Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.169
      1  1.169      maxv /*	$NetBSD: uvm_swap.c,v 1.169 2014/06/22 19:09:39 maxv Exp $	*/
      2    1.1       mrg 
      3    1.1       mrg /*
      4  1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5    1.1       mrg  * All rights reserved.
      6    1.1       mrg  *
      7    1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8    1.1       mrg  * modification, are permitted provided that the following conditions
      9    1.1       mrg  * are met:
     10    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15    1.1       mrg  *
     16    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17    1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18    1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19    1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20    1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21    1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22    1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23    1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24    1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26    1.1       mrg  * SUCH DAMAGE.
     27    1.3       mrg  *
     28    1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29    1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30    1.1       mrg  */
     31   1.57     lukem 
     32   1.57     lukem #include <sys/cdefs.h>
     33  1.169      maxv __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.169 2014/06/22 19:09:39 maxv Exp $");
     34    1.5       mrg 
     35    1.5       mrg #include "opt_uvmhist.h"
     36   1.16       mrg #include "opt_compat_netbsd.h"
     37   1.41       chs #include "opt_ddb.h"
     38    1.1       mrg 
     39    1.1       mrg #include <sys/param.h>
     40    1.1       mrg #include <sys/systm.h>
     41    1.1       mrg #include <sys/buf.h>
     42   1.89      yamt #include <sys/bufq.h>
     43   1.36       mrg #include <sys/conf.h>
     44    1.1       mrg #include <sys/proc.h>
     45    1.1       mrg #include <sys/namei.h>
     46    1.1       mrg #include <sys/disklabel.h>
     47    1.1       mrg #include <sys/errno.h>
     48    1.1       mrg #include <sys/kernel.h>
     49    1.1       mrg #include <sys/vnode.h>
     50    1.1       mrg #include <sys/file.h>
     51  1.110      yamt #include <sys/vmem.h>
     52   1.90      yamt #include <sys/blist.h>
     53    1.1       mrg #include <sys/mount.h>
     54   1.12        pk #include <sys/pool.h>
     55  1.159      para #include <sys/kmem.h>
     56    1.1       mrg #include <sys/syscallargs.h>
     57   1.17       mrg #include <sys/swap.h>
     58  1.100      elad #include <sys/kauth.h>
     59  1.125        ad #include <sys/sysctl.h>
     60  1.130   hannken #include <sys/workqueue.h>
     61    1.1       mrg 
     62    1.1       mrg #include <uvm/uvm.h>
     63    1.1       mrg 
     64    1.1       mrg #include <miscfs/specfs/specdev.h>
     65    1.1       mrg 
     66    1.1       mrg /*
     67    1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     68    1.1       mrg  */
     69    1.1       mrg 
     70    1.1       mrg /*
     71    1.1       mrg  * swap space is managed in the following way:
     72   1.51       chs  *
     73    1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     74    1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     75    1.1       mrg  * information that is passed up to the user (via system calls).
     76    1.1       mrg  *
     77    1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     78    1.1       mrg  * swap parition usage.
     79    1.1       mrg  *
     80    1.1       mrg  * the system maintains a global data structure describing all swap
     81    1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     82    1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     83   1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     84  1.164  christos  * TAILQ of "swapdev" structures at that priority.
     85    1.1       mrg  *
     86    1.1       mrg  * locking:
     87  1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88    1.1       mrg  *    system call and prevents the swap priority list from changing
     89    1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90  1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91    1.1       mrg  *    structures including the priority list, the swapdev structures,
     92  1.110      yamt  *    and the swapmap arena.
     93    1.1       mrg  *
     94    1.1       mrg  * each swap device has the following info:
     95    1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     96    1.1       mrg  *  - swap enabled (allows new allocations on swap)
     97    1.1       mrg  *  - map info in /dev/drum
     98    1.1       mrg  *  - vnode pointer
     99    1.1       mrg  * for swap files only:
    100    1.1       mrg  *  - block size
    101    1.1       mrg  *  - max byte count in buffer
    102    1.1       mrg  *  - buffer
    103    1.1       mrg  *
    104    1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    105    1.1       mrg  * the sys_swapctl performs the following operations:
    106    1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107   1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108    1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109   1.85  junyoung  *	the current swap config into the array. The actual work is done
    110  1.155     rmind  *	in the uvm_swap_stats() function.
    111    1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112    1.1       mrg  *	priority in "misc", start swapping on it.
    113    1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114    1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115    1.1       mrg  *	"misc")
    116    1.1       mrg  */
    117    1.1       mrg 
    118    1.1       mrg /*
    119    1.1       mrg  * swapdev: describes a single swap partition/file
    120    1.1       mrg  *
    121    1.1       mrg  * note the following should be true:
    122    1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    123    1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    124    1.1       mrg  */
    125    1.1       mrg struct swapdev {
    126  1.144       mrg 	dev_t			swd_dev;	/* device id */
    127  1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    128  1.144       mrg 	int			swd_priority;	/* our priority */
    129  1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    130   1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    131   1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    132   1.16       mrg 	int			swd_npages;	/* #pages we can use */
    133   1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    134   1.32       chs 	int			swd_npgbad;	/* #pages bad */
    135   1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    136   1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    137   1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    138   1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    139  1.165  christos 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    140    1.1       mrg 
    141   1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    142   1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    143   1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    144   1.33   thorpej 	int			swd_active;	/* number of active buffers */
    145    1.1       mrg };
    146    1.1       mrg 
    147    1.1       mrg /*
    148    1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149    1.1       mrg  */
    150    1.1       mrg struct swappri {
    151    1.1       mrg 	int			spi_priority;     /* priority */
    152  1.164  christos 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153  1.165  christos 	/* tailq of swapdevs at this priority */
    154    1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155    1.1       mrg };
    156    1.1       mrg 
    157    1.1       mrg /*
    158    1.1       mrg  * The following two structures are used to keep track of data transfers
    159    1.1       mrg  * on swap devices associated with regular files.
    160    1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161    1.1       mrg  * structure names here to ease porting..
    162    1.1       mrg  */
    163    1.1       mrg struct vndxfer {
    164    1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165    1.1       mrg 	struct swapdev	*vx_sdp;
    166    1.1       mrg 	int		vx_error;
    167    1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    168    1.1       mrg 	int		vx_flags;
    169    1.1       mrg #define VX_BUSY		1
    170    1.1       mrg #define VX_DEAD		2
    171    1.1       mrg };
    172    1.1       mrg 
    173    1.1       mrg struct vndbuf {
    174    1.1       mrg 	struct buf	vb_buf;
    175    1.1       mrg 	struct vndxfer	*vb_xfer;
    176    1.1       mrg };
    177    1.1       mrg 
    178  1.144       mrg /*
    179  1.144       mrg  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    180  1.144       mrg  * dev_t and has no se_path[] member.
    181  1.144       mrg  */
    182  1.144       mrg struct swapent13 {
    183  1.144       mrg 	int32_t	se13_dev;		/* device id */
    184  1.144       mrg 	int	se13_flags;		/* flags */
    185  1.144       mrg 	int	se13_nblks;		/* total blocks */
    186  1.144       mrg 	int	se13_inuse;		/* blocks in use */
    187  1.144       mrg 	int	se13_priority;		/* priority of this device */
    188  1.144       mrg };
    189  1.144       mrg 
    190  1.144       mrg /*
    191  1.144       mrg  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    192  1.144       mrg  * dev_t.
    193  1.144       mrg  */
    194  1.144       mrg struct swapent50 {
    195  1.144       mrg 	int32_t	se50_dev;		/* device id */
    196  1.144       mrg 	int	se50_flags;		/* flags */
    197  1.144       mrg 	int	se50_nblks;		/* total blocks */
    198  1.144       mrg 	int	se50_inuse;		/* blocks in use */
    199  1.144       mrg 	int	se50_priority;		/* priority of this device */
    200  1.144       mrg 	char	se50_path[PATH_MAX+1];	/* path name */
    201  1.144       mrg };
    202   1.12        pk 
    203    1.1       mrg /*
    204   1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    205    1.1       mrg  */
    206  1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    207    1.1       mrg 
    208    1.1       mrg /*
    209    1.1       mrg  * local variables
    210    1.1       mrg  */
    211  1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    212    1.1       mrg 
    213    1.1       mrg /* list of all active swap devices [by priority] */
    214    1.1       mrg LIST_HEAD(swap_priority, swappri);
    215    1.1       mrg static struct swap_priority swap_priority;
    216    1.1       mrg 
    217    1.1       mrg /* locks */
    218  1.117        ad static krwlock_t swap_syscall_lock;
    219    1.1       mrg 
    220  1.130   hannken /* workqueue and use counter for swap to regular files */
    221  1.130   hannken static int sw_reg_count = 0;
    222  1.130   hannken static struct workqueue *sw_reg_workqueue;
    223  1.130   hannken 
    224  1.141        ad /* tuneables */
    225  1.141        ad u_int uvm_swapisfull_factor = 99;
    226  1.141        ad 
    227    1.1       mrg /*
    228    1.1       mrg  * prototypes
    229    1.1       mrg  */
    230   1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    231    1.1       mrg 
    232  1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    233   1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    234   1.85  junyoung 					 struct swappri *, int);
    235   1.85  junyoung static void		 swaplist_trim(void);
    236    1.1       mrg 
    237   1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    238   1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    239    1.1       mrg 
    240   1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    241  1.130   hannken static void sw_reg_biodone(struct buf *);
    242  1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    243   1.85  junyoung static void sw_reg_start(struct swapdev *);
    244    1.1       mrg 
    245   1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    246    1.1       mrg 
    247    1.1       mrg /*
    248    1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    249    1.1       mrg  *
    250   1.51       chs  * => called at boot time from init_main.c after the filesystems
    251    1.1       mrg  *	are brought up (which happens after uvm_init())
    252    1.1       mrg  */
    253    1.1       mrg void
    254   1.93   thorpej uvm_swap_init(void)
    255    1.1       mrg {
    256    1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    257    1.1       mrg 
    258    1.1       mrg 	UVMHIST_CALLED(pdhist);
    259    1.1       mrg 	/*
    260    1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    261    1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    262    1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    263    1.1       mrg 	 */
    264    1.1       mrg 
    265    1.1       mrg 	LIST_INIT(&swap_priority);
    266    1.1       mrg 	uvmexp.nswapdev = 0;
    267  1.117        ad 	rw_init(&swap_syscall_lock);
    268  1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    269   1.12        pk 
    270    1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    271  1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    272  1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    273  1.145       mrg 		panic("%s: can't lock swap device", __func__);
    274  1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    275  1.145       mrg 		panic("%s: can't open swap device", __func__);
    276  1.151   hannken 	VOP_UNLOCK(swapdev_vp);
    277    1.1       mrg 
    278    1.1       mrg 	/*
    279    1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    280    1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    281   1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    282    1.1       mrg 	 * failure, or no allocation).
    283    1.1       mrg 	 */
    284  1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    285  1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    286  1.147     rmind 	if (swapmap == 0) {
    287  1.145       mrg 		panic("%s: vmem_create failed", __func__);
    288  1.147     rmind 	}
    289  1.146     pooka 
    290  1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    291  1.146     pooka 	    NULL, IPL_BIO);
    292  1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    293  1.146     pooka 	    NULL, IPL_BIO);
    294  1.147     rmind 
    295  1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    296    1.1       mrg }
    297    1.1       mrg 
    298    1.1       mrg /*
    299    1.1       mrg  * swaplist functions: functions that operate on the list of swap
    300    1.1       mrg  * devices on the system.
    301    1.1       mrg  */
    302    1.1       mrg 
    303    1.1       mrg /*
    304    1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    305    1.1       mrg  *
    306  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    307  1.154     rmind  * => caller must provide a newly allocated swappri structure (we will
    308  1.154     rmind  *	FREE it if we don't need it... this it to prevent allocation
    309  1.154     rmind  *	blocking here while adding swap)
    310    1.1       mrg  */
    311    1.1       mrg static void
    312   1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    313    1.1       mrg {
    314    1.1       mrg 	struct swappri *spp, *pspp;
    315    1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    316    1.1       mrg 
    317    1.1       mrg 	/*
    318    1.1       mrg 	 * find entry at or after which to insert the new device.
    319    1.1       mrg 	 */
    320   1.55       chs 	pspp = NULL;
    321   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    322    1.1       mrg 		if (priority <= spp->spi_priority)
    323    1.1       mrg 			break;
    324    1.1       mrg 		pspp = spp;
    325    1.1       mrg 	}
    326    1.1       mrg 
    327    1.1       mrg 	/*
    328    1.1       mrg 	 * new priority?
    329    1.1       mrg 	 */
    330    1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    331    1.1       mrg 		spp = newspp;  /* use newspp! */
    332   1.32       chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    333   1.32       chs 			    priority, 0, 0, 0);
    334    1.1       mrg 
    335    1.1       mrg 		spp->spi_priority = priority;
    336  1.164  christos 		TAILQ_INIT(&spp->spi_swapdev);
    337    1.1       mrg 
    338    1.1       mrg 		if (pspp)
    339    1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    340    1.1       mrg 		else
    341    1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    342    1.1       mrg 	} else {
    343    1.1       mrg 	  	/* we don't need a new priority structure, free it */
    344  1.159      para 		kmem_free(newspp, sizeof(*newspp));
    345    1.1       mrg 	}
    346    1.1       mrg 
    347    1.1       mrg 	/*
    348    1.1       mrg 	 * priority found (or created).   now insert on the priority's
    349  1.165  christos 	 * tailq list and bump the total number of swapdevs.
    350    1.1       mrg 	 */
    351    1.1       mrg 	sdp->swd_priority = priority;
    352  1.164  christos 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    353    1.1       mrg 	uvmexp.nswapdev++;
    354    1.1       mrg }
    355    1.1       mrg 
    356    1.1       mrg /*
    357    1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    358    1.1       mrg  *	global list.
    359    1.1       mrg  *
    360  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    361    1.1       mrg  * => we return the swapdev we found (and removed)
    362    1.1       mrg  */
    363    1.1       mrg static struct swapdev *
    364  1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    365    1.1       mrg {
    366    1.1       mrg 	struct swapdev *sdp;
    367    1.1       mrg 	struct swappri *spp;
    368    1.1       mrg 
    369    1.1       mrg 	/*
    370    1.1       mrg 	 * search the lists for the requested vp
    371    1.1       mrg 	 */
    372   1.55       chs 
    373   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    374  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    375    1.1       mrg 			if (sdp->swd_vp == vp) {
    376    1.1       mrg 				if (remove) {
    377  1.164  christos 					TAILQ_REMOVE(&spp->spi_swapdev,
    378    1.1       mrg 					    sdp, swd_next);
    379    1.1       mrg 					uvmexp.nswapdev--;
    380    1.1       mrg 				}
    381    1.1       mrg 				return(sdp);
    382    1.1       mrg 			}
    383   1.55       chs 		}
    384    1.1       mrg 	}
    385    1.1       mrg 	return (NULL);
    386    1.1       mrg }
    387    1.1       mrg 
    388  1.113      elad /*
    389    1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    390    1.1       mrg  *	them.
    391    1.1       mrg  *
    392  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    393    1.1       mrg  */
    394    1.1       mrg static void
    395   1.93   thorpej swaplist_trim(void)
    396    1.1       mrg {
    397    1.1       mrg 	struct swappri *spp, *nextspp;
    398    1.1       mrg 
    399  1.161     rmind 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    400  1.167   mlelstv 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    401    1.1       mrg 			continue;
    402    1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    403  1.159      para 		kmem_free(spp, sizeof(*spp));
    404    1.1       mrg 	}
    405    1.1       mrg }
    406    1.1       mrg 
    407    1.1       mrg /*
    408    1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    409    1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    410    1.1       mrg  *
    411    1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    412  1.127        ad  * => caller must hold uvm_swap_data_lock
    413    1.1       mrg  */
    414    1.1       mrg static struct swapdev *
    415   1.93   thorpej swapdrum_getsdp(int pgno)
    416    1.1       mrg {
    417    1.1       mrg 	struct swapdev *sdp;
    418    1.1       mrg 	struct swappri *spp;
    419   1.51       chs 
    420   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    421  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    422   1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    423   1.48      fvdl 				continue;
    424    1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    425    1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    426    1.1       mrg 				return sdp;
    427    1.1       mrg 			}
    428   1.48      fvdl 		}
    429   1.55       chs 	}
    430    1.1       mrg 	return NULL;
    431    1.1       mrg }
    432    1.1       mrg 
    433    1.1       mrg 
    434    1.1       mrg /*
    435    1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    436    1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    437    1.1       mrg  */
    438    1.1       mrg int
    439  1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    440    1.1       mrg {
    441  1.133       dsl 	/* {
    442    1.1       mrg 		syscallarg(int) cmd;
    443    1.1       mrg 		syscallarg(void *) arg;
    444    1.1       mrg 		syscallarg(int) misc;
    445  1.133       dsl 	} */
    446    1.1       mrg 	struct vnode *vp;
    447    1.1       mrg 	struct nameidata nd;
    448    1.1       mrg 	struct swappri *spp;
    449    1.1       mrg 	struct swapdev *sdp;
    450    1.1       mrg 	struct swapent *sep;
    451  1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    452  1.101  christos 	char	*userpath;
    453  1.161     rmind 	size_t	len = 0;
    454   1.61      manu 	int	error, misc;
    455    1.1       mrg 	int	priority;
    456    1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    457    1.1       mrg 
    458    1.1       mrg 	/*
    459    1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    460    1.1       mrg 	 *
    461   1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    462    1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    463    1.1       mrg 	 */
    464    1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    465  1.161     rmind 		const int nswapdev = uvmexp.nswapdev;
    466  1.161     rmind 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
    467  1.161     rmind 		*retval = nswapdev;
    468  1.161     rmind 		return 0;
    469    1.1       mrg 	}
    470    1.1       mrg 
    471  1.161     rmind 	misc = SCARG(uap, misc);
    472  1.161     rmind 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    473  1.161     rmind 
    474  1.161     rmind 	/*
    475  1.161     rmind 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    476  1.161     rmind 	 */
    477  1.161     rmind 	rw_enter(&swap_syscall_lock, RW_WRITER);
    478  1.161     rmind 
    479    1.1       mrg 	/*
    480    1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    481    1.1       mrg 	 *
    482   1.51       chs 	 * note that the swap_priority list can't change as long
    483    1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    484  1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    485    1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    486    1.1       mrg 	 */
    487   1.16       mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    488  1.144       mrg #if defined(COMPAT_50)
    489  1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS50
    490  1.144       mrg #endif
    491   1.16       mrg #if defined(COMPAT_13)
    492  1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS13
    493   1.16       mrg #endif
    494   1.16       mrg 	    ) {
    495  1.169      maxv 		if (misc < 0) {
    496  1.161     rmind 			error = EINVAL;
    497  1.161     rmind 			goto out;
    498  1.161     rmind 		}
    499  1.169      maxv 		if (misc == 0 || uvmexp.nswapdev == 0) {
    500  1.169      maxv 			error = 0;
    501  1.169      maxv 			goto out;
    502  1.169      maxv 		}
    503  1.169      maxv 		/* Make sure userland cannot exhaust kernel memory */
    504  1.169      maxv 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    505  1.169      maxv 			misc = uvmexp.nswapdev;
    506  1.161     rmind 		KASSERT(misc > 0);
    507   1.16       mrg #if defined(COMPAT_13)
    508  1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS13)
    509  1.144       mrg 			len = sizeof(struct swapent13) * misc;
    510  1.144       mrg 		else
    511  1.144       mrg #endif
    512  1.144       mrg #if defined(COMPAT_50)
    513  1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS50)
    514  1.144       mrg 			len = sizeof(struct swapent50) * misc;
    515   1.62      manu 		else
    516   1.16       mrg #endif
    517   1.62      manu 			len = sizeof(struct swapent) * misc;
    518  1.159      para 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
    519   1.62      manu 
    520  1.155     rmind 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    521   1.92  christos 		error = copyout(sep, SCARG(uap, arg), len);
    522    1.1       mrg 
    523  1.159      para 		kmem_free(sep, len);
    524   1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    525   1.16       mrg 		goto out;
    526   1.51       chs 	}
    527   1.55       chs 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    528   1.55       chs 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    529   1.55       chs 
    530   1.55       chs 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    531   1.55       chs 		goto out;
    532   1.55       chs 	}
    533    1.1       mrg 
    534    1.1       mrg 	/*
    535    1.1       mrg 	 * all other requests require superuser privs.   verify.
    536    1.1       mrg 	 */
    537  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    538  1.106      elad 	    0, NULL, NULL, NULL)))
    539   1.16       mrg 		goto out;
    540    1.1       mrg 
    541  1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    542  1.104    martin 		/* drop the current dump device */
    543  1.104    martin 		dumpdev = NODEV;
    544  1.138    kardel 		dumpcdev = NODEV;
    545  1.104    martin 		cpu_dumpconf();
    546  1.104    martin 		goto out;
    547  1.104    martin 	}
    548  1.104    martin 
    549    1.1       mrg 	/*
    550    1.1       mrg 	 * at this point we expect a path name in arg.   we will
    551    1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    552    1.1       mrg 	 * the vnode (VOP_LOCK).
    553    1.1       mrg 	 *
    554    1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    555   1.16       mrg 	 * miniroot)
    556    1.1       mrg 	 */
    557    1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    558    1.1       mrg 		vp = rootvp;		/* miniroot */
    559  1.152   hannken 		vref(vp);
    560  1.152   hannken 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    561  1.152   hannken 			vrele(vp);
    562   1.16       mrg 			error = EBUSY;
    563   1.16       mrg 			goto out;
    564    1.1       mrg 		}
    565   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    566  1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    567   1.16       mrg 			panic("swapctl: miniroot copy failed");
    568  1.161     rmind 		KASSERT(len > 0);
    569    1.1       mrg 	} else {
    570  1.153  dholland 		struct pathbuf *pb;
    571   1.16       mrg 
    572  1.153  dholland 		/*
    573  1.153  dholland 		 * This used to allow copying in one extra byte
    574  1.153  dholland 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    575  1.153  dholland 		 * This was completely pointless because if anyone
    576  1.153  dholland 		 * used that extra byte namei would fail with
    577  1.153  dholland 		 * ENAMETOOLONG anyway, so I've removed the excess
    578  1.153  dholland 		 * logic. - dholland 20100215
    579  1.153  dholland 		 */
    580  1.153  dholland 
    581  1.153  dholland 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    582  1.153  dholland 		if (error) {
    583  1.153  dholland 			goto out;
    584  1.153  dholland 		}
    585   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    586  1.153  dholland 			/* get a copy of the string */
    587  1.153  dholland 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    588  1.153  dholland 			len = strlen(userpath) + 1;
    589  1.153  dholland 		}
    590  1.153  dholland 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    591  1.153  dholland 		if ((error = namei(&nd))) {
    592  1.153  dholland 			pathbuf_destroy(pb);
    593  1.153  dholland 			goto out;
    594    1.1       mrg 		}
    595    1.1       mrg 		vp = nd.ni_vp;
    596  1.153  dholland 		pathbuf_destroy(pb);
    597    1.1       mrg 	}
    598    1.1       mrg 	/* note: "vp" is referenced and locked */
    599    1.1       mrg 
    600    1.1       mrg 	error = 0;		/* assume no error */
    601    1.1       mrg 	switch(SCARG(uap, cmd)) {
    602   1.40       mrg 
    603   1.24       mrg 	case SWAP_DUMPDEV:
    604   1.24       mrg 		if (vp->v_type != VBLK) {
    605   1.24       mrg 			error = ENOTBLK;
    606   1.45        pk 			break;
    607   1.24       mrg 		}
    608  1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    609  1.109       mrg 			dumpdev = vp->v_rdev;
    610  1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    611  1.138    kardel 		} else
    612  1.109       mrg 			dumpdev = NODEV;
    613   1.68  drochner 		cpu_dumpconf();
    614   1.24       mrg 		break;
    615   1.24       mrg 
    616    1.1       mrg 	case SWAP_CTL:
    617    1.1       mrg 		/*
    618    1.1       mrg 		 * get new priority, remove old entry (if any) and then
    619    1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    620    1.1       mrg 		 * any empty priority structures.
    621    1.1       mrg 		 */
    622    1.1       mrg 		priority = SCARG(uap, misc);
    623  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    624  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    625  1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    626    1.1       mrg 			error = ENOENT;
    627    1.1       mrg 		} else {
    628    1.1       mrg 			swaplist_insert(sdp, spp, priority);
    629    1.1       mrg 			swaplist_trim();
    630    1.1       mrg 		}
    631  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    632    1.1       mrg 		if (error)
    633  1.159      para 			kmem_free(spp, sizeof(*spp));
    634    1.1       mrg 		break;
    635    1.1       mrg 
    636    1.1       mrg 	case SWAP_ON:
    637   1.32       chs 
    638    1.1       mrg 		/*
    639    1.1       mrg 		 * check for duplicates.   if none found, then insert a
    640    1.1       mrg 		 * dummy entry on the list to prevent someone else from
    641    1.1       mrg 		 * trying to enable this device while we are working on
    642    1.1       mrg 		 * it.
    643    1.1       mrg 		 */
    644   1.32       chs 
    645    1.1       mrg 		priority = SCARG(uap, misc);
    646  1.160     rmind 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    647  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    648   1.67       chs 		sdp->swd_flags = SWF_FAKE;
    649   1.67       chs 		sdp->swd_vp = vp;
    650   1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    651   1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    652  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    653  1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    654    1.1       mrg 			error = EBUSY;
    655  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    656   1.96      yamt 			bufq_free(sdp->swd_tab);
    657  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    658  1.159      para 			kmem_free(spp, sizeof(*spp));
    659   1.16       mrg 			break;
    660    1.1       mrg 		}
    661    1.1       mrg 		swaplist_insert(sdp, spp, priority);
    662  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    663    1.1       mrg 
    664  1.161     rmind 		KASSERT(len > 0);
    665   1.16       mrg 		sdp->swd_pathlen = len;
    666  1.161     rmind 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    667  1.161     rmind 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    668   1.19        pk 			panic("swapctl: copystr");
    669   1.32       chs 
    670    1.1       mrg 		/*
    671    1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    672    1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    673    1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    674    1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    675    1.1       mrg 		 */
    676   1.32       chs 
    677   1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    678  1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    679  1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    680    1.1       mrg 			swaplist_trim();
    681  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    682   1.96      yamt 			bufq_free(sdp->swd_tab);
    683  1.159      para 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    684  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    685    1.1       mrg 			break;
    686    1.1       mrg 		}
    687    1.1       mrg 		break;
    688    1.1       mrg 
    689    1.1       mrg 	case SWAP_OFF:
    690  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    691  1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    692  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    693    1.1       mrg 			error = ENXIO;
    694    1.1       mrg 			break;
    695    1.1       mrg 		}
    696   1.32       chs 
    697    1.1       mrg 		/*
    698    1.1       mrg 		 * If a device isn't in use or enabled, we
    699    1.1       mrg 		 * can't stop swapping from it (again).
    700    1.1       mrg 		 */
    701    1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    702  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    703    1.1       mrg 			error = EBUSY;
    704   1.16       mrg 			break;
    705    1.1       mrg 		}
    706    1.1       mrg 
    707    1.1       mrg 		/*
    708   1.32       chs 		 * do the real work.
    709    1.1       mrg 		 */
    710   1.97  christos 		error = swap_off(l, sdp);
    711    1.1       mrg 		break;
    712    1.1       mrg 
    713    1.1       mrg 	default:
    714    1.1       mrg 		error = EINVAL;
    715    1.1       mrg 	}
    716    1.1       mrg 
    717    1.1       mrg 	/*
    718   1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    719    1.1       mrg 	 */
    720    1.1       mrg 	vput(vp);
    721   1.16       mrg out:
    722  1.160     rmind 	rw_exit(&swap_syscall_lock);
    723  1.159      para 	kmem_free(userpath, SWAP_PATH_MAX);
    724    1.1       mrg 
    725    1.1       mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    726    1.1       mrg 	return (error);
    727   1.61      manu }
    728   1.61      manu 
    729   1.85  junyoung /*
    730  1.155     rmind  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    731   1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    732   1.61      manu  * emulation to use it directly without going through sys_swapctl().
    733   1.61      manu  * The problem with using sys_swapctl() there is that it involves
    734   1.61      manu  * copying the swapent array to the stackgap, and this array's size
    735   1.85  junyoung  * is not known at build time. Hence it would not be possible to
    736   1.61      manu  * ensure it would fit in the stackgap in any case.
    737   1.61      manu  */
    738  1.166      manu void
    739   1.93   thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    740   1.61      manu {
    741   1.61      manu 	struct swappri *spp;
    742   1.61      manu 	struct swapdev *sdp;
    743   1.61      manu 	int count = 0;
    744   1.61      manu 
    745   1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    746  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    747  1.144       mrg 			int inuse;
    748  1.144       mrg 
    749  1.161     rmind 			if (sec-- <= 0)
    750  1.161     rmind 				break;
    751  1.161     rmind 
    752  1.161     rmind 			/*
    753   1.61      manu 			 * backwards compatibility for system call.
    754  1.144       mrg 			 * For NetBSD 1.3 and 5.0, we have to use
    755  1.144       mrg 			 * the 32 bit dev_t.  For 5.0 and -current
    756  1.144       mrg 			 * we have to add the path.
    757   1.61      manu 			 */
    758  1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    759   1.61      manu 			    PAGE_SHIFT);
    760   1.85  junyoung 
    761  1.144       mrg #if defined(COMPAT_13) || defined(COMPAT_50)
    762  1.144       mrg 			if (cmd == SWAP_STATS) {
    763  1.108   thorpej #endif
    764  1.144       mrg 				sep->se_dev = sdp->swd_dev;
    765  1.144       mrg 				sep->se_flags = sdp->swd_flags;
    766  1.144       mrg 				sep->se_nblks = sdp->swd_nblks;
    767  1.144       mrg 				sep->se_inuse = inuse;
    768  1.144       mrg 				sep->se_priority = sdp->swd_priority;
    769  1.161     rmind 				KASSERT(sdp->swd_pathlen <
    770  1.161     rmind 				    sizeof(sep->se_path));
    771  1.161     rmind 				strcpy(sep->se_path, sdp->swd_path);
    772  1.144       mrg 				sep++;
    773   1.61      manu #if defined(COMPAT_13)
    774  1.144       mrg 			} else if (cmd == SWAP_STATS13) {
    775  1.144       mrg 				struct swapent13 *sep13 =
    776  1.144       mrg 				    (struct swapent13 *)sep;
    777  1.144       mrg 
    778  1.144       mrg 				sep13->se13_dev = sdp->swd_dev;
    779  1.144       mrg 				sep13->se13_flags = sdp->swd_flags;
    780  1.144       mrg 				sep13->se13_nblks = sdp->swd_nblks;
    781  1.144       mrg 				sep13->se13_inuse = inuse;
    782  1.144       mrg 				sep13->se13_priority = sdp->swd_priority;
    783  1.144       mrg 				sep = (struct swapent *)(sep13 + 1);
    784  1.144       mrg #endif
    785  1.144       mrg #if defined(COMPAT_50)
    786  1.144       mrg 			} else if (cmd == SWAP_STATS50) {
    787  1.144       mrg 				struct swapent50 *sep50 =
    788  1.144       mrg 				    (struct swapent50 *)sep;
    789  1.144       mrg 
    790  1.144       mrg 				sep50->se50_dev = sdp->swd_dev;
    791  1.144       mrg 				sep50->se50_flags = sdp->swd_flags;
    792  1.144       mrg 				sep50->se50_nblks = sdp->swd_nblks;
    793  1.144       mrg 				sep50->se50_inuse = inuse;
    794  1.144       mrg 				sep50->se50_priority = sdp->swd_priority;
    795  1.161     rmind 				KASSERT(sdp->swd_pathlen <
    796  1.161     rmind 				    sizeof(sep50->se50_path));
    797  1.161     rmind 				strcpy(sep50->se50_path, sdp->swd_path);
    798  1.144       mrg 				sep = (struct swapent *)(sep50 + 1);
    799  1.148       wiz #endif
    800  1.148       wiz #if defined(COMPAT_13) || defined(COMPAT_50)
    801  1.144       mrg 			}
    802   1.61      manu #endif
    803   1.61      manu 			count++;
    804   1.61      manu 		}
    805   1.61      manu 	}
    806   1.61      manu 	*retval = count;
    807    1.1       mrg }
    808    1.1       mrg 
    809    1.1       mrg /*
    810    1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    811    1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    812    1.1       mrg  *	SWF_FAKE).
    813    1.1       mrg  *
    814    1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    815    1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    816  1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    817    1.1       mrg  *	if needed.
    818    1.1       mrg  */
    819    1.1       mrg static int
    820   1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    821    1.1       mrg {
    822    1.1       mrg 	struct vnode *vp;
    823    1.1       mrg 	int error, npages, nblocks, size;
    824    1.1       mrg 	long addr;
    825  1.157    dyoung 	vmem_addr_t result;
    826    1.1       mrg 	struct vattr va;
    827    1.1       mrg 	dev_t dev;
    828    1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    829    1.1       mrg 
    830    1.1       mrg 	/*
    831    1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    832    1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    833    1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    834    1.1       mrg 	 */
    835    1.1       mrg 
    836    1.1       mrg 	vp = sdp->swd_vp;
    837    1.1       mrg 	dev = sdp->swd_dev;
    838    1.1       mrg 
    839    1.1       mrg 	/*
    840    1.1       mrg 	 * open the swap file (mostly useful for block device files to
    841    1.1       mrg 	 * let device driver know what is up).
    842    1.1       mrg 	 *
    843    1.1       mrg 	 * we skip the open/close for root on swap because the root
    844    1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    845    1.1       mrg 	 */
    846    1.1       mrg 	if (vp != rootvp) {
    847  1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    848    1.1       mrg 			return (error);
    849    1.1       mrg 	}
    850    1.1       mrg 
    851    1.1       mrg 	/* XXX this only works for block devices */
    852    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    853    1.1       mrg 
    854    1.1       mrg 	/*
    855    1.1       mrg 	 * we now need to determine the size of the swap area.   for
    856    1.1       mrg 	 * block specials we can call the d_psize function.
    857    1.1       mrg 	 * for normal files, we must stat [get attrs].
    858    1.1       mrg 	 *
    859    1.1       mrg 	 * we put the result in nblks.
    860    1.1       mrg 	 * for normal files, we also want the filesystem block size
    861    1.1       mrg 	 * (which we get with statfs).
    862    1.1       mrg 	 */
    863    1.1       mrg 	switch (vp->v_type) {
    864    1.1       mrg 	case VBLK:
    865  1.158       mrg 		if ((nblocks = bdev_size(dev)) == -1) {
    866    1.1       mrg 			error = ENXIO;
    867    1.1       mrg 			goto bad;
    868    1.1       mrg 		}
    869    1.1       mrg 		break;
    870    1.1       mrg 
    871    1.1       mrg 	case VREG:
    872  1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    873    1.1       mrg 			goto bad;
    874    1.1       mrg 		nblocks = (int)btodb(va.va_size);
    875  1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    876    1.1       mrg 		/*
    877    1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    878    1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    879    1.1       mrg 		 */
    880  1.150     pooka 		if (vp->v_tag == VT_NFS)
    881    1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    882    1.1       mrg 		else
    883    1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    884    1.1       mrg 		break;
    885    1.1       mrg 
    886    1.1       mrg 	default:
    887    1.1       mrg 		error = ENXIO;
    888    1.1       mrg 		goto bad;
    889    1.1       mrg 	}
    890    1.1       mrg 
    891    1.1       mrg 	/*
    892    1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    893    1.1       mrg 	 */
    894    1.1       mrg 
    895  1.144       mrg 	sdp->swd_nblks = nblocks;
    896   1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    897    1.1       mrg 
    898    1.1       mrg 	/*
    899    1.1       mrg 	 * for block special files, we want to make sure that leave
    900    1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    901   1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    902    1.1       mrg 	 * note that because of this the "size" can be less than the
    903    1.1       mrg 	 * actual number of blocks on the device.
    904    1.1       mrg 	 */
    905    1.1       mrg 	if (vp->v_type == VBLK) {
    906    1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    907    1.1       mrg 		size = npages - 1;
    908    1.1       mrg 		addr = 1;
    909    1.1       mrg 	} else {
    910    1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    911    1.1       mrg 		size = npages;
    912    1.1       mrg 		addr = 0;
    913    1.1       mrg 	}
    914    1.1       mrg 
    915    1.1       mrg 	/*
    916    1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    917    1.1       mrg 	 * area.   we want at least one page.
    918    1.1       mrg 	 */
    919    1.1       mrg 
    920    1.1       mrg 	if (size < 1) {
    921    1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    922    1.1       mrg 		error = EINVAL;
    923    1.1       mrg 		goto bad;
    924    1.1       mrg 	}
    925    1.1       mrg 
    926    1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    927    1.1       mrg 
    928    1.1       mrg 	/*
    929    1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    930    1.1       mrg 	 */
    931    1.1       mrg 
    932   1.90      yamt 	sdp->swd_blist = blist_create(npages);
    933   1.90      yamt 	/* mark all expect the `saved' region free. */
    934   1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    935    1.1       mrg 
    936    1.1       mrg 	/*
    937   1.51       chs 	 * if the vnode we are swapping to is the root vnode
    938    1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    939   1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    940    1.1       mrg 	 * find its size and skip over it.
    941    1.1       mrg 	 */
    942    1.1       mrg 	if (vp == rootvp) {
    943    1.1       mrg 		struct mount *mp;
    944   1.86  christos 		struct statvfs *sp;
    945    1.1       mrg 		int rootblocks, rootpages;
    946    1.1       mrg 
    947    1.1       mrg 		mp = rootvnode->v_mount;
    948    1.1       mrg 		sp = &mp->mnt_stat;
    949   1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    950   1.64  fredette 		/*
    951   1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    952   1.64  fredette 		 * blocks in the filesystem, it's the number of
    953   1.64  fredette 		 * data blocks.  so, our rootblocks almost
    954   1.85  junyoung 		 * definitely underestimates the total size
    955   1.64  fredette 		 * of the filesystem - how badly depends on the
    956   1.85  junyoung 		 * details of the filesystem type.  there isn't
    957   1.64  fredette 		 * an obvious way to deal with this cleanly
    958   1.85  junyoung 		 * and perfectly, so for now we just pad our
    959   1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    960   1.64  fredette 		 */
    961   1.64  fredette 		rootblocks += (rootblocks >> 5) +
    962   1.64  fredette 			(rootblocks >> 6) +
    963   1.64  fredette 			(rootblocks >> 7);
    964   1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    965   1.32       chs 		if (rootpages > size)
    966    1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    967    1.1       mrg 
    968   1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    969    1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    970   1.90      yamt 		}
    971    1.1       mrg 
    972   1.32       chs 		size -= rootpages;
    973    1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    974   1.32       chs 		printf("leaving %d pages of swap\n", size);
    975    1.1       mrg 	}
    976    1.1       mrg 
    977   1.39       chs 	/*
    978   1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    979   1.39       chs 	 */
    980   1.39       chs 	vref(vp);
    981   1.39       chs 
    982    1.1       mrg 	/*
    983    1.1       mrg 	 * now add the new swapdev to the drum and enable.
    984    1.1       mrg 	 */
    985  1.157    dyoung 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    986  1.157    dyoung 	if (error != 0)
    987   1.48      fvdl 		panic("swapdrum_add");
    988  1.130   hannken 	/*
    989  1.130   hannken 	 * If this is the first regular swap create the workqueue.
    990  1.130   hannken 	 * => Protected by swap_syscall_lock.
    991  1.130   hannken 	 */
    992  1.130   hannken 	if (vp->v_type != VBLK) {
    993  1.130   hannken 		if (sw_reg_count++ == 0) {
    994  1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
    995  1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    996  1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    997  1.145       mrg 				panic("%s: workqueue_create failed", __func__);
    998  1.130   hannken 		}
    999  1.130   hannken 	}
   1000   1.48      fvdl 
   1001   1.48      fvdl 	sdp->swd_drumoffset = (int)result;
   1002   1.48      fvdl 	sdp->swd_drumsize = npages;
   1003   1.48      fvdl 	sdp->swd_npages = size;
   1004  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1005    1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1006    1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1007   1.32       chs 	uvmexp.swpages += size;
   1008   1.81        pk 	uvmexp.swpgavail += size;
   1009  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1010    1.1       mrg 	return (0);
   1011    1.1       mrg 
   1012    1.1       mrg 	/*
   1013   1.43       chs 	 * failure: clean up and return error.
   1014    1.1       mrg 	 */
   1015   1.43       chs 
   1016   1.43       chs bad:
   1017   1.90      yamt 	if (sdp->swd_blist) {
   1018   1.90      yamt 		blist_destroy(sdp->swd_blist);
   1019   1.43       chs 	}
   1020   1.43       chs 	if (vp != rootvp) {
   1021  1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1022   1.43       chs 	}
   1023    1.1       mrg 	return (error);
   1024    1.1       mrg }
   1025    1.1       mrg 
   1026    1.1       mrg /*
   1027    1.1       mrg  * swap_off: stop swapping on swapdev
   1028    1.1       mrg  *
   1029   1.32       chs  * => swap data should be locked, we will unlock.
   1030    1.1       mrg  */
   1031    1.1       mrg static int
   1032   1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1033    1.1       mrg {
   1034   1.91      yamt 	int npages = sdp->swd_npages;
   1035   1.91      yamt 	int error = 0;
   1036   1.81        pk 
   1037    1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1038   1.81        pk 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1039    1.1       mrg 
   1040   1.32       chs 	/* disable the swap area being removed */
   1041    1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1042   1.81        pk 	uvmexp.swpgavail -= npages;
   1043  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1044   1.32       chs 
   1045   1.32       chs 	/*
   1046   1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1047   1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1048   1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1049   1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1050   1.32       chs 	 */
   1051    1.1       mrg 
   1052   1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1053   1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1054   1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1055   1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1056   1.91      yamt 		error = ENOMEM;
   1057   1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1058   1.91      yamt 		error = EBUSY;
   1059   1.91      yamt 	}
   1060   1.51       chs 
   1061   1.91      yamt 	if (error) {
   1062  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1063   1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1064   1.81        pk 		uvmexp.swpgavail += npages;
   1065  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1066   1.91      yamt 
   1067   1.91      yamt 		return error;
   1068   1.32       chs 	}
   1069    1.1       mrg 
   1070    1.1       mrg 	/*
   1071  1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1072  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1073  1.130   hannken 	 */
   1074  1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1075  1.130   hannken 		KASSERT(sw_reg_count > 0);
   1076  1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1077  1.130   hannken 		if (--sw_reg_count == 0) {
   1078  1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1079  1.130   hannken 			sw_reg_workqueue = NULL;
   1080  1.130   hannken 		}
   1081  1.130   hannken 	}
   1082  1.130   hannken 
   1083  1.130   hannken 	/*
   1084   1.58     enami 	 * done with the vnode.
   1085   1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1086   1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1087    1.1       mrg 	 */
   1088   1.39       chs 	vrele(sdp->swd_vp);
   1089   1.32       chs 	if (sdp->swd_vp != rootvp) {
   1090  1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1091   1.32       chs 	}
   1092   1.32       chs 
   1093  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1094   1.81        pk 	uvmexp.swpages -= npages;
   1095   1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1096    1.1       mrg 
   1097  1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1098  1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1099   1.32       chs 	swaplist_trim();
   1100  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1101    1.1       mrg 
   1102   1.32       chs 	/*
   1103   1.32       chs 	 * free all resources!
   1104   1.32       chs 	 */
   1105  1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1106   1.90      yamt 	blist_destroy(sdp->swd_blist);
   1107   1.96      yamt 	bufq_free(sdp->swd_tab);
   1108  1.159      para 	kmem_free(sdp, sizeof(*sdp));
   1109    1.1       mrg 	return (0);
   1110    1.1       mrg }
   1111    1.1       mrg 
   1112  1.164  christos void
   1113  1.164  christos uvm_swap_shutdown(struct lwp *l)
   1114  1.164  christos {
   1115  1.164  christos 	struct swapdev *sdp;
   1116  1.164  christos 	struct swappri *spp;
   1117  1.164  christos 	struct vnode *vp;
   1118  1.164  christos 	int error;
   1119  1.164  christos 
   1120  1.164  christos 	printf("turning of swap...");
   1121  1.164  christos 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1122  1.164  christos 	mutex_enter(&uvm_swap_data_lock);
   1123  1.164  christos again:
   1124  1.164  christos 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1125  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1126  1.164  christos 			if (sdp->swd_flags & SWF_FAKE)
   1127  1.164  christos 				continue;
   1128  1.164  christos 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1129  1.164  christos 				continue;
   1130  1.164  christos #ifdef DEBUG
   1131  1.164  christos 			printf("\nturning off swap on %s...",
   1132  1.164  christos 			    sdp->swd_path);
   1133  1.164  christos #endif
   1134  1.164  christos 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1135  1.164  christos 				error = EBUSY;
   1136  1.164  christos 				vp = NULL;
   1137  1.164  christos 			} else
   1138  1.164  christos 				error = 0;
   1139  1.164  christos 			if (!error) {
   1140  1.164  christos 				error = swap_off(l, sdp);
   1141  1.164  christos 				mutex_enter(&uvm_swap_data_lock);
   1142  1.164  christos 			}
   1143  1.164  christos 			if (error) {
   1144  1.164  christos 				printf("stopping swap on %s failed "
   1145  1.164  christos 				    "with error %d\n", sdp->swd_path, error);
   1146  1.164  christos 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1147  1.164  christos 				    swd_next);
   1148  1.164  christos 				uvmexp.nswapdev--;
   1149  1.164  christos 				swaplist_trim();
   1150  1.164  christos 				if (vp)
   1151  1.164  christos 					vput(vp);
   1152  1.164  christos 			}
   1153  1.164  christos 			goto again;
   1154  1.164  christos 		}
   1155  1.164  christos 	printf(" done\n");
   1156  1.164  christos 	mutex_exit(&uvm_swap_data_lock);
   1157  1.164  christos 	rw_exit(&swap_syscall_lock);
   1158  1.164  christos }
   1159  1.164  christos 
   1160  1.164  christos 
   1161    1.1       mrg /*
   1162    1.1       mrg  * /dev/drum interface and i/o functions
   1163    1.1       mrg  */
   1164    1.1       mrg 
   1165    1.1       mrg /*
   1166    1.1       mrg  * swstrategy: perform I/O on the drum
   1167    1.1       mrg  *
   1168    1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1169    1.1       mrg  */
   1170   1.94   thorpej static void
   1171   1.93   thorpej swstrategy(struct buf *bp)
   1172    1.1       mrg {
   1173    1.1       mrg 	struct swapdev *sdp;
   1174    1.1       mrg 	struct vnode *vp;
   1175  1.134        ad 	int pageno, bn;
   1176    1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1177    1.1       mrg 
   1178    1.1       mrg 	/*
   1179    1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1180    1.1       mrg 	 * be yanked out from under us because we are holding resources
   1181    1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1182    1.1       mrg 	 */
   1183   1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1184  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1185    1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1186  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1187    1.1       mrg 	if (sdp == NULL) {
   1188    1.1       mrg 		bp->b_error = EINVAL;
   1189  1.163  riastrad 		bp->b_resid = bp->b_bcount;
   1190    1.1       mrg 		biodone(bp);
   1191    1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1192    1.1       mrg 		return;
   1193    1.1       mrg 	}
   1194    1.1       mrg 
   1195    1.1       mrg 	/*
   1196    1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1197    1.1       mrg 	 */
   1198    1.1       mrg 
   1199   1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1200   1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1201    1.1       mrg 
   1202   1.41       chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1203    1.1       mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1204    1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1205    1.1       mrg 
   1206    1.1       mrg 	/*
   1207    1.1       mrg 	 * for block devices we finish up here.
   1208   1.32       chs 	 * for regular files we have to do more work which we delegate
   1209    1.1       mrg 	 * to sw_reg_strategy().
   1210    1.1       mrg 	 */
   1211    1.1       mrg 
   1212  1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1213  1.134        ad 	switch (vp->v_type) {
   1214    1.1       mrg 	default:
   1215  1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1216   1.32       chs 
   1217    1.1       mrg 	case VBLK:
   1218    1.1       mrg 
   1219    1.1       mrg 		/*
   1220    1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1221    1.1       mrg 		 * on the swapdev (sdp).
   1222    1.1       mrg 		 */
   1223    1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1224    1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1225    1.1       mrg 
   1226    1.1       mrg 		/*
   1227    1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1228    1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1229    1.1       mrg 		 */
   1230    1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1231  1.134        ad 			mutex_enter(bp->b_objlock);
   1232    1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1233  1.134        ad 			mutex_exit(bp->b_objlock);
   1234  1.156     rmind 			mutex_enter(vp->v_interlock);
   1235  1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1236  1.156     rmind 			mutex_exit(vp->v_interlock);
   1237    1.1       mrg 		}
   1238    1.1       mrg 
   1239   1.41       chs 		/*
   1240    1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1241    1.1       mrg 		 */
   1242    1.1       mrg 		bp->b_vp = vp;
   1243  1.156     rmind 		bp->b_objlock = vp->v_interlock;
   1244   1.84   hannken 		VOP_STRATEGY(vp, bp);
   1245    1.1       mrg 		return;
   1246   1.32       chs 
   1247    1.1       mrg 	case VREG:
   1248    1.1       mrg 		/*
   1249   1.32       chs 		 * delegate to sw_reg_strategy function.
   1250    1.1       mrg 		 */
   1251    1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1252    1.1       mrg 		return;
   1253    1.1       mrg 	}
   1254    1.1       mrg 	/* NOTREACHED */
   1255    1.1       mrg }
   1256    1.1       mrg 
   1257    1.1       mrg /*
   1258   1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1259   1.94   thorpej  */
   1260   1.94   thorpej /*ARGSUSED*/
   1261   1.94   thorpej static int
   1262  1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1263   1.94   thorpej {
   1264   1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1265   1.94   thorpej 
   1266   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1267   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1268   1.94   thorpej }
   1269   1.94   thorpej 
   1270   1.94   thorpej /*
   1271   1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1272   1.94   thorpej  */
   1273   1.94   thorpej /*ARGSUSED*/
   1274   1.94   thorpej static int
   1275  1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1276   1.94   thorpej {
   1277   1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1278   1.94   thorpej 
   1279   1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1280   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1281   1.94   thorpej }
   1282   1.94   thorpej 
   1283   1.94   thorpej const struct bdevsw swap_bdevsw = {
   1284  1.168  dholland 	.d_open = nullopen,
   1285  1.168  dholland 	.d_close = nullclose,
   1286  1.168  dholland 	.d_strategy = swstrategy,
   1287  1.168  dholland 	.d_ioctl = noioctl,
   1288  1.168  dholland 	.d_dump = nodump,
   1289  1.168  dholland 	.d_psize = nosize,
   1290  1.168  dholland 	.d_flag = D_OTHER
   1291   1.94   thorpej };
   1292   1.94   thorpej 
   1293   1.94   thorpej const struct cdevsw swap_cdevsw = {
   1294  1.168  dholland 	.d_open = nullopen,
   1295  1.168  dholland 	.d_close = nullclose,
   1296  1.168  dholland 	.d_read = swread,
   1297  1.168  dholland 	.d_write = swwrite,
   1298  1.168  dholland 	.d_ioctl = noioctl,
   1299  1.168  dholland 	.d_stop = nostop,
   1300  1.168  dholland 	.d_tty = notty,
   1301  1.168  dholland 	.d_poll = nopoll,
   1302  1.168  dholland 	.d_mmap = nommap,
   1303  1.168  dholland 	.d_kqfilter = nokqfilter,
   1304  1.168  dholland 	.d_flag = D_OTHER,
   1305   1.94   thorpej };
   1306   1.94   thorpej 
   1307   1.94   thorpej /*
   1308    1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1309    1.1       mrg  */
   1310    1.1       mrg static void
   1311   1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1312    1.1       mrg {
   1313    1.1       mrg 	struct vnode	*vp;
   1314    1.1       mrg 	struct vndxfer	*vnx;
   1315   1.44     enami 	daddr_t		nbn;
   1316  1.122  christos 	char 		*addr;
   1317   1.44     enami 	off_t		byteoff;
   1318    1.9       mrg 	int		s, off, nra, error, sz, resid;
   1319    1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1320    1.1       mrg 
   1321    1.1       mrg 	/*
   1322    1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1323    1.1       mrg 	 * our buffer.
   1324    1.1       mrg 	 */
   1325  1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1326    1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1327    1.1       mrg 	vnx->vx_error = 0;
   1328    1.1       mrg 	vnx->vx_pending = 0;
   1329    1.1       mrg 	vnx->vx_bp = bp;
   1330    1.1       mrg 	vnx->vx_sdp = sdp;
   1331    1.1       mrg 
   1332    1.1       mrg 	/*
   1333    1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1334    1.1       mrg 	 * our buffer.
   1335    1.1       mrg 	 */
   1336    1.1       mrg 	error = 0;
   1337    1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1338    1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1339   1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1340    1.1       mrg 
   1341    1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1342    1.1       mrg 		struct vndbuf	*nbp;
   1343    1.1       mrg 
   1344    1.1       mrg 		/*
   1345    1.1       mrg 		 * translate byteoffset into block number.  return values:
   1346    1.1       mrg 		 *   vp = vnode of underlying device
   1347    1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1348    1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1349    1.1       mrg 		 *	block)
   1350    1.1       mrg 		 */
   1351    1.1       mrg 		nra = 0;
   1352    1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1353    1.1       mrg 				 	&vp, &nbn, &nra);
   1354    1.1       mrg 
   1355   1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1356   1.51       chs 			/*
   1357   1.23      marc 			 * this used to just set error, but that doesn't
   1358   1.23      marc 			 * do the right thing.  Instead, it causes random
   1359   1.23      marc 			 * memory errors.  The panic() should remain until
   1360   1.23      marc 			 * this condition doesn't destabilize the system.
   1361   1.23      marc 			 */
   1362   1.23      marc #if 1
   1363  1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1364   1.23      marc #else
   1365    1.1       mrg 			error = EIO;	/* failure */
   1366   1.23      marc #endif
   1367   1.23      marc 		}
   1368    1.1       mrg 
   1369    1.1       mrg 		/*
   1370    1.1       mrg 		 * punt if there was an error or a hole in the file.
   1371    1.1       mrg 		 * we must wait for any i/o ops we have already started
   1372    1.1       mrg 		 * to finish before returning.
   1373    1.1       mrg 		 *
   1374    1.1       mrg 		 * XXX we could deal with holes here but it would be
   1375    1.1       mrg 		 * a hassle (in the write case).
   1376    1.1       mrg 		 */
   1377    1.1       mrg 		if (error) {
   1378    1.1       mrg 			s = splbio();
   1379    1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1380    1.1       mrg 			goto out;
   1381    1.1       mrg 		}
   1382    1.1       mrg 
   1383    1.1       mrg 		/*
   1384    1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1385    1.1       mrg 		 */
   1386   1.41       chs 		off = byteoff % sdp->swd_bsize;
   1387   1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1388   1.41       chs 		if (sz > resid)
   1389    1.1       mrg 			sz = resid;
   1390    1.1       mrg 
   1391   1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1392   1.41       chs 			    "vp %p/%p offset 0x%x/0x%x",
   1393   1.41       chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1394    1.1       mrg 
   1395    1.1       mrg 		/*
   1396    1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1397    1.1       mrg 		 * at the front of the nbp structure so that you can
   1398    1.1       mrg 		 * cast pointers between the two structure easily.
   1399    1.1       mrg 		 */
   1400  1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1401  1.134        ad 		buf_init(&nbp->vb_buf);
   1402  1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1403  1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1404  1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1405    1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1406   1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1407    1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1408    1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1409   1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1410    1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1411   1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1412  1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1413   1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1414  1.156     rmind 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1415   1.53       chs 		if (vp->v_type == VBLK) {
   1416   1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1417   1.53       chs 		}
   1418    1.1       mrg 
   1419    1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1420    1.1       mrg 
   1421    1.1       mrg 		/*
   1422    1.1       mrg 		 * Just sort by block number
   1423    1.1       mrg 		 */
   1424    1.1       mrg 		s = splbio();
   1425    1.1       mrg 		if (vnx->vx_error != 0) {
   1426  1.134        ad 			buf_destroy(&nbp->vb_buf);
   1427  1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1428    1.1       mrg 			goto out;
   1429    1.1       mrg 		}
   1430    1.1       mrg 		vnx->vx_pending++;
   1431    1.1       mrg 
   1432    1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1433  1.134        ad 		/* XXXAD locking */
   1434  1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1435    1.1       mrg 		sw_reg_start(sdp);
   1436    1.1       mrg 		splx(s);
   1437    1.1       mrg 
   1438    1.1       mrg 		/*
   1439    1.1       mrg 		 * advance to the next I/O
   1440    1.1       mrg 		 */
   1441    1.9       mrg 		byteoff += sz;
   1442    1.1       mrg 		addr += sz;
   1443    1.1       mrg 	}
   1444    1.1       mrg 
   1445    1.1       mrg 	s = splbio();
   1446    1.1       mrg 
   1447    1.1       mrg out: /* Arrive here at splbio */
   1448    1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1449    1.1       mrg 	if (vnx->vx_pending == 0) {
   1450  1.134        ad 		error = vnx->vx_error;
   1451  1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1452  1.134        ad 		bp->b_error = error;
   1453    1.1       mrg 		biodone(bp);
   1454    1.1       mrg 	}
   1455    1.1       mrg 	splx(s);
   1456    1.1       mrg }
   1457    1.1       mrg 
   1458    1.1       mrg /*
   1459    1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1460    1.1       mrg  *
   1461   1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1462    1.1       mrg  */
   1463    1.1       mrg static void
   1464   1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1465    1.1       mrg {
   1466    1.1       mrg 	struct buf	*bp;
   1467  1.134        ad 	struct vnode	*vp;
   1468    1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1469    1.1       mrg 
   1470    1.8       mrg 	/* recursion control */
   1471    1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1472    1.1       mrg 		return;
   1473    1.1       mrg 
   1474    1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1475    1.1       mrg 
   1476   1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1477  1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1478    1.1       mrg 		if (bp == NULL)
   1479    1.1       mrg 			break;
   1480   1.33   thorpej 		sdp->swd_active++;
   1481    1.1       mrg 
   1482    1.1       mrg 		UVMHIST_LOG(pdhist,
   1483    1.1       mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1484    1.1       mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1485  1.134        ad 		vp = bp->b_vp;
   1486  1.156     rmind 		KASSERT(bp->b_objlock == vp->v_interlock);
   1487  1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1488  1.156     rmind 			mutex_enter(vp->v_interlock);
   1489  1.134        ad 			vp->v_numoutput++;
   1490  1.156     rmind 			mutex_exit(vp->v_interlock);
   1491  1.134        ad 		}
   1492  1.134        ad 		VOP_STRATEGY(vp, bp);
   1493    1.1       mrg 	}
   1494    1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1495    1.1       mrg }
   1496    1.1       mrg 
   1497    1.1       mrg /*
   1498  1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1499  1.130   hannken  */
   1500  1.130   hannken static void
   1501  1.130   hannken sw_reg_biodone(struct buf *bp)
   1502  1.130   hannken {
   1503  1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1504  1.130   hannken }
   1505  1.130   hannken 
   1506  1.130   hannken /*
   1507    1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1508    1.1       mrg  *
   1509    1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1510    1.1       mrg  */
   1511    1.1       mrg static void
   1512  1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1513    1.1       mrg {
   1514  1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1515    1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1516    1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1517    1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1518   1.72       chs 	int s, resid, error;
   1519  1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1520    1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1521    1.1       mrg 
   1522    1.1       mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1523    1.1       mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1524    1.1       mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1525    1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1526    1.1       mrg 
   1527    1.1       mrg 	/*
   1528    1.1       mrg 	 * protect vbp at splbio and update.
   1529    1.1       mrg 	 */
   1530    1.1       mrg 
   1531    1.1       mrg 	s = splbio();
   1532    1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1533    1.1       mrg 	pbp->b_resid -= resid;
   1534    1.1       mrg 	vnx->vx_pending--;
   1535    1.1       mrg 
   1536  1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1537    1.1       mrg 		/* pass error upward */
   1538  1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1539   1.72       chs 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1540   1.72       chs 		vnx->vx_error = error;
   1541   1.35       chs 	}
   1542   1.35       chs 
   1543   1.35       chs 	/*
   1544    1.1       mrg 	 * kill vbp structure
   1545    1.1       mrg 	 */
   1546  1.134        ad 	buf_destroy(&vbp->vb_buf);
   1547  1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1548    1.1       mrg 
   1549    1.1       mrg 	/*
   1550    1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1551    1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1552    1.1       mrg 	 */
   1553    1.1       mrg 	if (vnx->vx_error != 0) {
   1554    1.1       mrg 		/* pass error upward */
   1555  1.134        ad 		error = vnx->vx_error;
   1556    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1557  1.134        ad 			pbp->b_error = error;
   1558    1.1       mrg 			biodone(pbp);
   1559  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1560    1.1       mrg 		}
   1561   1.11        pk 	} else if (pbp->b_resid == 0) {
   1562   1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1563    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1564    1.8       mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1565    1.8       mrg 			    pbp, vnx->vx_error, 0, 0);
   1566    1.1       mrg 			biodone(pbp);
   1567  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1568    1.1       mrg 		}
   1569    1.1       mrg 	}
   1570    1.1       mrg 
   1571    1.1       mrg 	/*
   1572    1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1573    1.1       mrg 	 */
   1574   1.33   thorpej 	sdp->swd_active--;
   1575    1.1       mrg 	sw_reg_start(sdp);
   1576    1.1       mrg 	splx(s);
   1577    1.1       mrg }
   1578    1.1       mrg 
   1579    1.1       mrg 
   1580    1.1       mrg /*
   1581    1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1582    1.1       mrg  *
   1583    1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1584    1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1585    1.1       mrg  * => space can be freed with uvm_swap_free
   1586    1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1587  1.127        ad  * => we lock uvm_swap_data_lock
   1588    1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1589    1.1       mrg  */
   1590    1.1       mrg int
   1591  1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1592    1.1       mrg {
   1593    1.1       mrg 	struct swapdev *sdp;
   1594    1.1       mrg 	struct swappri *spp;
   1595    1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1596    1.1       mrg 
   1597    1.1       mrg 	/*
   1598    1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1599    1.1       mrg 	 */
   1600    1.1       mrg 	if (uvmexp.nswapdev < 1)
   1601    1.1       mrg 		return 0;
   1602   1.51       chs 
   1603    1.1       mrg 	/*
   1604  1.162  jakllsch 	 * XXXJAK: BEGIN HACK
   1605  1.162  jakllsch 	 *
   1606  1.162  jakllsch 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1607  1.162  jakllsch 	 * too many slots.
   1608  1.162  jakllsch 	 */
   1609  1.162  jakllsch 	if (*nslots > BLIST_MAX_ALLOC) {
   1610  1.162  jakllsch 		if (__predict_false(lessok == false))
   1611  1.162  jakllsch 			return 0;
   1612  1.162  jakllsch 		*nslots = BLIST_MAX_ALLOC;
   1613  1.162  jakllsch 	}
   1614  1.162  jakllsch 	/* XXXJAK: END HACK */
   1615  1.162  jakllsch 
   1616  1.162  jakllsch 	/*
   1617    1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1618    1.1       mrg 	 */
   1619  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1620    1.1       mrg 
   1621    1.1       mrg ReTry:	/* XXXMRG */
   1622   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1623  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1624   1.90      yamt 			uint64_t result;
   1625   1.90      yamt 
   1626    1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1627    1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1628    1.1       mrg 				continue;
   1629    1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1630    1.1       mrg 				continue;
   1631   1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1632   1.90      yamt 			if (result == BLIST_NONE) {
   1633    1.1       mrg 				continue;
   1634    1.1       mrg 			}
   1635   1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1636    1.1       mrg 
   1637    1.1       mrg 			/*
   1638  1.165  christos 			 * successful allocation!  now rotate the tailq.
   1639    1.1       mrg 			 */
   1640  1.164  christos 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1641  1.164  christos 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1642    1.1       mrg 			sdp->swd_npginuse += *nslots;
   1643    1.1       mrg 			uvmexp.swpginuse += *nslots;
   1644  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1645    1.1       mrg 			/* done!  return drum slot number */
   1646    1.1       mrg 			UVMHIST_LOG(pdhist,
   1647    1.1       mrg 			    "success!  returning %d slots starting at %d",
   1648    1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1649   1.55       chs 			return (result + sdp->swd_drumoffset);
   1650    1.1       mrg 		}
   1651    1.1       mrg 	}
   1652    1.1       mrg 
   1653    1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1654    1.1       mrg 	if (*nslots > 1 && lessok) {
   1655    1.1       mrg 		*nslots = 1;
   1656   1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1657   1.90      yamt 		goto ReTry;
   1658    1.1       mrg 	}
   1659    1.1       mrg 	/* XXXMRG: END HACK */
   1660    1.1       mrg 
   1661  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1662   1.55       chs 	return 0;
   1663    1.1       mrg }
   1664    1.1       mrg 
   1665  1.141        ad /*
   1666  1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1667  1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1668  1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1669  1.141        ad  * pages are busy.
   1670  1.141        ad  */
   1671  1.119   thorpej bool
   1672   1.81        pk uvm_swapisfull(void)
   1673   1.81        pk {
   1674  1.141        ad 	int swpgonly;
   1675  1.119   thorpej 	bool rv;
   1676   1.81        pk 
   1677  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1678   1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1679  1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1680  1.141        ad 	    uvm_swapisfull_factor);
   1681  1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1682  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1683   1.81        pk 
   1684   1.81        pk 	return (rv);
   1685   1.81        pk }
   1686   1.81        pk 
   1687    1.1       mrg /*
   1688   1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1689   1.32       chs  *
   1690  1.127        ad  * => we lock uvm_swap_data_lock
   1691   1.32       chs  */
   1692   1.32       chs void
   1693   1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1694   1.32       chs {
   1695   1.32       chs 	struct swapdev *sdp;
   1696   1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1697   1.32       chs 
   1698  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1699   1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1700   1.82        pk 	KASSERT(sdp != NULL);
   1701   1.32       chs 
   1702   1.32       chs 	/*
   1703   1.32       chs 	 * we just keep track of how many pages have been marked bad
   1704   1.32       chs 	 * in this device, to make everything add up in swap_off().
   1705   1.32       chs 	 * we assume here that the range of slots will all be within
   1706   1.32       chs 	 * one swap device.
   1707   1.32       chs 	 */
   1708   1.41       chs 
   1709   1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1710   1.82        pk 	uvmexp.swpgonly -= nslots;
   1711   1.32       chs 	sdp->swd_npgbad += nslots;
   1712   1.41       chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1713  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1714   1.32       chs }
   1715   1.32       chs 
   1716   1.32       chs /*
   1717    1.1       mrg  * uvm_swap_free: free swap slots
   1718    1.1       mrg  *
   1719    1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1720  1.127        ad  * => we lock uvm_swap_data_lock
   1721    1.1       mrg  */
   1722    1.1       mrg void
   1723   1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1724    1.1       mrg {
   1725    1.1       mrg 	struct swapdev *sdp;
   1726    1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1727    1.1       mrg 
   1728    1.1       mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1729    1.1       mrg 	    startslot, 0, 0);
   1730   1.32       chs 
   1731   1.32       chs 	/*
   1732   1.32       chs 	 * ignore attempts to free the "bad" slot.
   1733   1.32       chs 	 */
   1734   1.46       chs 
   1735   1.32       chs 	if (startslot == SWSLOT_BAD) {
   1736   1.32       chs 		return;
   1737   1.32       chs 	}
   1738   1.32       chs 
   1739    1.1       mrg 	/*
   1740   1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1741   1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1742    1.1       mrg 	 * lookup and access the extent.
   1743    1.1       mrg 	 */
   1744   1.46       chs 
   1745  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1746    1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1747   1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1748   1.46       chs 	KASSERT(sdp != NULL);
   1749   1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1750   1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1751    1.1       mrg 	sdp->swd_npginuse -= nslots;
   1752    1.1       mrg 	uvmexp.swpginuse -= nslots;
   1753  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1754    1.1       mrg }
   1755    1.1       mrg 
   1756    1.1       mrg /*
   1757    1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1758    1.1       mrg  *
   1759    1.1       mrg  * => can be sync or async
   1760    1.1       mrg  */
   1761   1.54       chs 
   1762    1.1       mrg int
   1763   1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1764    1.1       mrg {
   1765   1.56       chs 	int error;
   1766    1.1       mrg 
   1767   1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1768    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1769   1.56       chs 	return error;
   1770    1.1       mrg }
   1771    1.1       mrg 
   1772    1.1       mrg /*
   1773    1.1       mrg  * uvm_swap_get: get a single page from swap
   1774    1.1       mrg  *
   1775    1.1       mrg  * => usually a sync op (from fault)
   1776    1.1       mrg  */
   1777   1.54       chs 
   1778    1.1       mrg int
   1779   1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1780    1.1       mrg {
   1781   1.56       chs 	int error;
   1782    1.1       mrg 
   1783    1.1       mrg 	uvmexp.nswget++;
   1784   1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1785   1.32       chs 	if (swslot == SWSLOT_BAD) {
   1786   1.47       chs 		return EIO;
   1787   1.32       chs 	}
   1788   1.81        pk 
   1789   1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1790    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1791   1.56       chs 	if (error == 0) {
   1792   1.47       chs 
   1793   1.26       chs 		/*
   1794   1.54       chs 		 * this page is no longer only in swap.
   1795   1.26       chs 		 */
   1796   1.47       chs 
   1797  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1798   1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1799   1.54       chs 		uvmexp.swpgonly--;
   1800  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1801   1.26       chs 	}
   1802   1.56       chs 	return error;
   1803    1.1       mrg }
   1804    1.1       mrg 
   1805    1.1       mrg /*
   1806    1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1807    1.1       mrg  */
   1808    1.1       mrg 
   1809    1.1       mrg static int
   1810   1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1811    1.1       mrg {
   1812    1.1       mrg 	daddr_t startblk;
   1813    1.1       mrg 	struct	buf *bp;
   1814   1.15       eeh 	vaddr_t kva;
   1815  1.134        ad 	int	error, mapinflags;
   1816  1.119   thorpej 	bool write, async;
   1817    1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1818    1.1       mrg 
   1819    1.1       mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1820    1.1       mrg 	    startslot, npages, flags, 0);
   1821   1.32       chs 
   1822   1.41       chs 	write = (flags & B_READ) == 0;
   1823   1.41       chs 	async = (flags & B_ASYNC) != 0;
   1824   1.41       chs 
   1825    1.1       mrg 	/*
   1826  1.137      yamt 	 * allocate a buf for the i/o.
   1827  1.137      yamt 	 */
   1828  1.137      yamt 
   1829  1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1830  1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1831  1.137      yamt 	if (bp == NULL) {
   1832  1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1833  1.137      yamt 		return ENOMEM;
   1834  1.137      yamt 	}
   1835  1.137      yamt 
   1836  1.137      yamt 	/*
   1837    1.1       mrg 	 * convert starting drum slot to block number
   1838    1.1       mrg 	 */
   1839   1.54       chs 
   1840   1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1841    1.1       mrg 
   1842    1.1       mrg 	/*
   1843   1.54       chs 	 * first, map the pages into the kernel.
   1844   1.41       chs 	 */
   1845   1.41       chs 
   1846   1.54       chs 	mapinflags = !write ?
   1847   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1848   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1849   1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1850    1.1       mrg 
   1851   1.51       chs 	/*
   1852    1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1853    1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1854    1.1       mrg 	 */
   1855   1.54       chs 
   1856  1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1857  1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1858    1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1859   1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1860  1.122  christos 	bp->b_data = (void *)kva;
   1861    1.1       mrg 	bp->b_blkno = startblk;
   1862   1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1863    1.1       mrg 
   1864   1.51       chs 	/*
   1865   1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1866    1.1       mrg 	 */
   1867   1.54       chs 
   1868   1.41       chs 	if (write) {
   1869  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1870  1.134        ad 		swapdev_vp->v_numoutput++;
   1871  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1872    1.1       mrg 	}
   1873    1.1       mrg 
   1874    1.1       mrg 	/*
   1875   1.41       chs 	 * for async ops we must set up the iodone handler.
   1876    1.1       mrg 	 */
   1877   1.54       chs 
   1878   1.41       chs 	if (async) {
   1879   1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1880    1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1881  1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1882   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1883   1.83      yamt 		else
   1884   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1885   1.83      yamt 	} else {
   1886  1.134        ad 		bp->b_iodone = NULL;
   1887   1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1888    1.1       mrg 	}
   1889    1.1       mrg 	UVMHIST_LOG(pdhist,
   1890   1.41       chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1891    1.1       mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1892    1.1       mrg 
   1893    1.1       mrg 	/*
   1894    1.1       mrg 	 * now we start the I/O, and if async, return.
   1895    1.1       mrg 	 */
   1896   1.54       chs 
   1897   1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1898   1.41       chs 	if (async)
   1899   1.47       chs 		return 0;
   1900    1.1       mrg 
   1901    1.1       mrg 	/*
   1902    1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1903    1.1       mrg 	 */
   1904   1.54       chs 
   1905   1.47       chs 	error = biowait(bp);
   1906    1.1       mrg 
   1907    1.1       mrg 	/*
   1908    1.1       mrg 	 * kill the pager mapping
   1909    1.1       mrg 	 */
   1910   1.54       chs 
   1911    1.1       mrg 	uvm_pagermapout(kva, npages);
   1912    1.1       mrg 
   1913    1.1       mrg 	/*
   1914   1.54       chs 	 * now dispose of the buf and we're done.
   1915    1.1       mrg 	 */
   1916   1.54       chs 
   1917  1.134        ad 	if (write) {
   1918  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1919   1.41       chs 		vwakeup(bp);
   1920  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1921  1.134        ad 	}
   1922   1.98      yamt 	putiobuf(bp);
   1923   1.47       chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1924  1.134        ad 
   1925   1.47       chs 	return (error);
   1926    1.1       mrg }
   1927