 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    515   1.62      manu 
    516   1.95      yamt 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    517   1.92  christos 		error = copyout(sep, SCARG(uap, arg), len);
    518    1.1       mrg 
    519  1.111      yamt 		free(sep, M_TEMP);
    520   1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    521   1.16       mrg 		goto out;
    522   1.51       chs 	}
    523   1.55       chs 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    524   1.55       chs 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    525   1.55       chs 
    526   1.55       chs 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    527   1.55       chs 		goto out;
    528   1.55       chs 	}
    529    1.1       mrg 
    530    1.1       mrg 	/*
    531    1.1       mrg 	 * all other requests require superuser privs.   verify.
    532    1.1       mrg 	 */
    533  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    534  1.106      elad 	    0, NULL, NULL, NULL)))
    535   1.16       mrg 		goto out;
    536    1.1       mrg 
    537  1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    538  1.104    martin 		/* drop the current dump device */
    539  1.104    martin 		dumpdev = NODEV;
    540  1.138    kardel 		dumpcdev = NODEV;
    541  1.104    martin 		cpu_dumpconf();
    542  1.104    martin 		goto out;
    543  1.104    martin 	}
    544  1.104    martin 
    545    1.1       mrg 	/*
    546    1.1       mrg 	 * at this point we expect a path name in arg.   we will
    547    1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    548    1.1       mrg 	 * the vnode (VOP_LOCK).
    549    1.1       mrg 	 *
    550    1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    551   1.16       mrg 	 * miniroot)
    552    1.1       mrg 	 */
    553    1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    554    1.1       mrg 		vp = rootvp;		/* miniroot */
    555   1.79   thorpej 		if (vget(vp, LK_EXCLUSIVE)) {
    556   1.16       mrg 			error = EBUSY;
    557   1.16       mrg 			goto out;
    558    1.1       mrg 		}
    559   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    560  1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    561   1.16       mrg 			panic("swapctl: miniroot copy failed");
    562    1.1       mrg 	} else {
    563   1.16       mrg 		int	space;
    564   1.16       mrg 		char	*where;
    565   1.16       mrg 
    566   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    567   1.16       mrg 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    568  1.101  christos 			    SWAP_PATH_MAX, &len)))
    569   1.16       mrg 				goto out;
    570   1.16       mrg 			space = UIO_SYSSPACE;
    571   1.16       mrg 			where = userpath;
    572   1.16       mrg 		} else {
    573   1.16       mrg 			space = UIO_USERSPACE;
    574   1.16       mrg 			where = (char *)SCARG(uap, arg);
    575    1.1       mrg 		}
    576  1.132     pooka 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    577  1.132     pooka 		    space, where);
    578   1.16       mrg 		if ((error = namei(&nd)))
    579   1.16       mrg 			goto out;
    580    1.1       mrg 		vp = nd.ni_vp;
    581    1.1       mrg 	}
    582    1.1       mrg 	/* note: "vp" is referenced and locked */
    583    1.1       mrg 
    584    1.1       mrg 	error = 0;		/* assume no error */
    585    1.1       mrg 	switch(SCARG(uap, cmd)) {
    586   1.40       mrg 
    587   1.24       mrg 	case SWAP_DUMPDEV:
    588   1.24       mrg 		if (vp->v_type != VBLK) {
    589   1.24       mrg 			error = ENOTBLK;
    590   1.45        pk 			break;
    591   1.24       mrg 		}
    592  1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    593  1.109       mrg 			dumpdev = vp->v_rdev;
    594  1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    595  1.138    kardel 		} else
    596  1.109       mrg 			dumpdev = NODEV;
    597   1.68  drochner 		cpu_dumpconf();
    598   1.24       mrg 		break;
    599   1.24       mrg 
    600    1.1       mrg 	case SWAP_CTL:
    601    1.1       mrg 		/*
    602    1.1       mrg 		 * get new priority, remove old entry (if any) and then
    603    1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    604    1.1       mrg 		 * any empty priority structures.
    605    1.1       mrg 		 */
    606    1.1       mrg 		priority = SCARG(uap, misc);
    607  1.111      yamt 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    608  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    609  1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    610    1.1       mrg 			error = ENOENT;
    611    1.1       mrg 		} else {
    612    1.1       mrg 			swaplist_insert(sdp, spp, priority);
    613    1.1       mrg 			swaplist_trim();
    614    1.1       mrg 		}
    615  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    616    1.1       mrg 		if (error)
    617  1.111      yamt 			free(spp, M_VMSWAP);
    618    1.1       mrg 		break;
    619    1.1       mrg 
    620    1.1       mrg 	case SWAP_ON:
    621   1.32       chs 
    622    1.1       mrg 		/*
    623    1.1       mrg 		 * check for duplicates.   if none found, then insert a
    624    1.1       mrg 		 * dummy entry on the list to prevent someone else from
    625    1.1       mrg 		 * trying to enable this device while we are working on
    626    1.1       mrg 		 * it.
    627    1.1       mrg 		 */
    628   1.32       chs 
    629    1.1       mrg 		priority = SCARG(uap, misc);
    630  1.111      yamt 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    631  1.111      yamt 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    632  1.111      yamt 		memset(sdp, 0, sizeof(*sdp));
    633   1.67       chs 		sdp->swd_flags = SWF_FAKE;
    634   1.67       chs 		sdp->swd_vp = vp;
    635   1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    636   1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    637  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    638  1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    639    1.1       mrg 			error = EBUSY;
    640  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    641   1.96      yamt 			bufq_free(sdp->swd_tab);
    642  1.111      yamt 			free(sdp, M_VMSWAP);
    643  1.111      yamt 			free(spp, M_VMSWAP);
    644   1.16       mrg 			break;
    645    1.1       mrg 		}
    646    1.1       mrg 		swaplist_insert(sdp, spp, priority);
    647  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    648    1.1       mrg 
    649   1.16       mrg 		sdp->swd_pathlen = len;
    650  1.111      yamt 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    651   1.19        pk 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    652   1.19        pk 			panic("swapctl: copystr");
    653   1.32       chs 
    654    1.1       mrg 		/*
    655    1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    656    1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    657    1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    658    1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    659    1.1       mrg 		 */
    660   1.32       chs 
    661   1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    662  1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    663  1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    664    1.1       mrg 			swaplist_trim();
    665  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    666   1.96      yamt 			bufq_free(sdp->swd_tab);
    667  1.111      yamt 			free(sdp->swd_path, M_VMSWAP);
    668  1.111      yamt 			free(sdp, M_VMSWAP);
    669    1.1       mrg 			break;
    670    1.1       mrg 		}
    671    1.1       mrg 		break;
    672    1.1       mrg 
    673    1.1       mrg 	case SWAP_OFF:
    674  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    675  1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    676  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    677    1.1       mrg 			error = ENXIO;
    678    1.1       mrg 			break;
    679    1.1       mrg 		}
    680   1.32       chs 
    681    1.1       mrg 		/*
    682    1.1       mrg 		 * If a device isn't in use or enabled, we
    683    1.1       mrg 		 * can't stop swapping from it (again).
    684    1.1       mrg 		 */
    685    1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    686  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    687    1.1       mrg 			error = EBUSY;
    688   1.16       mrg 			break;
    689    1.1       mrg 		}
    690    1.1       mrg 
    691    1.1       mrg 		/*
    692   1.32       chs 		 * do the real work.
    693    1.1       mrg 		 */
    694   1.97  christos 		error = swap_off(l, sdp);
    695    1.1       mrg 		break;
    696    1.1       mrg 
    697    1.1       mrg 	default:
    698    1.1       mrg 		error = EINVAL;
    699    1.1       mrg 	}
    700    1.1       mrg 
    701    1.1       mrg 	/*
    702   1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    703    1.1       mrg 	 */
    704    1.1       mrg 	vput(vp);
    705   1.39       chs 
    706   1.16       mrg out:
    707  1.111      yamt 	free(userpath, M_TEMP);
    708  1.117        ad 	rw_exit(&swap_syscall_lock);
    709    1.1       mrg 
    710    1.1       mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    711    1.1       mrg 	return (error);
    712   1.61      manu }
    713   1.61      manu 
    714   1.85  junyoung /*
    715   1.61      manu  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    716   1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    717   1.61      manu  * emulation to use it directly without going through sys_swapctl().
    718   1.61      manu  * The problem with using sys_swapctl() there is that it involves
    719   1.61      manu  * copying the swapent array to the stackgap, and this array's size
    720   1.85  junyoung  * is not known at build time. Hence it would not be possible to
    721   1.61      manu  * ensure it would fit in the stackgap in any case.
    722   1.61      manu  */
    723   1.61      manu void
    724   1.93   thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    725   1.61      manu {
    726   1.95      yamt 
    727  1.117        ad 	rw_enter(&swap_syscall_lock, RW_READER);
    728   1.95      yamt 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    729  1.117        ad 	rw_exit(&swap_syscall_lock);
    730   1.95      yamt }
    731   1.95      yamt 
    732   1.95      yamt static void
    733   1.95      yamt uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    734   1.95      yamt {
    735   1.61      manu 	struct swappri *spp;
    736   1.61      manu 	struct swapdev *sdp;
    737   1.61      manu 	int count = 0;
    738   1.61      manu 
    739   1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    740   1.61      manu 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    741   1.61      manu 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    742   1.61      manu 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    743  1.144       mrg 			int inuse;
    744  1.144       mrg 
    745   1.61      manu 		  	/*
    746   1.61      manu 			 * backwards compatibility for system call.
    747  1.144       mrg 			 * For NetBSD 1.3 and 5.0, we have to use
    748  1.144       mrg 			 * the 32 bit dev_t.  For 5.0 and -current
    749  1.144       mrg 			 * we have to add the path.
    750   1.61      manu 			 */
    751  1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    752   1.61      manu 			    PAGE_SHIFT);
    753   1.85  junyoung 
    754  1.144       mrg #if defined(COMPAT_13) || defined(COMPAT_50)
    755  1.144       mrg 			if (cmd == SWAP_STATS) {
    756  1.108   thorpej #endif
    757  1.144       mrg 				sep->se_dev = sdp->swd_dev;
    758  1.144       mrg 				sep->se_flags = sdp->swd_flags;
    759  1.144       mrg 				sep->se_nblks = sdp->swd_nblks;
    760  1.144       mrg 				sep->se_inuse = inuse;
    761  1.144       mrg 				sep->se_priority = sdp->swd_priority;
    762  1.144       mrg 				memcpy(&sep->se_path, sdp->swd_path,
    763  1.144       mrg 				       sizeof sep->se_path);
    764  1.144       mrg 				sep++;
    765   1.61      manu #if defined(COMPAT_13)
    766  1.144       mrg 			} else if (cmd == SWAP_STATS13) {
    767  1.144       mrg 				struct swapent13 *sep13 =
    768  1.144       mrg 				    (struct swapent13 *)sep;
    769  1.144       mrg 
    770  1.144       mrg 				sep13->se13_dev = sdp->swd_dev;
    771  1.144       mrg 				sep13->se13_flags = sdp->swd_flags;
    772  1.144       mrg 				sep13->se13_nblks = sdp->swd_nblks;
    773  1.144       mrg 				sep13->se13_inuse = inuse;
    774  1.144       mrg 				sep13->se13_priority = sdp->swd_priority;
    775  1.144       mrg 				sep = (struct swapent *)(sep13 + 1);
    776  1.144       mrg #endif
    777  1.144       mrg #if defined(COMPAT_50)
    778  1.144       mrg 			} else if (cmd == SWAP_STATS50) {
    779  1.144       mrg 				struct swapent50 *sep50 =
    780  1.144       mrg 				    (struct swapent50 *)sep;
    781  1.144       mrg 
    782  1.144       mrg 				sep50->se50_dev = sdp->swd_dev;
    783  1.144       mrg 				sep50->se50_flags = sdp->swd_flags;
    784  1.144       mrg 				sep50->se50_nblks = sdp->swd_nblks;
    785  1.144       mrg 				sep50->se50_inuse = inuse;
    786  1.144       mrg 				sep50->se50_priority = sdp->swd_priority;
    787  1.144       mrg 				memcpy(&sep50->se50_path, sdp->swd_path,
    788  1.144       mrg 				       sizeof sep50->se50_path);
    789  1.144       mrg 				sep = (struct swapent *)(sep50 + 1);
    790  1.148       wiz #endif
    791  1.148       wiz #if defined(COMPAT_13) || defined(COMPAT_50)
    792  1.144       mrg 			}
    793   1.61      manu #endif
    794   1.61      manu 			count++;
    795   1.61      manu 		}
    796   1.61      manu 	}
    797   1.61      manu 
    798   1.61      manu 	*retval = count;
    799   1.61      manu 	return;
    800    1.1       mrg }
    801    1.1       mrg 
    802    1.1       mrg /*
    803    1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    804    1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    805    1.1       mrg  *	SWF_FAKE).
    806    1.1       mrg  *
    807    1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    808    1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    809  1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    810    1.1       mrg  *	if needed.
    811    1.1       mrg  */
    812    1.1       mrg static int
    813   1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    814    1.1       mrg {
    815    1.1       mrg 	struct vnode *vp;
    816    1.1       mrg 	int error, npages, nblocks, size;
    817    1.1       mrg 	long addr;
    818   1.48      fvdl 	u_long result;
    819    1.1       mrg 	struct vattr va;
    820   1.69   gehenna 	const struct bdevsw *bdev;
    821    1.1       mrg 	dev_t dev;
    822    1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    823    1.1       mrg 
    824    1.1       mrg 	/*
    825    1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    826    1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    827    1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    828    1.1       mrg 	 */
    829    1.1       mrg 
    830    1.1       mrg 	vp = sdp->swd_vp;
    831    1.1       mrg 	dev = sdp->swd_dev;
    832    1.1       mrg 
    833    1.1       mrg 	/*
    834    1.1       mrg 	 * open the swap file (mostly useful for block device files to
    835    1.1       mrg 	 * let device driver know what is up).
    836    1.1       mrg 	 *
    837    1.1       mrg 	 * we skip the open/close for root on swap because the root
    838    1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    839    1.1       mrg 	 */
    840    1.1       mrg 	if (vp != rootvp) {
    841  1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    842    1.1       mrg 			return (error);
    843    1.1       mrg 	}
    844    1.1       mrg 
    845    1.1       mrg 	/* XXX this only works for block devices */
    846    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    847    1.1       mrg 
    848    1.1       mrg 	/*
    849    1.1       mrg 	 * we now need to determine the size of the swap area.   for
    850    1.1       mrg 	 * block specials we can call the d_psize function.
    851    1.1       mrg 	 * for normal files, we must stat [get attrs].
    852    1.1       mrg 	 *
    853    1.1       mrg 	 * we put the result in nblks.
    854    1.1       mrg 	 * for normal files, we also want the filesystem block size
    855    1.1       mrg 	 * (which we get with statfs).
    856    1.1       mrg 	 */
    857    1.1       mrg 	switch (vp->v_type) {
    858    1.1       mrg 	case VBLK:
    859   1.69   gehenna 		bdev = bdevsw_lookup(dev);
    860   1.69   gehenna 		if (bdev == NULL || bdev->d_psize == NULL ||
    861   1.69   gehenna 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    862    1.1       mrg 			error = ENXIO;
    863    1.1       mrg 			goto bad;
    864    1.1       mrg 		}
    865    1.1       mrg 		break;
    866    1.1       mrg 
    867    1.1       mrg 	case VREG:
    868  1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    869    1.1       mrg 			goto bad;
    870    1.1       mrg 		nblocks = (int)btodb(va.va_size);
    871  1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    872    1.1       mrg 		/*
    873    1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    874    1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    875    1.1       mrg 		 */
    876  1.150     pooka 		if (vp->v_tag == VT_NFS)
    877    1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    878    1.1       mrg 		else
    879    1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    880    1.1       mrg 		break;
    881    1.1       mrg 
    882    1.1       mrg 	default:
    883    1.1       mrg 		error = ENXIO;
    884    1.1       mrg 		goto bad;
    885    1.1       mrg 	}
    886    1.1       mrg 
    887    1.1       mrg 	/*
    888    1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    889    1.1       mrg 	 */
    890    1.1       mrg 
    891  1.144       mrg 	sdp->swd_nblks = nblocks;
    892   1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    893    1.1       mrg 
    894    1.1       mrg 	/*
    895    1.1       mrg 	 * for block special files, we want to make sure that leave
    896    1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    897   1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    898    1.1       mrg 	 * note that because of this the "size" can be less than the
    899    1.1       mrg 	 * actual number of blocks on the device.
    900    1.1       mrg 	 */
    901    1.1       mrg 	if (vp->v_type == VBLK) {
    902    1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    903    1.1       mrg 		size = npages - 1;
    904    1.1       mrg 		addr = 1;
    905    1.1       mrg 	} else {
    906    1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    907    1.1       mrg 		size = npages;
    908    1.1       mrg 		addr = 0;
    909    1.1       mrg 	}
    910    1.1       mrg 
    911    1.1       mrg 	/*
    912    1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    913    1.1       mrg 	 * area.   we want at least one page.
    914    1.1       mrg 	 */
    915    1.1       mrg 
    916    1.1       mrg 	if (size < 1) {
    917    1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    918    1.1       mrg 		error = EINVAL;
    919    1.1       mrg 		goto bad;
    920    1.1       mrg 	}
    921    1.1       mrg 
    922    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    923    1.1       mrg 
    924    1.1       mrg 	/*
    925    1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    926    1.1       mrg 	 */
    927    1.1       mrg 
    928   1.90      yamt 	sdp->swd_blist = blist_create(npages);
    929   1.90      yamt 	/* mark all expect the `saved' region free. */
    930   1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    931    1.1       mrg 
    932    1.1       mrg 	/*
    933   1.51       chs 	 * if the vnode we are swapping to is the root vnode
    934    1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    935   1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    936    1.1       mrg 	 * find its size and skip over it.
    937    1.1       mrg 	 */
    938    1.1       mrg 	if (vp == rootvp) {
    939    1.1       mrg 		struct mount *mp;
    940   1.86  christos 		struct statvfs *sp;
    941    1.1       mrg 		int rootblocks, rootpages;
    942    1.1       mrg 
    943    1.1       mrg 		mp = rootvnode->v_mount;
    944    1.1       mrg 		sp = &mp->mnt_stat;
    945   1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    946   1.64  fredette 		/*
    947   1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    948   1.64  fredette 		 * blocks in the filesystem, it's the number of
    949   1.64  fredette 		 * data blocks.  so, our rootblocks almost
    950   1.85  junyoung 		 * definitely underestimates the total size
    951   1.64  fredette 		 * of the filesystem - how badly depends on the
    952   1.85  junyoung 		 * details of the filesystem type.  there isn't
    953   1.64  fredette 		 * an obvious way to deal with this cleanly
    954   1.85  junyoung 		 * and perfectly, so for now we just pad our
    955   1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    956   1.64  fredette 		 */
    957   1.64  fredette 		rootblocks += (rootblocks >> 5) +
    958   1.64  fredette 			(rootblocks >> 6) +
    959   1.64  fredette 			(rootblocks >> 7);
    960   1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    961   1.32       chs 		if (rootpages > size)
    962    1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    963    1.1       mrg 
    964   1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    965    1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    966   1.90      yamt 		}
    967    1.1       mrg 
    968   1.32       chs 		size -= rootpages;
    969    1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    970   1.32       chs 		printf("leaving %d pages of swap\n", size);
    971    1.1       mrg 	}
    972    1.1       mrg 
    973   1.39       chs 	/*
    974   1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    975   1.39       chs 	 */
    976   1.39       chs 	vref(vp);
    977   1.39       chs 
    978    1.1       mrg 	/*
    979    1.1       mrg 	 * now add the new swapdev to the drum and enable.
    980    1.1       mrg 	 */
    981  1.110      yamt 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    982  1.110      yamt 	if (result == 0)
    983   1.48      fvdl 		panic("swapdrum_add");
    984  1.130   hannken 	/*
    985  1.130   hannken 	 * If this is the first regular swap create the workqueue.
    986  1.130   hannken 	 * => Protected by swap_syscall_lock.
    987  1.130   hannken 	 */
    988  1.130   hannken 	if (vp->v_type != VBLK) {
    989  1.130   hannken 		if (sw_reg_count++ == 0) {
    990  1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
    991  1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    992  1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    993  1.145       mrg 				panic("%s: workqueue_create failed", __func__);
    994  1.130   hannken 		}
    995  1.130   hannken 	}
    996   1.48      fvdl 
    997   1.48      fvdl 	sdp->swd_drumoffset = (int)result;
    998   1.48      fvdl 	sdp->swd_drumsize = npages;
    999   1.48      fvdl 	sdp->swd_npages = size;
   1000  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1001    1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1002    1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1003   1.32       chs 	uvmexp.swpages += size;
   1004   1.81        pk 	uvmexp.swpgavail += size;
   1005  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1006    1.1       mrg 	return (0);
   1007    1.1       mrg 
   1008    1.1       mrg 	/*
   1009   1.43       chs 	 * failure: clean up and return error.
   1010    1.1       mrg 	 */
   1011   1.43       chs 
   1012   1.43       chs bad:
   1013   1.90      yamt 	if (sdp->swd_blist) {
   1014   1.90      yamt 		blist_destroy(sdp->swd_blist);
   1015   1.43       chs 	}
   1016   1.43       chs 	if (vp != rootvp) {
   1017  1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1018   1.43       chs 	}
   1019    1.1       mrg 	return (error);
   1020    1.1       mrg }
   1021    1.1       mrg 
   1022    1.1       mrg /*
   1023    1.1       mrg  * swap_off: stop swapping on swapdev
   1024    1.1       mrg  *
   1025   1.32       chs  * => swap data should be locked, we will unlock.
   1026    1.1       mrg  */
   1027    1.1       mrg static int
   1028   1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1029    1.1       mrg {
   1030   1.91      yamt 	int npages = sdp->swd_npages;
   1031   1.91      yamt 	int error = 0;
   1032   1.81        pk 
   1033    1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1034   1.81        pk 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1035    1.1       mrg 
   1036   1.32       chs 	/* disable the swap area being removed */
   1037    1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1038   1.81        pk 	uvmexp.swpgavail -= npages;
   1039  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1040   1.32       chs 
   1041   1.32       chs 	/*
   1042   1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1043   1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1044   1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1045   1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1046   1.32       chs 	 */
   1047    1.1       mrg 
   1048   1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1049   1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1050   1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1051   1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1052   1.91      yamt 		error = ENOMEM;
   1053   1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1054   1.91      yamt 		error = EBUSY;
   1055   1.91      yamt 	}
   1056   1.51       chs 
   1057   1.91      yamt 	if (error) {
   1058  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1059   1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1060   1.81        pk 		uvmexp.swpgavail += npages;
   1061  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1062   1.91      yamt 
   1063   1.91      yamt 		return error;
   1064   1.32       chs 	}
   1065    1.1       mrg 
   1066    1.1       mrg 	/*
   1067  1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1068  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1069  1.130   hannken 	 */
   1070  1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1071  1.130   hannken 		KASSERT(sw_reg_count > 0);
   1072  1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1073  1.130   hannken 		if (--sw_reg_count == 0) {
   1074  1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1075  1.130   hannken 			sw_reg_workqueue = NULL;
   1076  1.130   hannken 		}
   1077  1.130   hannken 	}
   1078  1.130   hannken 
   1079  1.130   hannken 	/*
   1080   1.58     enami 	 * done with the vnode.
   1081   1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1082   1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1083    1.1       mrg 	 */
   1084   1.39       chs 	vrele(sdp->swd_vp);
   1085   1.32       chs 	if (sdp->swd_vp != rootvp) {
   1086  1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1087   1.32       chs 	}
   1088   1.32       chs 
   1089  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1090   1.81        pk 	uvmexp.swpages -= npages;
   1091   1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1092    1.1       mrg 
   1093  1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1094  1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1095   1.32       chs 	swaplist_trim();
   1096  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1097    1.1       mrg 
   1098   1.32       chs 	/*
   1099   1.32       chs 	 * free all resources!
   1100   1.32       chs 	 */
   1101  1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1102   1.90      yamt 	blist_destroy(sdp->swd_blist);
   1103   1.96      yamt 	bufq_free(sdp->swd_tab);
   1104  1.111      yamt 	free(sdp, M_VMSWAP);
   1105    1.1       mrg 	return (0);
   1106    1.1       mrg }
   1107    1.1       mrg 
   1108    1.1       mrg /*
   1109    1.1       mrg  * /dev/drum interface and i/o functions
   1110    1.1       mrg  */
   1111    1.1       mrg 
   1112    1.1       mrg /*
   1113    1.1       mrg  * swstrategy: perform I/O on the drum
   1114    1.1       mrg  *
   1115    1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1116    1.1       mrg  */
   1117   1.94   thorpej static void
   1118   1.93   thorpej swstrategy(struct buf *bp)
   1119    1.1       mrg {
   1120    1.1       mrg 	struct swapdev *sdp;
   1121    1.1       mrg 	struct vnode *vp;
   1122  1.134        ad 	int pageno, bn;
   1123    1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1124    1.1       mrg 
   1125    1.1       mrg 	/*
   1126    1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1127    1.1       mrg 	 * be yanked out from under us because we are holding resources
   1128    1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1129    1.1       mrg 	 */
   1130   1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1131  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1132    1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1133  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1134    1.1       mrg 	if (sdp == NULL) {
   1135    1.1       mrg 		bp->b_error = EINVAL;
   1136    1.1       mrg 		biodone(bp);
   1137    1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1138    1.1       mrg 		return;
   1139    1.1       mrg 	}
   1140    1.1       mrg 
   1141    1.1       mrg 	/*
   1142    1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1143    1.1       mrg 	 */
   1144    1.1       mrg 
   1145   1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1146   1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1147    1.1       mrg 
   1148   1.41       chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1149    1.1       mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1150    1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1151    1.1       mrg 
   1152    1.1       mrg 	/*
   1153    1.1       mrg 	 * for block devices we finish up here.
   1154   1.32       chs 	 * for regular files we have to do more work which we delegate
   1155    1.1       mrg 	 * to sw_reg_strategy().
   1156    1.1       mrg 	 */
   1157    1.1       mrg 
   1158  1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1159  1.134        ad 	switch (vp->v_type) {
   1160    1.1       mrg 	default:
   1161  1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1162   1.32       chs 
   1163    1.1       mrg 	case VBLK:
   1164    1.1       mrg 
   1165    1.1       mrg 		/*
   1166    1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1167    1.1       mrg 		 * on the swapdev (sdp).
   1168    1.1       mrg 		 */
   1169    1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1170    1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1171    1.1       mrg 
   1172    1.1       mrg 		/*
   1173    1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1174    1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1175    1.1       mrg 		 */
   1176    1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1177  1.134        ad 			mutex_enter(bp->b_objlock);
   1178    1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1179  1.134        ad 			mutex_exit(bp->b_objlock);
   1180  1.134        ad 			mutex_enter(&vp->v_interlock);
   1181  1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1182  1.134        ad 			mutex_exit(&vp->v_interlock);
   1183    1.1       mrg 		}
   1184    1.1       mrg 
   1185   1.41       chs 		/*
   1186    1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1187    1.1       mrg 		 */
   1188    1.1       mrg 		bp->b_vp = vp;
   1189  1.134        ad 		bp->b_objlock = &vp->v_interlock;
   1190   1.84   hannken 		VOP_STRATEGY(vp, bp);
   1191    1.1       mrg 		return;
   1192   1.32       chs 
   1193    1.1       mrg 	case VREG:
   1194    1.1       mrg 		/*
   1195   1.32       chs 		 * delegate to sw_reg_strategy function.
   1196    1.1       mrg 		 */
   1197    1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1198    1.1       mrg 		return;
   1199    1.1       mrg 	}
   1200    1.1       mrg 	/* NOTREACHED */
   1201    1.1       mrg }
   1202    1.1       mrg 
   1203    1.1       mrg /*
   1204   1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1205   1.94   thorpej  */
   1206   1.94   thorpej /*ARGSUSED*/
   1207   1.94   thorpej static int
   1208  1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1209   1.94   thorpej {
   1210   1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1211   1.94   thorpej 
   1212   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1213   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1214   1.94   thorpej }
   1215   1.94   thorpej 
   1216   1.94   thorpej /*
   1217   1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1218   1.94   thorpej  */
   1219   1.94   thorpej /*ARGSUSED*/
   1220   1.94   thorpej static int
   1221  1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1222   1.94   thorpej {
   1223   1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1224   1.94   thorpej 
   1225   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1226   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1227   1.94   thorpej }
   1228   1.94   thorpej 
   1229   1.94   thorpej const struct bdevsw swap_bdevsw = {
   1230  1.135   hannken 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1231   1.94   thorpej };
   1232   1.94   thorpej 
   1233   1.94   thorpej const struct cdevsw swap_cdevsw = {
   1234   1.94   thorpej 	nullopen, nullclose, swread, swwrite, noioctl,
   1235  1.105  christos 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1236   1.94   thorpej };
   1237   1.94   thorpej 
   1238   1.94   thorpej /*
   1239    1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1240    1.1       mrg  */
   1241    1.1       mrg static void
   1242   1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1243    1.1       mrg {
   1244    1.1       mrg 	struct vnode	*vp;
   1245    1.1       mrg 	struct vndxfer	*vnx;
   1246   1.44     enami 	daddr_t		nbn;
   1247  1.122  christos 	char 		*addr;
   1248   1.44     enami 	off_t		byteoff;
   1249    1.9       mrg 	int		s, off, nra, error, sz, resid;
   1250    1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1251    1.1       mrg 
   1252    1.1       mrg 	/*
   1253    1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1254    1.1       mrg 	 * our buffer.
   1255    1.1       mrg 	 */
   1256  1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1257    1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1258    1.1       mrg 	vnx->vx_error = 0;
   1259    1.1       mrg 	vnx->vx_pending = 0;
   1260    1.1       mrg 	vnx->vx_bp = bp;
   1261    1.1       mrg 	vnx->vx_sdp = sdp;
   1262    1.1       mrg 
   1263    1.1       mrg 	/*
   1264    1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1265    1.1       mrg 	 * our buffer.
   1266    1.1       mrg 	 */
   1267    1.1       mrg 	error = 0;
   1268    1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1269    1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1270   1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1271    1.1       mrg 
   1272    1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1273    1.1       mrg 		struct vndbuf	*nbp;
   1274    1.1       mrg 
   1275    1.1       mrg 		/*
   1276    1.1       mrg 		 * translate byteoffset into block number.  return values:
   1277    1.1       mrg 		 *   vp = vnode of underlying device
   1278    1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1279    1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1280    1.1       mrg 		 *	block)
   1281    1.1       mrg 		 */
   1282    1.1       mrg 		nra = 0;
   1283    1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1284    1.1       mrg 				 	&vp, &nbn, &nra);
   1285    1.1       mrg 
   1286   1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1287   1.51       chs 			/*
   1288   1.23      marc 			 * this used to just set error, but that doesn't
   1289   1.23      marc 			 * do the right thing.  Instead, it causes random
   1290   1.23      marc 			 * memory errors.  The panic() should remain until
   1291   1.23      marc 			 * this condition doesn't destabilize the system.
   1292   1.23      marc 			 */
   1293   1.23      marc #if 1
   1294  1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1295   1.23      marc #else
   1296    1.1       mrg 			error = EIO;	/* failure */
   1297   1.23      marc #endif
   1298   1.23      marc 		}
   1299    1.1       mrg 
   1300    1.1       mrg 		/*
   1301    1.1       mrg 		 * punt if there was an error or a hole in the file.
   1302    1.1       mrg 		 * we must wait for any i/o ops we have already started
   1303    1.1       mrg 		 * to finish before returning.
   1304    1.1       mrg 		 *
   1305    1.1       mrg 		 * XXX we could deal with holes here but it would be
   1306    1.1       mrg 		 * a hassle (in the write case).
   1307    1.1       mrg 		 */
   1308    1.1       mrg 		if (error) {
   1309    1.1       mrg 			s = splbio();
   1310    1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1311    1.1       mrg 			goto out;
   1312    1.1       mrg 		}
   1313    1.1       mrg 
   1314    1.1       mrg 		/*
   1315    1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1316    1.1       mrg 		 */
   1317   1.41       chs 		off = byteoff % sdp->swd_bsize;
   1318   1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1319   1.41       chs 		if (sz > resid)
   1320    1.1       mrg 			sz = resid;
   1321    1.1       mrg 
   1322   1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1323   1.41       chs 			    "vp %p/%p offset 0x%x/0x%x",
   1324   1.41       chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1325    1.1       mrg 
   1326    1.1       mrg 		/*
   1327    1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1328    1.1       mrg 		 * at the front of the nbp structure so that you can
   1329    1.1       mrg 		 * cast pointers between the two structure easily.
   1330    1.1       mrg 		 */
   1331  1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1332  1.134        ad 		buf_init(&nbp->vb_buf);
   1333  1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1334  1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1335  1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1336    1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1337   1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1338    1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1339    1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1340   1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1341    1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1342   1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1343  1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1344   1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1345  1.134        ad 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1346   1.53       chs 		if (vp->v_type == VBLK) {
   1347   1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1348   1.53       chs 		}
   1349    1.1       mrg 
   1350    1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1351    1.1       mrg 
   1352    1.1       mrg 		/*
   1353    1.1       mrg 		 * Just sort by block number
   1354    1.1       mrg 		 */
   1355    1.1       mrg 		s = splbio();
   1356    1.1       mrg 		if (vnx->vx_error != 0) {
   1357  1.134        ad 			buf_destroy(&nbp->vb_buf);
   1358  1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1359    1.1       mrg 			goto out;
   1360    1.1       mrg 		}
   1361    1.1       mrg 		vnx->vx_pending++;
   1362    1.1       mrg 
   1363    1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1364  1.134        ad 		/* XXXAD locking */
   1365  1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1366    1.1       mrg 		sw_reg_start(sdp);
   1367    1.1       mrg 		splx(s);
   1368    1.1       mrg 
   1369    1.1       mrg 		/*
   1370    1.1       mrg 		 * advance to the next I/O
   1371    1.1       mrg 		 */
   1372    1.9       mrg 		byteoff += sz;
   1373    1.1       mrg 		addr += sz;
   1374    1.1       mrg 	}
   1375    1.1       mrg 
   1376    1.1       mrg 	s = splbio();
   1377    1.1       mrg 
   1378    1.1       mrg out: /* Arrive here at splbio */
   1379    1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1380    1.1       mrg 	if (vnx->vx_pending == 0) {
   1381  1.134        ad 		error = vnx->vx_error;
   1382  1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1383  1.134        ad 		bp->b_error = error;
   1384    1.1       mrg 		biodone(bp);
   1385    1.1       mrg 	}
   1386    1.1       mrg 	splx(s);
   1387    1.1       mrg }
   1388    1.1       mrg 
   1389    1.1       mrg /*
   1390    1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1391    1.1       mrg  *
   1392   1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1393    1.1       mrg  */
   1394    1.1       mrg static void
   1395   1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1396    1.1       mrg {
   1397    1.1       mrg 	struct buf	*bp;
   1398  1.134        ad 	struct vnode	*vp;
   1399    1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1400    1.1       mrg 
   1401    1.8       mrg 	/* recursion control */
   1402    1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1403    1.1       mrg 		return;
   1404    1.1       mrg 
   1405    1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1406    1.1       mrg 
   1407   1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1408  1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1409    1.1       mrg 		if (bp == NULL)
   1410    1.1       mrg 			break;
   1411   1.33   thorpej 		sdp->swd_active++;
   1412    1.1       mrg 
   1413    1.1       mrg 		UVMHIST_LOG(pdhist,
   1414    1.1       mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1415    1.1       mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1416  1.134        ad 		vp = bp->b_vp;
   1417  1.134        ad 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1418  1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1419  1.134        ad 			mutex_enter(&vp->v_interlock);
   1420  1.134        ad 			vp->v_numoutput++;
   1421  1.134        ad 			mutex_exit(&vp->v_interlock);
   1422  1.134        ad 		}
   1423  1.134        ad 		VOP_STRATEGY(vp, bp);
   1424    1.1       mrg 	}
   1425    1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1426    1.1       mrg }
   1427    1.1       mrg 
   1428    1.1       mrg /*
   1429  1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1430  1.130   hannken  */
   1431  1.130   hannken static void
   1432  1.130   hannken sw_reg_biodone(struct buf *bp)
   1433  1.130   hannken {
   1434  1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1435  1.130   hannken }
   1436  1.130   hannken 
   1437  1.130   hannken /*
   1438    1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1439    1.1       mrg  *
   1440    1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1441    1.1       mrg  */
   1442    1.1       mrg static void
   1443  1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1444    1.1       mrg {
   1445  1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1446    1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1447    1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1448    1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1449   1.72       chs 	int s, resid, error;
   1450  1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1451    1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1452    1.1       mrg 
   1453    1.1       mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1454    1.1       mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1455    1.1       mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1456    1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1457    1.1       mrg 
   1458    1.1       mrg 	/*
   1459    1.1       mrg 	 * protect vbp at splbio and update.
   1460    1.1       mrg 	 */
   1461    1.1       mrg 
   1462    1.1       mrg 	s = splbio();
   1463    1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1464    1.1       mrg 	pbp->b_resid -= resid;
   1465    1.1       mrg 	vnx->vx_pending--;
   1466    1.1       mrg 
   1467  1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1468    1.1       mrg 		/* pass error upward */
   1469  1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1470   1.72       chs 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1471   1.72       chs 		vnx->vx_error = error;
   1472   1.35       chs 	}
   1473   1.35       chs 
   1474   1.35       chs 	/*
   1475    1.1       mrg 	 * kill vbp structure
   1476    1.1       mrg 	 */
   1477  1.134        ad 	buf_destroy(&vbp->vb_buf);
   1478  1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1479    1.1       mrg 
   1480    1.1       mrg 	/*
   1481    1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1482    1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1483    1.1       mrg 	 */
   1484    1.1       mrg 	if (vnx->vx_error != 0) {
   1485    1.1       mrg 		/* pass error upward */
   1486  1.134        ad 		error = vnx->vx_error;
   1487    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1488  1.134        ad 			pbp->b_error = error;
   1489    1.1       mrg 			biodone(pbp);
   1490  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1491    1.1       mrg 		}
   1492   1.11        pk 	} else if (pbp->b_resid == 0) {
   1493   1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1494    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1495    1.8       mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1496    1.8       mrg 			    pbp, vnx->vx_error, 0, 0);
   1497    1.1       mrg 			biodone(pbp);
   1498  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1499    1.1       mrg 		}
   1500    1.1       mrg 	}
   1501    1.1       mrg 
   1502    1.1       mrg 	/*
   1503    1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1504    1.1       mrg 	 */
   1505   1.33   thorpej 	sdp->swd_active--;
   1506    1.1       mrg 	sw_reg_start(sdp);
   1507    1.1       mrg 	splx(s);
   1508    1.1       mrg }
   1509    1.1       mrg 
   1510    1.1       mrg 
   1511    1.1       mrg /*
   1512    1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1513    1.1       mrg  *
   1514    1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1515    1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1516    1.1       mrg  * => space can be freed with uvm_swap_free
   1517    1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1518  1.127        ad  * => we lock uvm_swap_data_lock
   1519    1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1520    1.1       mrg  */
   1521    1.1       mrg int
   1522  1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1523    1.1       mrg {
   1524    1.1       mrg 	struct swapdev *sdp;
   1525    1.1       mrg 	struct swappri *spp;
   1526    1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1527    1.1       mrg 
   1528    1.1       mrg 	/*
   1529    1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1530    1.1       mrg 	 */
   1531    1.1       mrg 	if (uvmexp.nswapdev < 1)
   1532    1.1       mrg 		return 0;
   1533   1.51       chs 
   1534    1.1       mrg 	/*
   1535    1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1536    1.1       mrg 	 */
   1537  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1538    1.1       mrg 
   1539    1.1       mrg ReTry:	/* XXXMRG */
   1540   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1541   1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1542   1.90      yamt 			uint64_t result;
   1543   1.90      yamt 
   1544    1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1545    1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1546    1.1       mrg 				continue;
   1547    1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1548    1.1       mrg 				continue;
   1549   1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1550   1.90      yamt 			if (result == BLIST_NONE) {
   1551    1.1       mrg 				continue;
   1552    1.1       mrg 			}
   1553   1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1554    1.1       mrg 
   1555    1.1       mrg 			/*
   1556    1.1       mrg 			 * successful allocation!  now rotate the circleq.
   1557    1.1       mrg 			 */
   1558    1.1       mrg 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1559    1.1       mrg 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1560    1.1       mrg 			sdp->swd_npginuse += *nslots;
   1561    1.1       mrg 			uvmexp.swpginuse += *nslots;
   1562  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1563    1.1       mrg 			/* done!  return drum slot number */
   1564    1.1       mrg 			UVMHIST_LOG(pdhist,
   1565    1.1       mrg 			    "success!  returning %d slots starting at %d",
   1566    1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1567   1.55       chs 			return (result + sdp->swd_drumoffset);
   1568    1.1       mrg 		}
   1569    1.1       mrg 	}
   1570    1.1       mrg 
   1571    1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1572    1.1       mrg 	if (*nslots > 1 && lessok) {
   1573    1.1       mrg 		*nslots = 1;
   1574   1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1575   1.90      yamt 		goto ReTry;
   1576    1.1       mrg 	}
   1577    1.1       mrg 	/* XXXMRG: END HACK */
   1578    1.1       mrg 
   1579  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1580   1.55       chs 	return 0;
   1581    1.1       mrg }
   1582    1.1       mrg 
   1583  1.141        ad /*
   1584  1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1585  1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1586  1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1587  1.141        ad  * pages are busy.
   1588  1.141        ad  */
   1589  1.119   thorpej bool
   1590   1.81        pk uvm_swapisfull(void)
   1591   1.81        pk {
   1592  1.141        ad 	int swpgonly;
   1593  1.119   thorpej 	bool rv;
   1594   1.81        pk 
   1595  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1596   1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1597  1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1598  1.141        ad 	    uvm_swapisfull_factor);
   1599  1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1600  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1601   1.81        pk 
   1602   1.81        pk 	return (rv);
   1603   1.81        pk }
   1604   1.81        pk 
   1605    1.1       mrg /*
   1606   1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1607   1.32       chs  *
   1608  1.127        ad  * => we lock uvm_swap_data_lock
   1609   1.32       chs  */
   1610   1.32       chs void
   1611   1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1612   1.32       chs {
   1613   1.32       chs 	struct swapdev *sdp;
   1614   1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1615   1.32       chs 
   1616  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1617   1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1618   1.82        pk 	KASSERT(sdp != NULL);
   1619   1.32       chs 
   1620   1.32       chs 	/*
   1621   1.32       chs 	 * we just keep track of how many pages have been marked bad
   1622   1.32       chs 	 * in this device, to make everything add up in swap_off().
   1623   1.32       chs 	 * we assume here that the range of slots will all be within
   1624   1.32       chs 	 * one swap device.
   1625   1.32       chs 	 */
   1626   1.41       chs 
   1627   1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1628   1.82        pk 	uvmexp.swpgonly -= nslots;
   1629   1.32       chs 	sdp->swd_npgbad += nslots;
   1630   1.41       chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1631  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1632   1.32       chs }
   1633   1.32       chs 
   1634   1.32       chs /*
   1635    1.1       mrg  * uvm_swap_free: free swap slots
   1636    1.1       mrg  *
   1637    1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1638  1.127        ad  * => we lock uvm_swap_data_lock
   1639    1.1       mrg  */
   1640    1.1       mrg void
   1641   1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1642    1.1       mrg {
   1643    1.1       mrg 	struct swapdev *sdp;
   1644    1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1645    1.1       mrg 
   1646    1.1       mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1647    1.1       mrg 	    startslot, 0, 0);
   1648   1.32       chs 
   1649   1.32       chs 	/*
   1650   1.32       chs 	 * ignore attempts to free the "bad" slot.
   1651   1.32       chs 	 */
   1652   1.46       chs 
   1653   1.32       chs 	if (startslot == SWSLOT_BAD) {
   1654   1.32       chs 		return;
   1655   1.32       chs 	}
   1656   1.32       chs 
   1657    1.1       mrg 	/*
   1658   1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1659   1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1660    1.1       mrg 	 * lookup and access the extent.
   1661    1.1       mrg 	 */
   1662   1.46       chs 
   1663  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1664    1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1665   1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1666   1.46       chs 	KASSERT(sdp != NULL);
   1667   1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1668   1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1669    1.1       mrg 	sdp->swd_npginuse -= nslots;
   1670    1.1       mrg 	uvmexp.swpginuse -= nslots;
   1671  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1672    1.1       mrg }
   1673    1.1       mrg 
   1674    1.1       mrg /*
   1675    1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1676    1.1       mrg  *
   1677    1.1       mrg  * => can be sync or async
   1678    1.1       mrg  */
   1679   1.54       chs 
   1680    1.1       mrg int
   1681   1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1682    1.1       mrg {
   1683   1.56       chs 	int error;
   1684    1.1       mrg 
   1685   1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1686    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1687   1.56       chs 	return error;
   1688    1.1       mrg }
   1689    1.1       mrg 
   1690    1.1       mrg /*
   1691    1.1       mrg  * uvm_swap_get: get a single page from swap
   1692    1.1       mrg  *
   1693    1.1       mrg  * => usually a sync op (from fault)
   1694    1.1       mrg  */
   1695   1.54       chs 
   1696    1.1       mrg int
   1697   1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1698    1.1       mrg {
   1699   1.56       chs 	int error;
   1700    1.1       mrg 
   1701    1.1       mrg 	uvmexp.nswget++;
   1702   1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1703   1.32       chs 	if (swslot == SWSLOT_BAD) {
   1704   1.47       chs 		return EIO;
   1705   1.32       chs 	}
   1706   1.81        pk 
   1707   1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1708    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1709   1.56       chs 	if (error == 0) {
   1710   1.47       chs 
   1711   1.26       chs 		/*
   1712   1.54       chs 		 * this page is no longer only in swap.
   1713   1.26       chs 		 */
   1714   1.47       chs 
   1715  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1716   1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1717   1.54       chs 		uvmexp.swpgonly--;
   1718  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1719   1.26       chs 	}
   1720   1.56       chs 	return error;
   1721    1.1       mrg }
   1722    1.1       mrg 
   1723    1.1       mrg /*
   1724    1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1725    1.1       mrg  */
   1726    1.1       mrg 
   1727    1.1       mrg static int
   1728   1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1729    1.1       mrg {
   1730    1.1       mrg 	daddr_t startblk;
   1731    1.1       mrg 	struct	buf *bp;
   1732   1.15       eeh 	vaddr_t kva;
   1733  1.134        ad 	int	error, mapinflags;
   1734  1.119   thorpej 	bool write, async;
   1735    1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1736    1.1       mrg 
   1737    1.1       mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1738    1.1       mrg 	    startslot, npages, flags, 0);
   1739   1.32       chs 
   1740   1.41       chs 	write = (flags & B_READ) == 0;
   1741   1.41       chs 	async = (flags & B_ASYNC) != 0;
   1742   1.41       chs 
   1743    1.1       mrg 	/*
   1744  1.137      yamt 	 * allocate a buf for the i/o.
   1745  1.137      yamt 	 */
   1746  1.137      yamt 
   1747  1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1748  1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1749  1.137      yamt 	if (bp == NULL) {
   1750  1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1751  1.137      yamt 		return ENOMEM;
   1752  1.137      yamt 	}
   1753  1.137      yamt 
   1754  1.137      yamt 	/*
   1755    1.1       mrg 	 * convert starting drum slot to block number
   1756    1.1       mrg 	 */
   1757   1.54       chs 
   1758   1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1759    1.1       mrg 
   1760    1.1       mrg 	/*
   1761   1.54       chs 	 * first, map the pages into the kernel.
   1762   1.41       chs 	 */
   1763   1.41       chs 
   1764   1.54       chs 	mapinflags = !write ?
   1765   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1766   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1767   1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1768    1.1       mrg 
   1769   1.51       chs 	/*
   1770    1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1771    1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1772    1.1       mrg 	 */
   1773   1.54       chs 
   1774  1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1775  1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1776    1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1777   1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1778  1.122  christos 	bp->b_data = (void *)kva;
   1779    1.1       mrg 	bp->b_blkno = startblk;
   1780   1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1781    1.1       mrg 
   1782   1.51       chs 	/*
   1783   1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1784    1.1       mrg 	 */
   1785   1.54       chs 
   1786   1.41       chs 	if (write) {
   1787  1.134        ad 		mutex_enter(&swapdev_vp->v_interlock);
   1788  1.134        ad 		swapdev_vp->v_numoutput++;
   1789  1.134        ad 		mutex_exit(&swapdev_vp->v_interlock);
   1790    1.1       mrg 	}
   1791    1.1       mrg 
   1792    1.1       mrg 	/*
   1793   1.41       chs 	 * for async ops we must set up the iodone handler.
   1794    1.1       mrg 	 */
   1795   1.54       chs 
   1796   1.41       chs 	if (async) {
   1797   1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1798    1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1799  1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1800   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1801   1.83      yamt 		else
   1802   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1803   1.83      yamt 	} else {
   1804  1.134        ad 		bp->b_iodone = NULL;
   1805   1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1806    1.1       mrg 	}
   1807    1.1       mrg 	UVMHIST_LOG(pdhist,
   1808   1.41       chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1809    1.1       mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1810    1.1       mrg 
   1811    1.1       mrg 	/*
   1812    1.1       mrg 	 * now we start the I/O, and if async, return.
   1813    1.1       mrg 	 */
   1814   1.54       chs 
   1815   1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1816   1.41       chs 	if (async)
   1817   1.47       chs 		return 0;
   1818    1.1       mrg 
   1819    1.1       mrg 	/*
   1820    1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1821    1.1       mrg 	 */
   1822   1.54       chs 
   1823   1.47       chs 	error = biowait(bp);
   1824    1.1       mrg 
   1825    1.1       mrg 	/*
   1826    1.1       mrg 	 * kill the pager mapping
   1827    1.1       mrg 	 */
   1828   1.54       chs 
   1829    1.1       mrg 	uvm_pagermapout(kva, npages);
   1830    1.1       mrg 
   1831    1.1       mrg 	/*
   1832   1.54       chs 	 * now dispose of the buf and we're done.
   1833    1.1       mrg 	 */
   1834   1.54       chs 
   1835  1.134        ad 	if (write) {
   1836  1.134        ad 		mutex_enter(&swapdev_vp->v_interlock);
   1837   1.41       chs 		vwakeup(bp);
   1838  1.134        ad 		mutex_exit(&swapdev_vp->v_interlock);
   1839  1.134        ad 	}
   1840   1.98      yamt 	putiobuf(bp);
   1841   1.47       chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1842  1.134        ad 
   1843   1.47       chs 	return (error);
   1844    1.1       mrg }
   1845