Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.157.2.1
      1  1.157.2.1      yamt /*	$NetBSD: uvm_swap.c,v 1.157.2.1 2012/04/17 00:09:00 yamt Exp $	*/
      2        1.1       mrg 
      3        1.1       mrg /*
      4      1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5        1.1       mrg  * All rights reserved.
      6        1.1       mrg  *
      7        1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8        1.1       mrg  * modification, are permitted provided that the following conditions
      9        1.1       mrg  * are met:
     10        1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11        1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12        1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14        1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15        1.1       mrg  *
     16        1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17        1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18        1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19        1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20        1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21        1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22        1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23        1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24        1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25        1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26        1.1       mrg  * SUCH DAMAGE.
     27        1.3       mrg  *
     28        1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29        1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30        1.1       mrg  */
     31       1.57     lukem 
     32       1.57     lukem #include <sys/cdefs.h>
     33  1.157.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.157.2.1 2012/04/17 00:09:00 yamt Exp $");
     34        1.5       mrg 
     35        1.5       mrg #include "opt_uvmhist.h"
     36       1.16       mrg #include "opt_compat_netbsd.h"
     37       1.41       chs #include "opt_ddb.h"
     38        1.1       mrg 
     39        1.1       mrg #include <sys/param.h>
     40        1.1       mrg #include <sys/systm.h>
     41        1.1       mrg #include <sys/buf.h>
     42       1.89      yamt #include <sys/bufq.h>
     43       1.36       mrg #include <sys/conf.h>
     44        1.1       mrg #include <sys/proc.h>
     45        1.1       mrg #include <sys/namei.h>
     46        1.1       mrg #include <sys/disklabel.h>
     47        1.1       mrg #include <sys/errno.h>
     48        1.1       mrg #include <sys/kernel.h>
     49        1.1       mrg #include <sys/vnode.h>
     50        1.1       mrg #include <sys/file.h>
     51      1.110      yamt #include <sys/vmem.h>
     52       1.90      yamt #include <sys/blist.h>
     53        1.1       mrg #include <sys/mount.h>
     54       1.12        pk #include <sys/pool.h>
     55  1.157.2.1      yamt #include <sys/kmem.h>
     56        1.1       mrg #include <sys/syscallargs.h>
     57       1.17       mrg #include <sys/swap.h>
     58      1.100      elad #include <sys/kauth.h>
     59      1.125        ad #include <sys/sysctl.h>
     60      1.130   hannken #include <sys/workqueue.h>
     61        1.1       mrg 
     62        1.1       mrg #include <uvm/uvm.h>
     63        1.1       mrg 
     64        1.1       mrg #include <miscfs/specfs/specdev.h>
     65        1.1       mrg 
     66        1.1       mrg /*
     67        1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     68        1.1       mrg  */
     69        1.1       mrg 
     70        1.1       mrg /*
     71        1.1       mrg  * swap space is managed in the following way:
     72       1.51       chs  *
     73        1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     74        1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     75        1.1       mrg  * information that is passed up to the user (via system calls).
     76        1.1       mrg  *
     77        1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     78        1.1       mrg  * swap parition usage.
     79        1.1       mrg  *
     80        1.1       mrg  * the system maintains a global data structure describing all swap
     81        1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     82        1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     83       1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     84        1.1       mrg  * CIRCLEQ of "swapdev" structures at that priority.
     85        1.1       mrg  *
     86        1.1       mrg  * locking:
     87      1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88        1.1       mrg  *    system call and prevents the swap priority list from changing
     89        1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90      1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91        1.1       mrg  *    structures including the priority list, the swapdev structures,
     92      1.110      yamt  *    and the swapmap arena.
     93        1.1       mrg  *
     94        1.1       mrg  * each swap device has the following info:
     95        1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     96        1.1       mrg  *  - swap enabled (allows new allocations on swap)
     97        1.1       mrg  *  - map info in /dev/drum
     98        1.1       mrg  *  - vnode pointer
     99        1.1       mrg  * for swap files only:
    100        1.1       mrg  *  - block size
    101        1.1       mrg  *  - max byte count in buffer
    102        1.1       mrg  *  - buffer
    103        1.1       mrg  *
    104        1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    105        1.1       mrg  * the sys_swapctl performs the following operations:
    106        1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107       1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108        1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109       1.85  junyoung  *	the current swap config into the array. The actual work is done
    110      1.155     rmind  *	in the uvm_swap_stats() function.
    111        1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112        1.1       mrg  *	priority in "misc", start swapping on it.
    113        1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114        1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115        1.1       mrg  *	"misc")
    116        1.1       mrg  */
    117        1.1       mrg 
    118        1.1       mrg /*
    119        1.1       mrg  * swapdev: describes a single swap partition/file
    120        1.1       mrg  *
    121        1.1       mrg  * note the following should be true:
    122        1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    123        1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    124        1.1       mrg  */
    125        1.1       mrg struct swapdev {
    126      1.144       mrg 	dev_t			swd_dev;	/* device id */
    127      1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    128      1.144       mrg 	int			swd_priority;	/* our priority */
    129      1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    130       1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    131       1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    132       1.16       mrg 	int			swd_npages;	/* #pages we can use */
    133       1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    134       1.32       chs 	int			swd_npgbad;	/* #pages bad */
    135       1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    136       1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    137       1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    138       1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    139       1.16       mrg 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    140        1.1       mrg 
    141       1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    142       1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    143       1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    144       1.33   thorpej 	int			swd_active;	/* number of active buffers */
    145        1.1       mrg };
    146        1.1       mrg 
    147        1.1       mrg /*
    148        1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149        1.1       mrg  */
    150        1.1       mrg struct swappri {
    151        1.1       mrg 	int			spi_priority;     /* priority */
    152        1.1       mrg 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153        1.1       mrg 	/* circleq of swapdevs at this priority */
    154        1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155        1.1       mrg };
    156        1.1       mrg 
    157        1.1       mrg /*
    158        1.1       mrg  * The following two structures are used to keep track of data transfers
    159        1.1       mrg  * on swap devices associated with regular files.
    160        1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161        1.1       mrg  * structure names here to ease porting..
    162        1.1       mrg  */
    163        1.1       mrg struct vndxfer {
    164        1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165        1.1       mrg 	struct swapdev	*vx_sdp;
    166        1.1       mrg 	int		vx_error;
    167        1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    168        1.1       mrg 	int		vx_flags;
    169        1.1       mrg #define VX_BUSY		1
    170        1.1       mrg #define VX_DEAD		2
    171        1.1       mrg };
    172        1.1       mrg 
    173        1.1       mrg struct vndbuf {
    174        1.1       mrg 	struct buf	vb_buf;
    175        1.1       mrg 	struct vndxfer	*vb_xfer;
    176        1.1       mrg };
    177        1.1       mrg 
    178      1.144       mrg /*
    179      1.144       mrg  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    180      1.144       mrg  * dev_t and has no se_path[] member.
    181      1.144       mrg  */
    182      1.144       mrg struct swapent13 {
    183      1.144       mrg 	int32_t	se13_dev;		/* device id */
    184      1.144       mrg 	int	se13_flags;		/* flags */
    185      1.144       mrg 	int	se13_nblks;		/* total blocks */
    186      1.144       mrg 	int	se13_inuse;		/* blocks in use */
    187      1.144       mrg 	int	se13_priority;		/* priority of this device */
    188      1.144       mrg };
    189      1.144       mrg 
    190      1.144       mrg /*
    191      1.144       mrg  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    192      1.144       mrg  * dev_t.
    193      1.144       mrg  */
    194      1.144       mrg struct swapent50 {
    195      1.144       mrg 	int32_t	se50_dev;		/* device id */
    196      1.144       mrg 	int	se50_flags;		/* flags */
    197      1.144       mrg 	int	se50_nblks;		/* total blocks */
    198      1.144       mrg 	int	se50_inuse;		/* blocks in use */
    199      1.144       mrg 	int	se50_priority;		/* priority of this device */
    200      1.144       mrg 	char	se50_path[PATH_MAX+1];	/* path name */
    201      1.144       mrg };
    202       1.12        pk 
    203        1.1       mrg /*
    204       1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    205        1.1       mrg  */
    206      1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    207        1.1       mrg 
    208        1.1       mrg /*
    209        1.1       mrg  * local variables
    210        1.1       mrg  */
    211      1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    212        1.1       mrg 
    213        1.1       mrg /* list of all active swap devices [by priority] */
    214        1.1       mrg LIST_HEAD(swap_priority, swappri);
    215        1.1       mrg static struct swap_priority swap_priority;
    216        1.1       mrg 
    217        1.1       mrg /* locks */
    218      1.117        ad static krwlock_t swap_syscall_lock;
    219        1.1       mrg 
    220      1.130   hannken /* workqueue and use counter for swap to regular files */
    221      1.130   hannken static int sw_reg_count = 0;
    222      1.130   hannken static struct workqueue *sw_reg_workqueue;
    223      1.130   hannken 
    224      1.141        ad /* tuneables */
    225      1.141        ad u_int uvm_swapisfull_factor = 99;
    226      1.141        ad 
    227        1.1       mrg /*
    228        1.1       mrg  * prototypes
    229        1.1       mrg  */
    230       1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    231        1.1       mrg 
    232      1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    233       1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    234       1.85  junyoung 					 struct swappri *, int);
    235       1.85  junyoung static void		 swaplist_trim(void);
    236        1.1       mrg 
    237       1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    238       1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    239        1.1       mrg 
    240      1.155     rmind static void uvm_swap_stats(int, struct swapent *, int, register_t *);
    241       1.95      yamt 
    242       1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    243      1.130   hannken static void sw_reg_biodone(struct buf *);
    244      1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    245       1.85  junyoung static void sw_reg_start(struct swapdev *);
    246        1.1       mrg 
    247       1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    248        1.1       mrg 
    249        1.1       mrg /*
    250        1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    251        1.1       mrg  *
    252       1.51       chs  * => called at boot time from init_main.c after the filesystems
    253        1.1       mrg  *	are brought up (which happens after uvm_init())
    254        1.1       mrg  */
    255        1.1       mrg void
    256       1.93   thorpej uvm_swap_init(void)
    257        1.1       mrg {
    258        1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    259        1.1       mrg 
    260        1.1       mrg 	UVMHIST_CALLED(pdhist);
    261        1.1       mrg 	/*
    262        1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    263        1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    264        1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    265        1.1       mrg 	 */
    266        1.1       mrg 
    267        1.1       mrg 	LIST_INIT(&swap_priority);
    268        1.1       mrg 	uvmexp.nswapdev = 0;
    269      1.117        ad 	rw_init(&swap_syscall_lock);
    270      1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    271       1.12        pk 
    272        1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    273      1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    274      1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    275      1.145       mrg 		panic("%s: can't lock swap device", __func__);
    276      1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    277      1.145       mrg 		panic("%s: can't open swap device", __func__);
    278      1.151   hannken 	VOP_UNLOCK(swapdev_vp);
    279        1.1       mrg 
    280        1.1       mrg 	/*
    281        1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    282        1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    283       1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    284        1.1       mrg 	 * failure, or no allocation).
    285        1.1       mrg 	 */
    286      1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    287      1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    288      1.147     rmind 	if (swapmap == 0) {
    289      1.145       mrg 		panic("%s: vmem_create failed", __func__);
    290      1.147     rmind 	}
    291      1.146     pooka 
    292      1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    293      1.146     pooka 	    NULL, IPL_BIO);
    294      1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    295      1.146     pooka 	    NULL, IPL_BIO);
    296      1.147     rmind 
    297      1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    298        1.1       mrg }
    299        1.1       mrg 
    300        1.1       mrg /*
    301        1.1       mrg  * swaplist functions: functions that operate on the list of swap
    302        1.1       mrg  * devices on the system.
    303        1.1       mrg  */
    304        1.1       mrg 
    305        1.1       mrg /*
    306        1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    307        1.1       mrg  *
    308      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    309      1.154     rmind  * => caller must provide a newly allocated swappri structure (we will
    310      1.154     rmind  *	FREE it if we don't need it... this it to prevent allocation
    311      1.154     rmind  *	blocking here while adding swap)
    312        1.1       mrg  */
    313        1.1       mrg static void
    314       1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    315        1.1       mrg {
    316        1.1       mrg 	struct swappri *spp, *pspp;
    317        1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    318        1.1       mrg 
    319        1.1       mrg 	/*
    320        1.1       mrg 	 * find entry at or after which to insert the new device.
    321        1.1       mrg 	 */
    322       1.55       chs 	pspp = NULL;
    323       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    324        1.1       mrg 		if (priority <= spp->spi_priority)
    325        1.1       mrg 			break;
    326        1.1       mrg 		pspp = spp;
    327        1.1       mrg 	}
    328        1.1       mrg 
    329        1.1       mrg 	/*
    330        1.1       mrg 	 * new priority?
    331        1.1       mrg 	 */
    332        1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    333        1.1       mrg 		spp = newspp;  /* use newspp! */
    334       1.32       chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    335       1.32       chs 			    priority, 0, 0, 0);
    336        1.1       mrg 
    337        1.1       mrg 		spp->spi_priority = priority;
    338        1.1       mrg 		CIRCLEQ_INIT(&spp->spi_swapdev);
    339        1.1       mrg 
    340        1.1       mrg 		if (pspp)
    341        1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    342        1.1       mrg 		else
    343        1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    344        1.1       mrg 	} else {
    345        1.1       mrg 	  	/* we don't need a new priority structure, free it */
    346  1.157.2.1      yamt 		kmem_free(newspp, sizeof(*newspp));
    347        1.1       mrg 	}
    348        1.1       mrg 
    349        1.1       mrg 	/*
    350        1.1       mrg 	 * priority found (or created).   now insert on the priority's
    351        1.1       mrg 	 * circleq list and bump the total number of swapdevs.
    352        1.1       mrg 	 */
    353        1.1       mrg 	sdp->swd_priority = priority;
    354        1.1       mrg 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    355        1.1       mrg 	uvmexp.nswapdev++;
    356        1.1       mrg }
    357        1.1       mrg 
    358        1.1       mrg /*
    359        1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    360        1.1       mrg  *	global list.
    361        1.1       mrg  *
    362      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    363        1.1       mrg  * => we return the swapdev we found (and removed)
    364        1.1       mrg  */
    365        1.1       mrg static struct swapdev *
    366      1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    367        1.1       mrg {
    368        1.1       mrg 	struct swapdev *sdp;
    369        1.1       mrg 	struct swappri *spp;
    370        1.1       mrg 
    371        1.1       mrg 	/*
    372        1.1       mrg 	 * search the lists for the requested vp
    373        1.1       mrg 	 */
    374       1.55       chs 
    375       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    376       1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    377        1.1       mrg 			if (sdp->swd_vp == vp) {
    378        1.1       mrg 				if (remove) {
    379        1.1       mrg 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    380        1.1       mrg 					    sdp, swd_next);
    381        1.1       mrg 					uvmexp.nswapdev--;
    382        1.1       mrg 				}
    383        1.1       mrg 				return(sdp);
    384        1.1       mrg 			}
    385       1.55       chs 		}
    386        1.1       mrg 	}
    387        1.1       mrg 	return (NULL);
    388        1.1       mrg }
    389        1.1       mrg 
    390      1.113      elad /*
    391        1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    392        1.1       mrg  *	them.
    393        1.1       mrg  *
    394      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    395        1.1       mrg  */
    396        1.1       mrg static void
    397       1.93   thorpej swaplist_trim(void)
    398        1.1       mrg {
    399        1.1       mrg 	struct swappri *spp, *nextspp;
    400        1.1       mrg 
    401  1.157.2.1      yamt 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    402       1.32       chs 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    403       1.32       chs 		    (void *)&spp->spi_swapdev)
    404        1.1       mrg 			continue;
    405        1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    406  1.157.2.1      yamt 		kmem_free(spp, sizeof(*spp));
    407        1.1       mrg 	}
    408        1.1       mrg }
    409        1.1       mrg 
    410        1.1       mrg /*
    411        1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    412        1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    413        1.1       mrg  *
    414        1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    415      1.127        ad  * => caller must hold uvm_swap_data_lock
    416        1.1       mrg  */
    417        1.1       mrg static struct swapdev *
    418       1.93   thorpej swapdrum_getsdp(int pgno)
    419        1.1       mrg {
    420        1.1       mrg 	struct swapdev *sdp;
    421        1.1       mrg 	struct swappri *spp;
    422       1.51       chs 
    423       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    424       1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    425       1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    426       1.48      fvdl 				continue;
    427        1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    428        1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    429        1.1       mrg 				return sdp;
    430        1.1       mrg 			}
    431       1.48      fvdl 		}
    432       1.55       chs 	}
    433        1.1       mrg 	return NULL;
    434        1.1       mrg }
    435        1.1       mrg 
    436        1.1       mrg 
    437        1.1       mrg /*
    438        1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    439        1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    440        1.1       mrg  */
    441        1.1       mrg int
    442      1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    443        1.1       mrg {
    444      1.133       dsl 	/* {
    445        1.1       mrg 		syscallarg(int) cmd;
    446        1.1       mrg 		syscallarg(void *) arg;
    447        1.1       mrg 		syscallarg(int) misc;
    448      1.133       dsl 	} */
    449        1.1       mrg 	struct vnode *vp;
    450        1.1       mrg 	struct nameidata nd;
    451        1.1       mrg 	struct swappri *spp;
    452        1.1       mrg 	struct swapdev *sdp;
    453        1.1       mrg 	struct swapent *sep;
    454      1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    455      1.101  christos 	char	*userpath;
    456  1.157.2.1      yamt 	size_t	len = 0;
    457       1.61      manu 	int	error, misc;
    458        1.1       mrg 	int	priority;
    459        1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    460        1.1       mrg 
    461        1.1       mrg 	/*
    462        1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    463        1.1       mrg 	 *
    464       1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    465        1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    466        1.1       mrg 	 */
    467        1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    468  1.157.2.1      yamt 		const int nswapdev = uvmexp.nswapdev;
    469  1.157.2.1      yamt 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
    470  1.157.2.1      yamt 		*retval = nswapdev;
    471  1.157.2.1      yamt 		return 0;
    472        1.1       mrg 	}
    473        1.1       mrg 
    474  1.157.2.1      yamt 	misc = SCARG(uap, misc);
    475  1.157.2.1      yamt 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    476  1.157.2.1      yamt 
    477  1.157.2.1      yamt 	/*
    478  1.157.2.1      yamt 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    479  1.157.2.1      yamt 	 */
    480  1.157.2.1      yamt 	rw_enter(&swap_syscall_lock, RW_WRITER);
    481  1.157.2.1      yamt 
    482        1.1       mrg 	/*
    483        1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    484        1.1       mrg 	 *
    485       1.51       chs 	 * note that the swap_priority list can't change as long
    486        1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    487      1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    488        1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    489        1.1       mrg 	 */
    490       1.16       mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    491      1.144       mrg #if defined(COMPAT_50)
    492      1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS50
    493      1.144       mrg #endif
    494       1.16       mrg #if defined(COMPAT_13)
    495      1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS13
    496       1.16       mrg #endif
    497       1.16       mrg 	    ) {
    498       1.88  christos 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    499       1.88  christos 			misc = uvmexp.nswapdev;
    500  1.157.2.1      yamt 
    501  1.157.2.1      yamt 		if (misc == 0) {
    502  1.157.2.1      yamt 			error = EINVAL;
    503  1.157.2.1      yamt 			goto out;
    504  1.157.2.1      yamt 		}
    505  1.157.2.1      yamt 		KASSERT(misc > 0);
    506       1.16       mrg #if defined(COMPAT_13)
    507      1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS13)
    508      1.144       mrg 			len = sizeof(struct swapent13) * misc;
    509      1.144       mrg 		else
    510      1.144       mrg #endif
    511      1.144       mrg #if defined(COMPAT_50)
    512      1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS50)
    513      1.144       mrg 			len = sizeof(struct swapent50) * misc;
    514       1.62      manu 		else
    515       1.16       mrg #endif
    516       1.62      manu 			len = sizeof(struct swapent) * misc;
    517  1.157.2.1      yamt 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
    518       1.62      manu 
    519      1.155     rmind 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    520       1.92  christos 		error = copyout(sep, SCARG(uap, arg), len);
    521        1.1       mrg 
    522  1.157.2.1      yamt 		kmem_free(sep, len);
    523       1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    524       1.16       mrg 		goto out;
    525       1.51       chs 	}
    526       1.55       chs 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    527       1.55       chs 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    528       1.55       chs 
    529       1.55       chs 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    530       1.55       chs 		goto out;
    531       1.55       chs 	}
    532        1.1       mrg 
    533        1.1       mrg 	/*
    534        1.1       mrg 	 * all other requests require superuser privs.   verify.
    535        1.1       mrg 	 */
    536      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    537      1.106      elad 	    0, NULL, NULL, NULL)))
    538       1.16       mrg 		goto out;
    539        1.1       mrg 
    540      1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    541      1.104    martin 		/* drop the current dump device */
    542      1.104    martin 		dumpdev = NODEV;
    543      1.138    kardel 		dumpcdev = NODEV;
    544      1.104    martin 		cpu_dumpconf();
    545      1.104    martin 		goto out;
    546      1.104    martin 	}
    547      1.104    martin 
    548        1.1       mrg 	/*
    549        1.1       mrg 	 * at this point we expect a path name in arg.   we will
    550        1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    551        1.1       mrg 	 * the vnode (VOP_LOCK).
    552        1.1       mrg 	 *
    553        1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    554       1.16       mrg 	 * miniroot)
    555        1.1       mrg 	 */
    556        1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    557        1.1       mrg 		vp = rootvp;		/* miniroot */
    558      1.152   hannken 		vref(vp);
    559      1.152   hannken 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    560      1.152   hannken 			vrele(vp);
    561       1.16       mrg 			error = EBUSY;
    562       1.16       mrg 			goto out;
    563        1.1       mrg 		}
    564       1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    565      1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    566       1.16       mrg 			panic("swapctl: miniroot copy failed");
    567  1.157.2.1      yamt 		KASSERT(len > 0);
    568        1.1       mrg 	} else {
    569      1.153  dholland 		struct pathbuf *pb;
    570       1.16       mrg 
    571      1.153  dholland 		/*
    572      1.153  dholland 		 * This used to allow copying in one extra byte
    573      1.153  dholland 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    574      1.153  dholland 		 * This was completely pointless because if anyone
    575      1.153  dholland 		 * used that extra byte namei would fail with
    576      1.153  dholland 		 * ENAMETOOLONG anyway, so I've removed the excess
    577      1.153  dholland 		 * logic. - dholland 20100215
    578      1.153  dholland 		 */
    579      1.153  dholland 
    580      1.153  dholland 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    581      1.153  dholland 		if (error) {
    582      1.153  dholland 			goto out;
    583      1.153  dholland 		}
    584       1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    585      1.153  dholland 			/* get a copy of the string */
    586      1.153  dholland 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    587      1.153  dholland 			len = strlen(userpath) + 1;
    588      1.153  dholland 		}
    589      1.153  dholland 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    590      1.153  dholland 		if ((error = namei(&nd))) {
    591      1.153  dholland 			pathbuf_destroy(pb);
    592      1.153  dholland 			goto out;
    593        1.1       mrg 		}
    594        1.1       mrg 		vp = nd.ni_vp;
    595      1.153  dholland 		pathbuf_destroy(pb);
    596        1.1       mrg 	}
    597        1.1       mrg 	/* note: "vp" is referenced and locked */
    598        1.1       mrg 
    599        1.1       mrg 	error = 0;		/* assume no error */
    600        1.1       mrg 	switch(SCARG(uap, cmd)) {
    601       1.40       mrg 
    602       1.24       mrg 	case SWAP_DUMPDEV:
    603       1.24       mrg 		if (vp->v_type != VBLK) {
    604       1.24       mrg 			error = ENOTBLK;
    605       1.45        pk 			break;
    606       1.24       mrg 		}
    607      1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    608      1.109       mrg 			dumpdev = vp->v_rdev;
    609      1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    610      1.138    kardel 		} else
    611      1.109       mrg 			dumpdev = NODEV;
    612       1.68  drochner 		cpu_dumpconf();
    613       1.24       mrg 		break;
    614       1.24       mrg 
    615        1.1       mrg 	case SWAP_CTL:
    616        1.1       mrg 		/*
    617        1.1       mrg 		 * get new priority, remove old entry (if any) and then
    618        1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    619        1.1       mrg 		 * any empty priority structures.
    620        1.1       mrg 		 */
    621        1.1       mrg 		priority = SCARG(uap, misc);
    622  1.157.2.1      yamt 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    623      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    624      1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    625        1.1       mrg 			error = ENOENT;
    626        1.1       mrg 		} else {
    627        1.1       mrg 			swaplist_insert(sdp, spp, priority);
    628        1.1       mrg 			swaplist_trim();
    629        1.1       mrg 		}
    630      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    631        1.1       mrg 		if (error)
    632  1.157.2.1      yamt 			kmem_free(spp, sizeof(*spp));
    633        1.1       mrg 		break;
    634        1.1       mrg 
    635        1.1       mrg 	case SWAP_ON:
    636       1.32       chs 
    637        1.1       mrg 		/*
    638        1.1       mrg 		 * check for duplicates.   if none found, then insert a
    639        1.1       mrg 		 * dummy entry on the list to prevent someone else from
    640        1.1       mrg 		 * trying to enable this device while we are working on
    641        1.1       mrg 		 * it.
    642        1.1       mrg 		 */
    643       1.32       chs 
    644        1.1       mrg 		priority = SCARG(uap, misc);
    645  1.157.2.1      yamt 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    646  1.157.2.1      yamt 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    647       1.67       chs 		sdp->swd_flags = SWF_FAKE;
    648       1.67       chs 		sdp->swd_vp = vp;
    649       1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    650       1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    651      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    652      1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    653        1.1       mrg 			error = EBUSY;
    654      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    655       1.96      yamt 			bufq_free(sdp->swd_tab);
    656  1.157.2.1      yamt 			kmem_free(sdp, sizeof(*sdp));
    657  1.157.2.1      yamt 			kmem_free(spp, sizeof(*spp));
    658       1.16       mrg 			break;
    659        1.1       mrg 		}
    660        1.1       mrg 		swaplist_insert(sdp, spp, priority);
    661      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    662        1.1       mrg 
    663  1.157.2.1      yamt 		KASSERT(len > 0);
    664       1.16       mrg 		sdp->swd_pathlen = len;
    665  1.157.2.1      yamt 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    666  1.157.2.1      yamt 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    667       1.19        pk 			panic("swapctl: copystr");
    668       1.32       chs 
    669        1.1       mrg 		/*
    670        1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    671        1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    672        1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    673        1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    674        1.1       mrg 		 */
    675       1.32       chs 
    676       1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    677      1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    678      1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    679        1.1       mrg 			swaplist_trim();
    680      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    681       1.96      yamt 			bufq_free(sdp->swd_tab);
    682  1.157.2.1      yamt 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    683  1.157.2.1      yamt 			kmem_free(sdp, sizeof(*sdp));
    684        1.1       mrg 			break;
    685        1.1       mrg 		}
    686        1.1       mrg 		break;
    687        1.1       mrg 
    688        1.1       mrg 	case SWAP_OFF:
    689      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    690      1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    691      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    692        1.1       mrg 			error = ENXIO;
    693        1.1       mrg 			break;
    694        1.1       mrg 		}
    695       1.32       chs 
    696        1.1       mrg 		/*
    697        1.1       mrg 		 * If a device isn't in use or enabled, we
    698        1.1       mrg 		 * can't stop swapping from it (again).
    699        1.1       mrg 		 */
    700        1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    701      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    702        1.1       mrg 			error = EBUSY;
    703       1.16       mrg 			break;
    704        1.1       mrg 		}
    705        1.1       mrg 
    706        1.1       mrg 		/*
    707       1.32       chs 		 * do the real work.
    708        1.1       mrg 		 */
    709       1.97  christos 		error = swap_off(l, sdp);
    710        1.1       mrg 		break;
    711        1.1       mrg 
    712        1.1       mrg 	default:
    713        1.1       mrg 		error = EINVAL;
    714        1.1       mrg 	}
    715        1.1       mrg 
    716        1.1       mrg 	/*
    717       1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    718        1.1       mrg 	 */
    719        1.1       mrg 	vput(vp);
    720       1.16       mrg out:
    721      1.117        ad 	rw_exit(&swap_syscall_lock);
    722  1.157.2.1      yamt 	kmem_free(userpath, SWAP_PATH_MAX);
    723        1.1       mrg 
    724        1.1       mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    725        1.1       mrg 	return (error);
    726       1.61      manu }
    727       1.61      manu 
    728       1.85  junyoung /*
    729      1.155     rmind  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    730       1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    731       1.61      manu  * emulation to use it directly without going through sys_swapctl().
    732       1.61      manu  * The problem with using sys_swapctl() there is that it involves
    733       1.61      manu  * copying the swapent array to the stackgap, and this array's size
    734       1.85  junyoung  * is not known at build time. Hence it would not be possible to
    735       1.61      manu  * ensure it would fit in the stackgap in any case.
    736       1.61      manu  */
    737      1.155     rmind static void
    738       1.93   thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    739       1.61      manu {
    740       1.61      manu 	struct swappri *spp;
    741       1.61      manu 	struct swapdev *sdp;
    742       1.61      manu 	int count = 0;
    743       1.61      manu 
    744       1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    745  1.157.2.1      yamt 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    746      1.144       mrg 			int inuse;
    747      1.144       mrg 
    748  1.157.2.1      yamt 			if (sec-- <= 0)
    749  1.157.2.1      yamt 				break;
    750  1.157.2.1      yamt 
    751  1.157.2.1      yamt 			/*
    752       1.61      manu 			 * backwards compatibility for system call.
    753      1.144       mrg 			 * For NetBSD 1.3 and 5.0, we have to use
    754      1.144       mrg 			 * the 32 bit dev_t.  For 5.0 and -current
    755      1.144       mrg 			 * we have to add the path.
    756       1.61      manu 			 */
    757      1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    758       1.61      manu 			    PAGE_SHIFT);
    759       1.85  junyoung 
    760      1.144       mrg #if defined(COMPAT_13) || defined(COMPAT_50)
    761      1.144       mrg 			if (cmd == SWAP_STATS) {
    762      1.108   thorpej #endif
    763      1.144       mrg 				sep->se_dev = sdp->swd_dev;
    764      1.144       mrg 				sep->se_flags = sdp->swd_flags;
    765      1.144       mrg 				sep->se_nblks = sdp->swd_nblks;
    766      1.144       mrg 				sep->se_inuse = inuse;
    767      1.144       mrg 				sep->se_priority = sdp->swd_priority;
    768  1.157.2.1      yamt 				KASSERT(sdp->swd_pathlen <
    769  1.157.2.1      yamt 				    sizeof(sep->se_path));
    770  1.157.2.1      yamt 				strcpy(sep->se_path, sdp->swd_path);
    771      1.144       mrg 				sep++;
    772       1.61      manu #if defined(COMPAT_13)
    773      1.144       mrg 			} else if (cmd == SWAP_STATS13) {
    774      1.144       mrg 				struct swapent13 *sep13 =
    775      1.144       mrg 				    (struct swapent13 *)sep;
    776      1.144       mrg 
    777      1.144       mrg 				sep13->se13_dev = sdp->swd_dev;
    778      1.144       mrg 				sep13->se13_flags = sdp->swd_flags;
    779      1.144       mrg 				sep13->se13_nblks = sdp->swd_nblks;
    780      1.144       mrg 				sep13->se13_inuse = inuse;
    781      1.144       mrg 				sep13->se13_priority = sdp->swd_priority;
    782      1.144       mrg 				sep = (struct swapent *)(sep13 + 1);
    783      1.144       mrg #endif
    784      1.144       mrg #if defined(COMPAT_50)
    785      1.144       mrg 			} else if (cmd == SWAP_STATS50) {
    786      1.144       mrg 				struct swapent50 *sep50 =
    787      1.144       mrg 				    (struct swapent50 *)sep;
    788      1.144       mrg 
    789      1.144       mrg 				sep50->se50_dev = sdp->swd_dev;
    790      1.144       mrg 				sep50->se50_flags = sdp->swd_flags;
    791      1.144       mrg 				sep50->se50_nblks = sdp->swd_nblks;
    792      1.144       mrg 				sep50->se50_inuse = inuse;
    793      1.144       mrg 				sep50->se50_priority = sdp->swd_priority;
    794  1.157.2.1      yamt 				KASSERT(sdp->swd_pathlen <
    795  1.157.2.1      yamt 				    sizeof(sep50->se50_path));
    796  1.157.2.1      yamt 				strcpy(sep50->se50_path, sdp->swd_path);
    797      1.144       mrg 				sep = (struct swapent *)(sep50 + 1);
    798      1.148       wiz #endif
    799      1.148       wiz #if defined(COMPAT_13) || defined(COMPAT_50)
    800      1.144       mrg 			}
    801       1.61      manu #endif
    802       1.61      manu 			count++;
    803       1.61      manu 		}
    804       1.61      manu 	}
    805       1.61      manu 	*retval = count;
    806        1.1       mrg }
    807        1.1       mrg 
    808        1.1       mrg /*
    809        1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    810        1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    811        1.1       mrg  *	SWF_FAKE).
    812        1.1       mrg  *
    813        1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    814        1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    815      1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    816        1.1       mrg  *	if needed.
    817        1.1       mrg  */
    818        1.1       mrg static int
    819       1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    820        1.1       mrg {
    821        1.1       mrg 	struct vnode *vp;
    822        1.1       mrg 	int error, npages, nblocks, size;
    823        1.1       mrg 	long addr;
    824      1.157    dyoung 	vmem_addr_t result;
    825        1.1       mrg 	struct vattr va;
    826        1.1       mrg 	dev_t dev;
    827        1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    828        1.1       mrg 
    829        1.1       mrg 	/*
    830        1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    831        1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    832        1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    833        1.1       mrg 	 */
    834        1.1       mrg 
    835        1.1       mrg 	vp = sdp->swd_vp;
    836        1.1       mrg 	dev = sdp->swd_dev;
    837        1.1       mrg 
    838        1.1       mrg 	/*
    839        1.1       mrg 	 * open the swap file (mostly useful for block device files to
    840        1.1       mrg 	 * let device driver know what is up).
    841        1.1       mrg 	 *
    842        1.1       mrg 	 * we skip the open/close for root on swap because the root
    843        1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    844        1.1       mrg 	 */
    845        1.1       mrg 	if (vp != rootvp) {
    846      1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    847        1.1       mrg 			return (error);
    848        1.1       mrg 	}
    849        1.1       mrg 
    850        1.1       mrg 	/* XXX this only works for block devices */
    851        1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    852        1.1       mrg 
    853        1.1       mrg 	/*
    854        1.1       mrg 	 * we now need to determine the size of the swap area.   for
    855        1.1       mrg 	 * block specials we can call the d_psize function.
    856        1.1       mrg 	 * for normal files, we must stat [get attrs].
    857        1.1       mrg 	 *
    858        1.1       mrg 	 * we put the result in nblks.
    859        1.1       mrg 	 * for normal files, we also want the filesystem block size
    860        1.1       mrg 	 * (which we get with statfs).
    861        1.1       mrg 	 */
    862        1.1       mrg 	switch (vp->v_type) {
    863        1.1       mrg 	case VBLK:
    864  1.157.2.1      yamt 		if ((nblocks = bdev_size(dev)) == -1) {
    865        1.1       mrg 			error = ENXIO;
    866        1.1       mrg 			goto bad;
    867        1.1       mrg 		}
    868        1.1       mrg 		break;
    869        1.1       mrg 
    870        1.1       mrg 	case VREG:
    871      1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    872        1.1       mrg 			goto bad;
    873        1.1       mrg 		nblocks = (int)btodb(va.va_size);
    874      1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    875        1.1       mrg 		/*
    876        1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    877        1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    878        1.1       mrg 		 */
    879      1.150     pooka 		if (vp->v_tag == VT_NFS)
    880        1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    881        1.1       mrg 		else
    882        1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    883        1.1       mrg 		break;
    884        1.1       mrg 
    885        1.1       mrg 	default:
    886        1.1       mrg 		error = ENXIO;
    887        1.1       mrg 		goto bad;
    888        1.1       mrg 	}
    889        1.1       mrg 
    890        1.1       mrg 	/*
    891        1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    892        1.1       mrg 	 */
    893        1.1       mrg 
    894      1.144       mrg 	sdp->swd_nblks = nblocks;
    895       1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    896        1.1       mrg 
    897        1.1       mrg 	/*
    898        1.1       mrg 	 * for block special files, we want to make sure that leave
    899        1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    900       1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    901        1.1       mrg 	 * note that because of this the "size" can be less than the
    902        1.1       mrg 	 * actual number of blocks on the device.
    903        1.1       mrg 	 */
    904        1.1       mrg 	if (vp->v_type == VBLK) {
    905        1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    906        1.1       mrg 		size = npages - 1;
    907        1.1       mrg 		addr = 1;
    908        1.1       mrg 	} else {
    909        1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    910        1.1       mrg 		size = npages;
    911        1.1       mrg 		addr = 0;
    912        1.1       mrg 	}
    913        1.1       mrg 
    914        1.1       mrg 	/*
    915        1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    916        1.1       mrg 	 * area.   we want at least one page.
    917        1.1       mrg 	 */
    918        1.1       mrg 
    919        1.1       mrg 	if (size < 1) {
    920        1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    921        1.1       mrg 		error = EINVAL;
    922        1.1       mrg 		goto bad;
    923        1.1       mrg 	}
    924        1.1       mrg 
    925        1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    926        1.1       mrg 
    927        1.1       mrg 	/*
    928        1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    929        1.1       mrg 	 */
    930        1.1       mrg 
    931       1.90      yamt 	sdp->swd_blist = blist_create(npages);
    932       1.90      yamt 	/* mark all expect the `saved' region free. */
    933       1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    934        1.1       mrg 
    935        1.1       mrg 	/*
    936       1.51       chs 	 * if the vnode we are swapping to is the root vnode
    937        1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    938       1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    939        1.1       mrg 	 * find its size and skip over it.
    940        1.1       mrg 	 */
    941        1.1       mrg 	if (vp == rootvp) {
    942        1.1       mrg 		struct mount *mp;
    943       1.86  christos 		struct statvfs *sp;
    944        1.1       mrg 		int rootblocks, rootpages;
    945        1.1       mrg 
    946        1.1       mrg 		mp = rootvnode->v_mount;
    947        1.1       mrg 		sp = &mp->mnt_stat;
    948       1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    949       1.64  fredette 		/*
    950       1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    951       1.64  fredette 		 * blocks in the filesystem, it's the number of
    952       1.64  fredette 		 * data blocks.  so, our rootblocks almost
    953       1.85  junyoung 		 * definitely underestimates the total size
    954       1.64  fredette 		 * of the filesystem - how badly depends on the
    955       1.85  junyoung 		 * details of the filesystem type.  there isn't
    956       1.64  fredette 		 * an obvious way to deal with this cleanly
    957       1.85  junyoung 		 * and perfectly, so for now we just pad our
    958       1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    959       1.64  fredette 		 */
    960       1.64  fredette 		rootblocks += (rootblocks >> 5) +
    961       1.64  fredette 			(rootblocks >> 6) +
    962       1.64  fredette 			(rootblocks >> 7);
    963       1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    964       1.32       chs 		if (rootpages > size)
    965        1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    966        1.1       mrg 
    967       1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    968        1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    969       1.90      yamt 		}
    970        1.1       mrg 
    971       1.32       chs 		size -= rootpages;
    972        1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    973       1.32       chs 		printf("leaving %d pages of swap\n", size);
    974        1.1       mrg 	}
    975        1.1       mrg 
    976       1.39       chs 	/*
    977       1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    978       1.39       chs 	 */
    979       1.39       chs 	vref(vp);
    980       1.39       chs 
    981        1.1       mrg 	/*
    982        1.1       mrg 	 * now add the new swapdev to the drum and enable.
    983        1.1       mrg 	 */
    984      1.157    dyoung 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    985      1.157    dyoung 	if (error != 0)
    986       1.48      fvdl 		panic("swapdrum_add");
    987      1.130   hannken 	/*
    988      1.130   hannken 	 * If this is the first regular swap create the workqueue.
    989      1.130   hannken 	 * => Protected by swap_syscall_lock.
    990      1.130   hannken 	 */
    991      1.130   hannken 	if (vp->v_type != VBLK) {
    992      1.130   hannken 		if (sw_reg_count++ == 0) {
    993      1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
    994      1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    995      1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    996      1.145       mrg 				panic("%s: workqueue_create failed", __func__);
    997      1.130   hannken 		}
    998      1.130   hannken 	}
    999       1.48      fvdl 
   1000       1.48      fvdl 	sdp->swd_drumoffset = (int)result;
   1001       1.48      fvdl 	sdp->swd_drumsize = npages;
   1002       1.48      fvdl 	sdp->swd_npages = size;
   1003      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1004        1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1005        1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1006       1.32       chs 	uvmexp.swpages += size;
   1007       1.81        pk 	uvmexp.swpgavail += size;
   1008      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1009        1.1       mrg 	return (0);
   1010        1.1       mrg 
   1011        1.1       mrg 	/*
   1012       1.43       chs 	 * failure: clean up and return error.
   1013        1.1       mrg 	 */
   1014       1.43       chs 
   1015       1.43       chs bad:
   1016       1.90      yamt 	if (sdp->swd_blist) {
   1017       1.90      yamt 		blist_destroy(sdp->swd_blist);
   1018       1.43       chs 	}
   1019       1.43       chs 	if (vp != rootvp) {
   1020      1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1021       1.43       chs 	}
   1022        1.1       mrg 	return (error);
   1023        1.1       mrg }
   1024        1.1       mrg 
   1025        1.1       mrg /*
   1026        1.1       mrg  * swap_off: stop swapping on swapdev
   1027        1.1       mrg  *
   1028       1.32       chs  * => swap data should be locked, we will unlock.
   1029        1.1       mrg  */
   1030        1.1       mrg static int
   1031       1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1032        1.1       mrg {
   1033       1.91      yamt 	int npages = sdp->swd_npages;
   1034       1.91      yamt 	int error = 0;
   1035       1.81        pk 
   1036        1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1037       1.81        pk 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1038        1.1       mrg 
   1039       1.32       chs 	/* disable the swap area being removed */
   1040        1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1041       1.81        pk 	uvmexp.swpgavail -= npages;
   1042      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1043       1.32       chs 
   1044       1.32       chs 	/*
   1045       1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1046       1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1047       1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1048       1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1049       1.32       chs 	 */
   1050        1.1       mrg 
   1051       1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1052       1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1053       1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1054       1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1055       1.91      yamt 		error = ENOMEM;
   1056       1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1057       1.91      yamt 		error = EBUSY;
   1058       1.91      yamt 	}
   1059       1.51       chs 
   1060       1.91      yamt 	if (error) {
   1061      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1062       1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1063       1.81        pk 		uvmexp.swpgavail += npages;
   1064      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1065       1.91      yamt 
   1066       1.91      yamt 		return error;
   1067       1.32       chs 	}
   1068        1.1       mrg 
   1069        1.1       mrg 	/*
   1070      1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1071      1.130   hannken 	 * => Protected by swap_syscall_lock.
   1072      1.130   hannken 	 */
   1073      1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1074      1.130   hannken 		KASSERT(sw_reg_count > 0);
   1075      1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1076      1.130   hannken 		if (--sw_reg_count == 0) {
   1077      1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1078      1.130   hannken 			sw_reg_workqueue = NULL;
   1079      1.130   hannken 		}
   1080      1.130   hannken 	}
   1081      1.130   hannken 
   1082      1.130   hannken 	/*
   1083       1.58     enami 	 * done with the vnode.
   1084       1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1085       1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1086        1.1       mrg 	 */
   1087       1.39       chs 	vrele(sdp->swd_vp);
   1088       1.32       chs 	if (sdp->swd_vp != rootvp) {
   1089      1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1090       1.32       chs 	}
   1091       1.32       chs 
   1092      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1093       1.81        pk 	uvmexp.swpages -= npages;
   1094       1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1095        1.1       mrg 
   1096      1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1097      1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1098       1.32       chs 	swaplist_trim();
   1099      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1100        1.1       mrg 
   1101       1.32       chs 	/*
   1102       1.32       chs 	 * free all resources!
   1103       1.32       chs 	 */
   1104      1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1105       1.90      yamt 	blist_destroy(sdp->swd_blist);
   1106       1.96      yamt 	bufq_free(sdp->swd_tab);
   1107  1.157.2.1      yamt 	kmem_free(sdp, sizeof(*sdp));
   1108        1.1       mrg 	return (0);
   1109        1.1       mrg }
   1110        1.1       mrg 
   1111        1.1       mrg /*
   1112        1.1       mrg  * /dev/drum interface and i/o functions
   1113        1.1       mrg  */
   1114        1.1       mrg 
   1115        1.1       mrg /*
   1116        1.1       mrg  * swstrategy: perform I/O on the drum
   1117        1.1       mrg  *
   1118        1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1119        1.1       mrg  */
   1120       1.94   thorpej static void
   1121       1.93   thorpej swstrategy(struct buf *bp)
   1122        1.1       mrg {
   1123        1.1       mrg 	struct swapdev *sdp;
   1124        1.1       mrg 	struct vnode *vp;
   1125      1.134        ad 	int pageno, bn;
   1126        1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1127        1.1       mrg 
   1128        1.1       mrg 	/*
   1129        1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1130        1.1       mrg 	 * be yanked out from under us because we are holding resources
   1131        1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1132        1.1       mrg 	 */
   1133       1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1134      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1135        1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1136      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1137        1.1       mrg 	if (sdp == NULL) {
   1138        1.1       mrg 		bp->b_error = EINVAL;
   1139        1.1       mrg 		biodone(bp);
   1140        1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1141        1.1       mrg 		return;
   1142        1.1       mrg 	}
   1143        1.1       mrg 
   1144        1.1       mrg 	/*
   1145        1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1146        1.1       mrg 	 */
   1147        1.1       mrg 
   1148       1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1149       1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1150        1.1       mrg 
   1151       1.41       chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1152        1.1       mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1153        1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1154        1.1       mrg 
   1155        1.1       mrg 	/*
   1156        1.1       mrg 	 * for block devices we finish up here.
   1157       1.32       chs 	 * for regular files we have to do more work which we delegate
   1158        1.1       mrg 	 * to sw_reg_strategy().
   1159        1.1       mrg 	 */
   1160        1.1       mrg 
   1161      1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1162      1.134        ad 	switch (vp->v_type) {
   1163        1.1       mrg 	default:
   1164      1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1165       1.32       chs 
   1166        1.1       mrg 	case VBLK:
   1167        1.1       mrg 
   1168        1.1       mrg 		/*
   1169        1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1170        1.1       mrg 		 * on the swapdev (sdp).
   1171        1.1       mrg 		 */
   1172        1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1173        1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1174        1.1       mrg 
   1175        1.1       mrg 		/*
   1176        1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1177        1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1178        1.1       mrg 		 */
   1179        1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1180      1.134        ad 			mutex_enter(bp->b_objlock);
   1181        1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1182      1.134        ad 			mutex_exit(bp->b_objlock);
   1183      1.156     rmind 			mutex_enter(vp->v_interlock);
   1184      1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1185      1.156     rmind 			mutex_exit(vp->v_interlock);
   1186        1.1       mrg 		}
   1187        1.1       mrg 
   1188       1.41       chs 		/*
   1189        1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1190        1.1       mrg 		 */
   1191        1.1       mrg 		bp->b_vp = vp;
   1192      1.156     rmind 		bp->b_objlock = vp->v_interlock;
   1193       1.84   hannken 		VOP_STRATEGY(vp, bp);
   1194        1.1       mrg 		return;
   1195       1.32       chs 
   1196        1.1       mrg 	case VREG:
   1197        1.1       mrg 		/*
   1198       1.32       chs 		 * delegate to sw_reg_strategy function.
   1199        1.1       mrg 		 */
   1200        1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1201        1.1       mrg 		return;
   1202        1.1       mrg 	}
   1203        1.1       mrg 	/* NOTREACHED */
   1204        1.1       mrg }
   1205        1.1       mrg 
   1206        1.1       mrg /*
   1207       1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1208       1.94   thorpej  */
   1209       1.94   thorpej /*ARGSUSED*/
   1210       1.94   thorpej static int
   1211      1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1212       1.94   thorpej {
   1213       1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1214       1.94   thorpej 
   1215       1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1216       1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1217       1.94   thorpej }
   1218       1.94   thorpej 
   1219       1.94   thorpej /*
   1220       1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1221       1.94   thorpej  */
   1222       1.94   thorpej /*ARGSUSED*/
   1223       1.94   thorpej static int
   1224      1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1225       1.94   thorpej {
   1226       1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1227       1.94   thorpej 
   1228       1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1229       1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1230       1.94   thorpej }
   1231       1.94   thorpej 
   1232       1.94   thorpej const struct bdevsw swap_bdevsw = {
   1233      1.135   hannken 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1234       1.94   thorpej };
   1235       1.94   thorpej 
   1236       1.94   thorpej const struct cdevsw swap_cdevsw = {
   1237       1.94   thorpej 	nullopen, nullclose, swread, swwrite, noioctl,
   1238      1.105  christos 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1239       1.94   thorpej };
   1240       1.94   thorpej 
   1241       1.94   thorpej /*
   1242        1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1243        1.1       mrg  */
   1244        1.1       mrg static void
   1245       1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1246        1.1       mrg {
   1247        1.1       mrg 	struct vnode	*vp;
   1248        1.1       mrg 	struct vndxfer	*vnx;
   1249       1.44     enami 	daddr_t		nbn;
   1250      1.122  christos 	char 		*addr;
   1251       1.44     enami 	off_t		byteoff;
   1252        1.9       mrg 	int		s, off, nra, error, sz, resid;
   1253        1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1254        1.1       mrg 
   1255        1.1       mrg 	/*
   1256        1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1257        1.1       mrg 	 * our buffer.
   1258        1.1       mrg 	 */
   1259      1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1260        1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1261        1.1       mrg 	vnx->vx_error = 0;
   1262        1.1       mrg 	vnx->vx_pending = 0;
   1263        1.1       mrg 	vnx->vx_bp = bp;
   1264        1.1       mrg 	vnx->vx_sdp = sdp;
   1265        1.1       mrg 
   1266        1.1       mrg 	/*
   1267        1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1268        1.1       mrg 	 * our buffer.
   1269        1.1       mrg 	 */
   1270        1.1       mrg 	error = 0;
   1271        1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1272        1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1273       1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1274        1.1       mrg 
   1275        1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1276        1.1       mrg 		struct vndbuf	*nbp;
   1277        1.1       mrg 
   1278        1.1       mrg 		/*
   1279        1.1       mrg 		 * translate byteoffset into block number.  return values:
   1280        1.1       mrg 		 *   vp = vnode of underlying device
   1281        1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1282        1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1283        1.1       mrg 		 *	block)
   1284        1.1       mrg 		 */
   1285        1.1       mrg 		nra = 0;
   1286        1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1287        1.1       mrg 				 	&vp, &nbn, &nra);
   1288        1.1       mrg 
   1289       1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1290       1.51       chs 			/*
   1291       1.23      marc 			 * this used to just set error, but that doesn't
   1292       1.23      marc 			 * do the right thing.  Instead, it causes random
   1293       1.23      marc 			 * memory errors.  The panic() should remain until
   1294       1.23      marc 			 * this condition doesn't destabilize the system.
   1295       1.23      marc 			 */
   1296       1.23      marc #if 1
   1297      1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1298       1.23      marc #else
   1299        1.1       mrg 			error = EIO;	/* failure */
   1300       1.23      marc #endif
   1301       1.23      marc 		}
   1302        1.1       mrg 
   1303        1.1       mrg 		/*
   1304        1.1       mrg 		 * punt if there was an error or a hole in the file.
   1305        1.1       mrg 		 * we must wait for any i/o ops we have already started
   1306        1.1       mrg 		 * to finish before returning.
   1307        1.1       mrg 		 *
   1308        1.1       mrg 		 * XXX we could deal with holes here but it would be
   1309        1.1       mrg 		 * a hassle (in the write case).
   1310        1.1       mrg 		 */
   1311        1.1       mrg 		if (error) {
   1312        1.1       mrg 			s = splbio();
   1313        1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1314        1.1       mrg 			goto out;
   1315        1.1       mrg 		}
   1316        1.1       mrg 
   1317        1.1       mrg 		/*
   1318        1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1319        1.1       mrg 		 */
   1320       1.41       chs 		off = byteoff % sdp->swd_bsize;
   1321       1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1322       1.41       chs 		if (sz > resid)
   1323        1.1       mrg 			sz = resid;
   1324        1.1       mrg 
   1325       1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1326       1.41       chs 			    "vp %p/%p offset 0x%x/0x%x",
   1327       1.41       chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1328        1.1       mrg 
   1329        1.1       mrg 		/*
   1330        1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1331        1.1       mrg 		 * at the front of the nbp structure so that you can
   1332        1.1       mrg 		 * cast pointers between the two structure easily.
   1333        1.1       mrg 		 */
   1334      1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1335      1.134        ad 		buf_init(&nbp->vb_buf);
   1336      1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1337      1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1338      1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1339        1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1340       1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1341        1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1342        1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1343       1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1344        1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1345       1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1346      1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1347       1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1348      1.156     rmind 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1349       1.53       chs 		if (vp->v_type == VBLK) {
   1350       1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1351       1.53       chs 		}
   1352        1.1       mrg 
   1353        1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1354        1.1       mrg 
   1355        1.1       mrg 		/*
   1356        1.1       mrg 		 * Just sort by block number
   1357        1.1       mrg 		 */
   1358        1.1       mrg 		s = splbio();
   1359        1.1       mrg 		if (vnx->vx_error != 0) {
   1360      1.134        ad 			buf_destroy(&nbp->vb_buf);
   1361      1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1362        1.1       mrg 			goto out;
   1363        1.1       mrg 		}
   1364        1.1       mrg 		vnx->vx_pending++;
   1365        1.1       mrg 
   1366        1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1367      1.134        ad 		/* XXXAD locking */
   1368      1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1369        1.1       mrg 		sw_reg_start(sdp);
   1370        1.1       mrg 		splx(s);
   1371        1.1       mrg 
   1372        1.1       mrg 		/*
   1373        1.1       mrg 		 * advance to the next I/O
   1374        1.1       mrg 		 */
   1375        1.9       mrg 		byteoff += sz;
   1376        1.1       mrg 		addr += sz;
   1377        1.1       mrg 	}
   1378        1.1       mrg 
   1379        1.1       mrg 	s = splbio();
   1380        1.1       mrg 
   1381        1.1       mrg out: /* Arrive here at splbio */
   1382        1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1383        1.1       mrg 	if (vnx->vx_pending == 0) {
   1384      1.134        ad 		error = vnx->vx_error;
   1385      1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1386      1.134        ad 		bp->b_error = error;
   1387        1.1       mrg 		biodone(bp);
   1388        1.1       mrg 	}
   1389        1.1       mrg 	splx(s);
   1390        1.1       mrg }
   1391        1.1       mrg 
   1392        1.1       mrg /*
   1393        1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1394        1.1       mrg  *
   1395       1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1396        1.1       mrg  */
   1397        1.1       mrg static void
   1398       1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1399        1.1       mrg {
   1400        1.1       mrg 	struct buf	*bp;
   1401      1.134        ad 	struct vnode	*vp;
   1402        1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1403        1.1       mrg 
   1404        1.8       mrg 	/* recursion control */
   1405        1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1406        1.1       mrg 		return;
   1407        1.1       mrg 
   1408        1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1409        1.1       mrg 
   1410       1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1411      1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1412        1.1       mrg 		if (bp == NULL)
   1413        1.1       mrg 			break;
   1414       1.33   thorpej 		sdp->swd_active++;
   1415        1.1       mrg 
   1416        1.1       mrg 		UVMHIST_LOG(pdhist,
   1417        1.1       mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1418        1.1       mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1419      1.134        ad 		vp = bp->b_vp;
   1420      1.156     rmind 		KASSERT(bp->b_objlock == vp->v_interlock);
   1421      1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1422      1.156     rmind 			mutex_enter(vp->v_interlock);
   1423      1.134        ad 			vp->v_numoutput++;
   1424      1.156     rmind 			mutex_exit(vp->v_interlock);
   1425      1.134        ad 		}
   1426      1.134        ad 		VOP_STRATEGY(vp, bp);
   1427        1.1       mrg 	}
   1428        1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1429        1.1       mrg }
   1430        1.1       mrg 
   1431        1.1       mrg /*
   1432      1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1433      1.130   hannken  */
   1434      1.130   hannken static void
   1435      1.130   hannken sw_reg_biodone(struct buf *bp)
   1436      1.130   hannken {
   1437      1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1438      1.130   hannken }
   1439      1.130   hannken 
   1440      1.130   hannken /*
   1441        1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1442        1.1       mrg  *
   1443        1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1444        1.1       mrg  */
   1445        1.1       mrg static void
   1446      1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1447        1.1       mrg {
   1448      1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1449        1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1450        1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1451        1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1452       1.72       chs 	int s, resid, error;
   1453      1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1454        1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1455        1.1       mrg 
   1456        1.1       mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1457        1.1       mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1458        1.1       mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1459        1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1460        1.1       mrg 
   1461        1.1       mrg 	/*
   1462        1.1       mrg 	 * protect vbp at splbio and update.
   1463        1.1       mrg 	 */
   1464        1.1       mrg 
   1465        1.1       mrg 	s = splbio();
   1466        1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1467        1.1       mrg 	pbp->b_resid -= resid;
   1468        1.1       mrg 	vnx->vx_pending--;
   1469        1.1       mrg 
   1470      1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1471        1.1       mrg 		/* pass error upward */
   1472      1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1473       1.72       chs 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1474       1.72       chs 		vnx->vx_error = error;
   1475       1.35       chs 	}
   1476       1.35       chs 
   1477       1.35       chs 	/*
   1478        1.1       mrg 	 * kill vbp structure
   1479        1.1       mrg 	 */
   1480      1.134        ad 	buf_destroy(&vbp->vb_buf);
   1481      1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1482        1.1       mrg 
   1483        1.1       mrg 	/*
   1484        1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1485        1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1486        1.1       mrg 	 */
   1487        1.1       mrg 	if (vnx->vx_error != 0) {
   1488        1.1       mrg 		/* pass error upward */
   1489      1.134        ad 		error = vnx->vx_error;
   1490        1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1491      1.134        ad 			pbp->b_error = error;
   1492        1.1       mrg 			biodone(pbp);
   1493      1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1494        1.1       mrg 		}
   1495       1.11        pk 	} else if (pbp->b_resid == 0) {
   1496       1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1497        1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1498        1.8       mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1499        1.8       mrg 			    pbp, vnx->vx_error, 0, 0);
   1500        1.1       mrg 			biodone(pbp);
   1501      1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1502        1.1       mrg 		}
   1503        1.1       mrg 	}
   1504        1.1       mrg 
   1505        1.1       mrg 	/*
   1506        1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1507        1.1       mrg 	 */
   1508       1.33   thorpej 	sdp->swd_active--;
   1509        1.1       mrg 	sw_reg_start(sdp);
   1510        1.1       mrg 	splx(s);
   1511        1.1       mrg }
   1512        1.1       mrg 
   1513        1.1       mrg 
   1514        1.1       mrg /*
   1515        1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1516        1.1       mrg  *
   1517        1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1518        1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1519        1.1       mrg  * => space can be freed with uvm_swap_free
   1520        1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1521      1.127        ad  * => we lock uvm_swap_data_lock
   1522        1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1523        1.1       mrg  */
   1524        1.1       mrg int
   1525      1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1526        1.1       mrg {
   1527        1.1       mrg 	struct swapdev *sdp;
   1528        1.1       mrg 	struct swappri *spp;
   1529        1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1530        1.1       mrg 
   1531        1.1       mrg 	/*
   1532        1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1533        1.1       mrg 	 */
   1534        1.1       mrg 	if (uvmexp.nswapdev < 1)
   1535        1.1       mrg 		return 0;
   1536       1.51       chs 
   1537        1.1       mrg 	/*
   1538        1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1539        1.1       mrg 	 */
   1540      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1541        1.1       mrg 
   1542        1.1       mrg ReTry:	/* XXXMRG */
   1543       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1544       1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1545       1.90      yamt 			uint64_t result;
   1546       1.90      yamt 
   1547        1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1548        1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1549        1.1       mrg 				continue;
   1550        1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1551        1.1       mrg 				continue;
   1552       1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1553       1.90      yamt 			if (result == BLIST_NONE) {
   1554        1.1       mrg 				continue;
   1555        1.1       mrg 			}
   1556       1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1557        1.1       mrg 
   1558        1.1       mrg 			/*
   1559        1.1       mrg 			 * successful allocation!  now rotate the circleq.
   1560        1.1       mrg 			 */
   1561        1.1       mrg 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1562        1.1       mrg 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1563        1.1       mrg 			sdp->swd_npginuse += *nslots;
   1564        1.1       mrg 			uvmexp.swpginuse += *nslots;
   1565      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1566        1.1       mrg 			/* done!  return drum slot number */
   1567        1.1       mrg 			UVMHIST_LOG(pdhist,
   1568        1.1       mrg 			    "success!  returning %d slots starting at %d",
   1569        1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1570       1.55       chs 			return (result + sdp->swd_drumoffset);
   1571        1.1       mrg 		}
   1572        1.1       mrg 	}
   1573        1.1       mrg 
   1574        1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1575        1.1       mrg 	if (*nslots > 1 && lessok) {
   1576        1.1       mrg 		*nslots = 1;
   1577       1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1578       1.90      yamt 		goto ReTry;
   1579        1.1       mrg 	}
   1580        1.1       mrg 	/* XXXMRG: END HACK */
   1581        1.1       mrg 
   1582      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1583       1.55       chs 	return 0;
   1584        1.1       mrg }
   1585        1.1       mrg 
   1586      1.141        ad /*
   1587      1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1588      1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1589      1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1590      1.141        ad  * pages are busy.
   1591      1.141        ad  */
   1592      1.119   thorpej bool
   1593       1.81        pk uvm_swapisfull(void)
   1594       1.81        pk {
   1595      1.141        ad 	int swpgonly;
   1596      1.119   thorpej 	bool rv;
   1597       1.81        pk 
   1598      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1599       1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1600      1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1601      1.141        ad 	    uvm_swapisfull_factor);
   1602      1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1603      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1604       1.81        pk 
   1605       1.81        pk 	return (rv);
   1606       1.81        pk }
   1607       1.81        pk 
   1608        1.1       mrg /*
   1609       1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1610       1.32       chs  *
   1611      1.127        ad  * => we lock uvm_swap_data_lock
   1612       1.32       chs  */
   1613       1.32       chs void
   1614       1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1615       1.32       chs {
   1616       1.32       chs 	struct swapdev *sdp;
   1617       1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1618       1.32       chs 
   1619      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1620       1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1621       1.82        pk 	KASSERT(sdp != NULL);
   1622       1.32       chs 
   1623       1.32       chs 	/*
   1624       1.32       chs 	 * we just keep track of how many pages have been marked bad
   1625       1.32       chs 	 * in this device, to make everything add up in swap_off().
   1626       1.32       chs 	 * we assume here that the range of slots will all be within
   1627       1.32       chs 	 * one swap device.
   1628       1.32       chs 	 */
   1629       1.41       chs 
   1630       1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1631       1.82        pk 	uvmexp.swpgonly -= nslots;
   1632       1.32       chs 	sdp->swd_npgbad += nslots;
   1633       1.41       chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1634      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1635       1.32       chs }
   1636       1.32       chs 
   1637       1.32       chs /*
   1638        1.1       mrg  * uvm_swap_free: free swap slots
   1639        1.1       mrg  *
   1640        1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1641      1.127        ad  * => we lock uvm_swap_data_lock
   1642        1.1       mrg  */
   1643        1.1       mrg void
   1644       1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1645        1.1       mrg {
   1646        1.1       mrg 	struct swapdev *sdp;
   1647        1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1648        1.1       mrg 
   1649        1.1       mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1650        1.1       mrg 	    startslot, 0, 0);
   1651       1.32       chs 
   1652       1.32       chs 	/*
   1653       1.32       chs 	 * ignore attempts to free the "bad" slot.
   1654       1.32       chs 	 */
   1655       1.46       chs 
   1656       1.32       chs 	if (startslot == SWSLOT_BAD) {
   1657       1.32       chs 		return;
   1658       1.32       chs 	}
   1659       1.32       chs 
   1660        1.1       mrg 	/*
   1661       1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1662       1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1663        1.1       mrg 	 * lookup and access the extent.
   1664        1.1       mrg 	 */
   1665       1.46       chs 
   1666      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1667        1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1668       1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1669       1.46       chs 	KASSERT(sdp != NULL);
   1670       1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1671       1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1672        1.1       mrg 	sdp->swd_npginuse -= nslots;
   1673        1.1       mrg 	uvmexp.swpginuse -= nslots;
   1674      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1675        1.1       mrg }
   1676        1.1       mrg 
   1677        1.1       mrg /*
   1678        1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1679        1.1       mrg  *
   1680        1.1       mrg  * => can be sync or async
   1681        1.1       mrg  */
   1682       1.54       chs 
   1683        1.1       mrg int
   1684       1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1685        1.1       mrg {
   1686       1.56       chs 	int error;
   1687        1.1       mrg 
   1688       1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1689        1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1690       1.56       chs 	return error;
   1691        1.1       mrg }
   1692        1.1       mrg 
   1693        1.1       mrg /*
   1694        1.1       mrg  * uvm_swap_get: get a single page from swap
   1695        1.1       mrg  *
   1696        1.1       mrg  * => usually a sync op (from fault)
   1697        1.1       mrg  */
   1698       1.54       chs 
   1699        1.1       mrg int
   1700       1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1701        1.1       mrg {
   1702       1.56       chs 	int error;
   1703        1.1       mrg 
   1704        1.1       mrg 	uvmexp.nswget++;
   1705       1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1706       1.32       chs 	if (swslot == SWSLOT_BAD) {
   1707       1.47       chs 		return EIO;
   1708       1.32       chs 	}
   1709       1.81        pk 
   1710       1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1711        1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1712       1.56       chs 	if (error == 0) {
   1713       1.47       chs 
   1714       1.26       chs 		/*
   1715       1.54       chs 		 * this page is no longer only in swap.
   1716       1.26       chs 		 */
   1717       1.47       chs 
   1718      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1719       1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1720       1.54       chs 		uvmexp.swpgonly--;
   1721      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1722       1.26       chs 	}
   1723       1.56       chs 	return error;
   1724        1.1       mrg }
   1725        1.1       mrg 
   1726        1.1       mrg /*
   1727        1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1728        1.1       mrg  */
   1729        1.1       mrg 
   1730        1.1       mrg static int
   1731       1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1732        1.1       mrg {
   1733        1.1       mrg 	daddr_t startblk;
   1734        1.1       mrg 	struct	buf *bp;
   1735       1.15       eeh 	vaddr_t kva;
   1736      1.134        ad 	int	error, mapinflags;
   1737      1.119   thorpej 	bool write, async;
   1738        1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1739        1.1       mrg 
   1740        1.1       mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1741        1.1       mrg 	    startslot, npages, flags, 0);
   1742       1.32       chs 
   1743       1.41       chs 	write = (flags & B_READ) == 0;
   1744       1.41       chs 	async = (flags & B_ASYNC) != 0;
   1745       1.41       chs 
   1746        1.1       mrg 	/*
   1747      1.137      yamt 	 * allocate a buf for the i/o.
   1748      1.137      yamt 	 */
   1749      1.137      yamt 
   1750      1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1751      1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1752      1.137      yamt 	if (bp == NULL) {
   1753      1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1754      1.137      yamt 		return ENOMEM;
   1755      1.137      yamt 	}
   1756      1.137      yamt 
   1757      1.137      yamt 	/*
   1758        1.1       mrg 	 * convert starting drum slot to block number
   1759        1.1       mrg 	 */
   1760       1.54       chs 
   1761       1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1762        1.1       mrg 
   1763        1.1       mrg 	/*
   1764       1.54       chs 	 * first, map the pages into the kernel.
   1765       1.41       chs 	 */
   1766       1.41       chs 
   1767       1.54       chs 	mapinflags = !write ?
   1768       1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1769       1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1770       1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1771        1.1       mrg 
   1772       1.51       chs 	/*
   1773        1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1774        1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1775        1.1       mrg 	 */
   1776       1.54       chs 
   1777      1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1778      1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1779        1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1780       1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1781      1.122  christos 	bp->b_data = (void *)kva;
   1782        1.1       mrg 	bp->b_blkno = startblk;
   1783       1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1784        1.1       mrg 
   1785       1.51       chs 	/*
   1786       1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1787        1.1       mrg 	 */
   1788       1.54       chs 
   1789       1.41       chs 	if (write) {
   1790      1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1791      1.134        ad 		swapdev_vp->v_numoutput++;
   1792      1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1793        1.1       mrg 	}
   1794        1.1       mrg 
   1795        1.1       mrg 	/*
   1796       1.41       chs 	 * for async ops we must set up the iodone handler.
   1797        1.1       mrg 	 */
   1798       1.54       chs 
   1799       1.41       chs 	if (async) {
   1800       1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1801        1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1802      1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1803       1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1804       1.83      yamt 		else
   1805       1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1806       1.83      yamt 	} else {
   1807      1.134        ad 		bp->b_iodone = NULL;
   1808       1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1809        1.1       mrg 	}
   1810        1.1       mrg 	UVMHIST_LOG(pdhist,
   1811       1.41       chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1812        1.1       mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1813        1.1       mrg 
   1814        1.1       mrg 	/*
   1815        1.1       mrg 	 * now we start the I/O, and if async, return.
   1816        1.1       mrg 	 */
   1817       1.54       chs 
   1818       1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1819       1.41       chs 	if (async)
   1820       1.47       chs 		return 0;
   1821        1.1       mrg 
   1822        1.1       mrg 	/*
   1823        1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1824        1.1       mrg 	 */
   1825       1.54       chs 
   1826       1.47       chs 	error = biowait(bp);
   1827        1.1       mrg 
   1828        1.1       mrg 	/*
   1829        1.1       mrg 	 * kill the pager mapping
   1830        1.1       mrg 	 */
   1831       1.54       chs 
   1832        1.1       mrg 	uvm_pagermapout(kva, npages);
   1833        1.1       mrg 
   1834        1.1       mrg 	/*
   1835       1.54       chs 	 * now dispose of the buf and we're done.
   1836        1.1       mrg 	 */
   1837       1.54       chs 
   1838      1.134        ad 	if (write) {
   1839      1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1840       1.41       chs 		vwakeup(bp);
   1841      1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1842      1.134        ad 	}
   1843       1.98      yamt 	putiobuf(bp);
   1844       1.47       chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1845      1.134        ad 
   1846       1.47       chs 	return (error);
   1847        1.1       mrg }
   1848