Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.164
      1  1.164  christos /*	$NetBSD: uvm_swap.c,v 1.164 2013/11/23 14:32:13 christos Exp $	*/
      2    1.1       mrg 
      3    1.1       mrg /*
      4  1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5    1.1       mrg  * All rights reserved.
      6    1.1       mrg  *
      7    1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8    1.1       mrg  * modification, are permitted provided that the following conditions
      9    1.1       mrg  * are met:
     10    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15    1.1       mrg  *
     16    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17    1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18    1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19    1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20    1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21    1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22    1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23    1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24    1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26    1.1       mrg  * SUCH DAMAGE.
     27    1.3       mrg  *
     28    1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29    1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30    1.1       mrg  */
     31   1.57     lukem 
     32   1.57     lukem #include <sys/cdefs.h>
     33  1.164  christos __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.164 2013/11/23 14:32:13 christos Exp $");
     34    1.5       mrg 
     35    1.5       mrg #include "opt_uvmhist.h"
     36   1.16       mrg #include "opt_compat_netbsd.h"
     37   1.41       chs #include "opt_ddb.h"
     38    1.1       mrg 
     39    1.1       mrg #include <sys/param.h>
     40    1.1       mrg #include <sys/systm.h>
     41    1.1       mrg #include <sys/buf.h>
     42   1.89      yamt #include <sys/bufq.h>
     43   1.36       mrg #include <sys/conf.h>
     44    1.1       mrg #include <sys/proc.h>
     45    1.1       mrg #include <sys/namei.h>
     46    1.1       mrg #include <sys/disklabel.h>
     47    1.1       mrg #include <sys/errno.h>
     48    1.1       mrg #include <sys/kernel.h>
     49    1.1       mrg #include <sys/vnode.h>
     50    1.1       mrg #include <sys/file.h>
     51  1.110      yamt #include <sys/vmem.h>
     52   1.90      yamt #include <sys/blist.h>
     53    1.1       mrg #include <sys/mount.h>
     54   1.12        pk #include <sys/pool.h>
     55  1.159      para #include <sys/kmem.h>
     56    1.1       mrg #include <sys/syscallargs.h>
     57   1.17       mrg #include <sys/swap.h>
     58  1.100      elad #include <sys/kauth.h>
     59  1.125        ad #include <sys/sysctl.h>
     60  1.130   hannken #include <sys/workqueue.h>
     61    1.1       mrg 
     62    1.1       mrg #include <uvm/uvm.h>
     63    1.1       mrg 
     64    1.1       mrg #include <miscfs/specfs/specdev.h>
     65    1.1       mrg 
     66    1.1       mrg /*
     67    1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     68    1.1       mrg  */
     69    1.1       mrg 
     70    1.1       mrg /*
     71    1.1       mrg  * swap space is managed in the following way:
     72   1.51       chs  *
     73    1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     74    1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     75    1.1       mrg  * information that is passed up to the user (via system calls).
     76    1.1       mrg  *
     77    1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     78    1.1       mrg  * swap parition usage.
     79    1.1       mrg  *
     80    1.1       mrg  * the system maintains a global data structure describing all swap
     81    1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     82    1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     83   1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     84  1.164  christos  * TAILQ of "swapdev" structures at that priority.
     85    1.1       mrg  *
     86    1.1       mrg  * locking:
     87  1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88    1.1       mrg  *    system call and prevents the swap priority list from changing
     89    1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90  1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91    1.1       mrg  *    structures including the priority list, the swapdev structures,
     92  1.110      yamt  *    and the swapmap arena.
     93    1.1       mrg  *
     94    1.1       mrg  * each swap device has the following info:
     95    1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     96    1.1       mrg  *  - swap enabled (allows new allocations on swap)
     97    1.1       mrg  *  - map info in /dev/drum
     98    1.1       mrg  *  - vnode pointer
     99    1.1       mrg  * for swap files only:
    100    1.1       mrg  *  - block size
    101    1.1       mrg  *  - max byte count in buffer
    102    1.1       mrg  *  - buffer
    103    1.1       mrg  *
    104    1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    105    1.1       mrg  * the sys_swapctl performs the following operations:
    106    1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107   1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108    1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109   1.85  junyoung  *	the current swap config into the array. The actual work is done
    110  1.155     rmind  *	in the uvm_swap_stats() function.
    111    1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112    1.1       mrg  *	priority in "misc", start swapping on it.
    113    1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114    1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115    1.1       mrg  *	"misc")
    116    1.1       mrg  */
    117    1.1       mrg 
    118    1.1       mrg /*
    119    1.1       mrg  * swapdev: describes a single swap partition/file
    120    1.1       mrg  *
    121    1.1       mrg  * note the following should be true:
    122    1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    123    1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    124    1.1       mrg  */
    125    1.1       mrg struct swapdev {
    126  1.144       mrg 	dev_t			swd_dev;	/* device id */
    127  1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    128  1.144       mrg 	int			swd_priority;	/* our priority */
    129  1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    130   1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    131   1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    132   1.16       mrg 	int			swd_npages;	/* #pages we can use */
    133   1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    134   1.32       chs 	int			swd_npgbad;	/* #pages bad */
    135   1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    136   1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    137   1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    138   1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    139  1.164  christos 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    140    1.1       mrg 
    141   1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    142   1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    143   1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    144   1.33   thorpej 	int			swd_active;	/* number of active buffers */
    145    1.1       mrg };
    146    1.1       mrg 
    147    1.1       mrg /*
    148    1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149    1.1       mrg  */
    150    1.1       mrg struct swappri {
    151    1.1       mrg 	int			spi_priority;     /* priority */
    152  1.164  christos 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153    1.1       mrg 	/* circleq of swapdevs at this priority */
    154    1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155    1.1       mrg };
    156    1.1       mrg 
    157    1.1       mrg /*
    158    1.1       mrg  * The following two structures are used to keep track of data transfers
    159    1.1       mrg  * on swap devices associated with regular files.
    160    1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161    1.1       mrg  * structure names here to ease porting..
    162    1.1       mrg  */
    163    1.1       mrg struct vndxfer {
    164    1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165    1.1       mrg 	struct swapdev	*vx_sdp;
    166    1.1       mrg 	int		vx_error;
    167    1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    168    1.1       mrg 	int		vx_flags;
    169    1.1       mrg #define VX_BUSY		1
    170    1.1       mrg #define VX_DEAD		2
    171    1.1       mrg };
    172    1.1       mrg 
    173    1.1       mrg struct vndbuf {
    174    1.1       mrg 	struct buf	vb_buf;
    175    1.1       mrg 	struct vndxfer	*vb_xfer;
    176    1.1       mrg };
    177    1.1       mrg 
    178  1.144       mrg /*
    179  1.144       mrg  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    180  1.144       mrg  * dev_t and has no se_path[] member.
    181  1.144       mrg  */
    182  1.144       mrg struct swapent13 {
    183  1.144       mrg 	int32_t	se13_dev;		/* device id */
    184  1.144       mrg 	int	se13_flags;		/* flags */
    185  1.144       mrg 	int	se13_nblks;		/* total blocks */
    186  1.144       mrg 	int	se13_inuse;		/* blocks in use */
    187  1.144       mrg 	int	se13_priority;		/* priority of this device */
    188  1.144       mrg };
    189  1.144       mrg 
    190  1.144       mrg /*
    191  1.144       mrg  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    192  1.144       mrg  * dev_t.
    193  1.144       mrg  */
    194  1.144       mrg struct swapent50 {
    195  1.144       mrg 	int32_t	se50_dev;		/* device id */
    196  1.144       mrg 	int	se50_flags;		/* flags */
    197  1.144       mrg 	int	se50_nblks;		/* total blocks */
    198  1.144       mrg 	int	se50_inuse;		/* blocks in use */
    199  1.144       mrg 	int	se50_priority;		/* priority of this device */
    200  1.144       mrg 	char	se50_path[PATH_MAX+1];	/* path name */
    201  1.144       mrg };
    202   1.12        pk 
    203    1.1       mrg /*
    204   1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    205    1.1       mrg  */
    206  1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    207    1.1       mrg 
    208    1.1       mrg /*
    209    1.1       mrg  * local variables
    210    1.1       mrg  */
    211  1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    212    1.1       mrg 
    213    1.1       mrg /* list of all active swap devices [by priority] */
    214    1.1       mrg LIST_HEAD(swap_priority, swappri);
    215    1.1       mrg static struct swap_priority swap_priority;
    216    1.1       mrg 
    217    1.1       mrg /* locks */
    218  1.117        ad static krwlock_t swap_syscall_lock;
    219    1.1       mrg 
    220  1.130   hannken /* workqueue and use counter for swap to regular files */
    221  1.130   hannken static int sw_reg_count = 0;
    222  1.130   hannken static struct workqueue *sw_reg_workqueue;
    223  1.130   hannken 
    224  1.141        ad /* tuneables */
    225  1.141        ad u_int uvm_swapisfull_factor = 99;
    226  1.141        ad 
    227    1.1       mrg /*
    228    1.1       mrg  * prototypes
    229    1.1       mrg  */
    230   1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    231    1.1       mrg 
    232  1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    233   1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    234   1.85  junyoung 					 struct swappri *, int);
    235   1.85  junyoung static void		 swaplist_trim(void);
    236    1.1       mrg 
    237   1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    238   1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    239    1.1       mrg 
    240  1.155     rmind static void uvm_swap_stats(int, struct swapent *, int, register_t *);
    241   1.95      yamt 
    242   1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    243  1.130   hannken static void sw_reg_biodone(struct buf *);
    244  1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    245   1.85  junyoung static void sw_reg_start(struct swapdev *);
    246    1.1       mrg 
    247   1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    248    1.1       mrg 
    249    1.1       mrg /*
    250    1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    251    1.1       mrg  *
    252   1.51       chs  * => called at boot time from init_main.c after the filesystems
    253    1.1       mrg  *	are brought up (which happens after uvm_init())
    254    1.1       mrg  */
    255    1.1       mrg void
    256   1.93   thorpej uvm_swap_init(void)
    257    1.1       mrg {
    258    1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    259    1.1       mrg 
    260    1.1       mrg 	UVMHIST_CALLED(pdhist);
    261    1.1       mrg 	/*
    262    1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    263    1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    264    1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    265    1.1       mrg 	 */
    266    1.1       mrg 
    267    1.1       mrg 	LIST_INIT(&swap_priority);
    268    1.1       mrg 	uvmexp.nswapdev = 0;
    269  1.117        ad 	rw_init(&swap_syscall_lock);
    270  1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    271   1.12        pk 
    272    1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    273  1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    274  1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    275  1.145       mrg 		panic("%s: can't lock swap device", __func__);
    276  1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    277  1.145       mrg 		panic("%s: can't open swap device", __func__);
    278  1.151   hannken 	VOP_UNLOCK(swapdev_vp);
    279    1.1       mrg 
    280    1.1       mrg 	/*
    281    1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    282    1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    283   1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    284    1.1       mrg 	 * failure, or no allocation).
    285    1.1       mrg 	 */
    286  1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    287  1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    288  1.147     rmind 	if (swapmap == 0) {
    289  1.145       mrg 		panic("%s: vmem_create failed", __func__);
    290  1.147     rmind 	}
    291  1.146     pooka 
    292  1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    293  1.146     pooka 	    NULL, IPL_BIO);
    294  1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    295  1.146     pooka 	    NULL, IPL_BIO);
    296  1.147     rmind 
    297  1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    298    1.1       mrg }
    299    1.1       mrg 
    300    1.1       mrg /*
    301    1.1       mrg  * swaplist functions: functions that operate on the list of swap
    302    1.1       mrg  * devices on the system.
    303    1.1       mrg  */
    304    1.1       mrg 
    305    1.1       mrg /*
    306    1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    307    1.1       mrg  *
    308  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    309  1.154     rmind  * => caller must provide a newly allocated swappri structure (we will
    310  1.154     rmind  *	FREE it if we don't need it... this it to prevent allocation
    311  1.154     rmind  *	blocking here while adding swap)
    312    1.1       mrg  */
    313    1.1       mrg static void
    314   1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    315    1.1       mrg {
    316    1.1       mrg 	struct swappri *spp, *pspp;
    317    1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    318    1.1       mrg 
    319    1.1       mrg 	/*
    320    1.1       mrg 	 * find entry at or after which to insert the new device.
    321    1.1       mrg 	 */
    322   1.55       chs 	pspp = NULL;
    323   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    324    1.1       mrg 		if (priority <= spp->spi_priority)
    325    1.1       mrg 			break;
    326    1.1       mrg 		pspp = spp;
    327    1.1       mrg 	}
    328    1.1       mrg 
    329    1.1       mrg 	/*
    330    1.1       mrg 	 * new priority?
    331    1.1       mrg 	 */
    332    1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    333    1.1       mrg 		spp = newspp;  /* use newspp! */
    334   1.32       chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    335   1.32       chs 			    priority, 0, 0, 0);
    336    1.1       mrg 
    337    1.1       mrg 		spp->spi_priority = priority;
    338  1.164  christos 		TAILQ_INIT(&spp->spi_swapdev);
    339    1.1       mrg 
    340    1.1       mrg 		if (pspp)
    341    1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    342    1.1       mrg 		else
    343    1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    344    1.1       mrg 	} else {
    345    1.1       mrg 	  	/* we don't need a new priority structure, free it */
    346  1.159      para 		kmem_free(newspp, sizeof(*newspp));
    347    1.1       mrg 	}
    348    1.1       mrg 
    349    1.1       mrg 	/*
    350    1.1       mrg 	 * priority found (or created).   now insert on the priority's
    351    1.1       mrg 	 * circleq list and bump the total number of swapdevs.
    352    1.1       mrg 	 */
    353    1.1       mrg 	sdp->swd_priority = priority;
    354  1.164  christos 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    355    1.1       mrg 	uvmexp.nswapdev++;
    356    1.1       mrg }
    357    1.1       mrg 
    358    1.1       mrg /*
    359    1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    360    1.1       mrg  *	global list.
    361    1.1       mrg  *
    362  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    363    1.1       mrg  * => we return the swapdev we found (and removed)
    364    1.1       mrg  */
    365    1.1       mrg static struct swapdev *
    366  1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    367    1.1       mrg {
    368    1.1       mrg 	struct swapdev *sdp;
    369    1.1       mrg 	struct swappri *spp;
    370    1.1       mrg 
    371    1.1       mrg 	/*
    372    1.1       mrg 	 * search the lists for the requested vp
    373    1.1       mrg 	 */
    374   1.55       chs 
    375   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    376  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    377    1.1       mrg 			if (sdp->swd_vp == vp) {
    378    1.1       mrg 				if (remove) {
    379  1.164  christos 					TAILQ_REMOVE(&spp->spi_swapdev,
    380    1.1       mrg 					    sdp, swd_next);
    381    1.1       mrg 					uvmexp.nswapdev--;
    382    1.1       mrg 				}
    383    1.1       mrg 				return(sdp);
    384    1.1       mrg 			}
    385   1.55       chs 		}
    386    1.1       mrg 	}
    387    1.1       mrg 	return (NULL);
    388    1.1       mrg }
    389    1.1       mrg 
    390  1.113      elad /*
    391    1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    392    1.1       mrg  *	them.
    393    1.1       mrg  *
    394  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    395    1.1       mrg  */
    396    1.1       mrg static void
    397   1.93   thorpej swaplist_trim(void)
    398    1.1       mrg {
    399    1.1       mrg 	struct swappri *spp, *nextspp;
    400    1.1       mrg 
    401  1.161     rmind 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    402  1.164  christos 		if (TAILQ_EMPTY(&spp->spi_swapdev))
    403    1.1       mrg 			continue;
    404    1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    405  1.159      para 		kmem_free(spp, sizeof(*spp));
    406    1.1       mrg 	}
    407    1.1       mrg }
    408    1.1       mrg 
    409    1.1       mrg /*
    410    1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    411    1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    412    1.1       mrg  *
    413    1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    414  1.127        ad  * => caller must hold uvm_swap_data_lock
    415    1.1       mrg  */
    416    1.1       mrg static struct swapdev *
    417   1.93   thorpej swapdrum_getsdp(int pgno)
    418    1.1       mrg {
    419    1.1       mrg 	struct swapdev *sdp;
    420    1.1       mrg 	struct swappri *spp;
    421   1.51       chs 
    422   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    423  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    424   1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    425   1.48      fvdl 				continue;
    426    1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    427    1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    428    1.1       mrg 				return sdp;
    429    1.1       mrg 			}
    430   1.48      fvdl 		}
    431   1.55       chs 	}
    432    1.1       mrg 	return NULL;
    433    1.1       mrg }
    434    1.1       mrg 
    435    1.1       mrg 
    436    1.1       mrg /*
    437    1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    438    1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    439    1.1       mrg  */
    440    1.1       mrg int
    441  1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    442    1.1       mrg {
    443  1.133       dsl 	/* {
    444    1.1       mrg 		syscallarg(int) cmd;
    445    1.1       mrg 		syscallarg(void *) arg;
    446    1.1       mrg 		syscallarg(int) misc;
    447  1.133       dsl 	} */
    448    1.1       mrg 	struct vnode *vp;
    449    1.1       mrg 	struct nameidata nd;
    450    1.1       mrg 	struct swappri *spp;
    451    1.1       mrg 	struct swapdev *sdp;
    452    1.1       mrg 	struct swapent *sep;
    453  1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    454  1.101  christos 	char	*userpath;
    455  1.161     rmind 	size_t	len = 0;
    456   1.61      manu 	int	error, misc;
    457    1.1       mrg 	int	priority;
    458    1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    459    1.1       mrg 
    460    1.1       mrg 	/*
    461    1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    462    1.1       mrg 	 *
    463   1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    464    1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    465    1.1       mrg 	 */
    466    1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    467  1.161     rmind 		const int nswapdev = uvmexp.nswapdev;
    468  1.161     rmind 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
    469  1.161     rmind 		*retval = nswapdev;
    470  1.161     rmind 		return 0;
    471    1.1       mrg 	}
    472    1.1       mrg 
    473  1.161     rmind 	misc = SCARG(uap, misc);
    474  1.161     rmind 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    475  1.161     rmind 
    476  1.161     rmind 	/*
    477  1.161     rmind 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    478  1.161     rmind 	 */
    479  1.161     rmind 	rw_enter(&swap_syscall_lock, RW_WRITER);
    480  1.161     rmind 
    481    1.1       mrg 	/*
    482    1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    483    1.1       mrg 	 *
    484   1.51       chs 	 * note that the swap_priority list can't change as long
    485    1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    486  1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    487    1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    488    1.1       mrg 	 */
    489   1.16       mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    490  1.144       mrg #if defined(COMPAT_50)
    491  1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS50
    492  1.144       mrg #endif
    493   1.16       mrg #if defined(COMPAT_13)
    494  1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS13
    495   1.16       mrg #endif
    496   1.16       mrg 	    ) {
    497   1.88  christos 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    498   1.88  christos 			misc = uvmexp.nswapdev;
    499  1.161     rmind 
    500  1.161     rmind 		if (misc == 0) {
    501  1.161     rmind 			error = EINVAL;
    502  1.161     rmind 			goto out;
    503  1.161     rmind 		}
    504  1.161     rmind 		KASSERT(misc > 0);
    505   1.16       mrg #if defined(COMPAT_13)
    506  1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS13)
    507  1.144       mrg 			len = sizeof(struct swapent13) * misc;
    508  1.144       mrg 		else
    509  1.144       mrg #endif
    510  1.144       mrg #if defined(COMPAT_50)
    511  1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS50)
    512  1.144       mrg 			len = sizeof(struct swapent50) * misc;
    513   1.62      manu 		else
    514   1.16       mrg #endif
    515   1.62      manu 			len = sizeof(struct swapent) * misc;
    516  1.159      para 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
    517   1.62      manu 
    518  1.155     rmind 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    519   1.92  christos 		error = copyout(sep, SCARG(uap, arg), len);
    520    1.1       mrg 
    521  1.159      para 		kmem_free(sep, len);
    522   1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    523   1.16       mrg 		goto out;
    524   1.51       chs 	}
    525   1.55       chs 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    526   1.55       chs 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    527   1.55       chs 
    528   1.55       chs 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    529   1.55       chs 		goto out;
    530   1.55       chs 	}
    531    1.1       mrg 
    532    1.1       mrg 	/*
    533    1.1       mrg 	 * all other requests require superuser privs.   verify.
    534    1.1       mrg 	 */
    535  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    536  1.106      elad 	    0, NULL, NULL, NULL)))
    537   1.16       mrg 		goto out;
    538    1.1       mrg 
    539  1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    540  1.104    martin 		/* drop the current dump device */
    541  1.104    martin 		dumpdev = NODEV;
    542  1.138    kardel 		dumpcdev = NODEV;
    543  1.104    martin 		cpu_dumpconf();
    544  1.104    martin 		goto out;
    545  1.104    martin 	}
    546  1.104    martin 
    547    1.1       mrg 	/*
    548    1.1       mrg 	 * at this point we expect a path name in arg.   we will
    549    1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    550    1.1       mrg 	 * the vnode (VOP_LOCK).
    551    1.1       mrg 	 *
    552    1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    553   1.16       mrg 	 * miniroot)
    554    1.1       mrg 	 */
    555    1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    556    1.1       mrg 		vp = rootvp;		/* miniroot */
    557  1.152   hannken 		vref(vp);
    558  1.152   hannken 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    559  1.152   hannken 			vrele(vp);
    560   1.16       mrg 			error = EBUSY;
    561   1.16       mrg 			goto out;
    562    1.1       mrg 		}
    563   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    564  1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    565   1.16       mrg 			panic("swapctl: miniroot copy failed");
    566  1.161     rmind 		KASSERT(len > 0);
    567    1.1       mrg 	} else {
    568  1.153  dholland 		struct pathbuf *pb;
    569   1.16       mrg 
    570  1.153  dholland 		/*
    571  1.153  dholland 		 * This used to allow copying in one extra byte
    572  1.153  dholland 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    573  1.153  dholland 		 * This was completely pointless because if anyone
    574  1.153  dholland 		 * used that extra byte namei would fail with
    575  1.153  dholland 		 * ENAMETOOLONG anyway, so I've removed the excess
    576  1.153  dholland 		 * logic. - dholland 20100215
    577  1.153  dholland 		 */
    578  1.153  dholland 
    579  1.153  dholland 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    580  1.153  dholland 		if (error) {
    581  1.153  dholland 			goto out;
    582  1.153  dholland 		}
    583   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    584  1.153  dholland 			/* get a copy of the string */
    585  1.153  dholland 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    586  1.153  dholland 			len = strlen(userpath) + 1;
    587  1.153  dholland 		}
    588  1.153  dholland 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    589  1.153  dholland 		if ((error = namei(&nd))) {
    590  1.153  dholland 			pathbuf_destroy(pb);
    591  1.153  dholland 			goto out;
    592    1.1       mrg 		}
    593    1.1       mrg 		vp = nd.ni_vp;
    594  1.153  dholland 		pathbuf_destroy(pb);
    595    1.1       mrg 	}
    596    1.1       mrg 	/* note: "vp" is referenced and locked */
    597    1.1       mrg 
    598    1.1       mrg 	error = 0;		/* assume no error */
    599    1.1       mrg 	switch(SCARG(uap, cmd)) {
    600   1.40       mrg 
    601   1.24       mrg 	case SWAP_DUMPDEV:
    602   1.24       mrg 		if (vp->v_type != VBLK) {
    603   1.24       mrg 			error = ENOTBLK;
    604   1.45        pk 			break;
    605   1.24       mrg 		}
    606  1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    607  1.109       mrg 			dumpdev = vp->v_rdev;
    608  1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    609  1.138    kardel 		} else
    610  1.109       mrg 			dumpdev = NODEV;
    611   1.68  drochner 		cpu_dumpconf();
    612   1.24       mrg 		break;
    613   1.24       mrg 
    614    1.1       mrg 	case SWAP_CTL:
    615    1.1       mrg 		/*
    616    1.1       mrg 		 * get new priority, remove old entry (if any) and then
    617    1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    618    1.1       mrg 		 * any empty priority structures.
    619    1.1       mrg 		 */
    620    1.1       mrg 		priority = SCARG(uap, misc);
    621  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    622  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    623  1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    624    1.1       mrg 			error = ENOENT;
    625    1.1       mrg 		} else {
    626    1.1       mrg 			swaplist_insert(sdp, spp, priority);
    627    1.1       mrg 			swaplist_trim();
    628    1.1       mrg 		}
    629  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    630    1.1       mrg 		if (error)
    631  1.159      para 			kmem_free(spp, sizeof(*spp));
    632    1.1       mrg 		break;
    633    1.1       mrg 
    634    1.1       mrg 	case SWAP_ON:
    635   1.32       chs 
    636    1.1       mrg 		/*
    637    1.1       mrg 		 * check for duplicates.   if none found, then insert a
    638    1.1       mrg 		 * dummy entry on the list to prevent someone else from
    639    1.1       mrg 		 * trying to enable this device while we are working on
    640    1.1       mrg 		 * it.
    641    1.1       mrg 		 */
    642   1.32       chs 
    643    1.1       mrg 		priority = SCARG(uap, misc);
    644  1.160     rmind 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    645  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    646   1.67       chs 		sdp->swd_flags = SWF_FAKE;
    647   1.67       chs 		sdp->swd_vp = vp;
    648   1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    649   1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    650  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    651  1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    652    1.1       mrg 			error = EBUSY;
    653  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    654   1.96      yamt 			bufq_free(sdp->swd_tab);
    655  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    656  1.159      para 			kmem_free(spp, sizeof(*spp));
    657   1.16       mrg 			break;
    658    1.1       mrg 		}
    659    1.1       mrg 		swaplist_insert(sdp, spp, priority);
    660  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    661    1.1       mrg 
    662  1.161     rmind 		KASSERT(len > 0);
    663   1.16       mrg 		sdp->swd_pathlen = len;
    664  1.161     rmind 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    665  1.161     rmind 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    666   1.19        pk 			panic("swapctl: copystr");
    667   1.32       chs 
    668    1.1       mrg 		/*
    669    1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    670    1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    671    1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    672    1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    673    1.1       mrg 		 */
    674   1.32       chs 
    675   1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    676  1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    677  1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    678    1.1       mrg 			swaplist_trim();
    679  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    680   1.96      yamt 			bufq_free(sdp->swd_tab);
    681  1.159      para 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    682  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    683    1.1       mrg 			break;
    684    1.1       mrg 		}
    685    1.1       mrg 		break;
    686    1.1       mrg 
    687    1.1       mrg 	case SWAP_OFF:
    688  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    689  1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    690  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    691    1.1       mrg 			error = ENXIO;
    692    1.1       mrg 			break;
    693    1.1       mrg 		}
    694   1.32       chs 
    695    1.1       mrg 		/*
    696    1.1       mrg 		 * If a device isn't in use or enabled, we
    697    1.1       mrg 		 * can't stop swapping from it (again).
    698    1.1       mrg 		 */
    699    1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    700  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    701    1.1       mrg 			error = EBUSY;
    702   1.16       mrg 			break;
    703    1.1       mrg 		}
    704    1.1       mrg 
    705    1.1       mrg 		/*
    706   1.32       chs 		 * do the real work.
    707    1.1       mrg 		 */
    708   1.97  christos 		error = swap_off(l, sdp);
    709    1.1       mrg 		break;
    710    1.1       mrg 
    711    1.1       mrg 	default:
    712    1.1       mrg 		error = EINVAL;
    713    1.1       mrg 	}
    714    1.1       mrg 
    715    1.1       mrg 	/*
    716   1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    717    1.1       mrg 	 */
    718    1.1       mrg 	vput(vp);
    719   1.16       mrg out:
    720  1.160     rmind 	rw_exit(&swap_syscall_lock);
    721  1.159      para 	kmem_free(userpath, SWAP_PATH_MAX);
    722    1.1       mrg 
    723    1.1       mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    724    1.1       mrg 	return (error);
    725   1.61      manu }
    726   1.61      manu 
    727   1.85  junyoung /*
    728  1.155     rmind  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    729   1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    730   1.61      manu  * emulation to use it directly without going through sys_swapctl().
    731   1.61      manu  * The problem with using sys_swapctl() there is that it involves
    732   1.61      manu  * copying the swapent array to the stackgap, and this array's size
    733   1.85  junyoung  * is not known at build time. Hence it would not be possible to
    734   1.61      manu  * ensure it would fit in the stackgap in any case.
    735   1.61      manu  */
    736  1.155     rmind static void
    737   1.93   thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    738   1.61      manu {
    739   1.61      manu 	struct swappri *spp;
    740   1.61      manu 	struct swapdev *sdp;
    741   1.61      manu 	int count = 0;
    742   1.61      manu 
    743   1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    744  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    745  1.144       mrg 			int inuse;
    746  1.144       mrg 
    747  1.161     rmind 			if (sec-- <= 0)
    748  1.161     rmind 				break;
    749  1.161     rmind 
    750  1.161     rmind 			/*
    751   1.61      manu 			 * backwards compatibility for system call.
    752  1.144       mrg 			 * For NetBSD 1.3 and 5.0, we have to use
    753  1.144       mrg 			 * the 32 bit dev_t.  For 5.0 and -current
    754  1.144       mrg 			 * we have to add the path.
    755   1.61      manu 			 */
    756  1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    757   1.61      manu 			    PAGE_SHIFT);
    758   1.85  junyoung 
    759  1.144       mrg #if defined(COMPAT_13) || defined(COMPAT_50)
    760  1.144       mrg 			if (cmd == SWAP_STATS) {
    761  1.108   thorpej #endif
    762  1.144       mrg 				sep->se_dev = sdp->swd_dev;
    763  1.144       mrg 				sep->se_flags = sdp->swd_flags;
    764  1.144       mrg 				sep->se_nblks = sdp->swd_nblks;
    765  1.144       mrg 				sep->se_inuse = inuse;
    766  1.144       mrg 				sep->se_priority = sdp->swd_priority;
    767  1.161     rmind 				KASSERT(sdp->swd_pathlen <
    768  1.161     rmind 				    sizeof(sep->se_path));
    769  1.161     rmind 				strcpy(sep->se_path, sdp->swd_path);
    770  1.144       mrg 				sep++;
    771   1.61      manu #if defined(COMPAT_13)
    772  1.144       mrg 			} else if (cmd == SWAP_STATS13) {
    773  1.144       mrg 				struct swapent13 *sep13 =
    774  1.144       mrg 				    (struct swapent13 *)sep;
    775  1.144       mrg 
    776  1.144       mrg 				sep13->se13_dev = sdp->swd_dev;
    777  1.144       mrg 				sep13->se13_flags = sdp->swd_flags;
    778  1.144       mrg 				sep13->se13_nblks = sdp->swd_nblks;
    779  1.144       mrg 				sep13->se13_inuse = inuse;
    780  1.144       mrg 				sep13->se13_priority = sdp->swd_priority;
    781  1.144       mrg 				sep = (struct swapent *)(sep13 + 1);
    782  1.144       mrg #endif
    783  1.144       mrg #if defined(COMPAT_50)
    784  1.144       mrg 			} else if (cmd == SWAP_STATS50) {
    785  1.144       mrg 				struct swapent50 *sep50 =
    786  1.144       mrg 				    (struct swapent50 *)sep;
    787  1.144       mrg 
    788  1.144       mrg 				sep50->se50_dev = sdp->swd_dev;
    789  1.144       mrg 				sep50->se50_flags = sdp->swd_flags;
    790  1.144       mrg 				sep50->se50_nblks = sdp->swd_nblks;
    791  1.144       mrg 				sep50->se50_inuse = inuse;
    792  1.144       mrg 				sep50->se50_priority = sdp->swd_priority;
    793  1.161     rmind 				KASSERT(sdp->swd_pathlen <
    794  1.161     rmind 				    sizeof(sep50->se50_path));
    795  1.161     rmind 				strcpy(sep50->se50_path, sdp->swd_path);
    796  1.144       mrg 				sep = (struct swapent *)(sep50 + 1);
    797  1.148       wiz #endif
    798  1.148       wiz #if defined(COMPAT_13) || defined(COMPAT_50)
    799  1.144       mrg 			}
    800   1.61      manu #endif
    801   1.61      manu 			count++;
    802   1.61      manu 		}
    803   1.61      manu 	}
    804   1.61      manu 	*retval = count;
    805    1.1       mrg }
    806    1.1       mrg 
    807    1.1       mrg /*
    808    1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    809    1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    810    1.1       mrg  *	SWF_FAKE).
    811    1.1       mrg  *
    812    1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    813    1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    814  1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    815    1.1       mrg  *	if needed.
    816    1.1       mrg  */
    817    1.1       mrg static int
    818   1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    819    1.1       mrg {
    820    1.1       mrg 	struct vnode *vp;
    821    1.1       mrg 	int error, npages, nblocks, size;
    822    1.1       mrg 	long addr;
    823  1.157    dyoung 	vmem_addr_t result;
    824    1.1       mrg 	struct vattr va;
    825    1.1       mrg 	dev_t dev;
    826    1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    827    1.1       mrg 
    828    1.1       mrg 	/*
    829    1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    830    1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    831    1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    832    1.1       mrg 	 */
    833    1.1       mrg 
    834    1.1       mrg 	vp = sdp->swd_vp;
    835    1.1       mrg 	dev = sdp->swd_dev;
    836    1.1       mrg 
    837    1.1       mrg 	/*
    838    1.1       mrg 	 * open the swap file (mostly useful for block device files to
    839    1.1       mrg 	 * let device driver know what is up).
    840    1.1       mrg 	 *
    841    1.1       mrg 	 * we skip the open/close for root on swap because the root
    842    1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    843    1.1       mrg 	 */
    844    1.1       mrg 	if (vp != rootvp) {
    845  1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    846    1.1       mrg 			return (error);
    847    1.1       mrg 	}
    848    1.1       mrg 
    849    1.1       mrg 	/* XXX this only works for block devices */
    850    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    851    1.1       mrg 
    852    1.1       mrg 	/*
    853    1.1       mrg 	 * we now need to determine the size of the swap area.   for
    854    1.1       mrg 	 * block specials we can call the d_psize function.
    855    1.1       mrg 	 * for normal files, we must stat [get attrs].
    856    1.1       mrg 	 *
    857    1.1       mrg 	 * we put the result in nblks.
    858    1.1       mrg 	 * for normal files, we also want the filesystem block size
    859    1.1       mrg 	 * (which we get with statfs).
    860    1.1       mrg 	 */
    861    1.1       mrg 	switch (vp->v_type) {
    862    1.1       mrg 	case VBLK:
    863  1.158       mrg 		if ((nblocks = bdev_size(dev)) == -1) {
    864    1.1       mrg 			error = ENXIO;
    865    1.1       mrg 			goto bad;
    866    1.1       mrg 		}
    867    1.1       mrg 		break;
    868    1.1       mrg 
    869    1.1       mrg 	case VREG:
    870  1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    871    1.1       mrg 			goto bad;
    872    1.1       mrg 		nblocks = (int)btodb(va.va_size);
    873  1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    874    1.1       mrg 		/*
    875    1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    876    1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    877    1.1       mrg 		 */
    878  1.150     pooka 		if (vp->v_tag == VT_NFS)
    879    1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    880    1.1       mrg 		else
    881    1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    882    1.1       mrg 		break;
    883    1.1       mrg 
    884    1.1       mrg 	default:
    885    1.1       mrg 		error = ENXIO;
    886    1.1       mrg 		goto bad;
    887    1.1       mrg 	}
    888    1.1       mrg 
    889    1.1       mrg 	/*
    890    1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    891    1.1       mrg 	 */
    892    1.1       mrg 
    893  1.144       mrg 	sdp->swd_nblks = nblocks;
    894   1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    895    1.1       mrg 
    896    1.1       mrg 	/*
    897    1.1       mrg 	 * for block special files, we want to make sure that leave
    898    1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    899   1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    900    1.1       mrg 	 * note that because of this the "size" can be less than the
    901    1.1       mrg 	 * actual number of blocks on the device.
    902    1.1       mrg 	 */
    903    1.1       mrg 	if (vp->v_type == VBLK) {
    904    1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    905    1.1       mrg 		size = npages - 1;
    906    1.1       mrg 		addr = 1;
    907    1.1       mrg 	} else {
    908    1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    909    1.1       mrg 		size = npages;
    910    1.1       mrg 		addr = 0;
    911    1.1       mrg 	}
    912    1.1       mrg 
    913    1.1       mrg 	/*
    914    1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    915    1.1       mrg 	 * area.   we want at least one page.
    916    1.1       mrg 	 */
    917    1.1       mrg 
    918    1.1       mrg 	if (size < 1) {
    919    1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    920    1.1       mrg 		error = EINVAL;
    921    1.1       mrg 		goto bad;
    922    1.1       mrg 	}
    923    1.1       mrg 
    924    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    925    1.1       mrg 
    926    1.1       mrg 	/*
    927    1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    928    1.1       mrg 	 */
    929    1.1       mrg 
    930   1.90      yamt 	sdp->swd_blist = blist_create(npages);
    931   1.90      yamt 	/* mark all expect the `saved' region free. */
    932   1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    933    1.1       mrg 
    934    1.1       mrg 	/*
    935   1.51       chs 	 * if the vnode we are swapping to is the root vnode
    936    1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    937   1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    938    1.1       mrg 	 * find its size and skip over it.
    939    1.1       mrg 	 */
    940    1.1       mrg 	if (vp == rootvp) {
    941    1.1       mrg 		struct mount *mp;
    942   1.86  christos 		struct statvfs *sp;
    943    1.1       mrg 		int rootblocks, rootpages;
    944    1.1       mrg 
    945    1.1       mrg 		mp = rootvnode->v_mount;
    946    1.1       mrg 		sp = &mp->mnt_stat;
    947   1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    948   1.64  fredette 		/*
    949   1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    950   1.64  fredette 		 * blocks in the filesystem, it's the number of
    951   1.64  fredette 		 * data blocks.  so, our rootblocks almost
    952   1.85  junyoung 		 * definitely underestimates the total size
    953   1.64  fredette 		 * of the filesystem - how badly depends on the
    954   1.85  junyoung 		 * details of the filesystem type.  there isn't
    955   1.64  fredette 		 * an obvious way to deal with this cleanly
    956   1.85  junyoung 		 * and perfectly, so for now we just pad our
    957   1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    958   1.64  fredette 		 */
    959   1.64  fredette 		rootblocks += (rootblocks >> 5) +
    960   1.64  fredette 			(rootblocks >> 6) +
    961   1.64  fredette 			(rootblocks >> 7);
    962   1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    963   1.32       chs 		if (rootpages > size)
    964    1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    965    1.1       mrg 
    966   1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    967    1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    968   1.90      yamt 		}
    969    1.1       mrg 
    970   1.32       chs 		size -= rootpages;
    971    1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    972   1.32       chs 		printf("leaving %d pages of swap\n", size);
    973    1.1       mrg 	}
    974    1.1       mrg 
    975   1.39       chs 	/*
    976   1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    977   1.39       chs 	 */
    978   1.39       chs 	vref(vp);
    979   1.39       chs 
    980    1.1       mrg 	/*
    981    1.1       mrg 	 * now add the new swapdev to the drum and enable.
    982    1.1       mrg 	 */
    983  1.157    dyoung 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    984  1.157    dyoung 	if (error != 0)
    985   1.48      fvdl 		panic("swapdrum_add");
    986  1.130   hannken 	/*
    987  1.130   hannken 	 * If this is the first regular swap create the workqueue.
    988  1.130   hannken 	 * => Protected by swap_syscall_lock.
    989  1.130   hannken 	 */
    990  1.130   hannken 	if (vp->v_type != VBLK) {
    991  1.130   hannken 		if (sw_reg_count++ == 0) {
    992  1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
    993  1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    994  1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    995  1.145       mrg 				panic("%s: workqueue_create failed", __func__);
    996  1.130   hannken 		}
    997  1.130   hannken 	}
    998   1.48      fvdl 
    999   1.48      fvdl 	sdp->swd_drumoffset = (int)result;
   1000   1.48      fvdl 	sdp->swd_drumsize = npages;
   1001   1.48      fvdl 	sdp->swd_npages = size;
   1002  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1003    1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1004    1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1005   1.32       chs 	uvmexp.swpages += size;
   1006   1.81        pk 	uvmexp.swpgavail += size;
   1007  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1008    1.1       mrg 	return (0);
   1009    1.1       mrg 
   1010    1.1       mrg 	/*
   1011   1.43       chs 	 * failure: clean up and return error.
   1012    1.1       mrg 	 */
   1013   1.43       chs 
   1014   1.43       chs bad:
   1015   1.90      yamt 	if (sdp->swd_blist) {
   1016   1.90      yamt 		blist_destroy(sdp->swd_blist);
   1017   1.43       chs 	}
   1018   1.43       chs 	if (vp != rootvp) {
   1019  1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1020   1.43       chs 	}
   1021    1.1       mrg 	return (error);
   1022    1.1       mrg }
   1023    1.1       mrg 
   1024    1.1       mrg /*
   1025    1.1       mrg  * swap_off: stop swapping on swapdev
   1026    1.1       mrg  *
   1027   1.32       chs  * => swap data should be locked, we will unlock.
   1028    1.1       mrg  */
   1029    1.1       mrg static int
   1030   1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1031    1.1       mrg {
   1032   1.91      yamt 	int npages = sdp->swd_npages;
   1033   1.91      yamt 	int error = 0;
   1034   1.81        pk 
   1035    1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1036   1.81        pk 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1037    1.1       mrg 
   1038   1.32       chs 	/* disable the swap area being removed */
   1039    1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1040   1.81        pk 	uvmexp.swpgavail -= npages;
   1041  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1042   1.32       chs 
   1043   1.32       chs 	/*
   1044   1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1045   1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1046   1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1047   1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1048   1.32       chs 	 */
   1049    1.1       mrg 
   1050   1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1051   1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1052   1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1053   1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1054   1.91      yamt 		error = ENOMEM;
   1055   1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1056   1.91      yamt 		error = EBUSY;
   1057   1.91      yamt 	}
   1058   1.51       chs 
   1059   1.91      yamt 	if (error) {
   1060  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1061   1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1062   1.81        pk 		uvmexp.swpgavail += npages;
   1063  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1064   1.91      yamt 
   1065   1.91      yamt 		return error;
   1066   1.32       chs 	}
   1067    1.1       mrg 
   1068    1.1       mrg 	/*
   1069  1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1070  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1071  1.130   hannken 	 */
   1072  1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1073  1.130   hannken 		KASSERT(sw_reg_count > 0);
   1074  1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1075  1.130   hannken 		if (--sw_reg_count == 0) {
   1076  1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1077  1.130   hannken 			sw_reg_workqueue = NULL;
   1078  1.130   hannken 		}
   1079  1.130   hannken 	}
   1080  1.130   hannken 
   1081  1.130   hannken 	/*
   1082   1.58     enami 	 * done with the vnode.
   1083   1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1084   1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1085    1.1       mrg 	 */
   1086   1.39       chs 	vrele(sdp->swd_vp);
   1087   1.32       chs 	if (sdp->swd_vp != rootvp) {
   1088  1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1089   1.32       chs 	}
   1090   1.32       chs 
   1091  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1092   1.81        pk 	uvmexp.swpages -= npages;
   1093   1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1094    1.1       mrg 
   1095  1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1096  1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1097   1.32       chs 	swaplist_trim();
   1098  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1099    1.1       mrg 
   1100   1.32       chs 	/*
   1101   1.32       chs 	 * free all resources!
   1102   1.32       chs 	 */
   1103  1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1104   1.90      yamt 	blist_destroy(sdp->swd_blist);
   1105   1.96      yamt 	bufq_free(sdp->swd_tab);
   1106  1.159      para 	kmem_free(sdp, sizeof(*sdp));
   1107    1.1       mrg 	return (0);
   1108    1.1       mrg }
   1109    1.1       mrg 
   1110  1.164  christos void
   1111  1.164  christos uvm_swap_shutdown(struct lwp *l)
   1112  1.164  christos {
   1113  1.164  christos 	struct swapdev *sdp;
   1114  1.164  christos 	struct swappri *spp;
   1115  1.164  christos 	struct vnode *vp;
   1116  1.164  christos 	int error;
   1117  1.164  christos 
   1118  1.164  christos 	printf("turning of swap...");
   1119  1.164  christos 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1120  1.164  christos 	mutex_enter(&uvm_swap_data_lock);
   1121  1.164  christos again:
   1122  1.164  christos 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1123  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1124  1.164  christos 			if (sdp->swd_flags & SWF_FAKE)
   1125  1.164  christos 				continue;
   1126  1.164  christos 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1127  1.164  christos 				continue;
   1128  1.164  christos #ifdef DEBUG
   1129  1.164  christos 			printf("\nturning off swap on %s...",
   1130  1.164  christos 			    sdp->swd_path);
   1131  1.164  christos #endif
   1132  1.164  christos 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1133  1.164  christos 				error = EBUSY;
   1134  1.164  christos 				vp = NULL;
   1135  1.164  christos 			} else
   1136  1.164  christos 				error = 0;
   1137  1.164  christos 			if (!error) {
   1138  1.164  christos 				error = swap_off(l, sdp);
   1139  1.164  christos 				mutex_enter(&uvm_swap_data_lock);
   1140  1.164  christos 			}
   1141  1.164  christos 			if (error) {
   1142  1.164  christos 				printf("stopping swap on %s failed "
   1143  1.164  christos 				    "with error %d\n", sdp->swd_path, error);
   1144  1.164  christos 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1145  1.164  christos 				    swd_next);
   1146  1.164  christos 				uvmexp.nswapdev--;
   1147  1.164  christos 				swaplist_trim();
   1148  1.164  christos 				if (vp)
   1149  1.164  christos 					vput(vp);
   1150  1.164  christos 			}
   1151  1.164  christos 			goto again;
   1152  1.164  christos 		}
   1153  1.164  christos 	printf(" done\n");
   1154  1.164  christos 	mutex_exit(&uvm_swap_data_lock);
   1155  1.164  christos 	rw_exit(&swap_syscall_lock);
   1156  1.164  christos }
   1157  1.164  christos 
   1158  1.164  christos 
   1159    1.1       mrg /*
   1160    1.1       mrg  * /dev/drum interface and i/o functions
   1161    1.1       mrg  */
   1162    1.1       mrg 
   1163    1.1       mrg /*
   1164    1.1       mrg  * swstrategy: perform I/O on the drum
   1165    1.1       mrg  *
   1166    1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1167    1.1       mrg  */
   1168   1.94   thorpej static void
   1169   1.93   thorpej swstrategy(struct buf *bp)
   1170    1.1       mrg {
   1171    1.1       mrg 	struct swapdev *sdp;
   1172    1.1       mrg 	struct vnode *vp;
   1173  1.134        ad 	int pageno, bn;
   1174    1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1175    1.1       mrg 
   1176    1.1       mrg 	/*
   1177    1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1178    1.1       mrg 	 * be yanked out from under us because we are holding resources
   1179    1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1180    1.1       mrg 	 */
   1181   1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1182  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1183    1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1184  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1185    1.1       mrg 	if (sdp == NULL) {
   1186    1.1       mrg 		bp->b_error = EINVAL;
   1187  1.163  riastrad 		bp->b_resid = bp->b_bcount;
   1188    1.1       mrg 		biodone(bp);
   1189    1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1190    1.1       mrg 		return;
   1191    1.1       mrg 	}
   1192    1.1       mrg 
   1193    1.1       mrg 	/*
   1194    1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1195    1.1       mrg 	 */
   1196    1.1       mrg 
   1197   1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1198   1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1199    1.1       mrg 
   1200   1.41       chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1201    1.1       mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1202    1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1203    1.1       mrg 
   1204    1.1       mrg 	/*
   1205    1.1       mrg 	 * for block devices we finish up here.
   1206   1.32       chs 	 * for regular files we have to do more work which we delegate
   1207    1.1       mrg 	 * to sw_reg_strategy().
   1208    1.1       mrg 	 */
   1209    1.1       mrg 
   1210  1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1211  1.134        ad 	switch (vp->v_type) {
   1212    1.1       mrg 	default:
   1213  1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1214   1.32       chs 
   1215    1.1       mrg 	case VBLK:
   1216    1.1       mrg 
   1217    1.1       mrg 		/*
   1218    1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1219    1.1       mrg 		 * on the swapdev (sdp).
   1220    1.1       mrg 		 */
   1221    1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1222    1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1223    1.1       mrg 
   1224    1.1       mrg 		/*
   1225    1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1226    1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1227    1.1       mrg 		 */
   1228    1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1229  1.134        ad 			mutex_enter(bp->b_objlock);
   1230    1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1231  1.134        ad 			mutex_exit(bp->b_objlock);
   1232  1.156     rmind 			mutex_enter(vp->v_interlock);
   1233  1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1234  1.156     rmind 			mutex_exit(vp->v_interlock);
   1235    1.1       mrg 		}
   1236    1.1       mrg 
   1237   1.41       chs 		/*
   1238    1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1239    1.1       mrg 		 */
   1240    1.1       mrg 		bp->b_vp = vp;
   1241  1.156     rmind 		bp->b_objlock = vp->v_interlock;
   1242   1.84   hannken 		VOP_STRATEGY(vp, bp);
   1243    1.1       mrg 		return;
   1244   1.32       chs 
   1245    1.1       mrg 	case VREG:
   1246    1.1       mrg 		/*
   1247   1.32       chs 		 * delegate to sw_reg_strategy function.
   1248    1.1       mrg 		 */
   1249    1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1250    1.1       mrg 		return;
   1251    1.1       mrg 	}
   1252    1.1       mrg 	/* NOTREACHED */
   1253    1.1       mrg }
   1254    1.1       mrg 
   1255    1.1       mrg /*
   1256   1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1257   1.94   thorpej  */
   1258   1.94   thorpej /*ARGSUSED*/
   1259   1.94   thorpej static int
   1260  1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1261   1.94   thorpej {
   1262   1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1263   1.94   thorpej 
   1264   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1265   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1266   1.94   thorpej }
   1267   1.94   thorpej 
   1268   1.94   thorpej /*
   1269   1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1270   1.94   thorpej  */
   1271   1.94   thorpej /*ARGSUSED*/
   1272   1.94   thorpej static int
   1273  1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1274   1.94   thorpej {
   1275   1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1276   1.94   thorpej 
   1277   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1278   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1279   1.94   thorpej }
   1280   1.94   thorpej 
   1281   1.94   thorpej const struct bdevsw swap_bdevsw = {
   1282  1.135   hannken 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1283   1.94   thorpej };
   1284   1.94   thorpej 
   1285   1.94   thorpej const struct cdevsw swap_cdevsw = {
   1286   1.94   thorpej 	nullopen, nullclose, swread, swwrite, noioctl,
   1287  1.105  christos 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1288   1.94   thorpej };
   1289   1.94   thorpej 
   1290   1.94   thorpej /*
   1291    1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1292    1.1       mrg  */
   1293    1.1       mrg static void
   1294   1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1295    1.1       mrg {
   1296    1.1       mrg 	struct vnode	*vp;
   1297    1.1       mrg 	struct vndxfer	*vnx;
   1298   1.44     enami 	daddr_t		nbn;
   1299  1.122  christos 	char 		*addr;
   1300   1.44     enami 	off_t		byteoff;
   1301    1.9       mrg 	int		s, off, nra, error, sz, resid;
   1302    1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1303    1.1       mrg 
   1304    1.1       mrg 	/*
   1305    1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1306    1.1       mrg 	 * our buffer.
   1307    1.1       mrg 	 */
   1308  1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1309    1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1310    1.1       mrg 	vnx->vx_error = 0;
   1311    1.1       mrg 	vnx->vx_pending = 0;
   1312    1.1       mrg 	vnx->vx_bp = bp;
   1313    1.1       mrg 	vnx->vx_sdp = sdp;
   1314    1.1       mrg 
   1315    1.1       mrg 	/*
   1316    1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1317    1.1       mrg 	 * our buffer.
   1318    1.1       mrg 	 */
   1319    1.1       mrg 	error = 0;
   1320    1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1321    1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1322   1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1323    1.1       mrg 
   1324    1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1325    1.1       mrg 		struct vndbuf	*nbp;
   1326    1.1       mrg 
   1327    1.1       mrg 		/*
   1328    1.1       mrg 		 * translate byteoffset into block number.  return values:
   1329    1.1       mrg 		 *   vp = vnode of underlying device
   1330    1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1331    1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1332    1.1       mrg 		 *	block)
   1333    1.1       mrg 		 */
   1334    1.1       mrg 		nra = 0;
   1335    1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1336    1.1       mrg 				 	&vp, &nbn, &nra);
   1337    1.1       mrg 
   1338   1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1339   1.51       chs 			/*
   1340   1.23      marc 			 * this used to just set error, but that doesn't
   1341   1.23      marc 			 * do the right thing.  Instead, it causes random
   1342   1.23      marc 			 * memory errors.  The panic() should remain until
   1343   1.23      marc 			 * this condition doesn't destabilize the system.
   1344   1.23      marc 			 */
   1345   1.23      marc #if 1
   1346  1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1347   1.23      marc #else
   1348    1.1       mrg 			error = EIO;	/* failure */
   1349   1.23      marc #endif
   1350   1.23      marc 		}
   1351    1.1       mrg 
   1352    1.1       mrg 		/*
   1353    1.1       mrg 		 * punt if there was an error or a hole in the file.
   1354    1.1       mrg 		 * we must wait for any i/o ops we have already started
   1355    1.1       mrg 		 * to finish before returning.
   1356    1.1       mrg 		 *
   1357    1.1       mrg 		 * XXX we could deal with holes here but it would be
   1358    1.1       mrg 		 * a hassle (in the write case).
   1359    1.1       mrg 		 */
   1360    1.1       mrg 		if (error) {
   1361    1.1       mrg 			s = splbio();
   1362    1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1363    1.1       mrg 			goto out;
   1364    1.1       mrg 		}
   1365    1.1       mrg 
   1366    1.1       mrg 		/*
   1367    1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1368    1.1       mrg 		 */
   1369   1.41       chs 		off = byteoff % sdp->swd_bsize;
   1370   1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1371   1.41       chs 		if (sz > resid)
   1372    1.1       mrg 			sz = resid;
   1373    1.1       mrg 
   1374   1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1375   1.41       chs 			    "vp %p/%p offset 0x%x/0x%x",
   1376   1.41       chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1377    1.1       mrg 
   1378    1.1       mrg 		/*
   1379    1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1380    1.1       mrg 		 * at the front of the nbp structure so that you can
   1381    1.1       mrg 		 * cast pointers between the two structure easily.
   1382    1.1       mrg 		 */
   1383  1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1384  1.134        ad 		buf_init(&nbp->vb_buf);
   1385  1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1386  1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1387  1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1388    1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1389   1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1390    1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1391    1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1392   1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1393    1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1394   1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1395  1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1396   1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1397  1.156     rmind 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1398   1.53       chs 		if (vp->v_type == VBLK) {
   1399   1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1400   1.53       chs 		}
   1401    1.1       mrg 
   1402    1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1403    1.1       mrg 
   1404    1.1       mrg 		/*
   1405    1.1       mrg 		 * Just sort by block number
   1406    1.1       mrg 		 */
   1407    1.1       mrg 		s = splbio();
   1408    1.1       mrg 		if (vnx->vx_error != 0) {
   1409  1.134        ad 			buf_destroy(&nbp->vb_buf);
   1410  1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1411    1.1       mrg 			goto out;
   1412    1.1       mrg 		}
   1413    1.1       mrg 		vnx->vx_pending++;
   1414    1.1       mrg 
   1415    1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1416  1.134        ad 		/* XXXAD locking */
   1417  1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1418    1.1       mrg 		sw_reg_start(sdp);
   1419    1.1       mrg 		splx(s);
   1420    1.1       mrg 
   1421    1.1       mrg 		/*
   1422    1.1       mrg 		 * advance to the next I/O
   1423    1.1       mrg 		 */
   1424    1.9       mrg 		byteoff += sz;
   1425    1.1       mrg 		addr += sz;
   1426    1.1       mrg 	}
   1427    1.1       mrg 
   1428    1.1       mrg 	s = splbio();
   1429    1.1       mrg 
   1430    1.1       mrg out: /* Arrive here at splbio */
   1431    1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1432    1.1       mrg 	if (vnx->vx_pending == 0) {
   1433  1.134        ad 		error = vnx->vx_error;
   1434  1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1435  1.134        ad 		bp->b_error = error;
   1436    1.1       mrg 		biodone(bp);
   1437    1.1       mrg 	}
   1438    1.1       mrg 	splx(s);
   1439    1.1       mrg }
   1440    1.1       mrg 
   1441    1.1       mrg /*
   1442    1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1443    1.1       mrg  *
   1444   1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1445    1.1       mrg  */
   1446    1.1       mrg static void
   1447   1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1448    1.1       mrg {
   1449    1.1       mrg 	struct buf	*bp;
   1450  1.134        ad 	struct vnode	*vp;
   1451    1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1452    1.1       mrg 
   1453    1.8       mrg 	/* recursion control */
   1454    1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1455    1.1       mrg 		return;
   1456    1.1       mrg 
   1457    1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1458    1.1       mrg 
   1459   1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1460  1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1461    1.1       mrg 		if (bp == NULL)
   1462    1.1       mrg 			break;
   1463   1.33   thorpej 		sdp->swd_active++;
   1464    1.1       mrg 
   1465    1.1       mrg 		UVMHIST_LOG(pdhist,
   1466    1.1       mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1467    1.1       mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1468  1.134        ad 		vp = bp->b_vp;
   1469  1.156     rmind 		KASSERT(bp->b_objlock == vp->v_interlock);
   1470  1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1471  1.156     rmind 			mutex_enter(vp->v_interlock);
   1472  1.134        ad 			vp->v_numoutput++;
   1473  1.156     rmind 			mutex_exit(vp->v_interlock);
   1474  1.134        ad 		}
   1475  1.134        ad 		VOP_STRATEGY(vp, bp);
   1476    1.1       mrg 	}
   1477    1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1478    1.1       mrg }
   1479    1.1       mrg 
   1480    1.1       mrg /*
   1481  1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1482  1.130   hannken  */
   1483  1.130   hannken static void
   1484  1.130   hannken sw_reg_biodone(struct buf *bp)
   1485  1.130   hannken {
   1486  1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1487  1.130   hannken }
   1488  1.130   hannken 
   1489  1.130   hannken /*
   1490    1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1491    1.1       mrg  *
   1492    1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1493    1.1       mrg  */
   1494    1.1       mrg static void
   1495  1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1496    1.1       mrg {
   1497  1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1498    1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1499    1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1500    1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1501   1.72       chs 	int s, resid, error;
   1502  1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1503    1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1504    1.1       mrg 
   1505    1.1       mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1506    1.1       mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1507    1.1       mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1508    1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1509    1.1       mrg 
   1510    1.1       mrg 	/*
   1511    1.1       mrg 	 * protect vbp at splbio and update.
   1512    1.1       mrg 	 */
   1513    1.1       mrg 
   1514    1.1       mrg 	s = splbio();
   1515    1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1516    1.1       mrg 	pbp->b_resid -= resid;
   1517    1.1       mrg 	vnx->vx_pending--;
   1518    1.1       mrg 
   1519  1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1520    1.1       mrg 		/* pass error upward */
   1521  1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1522   1.72       chs 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1523   1.72       chs 		vnx->vx_error = error;
   1524   1.35       chs 	}
   1525   1.35       chs 
   1526   1.35       chs 	/*
   1527    1.1       mrg 	 * kill vbp structure
   1528    1.1       mrg 	 */
   1529  1.134        ad 	buf_destroy(&vbp->vb_buf);
   1530  1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1531    1.1       mrg 
   1532    1.1       mrg 	/*
   1533    1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1534    1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1535    1.1       mrg 	 */
   1536    1.1       mrg 	if (vnx->vx_error != 0) {
   1537    1.1       mrg 		/* pass error upward */
   1538  1.134        ad 		error = vnx->vx_error;
   1539    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1540  1.134        ad 			pbp->b_error = error;
   1541    1.1       mrg 			biodone(pbp);
   1542  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1543    1.1       mrg 		}
   1544   1.11        pk 	} else if (pbp->b_resid == 0) {
   1545   1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1546    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1547    1.8       mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1548    1.8       mrg 			    pbp, vnx->vx_error, 0, 0);
   1549    1.1       mrg 			biodone(pbp);
   1550  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1551    1.1       mrg 		}
   1552    1.1       mrg 	}
   1553    1.1       mrg 
   1554    1.1       mrg 	/*
   1555    1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1556    1.1       mrg 	 */
   1557   1.33   thorpej 	sdp->swd_active--;
   1558    1.1       mrg 	sw_reg_start(sdp);
   1559    1.1       mrg 	splx(s);
   1560    1.1       mrg }
   1561    1.1       mrg 
   1562    1.1       mrg 
   1563    1.1       mrg /*
   1564    1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1565    1.1       mrg  *
   1566    1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1567    1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1568    1.1       mrg  * => space can be freed with uvm_swap_free
   1569    1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1570  1.127        ad  * => we lock uvm_swap_data_lock
   1571    1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1572    1.1       mrg  */
   1573    1.1       mrg int
   1574  1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1575    1.1       mrg {
   1576    1.1       mrg 	struct swapdev *sdp;
   1577    1.1       mrg 	struct swappri *spp;
   1578    1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1579    1.1       mrg 
   1580    1.1       mrg 	/*
   1581    1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1582    1.1       mrg 	 */
   1583    1.1       mrg 	if (uvmexp.nswapdev < 1)
   1584    1.1       mrg 		return 0;
   1585   1.51       chs 
   1586    1.1       mrg 	/*
   1587  1.162  jakllsch 	 * XXXJAK: BEGIN HACK
   1588  1.162  jakllsch 	 *
   1589  1.162  jakllsch 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1590  1.162  jakllsch 	 * too many slots.
   1591  1.162  jakllsch 	 */
   1592  1.162  jakllsch 	if (*nslots > BLIST_MAX_ALLOC) {
   1593  1.162  jakllsch 		if (__predict_false(lessok == false))
   1594  1.162  jakllsch 			return 0;
   1595  1.162  jakllsch 		*nslots = BLIST_MAX_ALLOC;
   1596  1.162  jakllsch 	}
   1597  1.162  jakllsch 	/* XXXJAK: END HACK */
   1598  1.162  jakllsch 
   1599  1.162  jakllsch 	/*
   1600    1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1601    1.1       mrg 	 */
   1602  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1603    1.1       mrg 
   1604    1.1       mrg ReTry:	/* XXXMRG */
   1605   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1606  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1607   1.90      yamt 			uint64_t result;
   1608   1.90      yamt 
   1609    1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1610    1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1611    1.1       mrg 				continue;
   1612    1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1613    1.1       mrg 				continue;
   1614   1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1615   1.90      yamt 			if (result == BLIST_NONE) {
   1616    1.1       mrg 				continue;
   1617    1.1       mrg 			}
   1618   1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1619    1.1       mrg 
   1620    1.1       mrg 			/*
   1621    1.1       mrg 			 * successful allocation!  now rotate the circleq.
   1622    1.1       mrg 			 */
   1623  1.164  christos 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1624  1.164  christos 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1625    1.1       mrg 			sdp->swd_npginuse += *nslots;
   1626    1.1       mrg 			uvmexp.swpginuse += *nslots;
   1627  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1628    1.1       mrg 			/* done!  return drum slot number */
   1629    1.1       mrg 			UVMHIST_LOG(pdhist,
   1630    1.1       mrg 			    "success!  returning %d slots starting at %d",
   1631    1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1632   1.55       chs 			return (result + sdp->swd_drumoffset);
   1633    1.1       mrg 		}
   1634    1.1       mrg 	}
   1635    1.1       mrg 
   1636    1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1637    1.1       mrg 	if (*nslots > 1 && lessok) {
   1638    1.1       mrg 		*nslots = 1;
   1639   1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1640   1.90      yamt 		goto ReTry;
   1641    1.1       mrg 	}
   1642    1.1       mrg 	/* XXXMRG: END HACK */
   1643    1.1       mrg 
   1644  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1645   1.55       chs 	return 0;
   1646    1.1       mrg }
   1647    1.1       mrg 
   1648  1.141        ad /*
   1649  1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1650  1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1651  1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1652  1.141        ad  * pages are busy.
   1653  1.141        ad  */
   1654  1.119   thorpej bool
   1655   1.81        pk uvm_swapisfull(void)
   1656   1.81        pk {
   1657  1.141        ad 	int swpgonly;
   1658  1.119   thorpej 	bool rv;
   1659   1.81        pk 
   1660  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1661   1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1662  1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1663  1.141        ad 	    uvm_swapisfull_factor);
   1664  1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1665  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1666   1.81        pk 
   1667   1.81        pk 	return (rv);
   1668   1.81        pk }
   1669   1.81        pk 
   1670    1.1       mrg /*
   1671   1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1672   1.32       chs  *
   1673  1.127        ad  * => we lock uvm_swap_data_lock
   1674   1.32       chs  */
   1675   1.32       chs void
   1676   1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1677   1.32       chs {
   1678   1.32       chs 	struct swapdev *sdp;
   1679   1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1680   1.32       chs 
   1681  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1682   1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1683   1.82        pk 	KASSERT(sdp != NULL);
   1684   1.32       chs 
   1685   1.32       chs 	/*
   1686   1.32       chs 	 * we just keep track of how many pages have been marked bad
   1687   1.32       chs 	 * in this device, to make everything add up in swap_off().
   1688   1.32       chs 	 * we assume here that the range of slots will all be within
   1689   1.32       chs 	 * one swap device.
   1690   1.32       chs 	 */
   1691   1.41       chs 
   1692   1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1693   1.82        pk 	uvmexp.swpgonly -= nslots;
   1694   1.32       chs 	sdp->swd_npgbad += nslots;
   1695   1.41       chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1696  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1697   1.32       chs }
   1698   1.32       chs 
   1699   1.32       chs /*
   1700    1.1       mrg  * uvm_swap_free: free swap slots
   1701    1.1       mrg  *
   1702    1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1703  1.127        ad  * => we lock uvm_swap_data_lock
   1704    1.1       mrg  */
   1705    1.1       mrg void
   1706   1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1707    1.1       mrg {
   1708    1.1       mrg 	struct swapdev *sdp;
   1709    1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1710    1.1       mrg 
   1711    1.1       mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1712    1.1       mrg 	    startslot, 0, 0);
   1713   1.32       chs 
   1714   1.32       chs 	/*
   1715   1.32       chs 	 * ignore attempts to free the "bad" slot.
   1716   1.32       chs 	 */
   1717   1.46       chs 
   1718   1.32       chs 	if (startslot == SWSLOT_BAD) {
   1719   1.32       chs 		return;
   1720   1.32       chs 	}
   1721   1.32       chs 
   1722    1.1       mrg 	/*
   1723   1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1724   1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1725    1.1       mrg 	 * lookup and access the extent.
   1726    1.1       mrg 	 */
   1727   1.46       chs 
   1728  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1729    1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1730   1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1731   1.46       chs 	KASSERT(sdp != NULL);
   1732   1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1733   1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1734    1.1       mrg 	sdp->swd_npginuse -= nslots;
   1735    1.1       mrg 	uvmexp.swpginuse -= nslots;
   1736  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1737    1.1       mrg }
   1738    1.1       mrg 
   1739    1.1       mrg /*
   1740    1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1741    1.1       mrg  *
   1742    1.1       mrg  * => can be sync or async
   1743    1.1       mrg  */
   1744   1.54       chs 
   1745    1.1       mrg int
   1746   1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1747    1.1       mrg {
   1748   1.56       chs 	int error;
   1749    1.1       mrg 
   1750   1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1751    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1752   1.56       chs 	return error;
   1753    1.1       mrg }
   1754    1.1       mrg 
   1755    1.1       mrg /*
   1756    1.1       mrg  * uvm_swap_get: get a single page from swap
   1757    1.1       mrg  *
   1758    1.1       mrg  * => usually a sync op (from fault)
   1759    1.1       mrg  */
   1760   1.54       chs 
   1761    1.1       mrg int
   1762   1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1763    1.1       mrg {
   1764   1.56       chs 	int error;
   1765    1.1       mrg 
   1766    1.1       mrg 	uvmexp.nswget++;
   1767   1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1768   1.32       chs 	if (swslot == SWSLOT_BAD) {
   1769   1.47       chs 		return EIO;
   1770   1.32       chs 	}
   1771   1.81        pk 
   1772   1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1773    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1774   1.56       chs 	if (error == 0) {
   1775   1.47       chs 
   1776   1.26       chs 		/*
   1777   1.54       chs 		 * this page is no longer only in swap.
   1778   1.26       chs 		 */
   1779   1.47       chs 
   1780  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1781   1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1782   1.54       chs 		uvmexp.swpgonly--;
   1783  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1784   1.26       chs 	}
   1785   1.56       chs 	return error;
   1786    1.1       mrg }
   1787    1.1       mrg 
   1788    1.1       mrg /*
   1789    1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1790    1.1       mrg  */
   1791    1.1       mrg 
   1792    1.1       mrg static int
   1793   1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1794    1.1       mrg {
   1795    1.1       mrg 	daddr_t startblk;
   1796    1.1       mrg 	struct	buf *bp;
   1797   1.15       eeh 	vaddr_t kva;
   1798  1.134        ad 	int	error, mapinflags;
   1799  1.119   thorpej 	bool write, async;
   1800    1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1801    1.1       mrg 
   1802    1.1       mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1803    1.1       mrg 	    startslot, npages, flags, 0);
   1804   1.32       chs 
   1805   1.41       chs 	write = (flags & B_READ) == 0;
   1806   1.41       chs 	async = (flags & B_ASYNC) != 0;
   1807   1.41       chs 
   1808    1.1       mrg 	/*
   1809  1.137      yamt 	 * allocate a buf for the i/o.
   1810  1.137      yamt 	 */
   1811  1.137      yamt 
   1812  1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1813  1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1814  1.137      yamt 	if (bp == NULL) {
   1815  1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1816  1.137      yamt 		return ENOMEM;
   1817  1.137      yamt 	}
   1818  1.137      yamt 
   1819  1.137      yamt 	/*
   1820    1.1       mrg 	 * convert starting drum slot to block number
   1821    1.1       mrg 	 */
   1822   1.54       chs 
   1823   1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1824    1.1       mrg 
   1825    1.1       mrg 	/*
   1826   1.54       chs 	 * first, map the pages into the kernel.
   1827   1.41       chs 	 */
   1828   1.41       chs 
   1829   1.54       chs 	mapinflags = !write ?
   1830   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1831   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1832   1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1833    1.1       mrg 
   1834   1.51       chs 	/*
   1835    1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1836    1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1837    1.1       mrg 	 */
   1838   1.54       chs 
   1839  1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1840  1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1841    1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1842   1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1843  1.122  christos 	bp->b_data = (void *)kva;
   1844    1.1       mrg 	bp->b_blkno = startblk;
   1845   1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1846    1.1       mrg 
   1847   1.51       chs 	/*
   1848   1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1849    1.1       mrg 	 */
   1850   1.54       chs 
   1851   1.41       chs 	if (write) {
   1852  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1853  1.134        ad 		swapdev_vp->v_numoutput++;
   1854  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1855    1.1       mrg 	}
   1856    1.1       mrg 
   1857    1.1       mrg 	/*
   1858   1.41       chs 	 * for async ops we must set up the iodone handler.
   1859    1.1       mrg 	 */
   1860   1.54       chs 
   1861   1.41       chs 	if (async) {
   1862   1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1863    1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1864  1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1865   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1866   1.83      yamt 		else
   1867   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1868   1.83      yamt 	} else {
   1869  1.134        ad 		bp->b_iodone = NULL;
   1870   1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1871    1.1       mrg 	}
   1872    1.1       mrg 	UVMHIST_LOG(pdhist,
   1873   1.41       chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1874    1.1       mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1875    1.1       mrg 
   1876    1.1       mrg 	/*
   1877    1.1       mrg 	 * now we start the I/O, and if async, return.
   1878    1.1       mrg 	 */
   1879   1.54       chs 
   1880   1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1881   1.41       chs 	if (async)
   1882   1.47       chs 		return 0;
   1883    1.1       mrg 
   1884    1.1       mrg 	/*
   1885    1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1886    1.1       mrg 	 */
   1887   1.54       chs 
   1888   1.47       chs 	error = biowait(bp);
   1889    1.1       mrg 
   1890    1.1       mrg 	/*
   1891    1.1       mrg 	 * kill the pager mapping
   1892    1.1       mrg 	 */
   1893   1.54       chs 
   1894    1.1       mrg 	uvm_pagermapout(kva, npages);
   1895    1.1       mrg 
   1896    1.1       mrg 	/*
   1897   1.54       chs 	 * now dispose of the buf and we're done.
   1898    1.1       mrg 	 */
   1899   1.54       chs 
   1900  1.134        ad 	if (write) {
   1901  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1902   1.41       chs 		vwakeup(bp);
   1903  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1904  1.134        ad 	}
   1905   1.98      yamt 	putiobuf(bp);
   1906   1.47       chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1907  1.134        ad 
   1908   1.47       chs 	return (error);
   1909    1.1       mrg }
   1910