Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.172.4.1
      1  1.172.4.1     skrll /*	$NetBSD: uvm_swap.c,v 1.172.4.1 2015/09/22 12:06:17 skrll Exp $	*/
      2        1.1       mrg 
      3        1.1       mrg /*
      4      1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5        1.1       mrg  * All rights reserved.
      6        1.1       mrg  *
      7        1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8        1.1       mrg  * modification, are permitted provided that the following conditions
      9        1.1       mrg  * are met:
     10        1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11        1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12        1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14        1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15        1.1       mrg  *
     16        1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17        1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18        1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19        1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20        1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21        1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22        1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23        1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24        1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25        1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26        1.1       mrg  * SUCH DAMAGE.
     27        1.3       mrg  *
     28        1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29        1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30        1.1       mrg  */
     31       1.57     lukem 
     32       1.57     lukem #include <sys/cdefs.h>
     33  1.172.4.1     skrll __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.172.4.1 2015/09/22 12:06:17 skrll Exp $");
     34        1.5       mrg 
     35        1.5       mrg #include "opt_uvmhist.h"
     36       1.16       mrg #include "opt_compat_netbsd.h"
     37       1.41       chs #include "opt_ddb.h"
     38        1.1       mrg 
     39        1.1       mrg #include <sys/param.h>
     40        1.1       mrg #include <sys/systm.h>
     41        1.1       mrg #include <sys/buf.h>
     42       1.89      yamt #include <sys/bufq.h>
     43       1.36       mrg #include <sys/conf.h>
     44        1.1       mrg #include <sys/proc.h>
     45        1.1       mrg #include <sys/namei.h>
     46        1.1       mrg #include <sys/disklabel.h>
     47        1.1       mrg #include <sys/errno.h>
     48        1.1       mrg #include <sys/kernel.h>
     49        1.1       mrg #include <sys/vnode.h>
     50        1.1       mrg #include <sys/file.h>
     51      1.110      yamt #include <sys/vmem.h>
     52       1.90      yamt #include <sys/blist.h>
     53        1.1       mrg #include <sys/mount.h>
     54       1.12        pk #include <sys/pool.h>
     55      1.159      para #include <sys/kmem.h>
     56        1.1       mrg #include <sys/syscallargs.h>
     57       1.17       mrg #include <sys/swap.h>
     58      1.100      elad #include <sys/kauth.h>
     59      1.125        ad #include <sys/sysctl.h>
     60      1.130   hannken #include <sys/workqueue.h>
     61        1.1       mrg 
     62        1.1       mrg #include <uvm/uvm.h>
     63        1.1       mrg 
     64        1.1       mrg #include <miscfs/specfs/specdev.h>
     65        1.1       mrg 
     66        1.1       mrg /*
     67        1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     68        1.1       mrg  */
     69        1.1       mrg 
     70        1.1       mrg /*
     71        1.1       mrg  * swap space is managed in the following way:
     72       1.51       chs  *
     73        1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     74        1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     75        1.1       mrg  * information that is passed up to the user (via system calls).
     76        1.1       mrg  *
     77        1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     78        1.1       mrg  * swap parition usage.
     79        1.1       mrg  *
     80        1.1       mrg  * the system maintains a global data structure describing all swap
     81        1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     82        1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     83       1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     84      1.164  christos  * TAILQ of "swapdev" structures at that priority.
     85        1.1       mrg  *
     86        1.1       mrg  * locking:
     87      1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88        1.1       mrg  *    system call and prevents the swap priority list from changing
     89        1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90      1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91        1.1       mrg  *    structures including the priority list, the swapdev structures,
     92      1.110      yamt  *    and the swapmap arena.
     93        1.1       mrg  *
     94        1.1       mrg  * each swap device has the following info:
     95        1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     96        1.1       mrg  *  - swap enabled (allows new allocations on swap)
     97        1.1       mrg  *  - map info in /dev/drum
     98        1.1       mrg  *  - vnode pointer
     99        1.1       mrg  * for swap files only:
    100        1.1       mrg  *  - block size
    101        1.1       mrg  *  - max byte count in buffer
    102        1.1       mrg  *  - buffer
    103        1.1       mrg  *
    104        1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    105        1.1       mrg  * the sys_swapctl performs the following operations:
    106        1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107       1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108        1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109       1.85  junyoung  *	the current swap config into the array. The actual work is done
    110      1.155     rmind  *	in the uvm_swap_stats() function.
    111        1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112        1.1       mrg  *	priority in "misc", start swapping on it.
    113        1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114        1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115        1.1       mrg  *	"misc")
    116        1.1       mrg  */
    117        1.1       mrg 
    118        1.1       mrg /*
    119        1.1       mrg  * swapdev: describes a single swap partition/file
    120        1.1       mrg  *
    121        1.1       mrg  * note the following should be true:
    122        1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    123        1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    124        1.1       mrg  */
    125        1.1       mrg struct swapdev {
    126      1.144       mrg 	dev_t			swd_dev;	/* device id */
    127      1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    128      1.144       mrg 	int			swd_priority;	/* our priority */
    129      1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    130       1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    131       1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    132       1.16       mrg 	int			swd_npages;	/* #pages we can use */
    133       1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    134       1.32       chs 	int			swd_npgbad;	/* #pages bad */
    135       1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    136       1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    137       1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    138       1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    139      1.165  christos 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    140        1.1       mrg 
    141       1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    142       1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    143       1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    144       1.33   thorpej 	int			swd_active;	/* number of active buffers */
    145        1.1       mrg };
    146        1.1       mrg 
    147        1.1       mrg /*
    148        1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149        1.1       mrg  */
    150        1.1       mrg struct swappri {
    151        1.1       mrg 	int			spi_priority;     /* priority */
    152      1.164  christos 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153      1.165  christos 	/* tailq of swapdevs at this priority */
    154        1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155        1.1       mrg };
    156        1.1       mrg 
    157        1.1       mrg /*
    158        1.1       mrg  * The following two structures are used to keep track of data transfers
    159        1.1       mrg  * on swap devices associated with regular files.
    160        1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161        1.1       mrg  * structure names here to ease porting..
    162        1.1       mrg  */
    163        1.1       mrg struct vndxfer {
    164        1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165        1.1       mrg 	struct swapdev	*vx_sdp;
    166        1.1       mrg 	int		vx_error;
    167        1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    168        1.1       mrg 	int		vx_flags;
    169        1.1       mrg #define VX_BUSY		1
    170        1.1       mrg #define VX_DEAD		2
    171        1.1       mrg };
    172        1.1       mrg 
    173        1.1       mrg struct vndbuf {
    174        1.1       mrg 	struct buf	vb_buf;
    175        1.1       mrg 	struct vndxfer	*vb_xfer;
    176        1.1       mrg };
    177        1.1       mrg 
    178      1.144       mrg /*
    179      1.144       mrg  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    180      1.144       mrg  * dev_t and has no se_path[] member.
    181      1.144       mrg  */
    182      1.144       mrg struct swapent13 {
    183      1.144       mrg 	int32_t	se13_dev;		/* device id */
    184      1.144       mrg 	int	se13_flags;		/* flags */
    185      1.144       mrg 	int	se13_nblks;		/* total blocks */
    186      1.144       mrg 	int	se13_inuse;		/* blocks in use */
    187      1.144       mrg 	int	se13_priority;		/* priority of this device */
    188      1.144       mrg };
    189      1.144       mrg 
    190      1.144       mrg /*
    191      1.144       mrg  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    192      1.144       mrg  * dev_t.
    193      1.144       mrg  */
    194      1.144       mrg struct swapent50 {
    195      1.144       mrg 	int32_t	se50_dev;		/* device id */
    196      1.144       mrg 	int	se50_flags;		/* flags */
    197      1.144       mrg 	int	se50_nblks;		/* total blocks */
    198      1.144       mrg 	int	se50_inuse;		/* blocks in use */
    199      1.144       mrg 	int	se50_priority;		/* priority of this device */
    200      1.144       mrg 	char	se50_path[PATH_MAX+1];	/* path name */
    201      1.144       mrg };
    202       1.12        pk 
    203        1.1       mrg /*
    204       1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    205        1.1       mrg  */
    206      1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    207        1.1       mrg 
    208        1.1       mrg /*
    209        1.1       mrg  * local variables
    210        1.1       mrg  */
    211      1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    212        1.1       mrg 
    213        1.1       mrg /* list of all active swap devices [by priority] */
    214        1.1       mrg LIST_HEAD(swap_priority, swappri);
    215        1.1       mrg static struct swap_priority swap_priority;
    216        1.1       mrg 
    217        1.1       mrg /* locks */
    218      1.117        ad static krwlock_t swap_syscall_lock;
    219        1.1       mrg 
    220      1.130   hannken /* workqueue and use counter for swap to regular files */
    221      1.130   hannken static int sw_reg_count = 0;
    222      1.130   hannken static struct workqueue *sw_reg_workqueue;
    223      1.130   hannken 
    224      1.141        ad /* tuneables */
    225      1.141        ad u_int uvm_swapisfull_factor = 99;
    226      1.141        ad 
    227        1.1       mrg /*
    228        1.1       mrg  * prototypes
    229        1.1       mrg  */
    230       1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    231        1.1       mrg 
    232      1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    233       1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    234       1.85  junyoung 					 struct swappri *, int);
    235       1.85  junyoung static void		 swaplist_trim(void);
    236        1.1       mrg 
    237       1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    238       1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    239        1.1       mrg 
    240       1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    241      1.130   hannken static void sw_reg_biodone(struct buf *);
    242      1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    243       1.85  junyoung static void sw_reg_start(struct swapdev *);
    244        1.1       mrg 
    245       1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    246        1.1       mrg 
    247        1.1       mrg /*
    248        1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    249        1.1       mrg  *
    250       1.51       chs  * => called at boot time from init_main.c after the filesystems
    251        1.1       mrg  *	are brought up (which happens after uvm_init())
    252        1.1       mrg  */
    253        1.1       mrg void
    254       1.93   thorpej uvm_swap_init(void)
    255        1.1       mrg {
    256        1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    257        1.1       mrg 
    258        1.1       mrg 	UVMHIST_CALLED(pdhist);
    259        1.1       mrg 	/*
    260        1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    261        1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    262        1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    263        1.1       mrg 	 */
    264        1.1       mrg 
    265        1.1       mrg 	LIST_INIT(&swap_priority);
    266        1.1       mrg 	uvmexp.nswapdev = 0;
    267      1.117        ad 	rw_init(&swap_syscall_lock);
    268      1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    269       1.12        pk 
    270        1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    271      1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    272      1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    273      1.145       mrg 		panic("%s: can't lock swap device", __func__);
    274      1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    275      1.145       mrg 		panic("%s: can't open swap device", __func__);
    276      1.151   hannken 	VOP_UNLOCK(swapdev_vp);
    277        1.1       mrg 
    278        1.1       mrg 	/*
    279        1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    280        1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    281       1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    282        1.1       mrg 	 * failure, or no allocation).
    283        1.1       mrg 	 */
    284      1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    285      1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    286      1.147     rmind 	if (swapmap == 0) {
    287      1.145       mrg 		panic("%s: vmem_create failed", __func__);
    288      1.147     rmind 	}
    289      1.146     pooka 
    290      1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    291      1.146     pooka 	    NULL, IPL_BIO);
    292      1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    293      1.146     pooka 	    NULL, IPL_BIO);
    294      1.147     rmind 
    295      1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    296        1.1       mrg }
    297        1.1       mrg 
    298        1.1       mrg /*
    299        1.1       mrg  * swaplist functions: functions that operate on the list of swap
    300        1.1       mrg  * devices on the system.
    301        1.1       mrg  */
    302        1.1       mrg 
    303        1.1       mrg /*
    304        1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    305        1.1       mrg  *
    306      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    307      1.154     rmind  * => caller must provide a newly allocated swappri structure (we will
    308      1.154     rmind  *	FREE it if we don't need it... this it to prevent allocation
    309      1.154     rmind  *	blocking here while adding swap)
    310        1.1       mrg  */
    311        1.1       mrg static void
    312       1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    313        1.1       mrg {
    314        1.1       mrg 	struct swappri *spp, *pspp;
    315        1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    316        1.1       mrg 
    317        1.1       mrg 	/*
    318        1.1       mrg 	 * find entry at or after which to insert the new device.
    319        1.1       mrg 	 */
    320       1.55       chs 	pspp = NULL;
    321       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    322        1.1       mrg 		if (priority <= spp->spi_priority)
    323        1.1       mrg 			break;
    324        1.1       mrg 		pspp = spp;
    325        1.1       mrg 	}
    326        1.1       mrg 
    327        1.1       mrg 	/*
    328        1.1       mrg 	 * new priority?
    329        1.1       mrg 	 */
    330        1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    331        1.1       mrg 		spp = newspp;  /* use newspp! */
    332       1.32       chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    333       1.32       chs 			    priority, 0, 0, 0);
    334        1.1       mrg 
    335        1.1       mrg 		spp->spi_priority = priority;
    336      1.164  christos 		TAILQ_INIT(&spp->spi_swapdev);
    337        1.1       mrg 
    338        1.1       mrg 		if (pspp)
    339        1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    340        1.1       mrg 		else
    341        1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    342        1.1       mrg 	} else {
    343        1.1       mrg 	  	/* we don't need a new priority structure, free it */
    344      1.159      para 		kmem_free(newspp, sizeof(*newspp));
    345        1.1       mrg 	}
    346        1.1       mrg 
    347        1.1       mrg 	/*
    348        1.1       mrg 	 * priority found (or created).   now insert on the priority's
    349      1.165  christos 	 * tailq list and bump the total number of swapdevs.
    350        1.1       mrg 	 */
    351        1.1       mrg 	sdp->swd_priority = priority;
    352      1.164  christos 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    353        1.1       mrg 	uvmexp.nswapdev++;
    354        1.1       mrg }
    355        1.1       mrg 
    356        1.1       mrg /*
    357        1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    358        1.1       mrg  *	global list.
    359        1.1       mrg  *
    360      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    361        1.1       mrg  * => we return the swapdev we found (and removed)
    362        1.1       mrg  */
    363        1.1       mrg static struct swapdev *
    364      1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    365        1.1       mrg {
    366        1.1       mrg 	struct swapdev *sdp;
    367        1.1       mrg 	struct swappri *spp;
    368        1.1       mrg 
    369        1.1       mrg 	/*
    370        1.1       mrg 	 * search the lists for the requested vp
    371        1.1       mrg 	 */
    372       1.55       chs 
    373       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    374      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    375        1.1       mrg 			if (sdp->swd_vp == vp) {
    376        1.1       mrg 				if (remove) {
    377      1.164  christos 					TAILQ_REMOVE(&spp->spi_swapdev,
    378        1.1       mrg 					    sdp, swd_next);
    379        1.1       mrg 					uvmexp.nswapdev--;
    380        1.1       mrg 				}
    381        1.1       mrg 				return(sdp);
    382        1.1       mrg 			}
    383       1.55       chs 		}
    384        1.1       mrg 	}
    385        1.1       mrg 	return (NULL);
    386        1.1       mrg }
    387        1.1       mrg 
    388      1.113      elad /*
    389        1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    390        1.1       mrg  *	them.
    391        1.1       mrg  *
    392      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    393        1.1       mrg  */
    394        1.1       mrg static void
    395       1.93   thorpej swaplist_trim(void)
    396        1.1       mrg {
    397        1.1       mrg 	struct swappri *spp, *nextspp;
    398        1.1       mrg 
    399      1.161     rmind 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    400      1.167   mlelstv 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    401        1.1       mrg 			continue;
    402        1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    403      1.159      para 		kmem_free(spp, sizeof(*spp));
    404        1.1       mrg 	}
    405        1.1       mrg }
    406        1.1       mrg 
    407        1.1       mrg /*
    408        1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    409        1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    410        1.1       mrg  *
    411        1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    412      1.127        ad  * => caller must hold uvm_swap_data_lock
    413        1.1       mrg  */
    414        1.1       mrg static struct swapdev *
    415       1.93   thorpej swapdrum_getsdp(int pgno)
    416        1.1       mrg {
    417        1.1       mrg 	struct swapdev *sdp;
    418        1.1       mrg 	struct swappri *spp;
    419       1.51       chs 
    420       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    421      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    422       1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    423       1.48      fvdl 				continue;
    424        1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    425        1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    426        1.1       mrg 				return sdp;
    427        1.1       mrg 			}
    428       1.48      fvdl 		}
    429       1.55       chs 	}
    430        1.1       mrg 	return NULL;
    431        1.1       mrg }
    432        1.1       mrg 
    433  1.172.4.1     skrll void swapsys_lock(krw_t op)
    434  1.172.4.1     skrll {
    435  1.172.4.1     skrll 	rw_enter(&swap_syscall_lock, op);
    436  1.172.4.1     skrll }
    437  1.172.4.1     skrll 
    438  1.172.4.1     skrll void swapsys_unlock(void)
    439  1.172.4.1     skrll {
    440  1.172.4.1     skrll 	rw_exit(&swap_syscall_lock);
    441  1.172.4.1     skrll }
    442        1.1       mrg 
    443        1.1       mrg /*
    444        1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    445        1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    446        1.1       mrg  */
    447        1.1       mrg int
    448      1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    449        1.1       mrg {
    450      1.133       dsl 	/* {
    451        1.1       mrg 		syscallarg(int) cmd;
    452        1.1       mrg 		syscallarg(void *) arg;
    453        1.1       mrg 		syscallarg(int) misc;
    454      1.133       dsl 	} */
    455        1.1       mrg 	struct vnode *vp;
    456        1.1       mrg 	struct nameidata nd;
    457        1.1       mrg 	struct swappri *spp;
    458        1.1       mrg 	struct swapdev *sdp;
    459        1.1       mrg 	struct swapent *sep;
    460      1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    461      1.101  christos 	char	*userpath;
    462      1.161     rmind 	size_t	len = 0;
    463       1.61      manu 	int	error, misc;
    464        1.1       mrg 	int	priority;
    465        1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    466        1.1       mrg 
    467        1.1       mrg 	/*
    468        1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    469        1.1       mrg 	 *
    470       1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    471        1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    472        1.1       mrg 	 */
    473        1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    474      1.161     rmind 		const int nswapdev = uvmexp.nswapdev;
    475      1.161     rmind 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
    476      1.161     rmind 		*retval = nswapdev;
    477      1.161     rmind 		return 0;
    478        1.1       mrg 	}
    479        1.1       mrg 
    480      1.161     rmind 	misc = SCARG(uap, misc);
    481      1.161     rmind 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    482      1.161     rmind 
    483      1.161     rmind 	/*
    484      1.161     rmind 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    485      1.161     rmind 	 */
    486      1.161     rmind 	rw_enter(&swap_syscall_lock, RW_WRITER);
    487      1.161     rmind 
    488        1.1       mrg 	/*
    489        1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    490        1.1       mrg 	 *
    491       1.51       chs 	 * note that the swap_priority list can't change as long
    492        1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    493      1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    494        1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    495        1.1       mrg 	 */
    496       1.16       mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    497      1.144       mrg #if defined(COMPAT_50)
    498      1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS50
    499      1.144       mrg #endif
    500       1.16       mrg #if defined(COMPAT_13)
    501      1.144       mrg 	    || SCARG(uap, cmd) == SWAP_STATS13
    502       1.16       mrg #endif
    503       1.16       mrg 	    ) {
    504      1.169      maxv 		if (misc < 0) {
    505      1.161     rmind 			error = EINVAL;
    506      1.161     rmind 			goto out;
    507      1.161     rmind 		}
    508      1.169      maxv 		if (misc == 0 || uvmexp.nswapdev == 0) {
    509      1.169      maxv 			error = 0;
    510      1.169      maxv 			goto out;
    511      1.169      maxv 		}
    512      1.169      maxv 		/* Make sure userland cannot exhaust kernel memory */
    513      1.169      maxv 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    514      1.169      maxv 			misc = uvmexp.nswapdev;
    515      1.161     rmind 		KASSERT(misc > 0);
    516       1.16       mrg #if defined(COMPAT_13)
    517      1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS13)
    518      1.144       mrg 			len = sizeof(struct swapent13) * misc;
    519      1.144       mrg 		else
    520      1.144       mrg #endif
    521      1.144       mrg #if defined(COMPAT_50)
    522      1.144       mrg 		if (SCARG(uap, cmd) == SWAP_STATS50)
    523      1.144       mrg 			len = sizeof(struct swapent50) * misc;
    524       1.62      manu 		else
    525       1.16       mrg #endif
    526       1.62      manu 			len = sizeof(struct swapent) * misc;
    527      1.159      para 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
    528       1.62      manu 
    529      1.155     rmind 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    530       1.92  christos 		error = copyout(sep, SCARG(uap, arg), len);
    531        1.1       mrg 
    532      1.159      para 		kmem_free(sep, len);
    533       1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    534       1.16       mrg 		goto out;
    535       1.51       chs 	}
    536       1.55       chs 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    537       1.55       chs 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    538       1.55       chs 
    539       1.55       chs 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    540       1.55       chs 		goto out;
    541       1.55       chs 	}
    542        1.1       mrg 
    543        1.1       mrg 	/*
    544        1.1       mrg 	 * all other requests require superuser privs.   verify.
    545        1.1       mrg 	 */
    546      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    547      1.106      elad 	    0, NULL, NULL, NULL)))
    548       1.16       mrg 		goto out;
    549        1.1       mrg 
    550      1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    551      1.104    martin 		/* drop the current dump device */
    552      1.104    martin 		dumpdev = NODEV;
    553      1.138    kardel 		dumpcdev = NODEV;
    554      1.104    martin 		cpu_dumpconf();
    555      1.104    martin 		goto out;
    556      1.104    martin 	}
    557      1.104    martin 
    558        1.1       mrg 	/*
    559        1.1       mrg 	 * at this point we expect a path name in arg.   we will
    560        1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    561        1.1       mrg 	 * the vnode (VOP_LOCK).
    562        1.1       mrg 	 *
    563        1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    564       1.16       mrg 	 * miniroot)
    565        1.1       mrg 	 */
    566        1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    567        1.1       mrg 		vp = rootvp;		/* miniroot */
    568      1.152   hannken 		vref(vp);
    569      1.152   hannken 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    570      1.152   hannken 			vrele(vp);
    571       1.16       mrg 			error = EBUSY;
    572       1.16       mrg 			goto out;
    573        1.1       mrg 		}
    574       1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    575      1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    576       1.16       mrg 			panic("swapctl: miniroot copy failed");
    577        1.1       mrg 	} else {
    578      1.153  dholland 		struct pathbuf *pb;
    579       1.16       mrg 
    580      1.153  dholland 		/*
    581      1.153  dholland 		 * This used to allow copying in one extra byte
    582      1.153  dholland 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    583      1.153  dholland 		 * This was completely pointless because if anyone
    584      1.153  dholland 		 * used that extra byte namei would fail with
    585      1.153  dholland 		 * ENAMETOOLONG anyway, so I've removed the excess
    586      1.153  dholland 		 * logic. - dholland 20100215
    587      1.153  dholland 		 */
    588      1.153  dholland 
    589      1.153  dholland 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    590      1.153  dholland 		if (error) {
    591      1.153  dholland 			goto out;
    592      1.153  dholland 		}
    593       1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    594      1.153  dholland 			/* get a copy of the string */
    595      1.153  dholland 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    596      1.153  dholland 			len = strlen(userpath) + 1;
    597      1.153  dholland 		}
    598      1.153  dholland 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    599      1.153  dholland 		if ((error = namei(&nd))) {
    600      1.153  dholland 			pathbuf_destroy(pb);
    601      1.153  dholland 			goto out;
    602        1.1       mrg 		}
    603        1.1       mrg 		vp = nd.ni_vp;
    604      1.153  dholland 		pathbuf_destroy(pb);
    605        1.1       mrg 	}
    606        1.1       mrg 	/* note: "vp" is referenced and locked */
    607        1.1       mrg 
    608        1.1       mrg 	error = 0;		/* assume no error */
    609        1.1       mrg 	switch(SCARG(uap, cmd)) {
    610       1.40       mrg 
    611       1.24       mrg 	case SWAP_DUMPDEV:
    612       1.24       mrg 		if (vp->v_type != VBLK) {
    613       1.24       mrg 			error = ENOTBLK;
    614       1.45        pk 			break;
    615       1.24       mrg 		}
    616      1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    617      1.109       mrg 			dumpdev = vp->v_rdev;
    618      1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    619      1.138    kardel 		} else
    620      1.109       mrg 			dumpdev = NODEV;
    621       1.68  drochner 		cpu_dumpconf();
    622       1.24       mrg 		break;
    623       1.24       mrg 
    624        1.1       mrg 	case SWAP_CTL:
    625        1.1       mrg 		/*
    626        1.1       mrg 		 * get new priority, remove old entry (if any) and then
    627        1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    628        1.1       mrg 		 * any empty priority structures.
    629        1.1       mrg 		 */
    630        1.1       mrg 		priority = SCARG(uap, misc);
    631      1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    632      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    633      1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    634        1.1       mrg 			error = ENOENT;
    635        1.1       mrg 		} else {
    636        1.1       mrg 			swaplist_insert(sdp, spp, priority);
    637        1.1       mrg 			swaplist_trim();
    638        1.1       mrg 		}
    639      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    640        1.1       mrg 		if (error)
    641      1.159      para 			kmem_free(spp, sizeof(*spp));
    642        1.1       mrg 		break;
    643        1.1       mrg 
    644        1.1       mrg 	case SWAP_ON:
    645       1.32       chs 
    646        1.1       mrg 		/*
    647        1.1       mrg 		 * check for duplicates.   if none found, then insert a
    648        1.1       mrg 		 * dummy entry on the list to prevent someone else from
    649        1.1       mrg 		 * trying to enable this device while we are working on
    650        1.1       mrg 		 * it.
    651        1.1       mrg 		 */
    652       1.32       chs 
    653        1.1       mrg 		priority = SCARG(uap, misc);
    654      1.160     rmind 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    655      1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    656       1.67       chs 		sdp->swd_flags = SWF_FAKE;
    657       1.67       chs 		sdp->swd_vp = vp;
    658       1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    659       1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    660      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    661      1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    662        1.1       mrg 			error = EBUSY;
    663      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    664       1.96      yamt 			bufq_free(sdp->swd_tab);
    665      1.159      para 			kmem_free(sdp, sizeof(*sdp));
    666      1.159      para 			kmem_free(spp, sizeof(*spp));
    667       1.16       mrg 			break;
    668        1.1       mrg 		}
    669        1.1       mrg 		swaplist_insert(sdp, spp, priority);
    670      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    671        1.1       mrg 
    672      1.161     rmind 		KASSERT(len > 0);
    673       1.16       mrg 		sdp->swd_pathlen = len;
    674      1.161     rmind 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    675      1.161     rmind 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    676       1.19        pk 			panic("swapctl: copystr");
    677       1.32       chs 
    678        1.1       mrg 		/*
    679        1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    680        1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    681        1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    682        1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    683        1.1       mrg 		 */
    684       1.32       chs 
    685       1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    686      1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    687      1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    688        1.1       mrg 			swaplist_trim();
    689      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    690       1.96      yamt 			bufq_free(sdp->swd_tab);
    691      1.159      para 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    692      1.159      para 			kmem_free(sdp, sizeof(*sdp));
    693        1.1       mrg 			break;
    694        1.1       mrg 		}
    695        1.1       mrg 		break;
    696        1.1       mrg 
    697        1.1       mrg 	case SWAP_OFF:
    698      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    699      1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    700      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    701        1.1       mrg 			error = ENXIO;
    702        1.1       mrg 			break;
    703        1.1       mrg 		}
    704       1.32       chs 
    705        1.1       mrg 		/*
    706        1.1       mrg 		 * If a device isn't in use or enabled, we
    707        1.1       mrg 		 * can't stop swapping from it (again).
    708        1.1       mrg 		 */
    709        1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    710      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    711        1.1       mrg 			error = EBUSY;
    712       1.16       mrg 			break;
    713        1.1       mrg 		}
    714        1.1       mrg 
    715        1.1       mrg 		/*
    716       1.32       chs 		 * do the real work.
    717        1.1       mrg 		 */
    718       1.97  christos 		error = swap_off(l, sdp);
    719        1.1       mrg 		break;
    720        1.1       mrg 
    721        1.1       mrg 	default:
    722        1.1       mrg 		error = EINVAL;
    723        1.1       mrg 	}
    724        1.1       mrg 
    725        1.1       mrg 	/*
    726       1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    727        1.1       mrg 	 */
    728        1.1       mrg 	vput(vp);
    729       1.16       mrg out:
    730      1.160     rmind 	rw_exit(&swap_syscall_lock);
    731      1.159      para 	kmem_free(userpath, SWAP_PATH_MAX);
    732        1.1       mrg 
    733        1.1       mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    734        1.1       mrg 	return (error);
    735       1.61      manu }
    736       1.61      manu 
    737       1.85  junyoung /*
    738      1.155     rmind  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    739       1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    740       1.61      manu  * emulation to use it directly without going through sys_swapctl().
    741       1.61      manu  * The problem with using sys_swapctl() there is that it involves
    742       1.61      manu  * copying the swapent array to the stackgap, and this array's size
    743       1.85  junyoung  * is not known at build time. Hence it would not be possible to
    744       1.61      manu  * ensure it would fit in the stackgap in any case.
    745       1.61      manu  */
    746      1.166      manu void
    747       1.93   thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    748       1.61      manu {
    749       1.61      manu 	struct swappri *spp;
    750       1.61      manu 	struct swapdev *sdp;
    751       1.61      manu 	int count = 0;
    752       1.61      manu 
    753  1.172.4.1     skrll 	KASSERT(rw_lock_held(&swap_syscall_lock));
    754  1.172.4.1     skrll 
    755       1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    756      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    757      1.144       mrg 			int inuse;
    758      1.144       mrg 
    759      1.161     rmind 			if (sec-- <= 0)
    760      1.161     rmind 				break;
    761      1.161     rmind 
    762      1.161     rmind 			/*
    763       1.61      manu 			 * backwards compatibility for system call.
    764      1.144       mrg 			 * For NetBSD 1.3 and 5.0, we have to use
    765      1.144       mrg 			 * the 32 bit dev_t.  For 5.0 and -current
    766      1.144       mrg 			 * we have to add the path.
    767       1.61      manu 			 */
    768      1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    769       1.61      manu 			    PAGE_SHIFT);
    770       1.85  junyoung 
    771      1.144       mrg #if defined(COMPAT_13) || defined(COMPAT_50)
    772      1.144       mrg 			if (cmd == SWAP_STATS) {
    773      1.108   thorpej #endif
    774      1.144       mrg 				sep->se_dev = sdp->swd_dev;
    775      1.144       mrg 				sep->se_flags = sdp->swd_flags;
    776      1.144       mrg 				sep->se_nblks = sdp->swd_nblks;
    777      1.144       mrg 				sep->se_inuse = inuse;
    778      1.144       mrg 				sep->se_priority = sdp->swd_priority;
    779      1.161     rmind 				KASSERT(sdp->swd_pathlen <
    780      1.161     rmind 				    sizeof(sep->se_path));
    781      1.161     rmind 				strcpy(sep->se_path, sdp->swd_path);
    782      1.144       mrg 				sep++;
    783       1.61      manu #if defined(COMPAT_13)
    784      1.144       mrg 			} else if (cmd == SWAP_STATS13) {
    785      1.144       mrg 				struct swapent13 *sep13 =
    786      1.144       mrg 				    (struct swapent13 *)sep;
    787      1.144       mrg 
    788      1.144       mrg 				sep13->se13_dev = sdp->swd_dev;
    789      1.144       mrg 				sep13->se13_flags = sdp->swd_flags;
    790      1.144       mrg 				sep13->se13_nblks = sdp->swd_nblks;
    791      1.144       mrg 				sep13->se13_inuse = inuse;
    792      1.144       mrg 				sep13->se13_priority = sdp->swd_priority;
    793      1.144       mrg 				sep = (struct swapent *)(sep13 + 1);
    794      1.144       mrg #endif
    795      1.144       mrg #if defined(COMPAT_50)
    796      1.144       mrg 			} else if (cmd == SWAP_STATS50) {
    797      1.144       mrg 				struct swapent50 *sep50 =
    798      1.144       mrg 				    (struct swapent50 *)sep;
    799      1.144       mrg 
    800      1.144       mrg 				sep50->se50_dev = sdp->swd_dev;
    801      1.144       mrg 				sep50->se50_flags = sdp->swd_flags;
    802      1.144       mrg 				sep50->se50_nblks = sdp->swd_nblks;
    803      1.144       mrg 				sep50->se50_inuse = inuse;
    804      1.144       mrg 				sep50->se50_priority = sdp->swd_priority;
    805      1.161     rmind 				KASSERT(sdp->swd_pathlen <
    806      1.161     rmind 				    sizeof(sep50->se50_path));
    807      1.161     rmind 				strcpy(sep50->se50_path, sdp->swd_path);
    808      1.144       mrg 				sep = (struct swapent *)(sep50 + 1);
    809      1.148       wiz #endif
    810      1.148       wiz #if defined(COMPAT_13) || defined(COMPAT_50)
    811      1.144       mrg 			}
    812       1.61      manu #endif
    813       1.61      manu 			count++;
    814       1.61      manu 		}
    815       1.61      manu 	}
    816       1.61      manu 	*retval = count;
    817        1.1       mrg }
    818        1.1       mrg 
    819        1.1       mrg /*
    820        1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    821        1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    822        1.1       mrg  *	SWF_FAKE).
    823        1.1       mrg  *
    824        1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    825        1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    826      1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    827        1.1       mrg  *	if needed.
    828        1.1       mrg  */
    829        1.1       mrg static int
    830       1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    831        1.1       mrg {
    832        1.1       mrg 	struct vnode *vp;
    833        1.1       mrg 	int error, npages, nblocks, size;
    834        1.1       mrg 	long addr;
    835      1.157    dyoung 	vmem_addr_t result;
    836        1.1       mrg 	struct vattr va;
    837        1.1       mrg 	dev_t dev;
    838        1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    839        1.1       mrg 
    840        1.1       mrg 	/*
    841        1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    842        1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    843        1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    844        1.1       mrg 	 */
    845        1.1       mrg 
    846        1.1       mrg 	vp = sdp->swd_vp;
    847        1.1       mrg 	dev = sdp->swd_dev;
    848        1.1       mrg 
    849        1.1       mrg 	/*
    850        1.1       mrg 	 * open the swap file (mostly useful for block device files to
    851        1.1       mrg 	 * let device driver know what is up).
    852        1.1       mrg 	 *
    853        1.1       mrg 	 * we skip the open/close for root on swap because the root
    854        1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    855        1.1       mrg 	 */
    856        1.1       mrg 	if (vp != rootvp) {
    857      1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    858        1.1       mrg 			return (error);
    859        1.1       mrg 	}
    860        1.1       mrg 
    861        1.1       mrg 	/* XXX this only works for block devices */
    862        1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    863        1.1       mrg 
    864        1.1       mrg 	/*
    865        1.1       mrg 	 * we now need to determine the size of the swap area.   for
    866        1.1       mrg 	 * block specials we can call the d_psize function.
    867        1.1       mrg 	 * for normal files, we must stat [get attrs].
    868        1.1       mrg 	 *
    869        1.1       mrg 	 * we put the result in nblks.
    870        1.1       mrg 	 * for normal files, we also want the filesystem block size
    871        1.1       mrg 	 * (which we get with statfs).
    872        1.1       mrg 	 */
    873        1.1       mrg 	switch (vp->v_type) {
    874        1.1       mrg 	case VBLK:
    875      1.158       mrg 		if ((nblocks = bdev_size(dev)) == -1) {
    876        1.1       mrg 			error = ENXIO;
    877        1.1       mrg 			goto bad;
    878        1.1       mrg 		}
    879        1.1       mrg 		break;
    880        1.1       mrg 
    881        1.1       mrg 	case VREG:
    882      1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    883        1.1       mrg 			goto bad;
    884        1.1       mrg 		nblocks = (int)btodb(va.va_size);
    885      1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    886        1.1       mrg 		/*
    887        1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    888        1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    889        1.1       mrg 		 */
    890      1.150     pooka 		if (vp->v_tag == VT_NFS)
    891        1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    892        1.1       mrg 		else
    893        1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    894        1.1       mrg 		break;
    895        1.1       mrg 
    896        1.1       mrg 	default:
    897        1.1       mrg 		error = ENXIO;
    898        1.1       mrg 		goto bad;
    899        1.1       mrg 	}
    900        1.1       mrg 
    901        1.1       mrg 	/*
    902        1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    903        1.1       mrg 	 */
    904        1.1       mrg 
    905      1.144       mrg 	sdp->swd_nblks = nblocks;
    906       1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    907        1.1       mrg 
    908        1.1       mrg 	/*
    909        1.1       mrg 	 * for block special files, we want to make sure that leave
    910        1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    911       1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    912        1.1       mrg 	 * note that because of this the "size" can be less than the
    913        1.1       mrg 	 * actual number of blocks on the device.
    914        1.1       mrg 	 */
    915        1.1       mrg 	if (vp->v_type == VBLK) {
    916        1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    917        1.1       mrg 		size = npages - 1;
    918        1.1       mrg 		addr = 1;
    919        1.1       mrg 	} else {
    920        1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    921        1.1       mrg 		size = npages;
    922        1.1       mrg 		addr = 0;
    923        1.1       mrg 	}
    924        1.1       mrg 
    925        1.1       mrg 	/*
    926        1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    927        1.1       mrg 	 * area.   we want at least one page.
    928        1.1       mrg 	 */
    929        1.1       mrg 
    930        1.1       mrg 	if (size < 1) {
    931        1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    932        1.1       mrg 		error = EINVAL;
    933        1.1       mrg 		goto bad;
    934        1.1       mrg 	}
    935        1.1       mrg 
    936        1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    937        1.1       mrg 
    938        1.1       mrg 	/*
    939        1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    940        1.1       mrg 	 */
    941        1.1       mrg 
    942       1.90      yamt 	sdp->swd_blist = blist_create(npages);
    943       1.90      yamt 	/* mark all expect the `saved' region free. */
    944       1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    945        1.1       mrg 
    946        1.1       mrg 	/*
    947       1.51       chs 	 * if the vnode we are swapping to is the root vnode
    948        1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    949       1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    950        1.1       mrg 	 * find its size and skip over it.
    951        1.1       mrg 	 */
    952        1.1       mrg 	if (vp == rootvp) {
    953        1.1       mrg 		struct mount *mp;
    954       1.86  christos 		struct statvfs *sp;
    955        1.1       mrg 		int rootblocks, rootpages;
    956        1.1       mrg 
    957        1.1       mrg 		mp = rootvnode->v_mount;
    958        1.1       mrg 		sp = &mp->mnt_stat;
    959       1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    960       1.64  fredette 		/*
    961       1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    962       1.64  fredette 		 * blocks in the filesystem, it's the number of
    963       1.64  fredette 		 * data blocks.  so, our rootblocks almost
    964       1.85  junyoung 		 * definitely underestimates the total size
    965       1.64  fredette 		 * of the filesystem - how badly depends on the
    966       1.85  junyoung 		 * details of the filesystem type.  there isn't
    967       1.64  fredette 		 * an obvious way to deal with this cleanly
    968       1.85  junyoung 		 * and perfectly, so for now we just pad our
    969       1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    970       1.64  fredette 		 */
    971       1.64  fredette 		rootblocks += (rootblocks >> 5) +
    972       1.64  fredette 			(rootblocks >> 6) +
    973       1.64  fredette 			(rootblocks >> 7);
    974       1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    975       1.32       chs 		if (rootpages > size)
    976        1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    977        1.1       mrg 
    978       1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    979        1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    980       1.90      yamt 		}
    981        1.1       mrg 
    982       1.32       chs 		size -= rootpages;
    983        1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    984       1.32       chs 		printf("leaving %d pages of swap\n", size);
    985        1.1       mrg 	}
    986        1.1       mrg 
    987       1.39       chs 	/*
    988       1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    989       1.39       chs 	 */
    990       1.39       chs 	vref(vp);
    991       1.39       chs 
    992        1.1       mrg 	/*
    993        1.1       mrg 	 * now add the new swapdev to the drum and enable.
    994        1.1       mrg 	 */
    995      1.157    dyoung 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    996      1.157    dyoung 	if (error != 0)
    997       1.48      fvdl 		panic("swapdrum_add");
    998      1.130   hannken 	/*
    999      1.130   hannken 	 * If this is the first regular swap create the workqueue.
   1000      1.130   hannken 	 * => Protected by swap_syscall_lock.
   1001      1.130   hannken 	 */
   1002      1.130   hannken 	if (vp->v_type != VBLK) {
   1003      1.130   hannken 		if (sw_reg_count++ == 0) {
   1004      1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
   1005      1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1006      1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1007      1.145       mrg 				panic("%s: workqueue_create failed", __func__);
   1008      1.130   hannken 		}
   1009      1.130   hannken 	}
   1010       1.48      fvdl 
   1011       1.48      fvdl 	sdp->swd_drumoffset = (int)result;
   1012       1.48      fvdl 	sdp->swd_drumsize = npages;
   1013       1.48      fvdl 	sdp->swd_npages = size;
   1014      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1015        1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1016        1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1017       1.32       chs 	uvmexp.swpages += size;
   1018       1.81        pk 	uvmexp.swpgavail += size;
   1019      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1020        1.1       mrg 	return (0);
   1021        1.1       mrg 
   1022        1.1       mrg 	/*
   1023       1.43       chs 	 * failure: clean up and return error.
   1024        1.1       mrg 	 */
   1025       1.43       chs 
   1026       1.43       chs bad:
   1027       1.90      yamt 	if (sdp->swd_blist) {
   1028       1.90      yamt 		blist_destroy(sdp->swd_blist);
   1029       1.43       chs 	}
   1030       1.43       chs 	if (vp != rootvp) {
   1031      1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1032       1.43       chs 	}
   1033        1.1       mrg 	return (error);
   1034        1.1       mrg }
   1035        1.1       mrg 
   1036        1.1       mrg /*
   1037        1.1       mrg  * swap_off: stop swapping on swapdev
   1038        1.1       mrg  *
   1039       1.32       chs  * => swap data should be locked, we will unlock.
   1040        1.1       mrg  */
   1041        1.1       mrg static int
   1042       1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1043        1.1       mrg {
   1044       1.91      yamt 	int npages = sdp->swd_npages;
   1045       1.91      yamt 	int error = 0;
   1046       1.81        pk 
   1047        1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1048       1.81        pk 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1049        1.1       mrg 
   1050       1.32       chs 	/* disable the swap area being removed */
   1051        1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1052       1.81        pk 	uvmexp.swpgavail -= npages;
   1053      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1054       1.32       chs 
   1055       1.32       chs 	/*
   1056       1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1057       1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1058       1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1059       1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1060       1.32       chs 	 */
   1061        1.1       mrg 
   1062       1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1063       1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1064       1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1065       1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1066       1.91      yamt 		error = ENOMEM;
   1067       1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1068       1.91      yamt 		error = EBUSY;
   1069       1.91      yamt 	}
   1070       1.51       chs 
   1071       1.91      yamt 	if (error) {
   1072      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1073       1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1074       1.81        pk 		uvmexp.swpgavail += npages;
   1075      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1076       1.91      yamt 
   1077       1.91      yamt 		return error;
   1078       1.32       chs 	}
   1079        1.1       mrg 
   1080        1.1       mrg 	/*
   1081      1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1082      1.130   hannken 	 * => Protected by swap_syscall_lock.
   1083      1.130   hannken 	 */
   1084      1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1085      1.130   hannken 		KASSERT(sw_reg_count > 0);
   1086      1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1087      1.130   hannken 		if (--sw_reg_count == 0) {
   1088      1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1089      1.130   hannken 			sw_reg_workqueue = NULL;
   1090      1.130   hannken 		}
   1091      1.130   hannken 	}
   1092      1.130   hannken 
   1093      1.130   hannken 	/*
   1094       1.58     enami 	 * done with the vnode.
   1095       1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1096       1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1097        1.1       mrg 	 */
   1098       1.39       chs 	vrele(sdp->swd_vp);
   1099       1.32       chs 	if (sdp->swd_vp != rootvp) {
   1100      1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1101       1.32       chs 	}
   1102       1.32       chs 
   1103      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1104       1.81        pk 	uvmexp.swpages -= npages;
   1105       1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1106        1.1       mrg 
   1107      1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1108      1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1109       1.32       chs 	swaplist_trim();
   1110      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1111        1.1       mrg 
   1112       1.32       chs 	/*
   1113       1.32       chs 	 * free all resources!
   1114       1.32       chs 	 */
   1115      1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1116       1.90      yamt 	blist_destroy(sdp->swd_blist);
   1117       1.96      yamt 	bufq_free(sdp->swd_tab);
   1118      1.159      para 	kmem_free(sdp, sizeof(*sdp));
   1119        1.1       mrg 	return (0);
   1120        1.1       mrg }
   1121        1.1       mrg 
   1122      1.164  christos void
   1123      1.164  christos uvm_swap_shutdown(struct lwp *l)
   1124      1.164  christos {
   1125      1.164  christos 	struct swapdev *sdp;
   1126      1.164  christos 	struct swappri *spp;
   1127      1.164  christos 	struct vnode *vp;
   1128      1.164  christos 	int error;
   1129      1.164  christos 
   1130      1.164  christos 	printf("turning of swap...");
   1131      1.164  christos 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1132      1.164  christos 	mutex_enter(&uvm_swap_data_lock);
   1133      1.164  christos again:
   1134      1.164  christos 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1135      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1136      1.164  christos 			if (sdp->swd_flags & SWF_FAKE)
   1137      1.164  christos 				continue;
   1138      1.164  christos 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1139      1.164  christos 				continue;
   1140      1.164  christos #ifdef DEBUG
   1141      1.164  christos 			printf("\nturning off swap on %s...",
   1142      1.164  christos 			    sdp->swd_path);
   1143      1.164  christos #endif
   1144      1.164  christos 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1145      1.164  christos 				error = EBUSY;
   1146      1.164  christos 				vp = NULL;
   1147      1.164  christos 			} else
   1148      1.164  christos 				error = 0;
   1149      1.164  christos 			if (!error) {
   1150      1.164  christos 				error = swap_off(l, sdp);
   1151      1.164  christos 				mutex_enter(&uvm_swap_data_lock);
   1152      1.164  christos 			}
   1153      1.164  christos 			if (error) {
   1154      1.164  christos 				printf("stopping swap on %s failed "
   1155      1.164  christos 				    "with error %d\n", sdp->swd_path, error);
   1156      1.164  christos 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1157      1.164  christos 				    swd_next);
   1158      1.164  christos 				uvmexp.nswapdev--;
   1159      1.164  christos 				swaplist_trim();
   1160      1.164  christos 				if (vp)
   1161      1.164  christos 					vput(vp);
   1162      1.164  christos 			}
   1163      1.164  christos 			goto again;
   1164      1.164  christos 		}
   1165      1.164  christos 	printf(" done\n");
   1166      1.164  christos 	mutex_exit(&uvm_swap_data_lock);
   1167      1.164  christos 	rw_exit(&swap_syscall_lock);
   1168      1.164  christos }
   1169      1.164  christos 
   1170      1.164  christos 
   1171        1.1       mrg /*
   1172        1.1       mrg  * /dev/drum interface and i/o functions
   1173        1.1       mrg  */
   1174        1.1       mrg 
   1175        1.1       mrg /*
   1176        1.1       mrg  * swstrategy: perform I/O on the drum
   1177        1.1       mrg  *
   1178        1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1179        1.1       mrg  */
   1180       1.94   thorpej static void
   1181       1.93   thorpej swstrategy(struct buf *bp)
   1182        1.1       mrg {
   1183        1.1       mrg 	struct swapdev *sdp;
   1184        1.1       mrg 	struct vnode *vp;
   1185      1.134        ad 	int pageno, bn;
   1186        1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1187        1.1       mrg 
   1188        1.1       mrg 	/*
   1189        1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1190        1.1       mrg 	 * be yanked out from under us because we are holding resources
   1191        1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1192        1.1       mrg 	 */
   1193       1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1194      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1195        1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1196      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1197        1.1       mrg 	if (sdp == NULL) {
   1198        1.1       mrg 		bp->b_error = EINVAL;
   1199      1.163  riastrad 		bp->b_resid = bp->b_bcount;
   1200        1.1       mrg 		biodone(bp);
   1201        1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1202        1.1       mrg 		return;
   1203        1.1       mrg 	}
   1204        1.1       mrg 
   1205        1.1       mrg 	/*
   1206        1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1207        1.1       mrg 	 */
   1208        1.1       mrg 
   1209       1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1210       1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1211        1.1       mrg 
   1212       1.41       chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1213        1.1       mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1214        1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1215        1.1       mrg 
   1216        1.1       mrg 	/*
   1217        1.1       mrg 	 * for block devices we finish up here.
   1218       1.32       chs 	 * for regular files we have to do more work which we delegate
   1219        1.1       mrg 	 * to sw_reg_strategy().
   1220        1.1       mrg 	 */
   1221        1.1       mrg 
   1222      1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1223      1.134        ad 	switch (vp->v_type) {
   1224        1.1       mrg 	default:
   1225      1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1226       1.32       chs 
   1227        1.1       mrg 	case VBLK:
   1228        1.1       mrg 
   1229        1.1       mrg 		/*
   1230        1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1231        1.1       mrg 		 * on the swapdev (sdp).
   1232        1.1       mrg 		 */
   1233        1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1234        1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1235        1.1       mrg 
   1236        1.1       mrg 		/*
   1237        1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1238        1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1239        1.1       mrg 		 */
   1240        1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1241      1.134        ad 			mutex_enter(bp->b_objlock);
   1242        1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1243      1.134        ad 			mutex_exit(bp->b_objlock);
   1244      1.156     rmind 			mutex_enter(vp->v_interlock);
   1245      1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1246      1.156     rmind 			mutex_exit(vp->v_interlock);
   1247        1.1       mrg 		}
   1248        1.1       mrg 
   1249       1.41       chs 		/*
   1250        1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1251        1.1       mrg 		 */
   1252        1.1       mrg 		bp->b_vp = vp;
   1253      1.156     rmind 		bp->b_objlock = vp->v_interlock;
   1254       1.84   hannken 		VOP_STRATEGY(vp, bp);
   1255        1.1       mrg 		return;
   1256       1.32       chs 
   1257        1.1       mrg 	case VREG:
   1258        1.1       mrg 		/*
   1259       1.32       chs 		 * delegate to sw_reg_strategy function.
   1260        1.1       mrg 		 */
   1261        1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1262        1.1       mrg 		return;
   1263        1.1       mrg 	}
   1264        1.1       mrg 	/* NOTREACHED */
   1265        1.1       mrg }
   1266        1.1       mrg 
   1267        1.1       mrg /*
   1268       1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1269       1.94   thorpej  */
   1270       1.94   thorpej /*ARGSUSED*/
   1271       1.94   thorpej static int
   1272      1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1273       1.94   thorpej {
   1274       1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1275       1.94   thorpej 
   1276       1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1277       1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1278       1.94   thorpej }
   1279       1.94   thorpej 
   1280       1.94   thorpej /*
   1281       1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1282       1.94   thorpej  */
   1283       1.94   thorpej /*ARGSUSED*/
   1284       1.94   thorpej static int
   1285      1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1286       1.94   thorpej {
   1287       1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1288       1.94   thorpej 
   1289       1.94   thorpej 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1290       1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1291       1.94   thorpej }
   1292       1.94   thorpej 
   1293       1.94   thorpej const struct bdevsw swap_bdevsw = {
   1294      1.168  dholland 	.d_open = nullopen,
   1295      1.168  dholland 	.d_close = nullclose,
   1296      1.168  dholland 	.d_strategy = swstrategy,
   1297      1.168  dholland 	.d_ioctl = noioctl,
   1298      1.168  dholland 	.d_dump = nodump,
   1299      1.168  dholland 	.d_psize = nosize,
   1300      1.171  dholland 	.d_discard = nodiscard,
   1301      1.168  dholland 	.d_flag = D_OTHER
   1302       1.94   thorpej };
   1303       1.94   thorpej 
   1304       1.94   thorpej const struct cdevsw swap_cdevsw = {
   1305      1.168  dholland 	.d_open = nullopen,
   1306      1.168  dholland 	.d_close = nullclose,
   1307      1.168  dholland 	.d_read = swread,
   1308      1.168  dholland 	.d_write = swwrite,
   1309      1.168  dholland 	.d_ioctl = noioctl,
   1310      1.168  dholland 	.d_stop = nostop,
   1311      1.168  dholland 	.d_tty = notty,
   1312      1.168  dholland 	.d_poll = nopoll,
   1313      1.168  dholland 	.d_mmap = nommap,
   1314      1.168  dholland 	.d_kqfilter = nokqfilter,
   1315      1.172  dholland 	.d_discard = nodiscard,
   1316      1.168  dholland 	.d_flag = D_OTHER,
   1317       1.94   thorpej };
   1318       1.94   thorpej 
   1319       1.94   thorpej /*
   1320        1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1321        1.1       mrg  */
   1322        1.1       mrg static void
   1323       1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1324        1.1       mrg {
   1325        1.1       mrg 	struct vnode	*vp;
   1326        1.1       mrg 	struct vndxfer	*vnx;
   1327       1.44     enami 	daddr_t		nbn;
   1328      1.122  christos 	char 		*addr;
   1329       1.44     enami 	off_t		byteoff;
   1330        1.9       mrg 	int		s, off, nra, error, sz, resid;
   1331        1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1332        1.1       mrg 
   1333        1.1       mrg 	/*
   1334        1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1335        1.1       mrg 	 * our buffer.
   1336        1.1       mrg 	 */
   1337      1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1338        1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1339        1.1       mrg 	vnx->vx_error = 0;
   1340        1.1       mrg 	vnx->vx_pending = 0;
   1341        1.1       mrg 	vnx->vx_bp = bp;
   1342        1.1       mrg 	vnx->vx_sdp = sdp;
   1343        1.1       mrg 
   1344        1.1       mrg 	/*
   1345        1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1346        1.1       mrg 	 * our buffer.
   1347        1.1       mrg 	 */
   1348        1.1       mrg 	error = 0;
   1349        1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1350        1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1351       1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1352        1.1       mrg 
   1353        1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1354        1.1       mrg 		struct vndbuf	*nbp;
   1355        1.1       mrg 
   1356        1.1       mrg 		/*
   1357        1.1       mrg 		 * translate byteoffset into block number.  return values:
   1358        1.1       mrg 		 *   vp = vnode of underlying device
   1359        1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1360        1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1361        1.1       mrg 		 *	block)
   1362        1.1       mrg 		 */
   1363        1.1       mrg 		nra = 0;
   1364        1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1365        1.1       mrg 				 	&vp, &nbn, &nra);
   1366        1.1       mrg 
   1367       1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1368       1.51       chs 			/*
   1369       1.23      marc 			 * this used to just set error, but that doesn't
   1370       1.23      marc 			 * do the right thing.  Instead, it causes random
   1371       1.23      marc 			 * memory errors.  The panic() should remain until
   1372       1.23      marc 			 * this condition doesn't destabilize the system.
   1373       1.23      marc 			 */
   1374       1.23      marc #if 1
   1375      1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1376       1.23      marc #else
   1377        1.1       mrg 			error = EIO;	/* failure */
   1378       1.23      marc #endif
   1379       1.23      marc 		}
   1380        1.1       mrg 
   1381        1.1       mrg 		/*
   1382        1.1       mrg 		 * punt if there was an error or a hole in the file.
   1383        1.1       mrg 		 * we must wait for any i/o ops we have already started
   1384        1.1       mrg 		 * to finish before returning.
   1385        1.1       mrg 		 *
   1386        1.1       mrg 		 * XXX we could deal with holes here but it would be
   1387        1.1       mrg 		 * a hassle (in the write case).
   1388        1.1       mrg 		 */
   1389        1.1       mrg 		if (error) {
   1390        1.1       mrg 			s = splbio();
   1391        1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1392        1.1       mrg 			goto out;
   1393        1.1       mrg 		}
   1394        1.1       mrg 
   1395        1.1       mrg 		/*
   1396        1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1397        1.1       mrg 		 */
   1398       1.41       chs 		off = byteoff % sdp->swd_bsize;
   1399       1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1400       1.41       chs 		if (sz > resid)
   1401        1.1       mrg 			sz = resid;
   1402        1.1       mrg 
   1403       1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1404       1.41       chs 			    "vp %p/%p offset 0x%x/0x%x",
   1405       1.41       chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1406        1.1       mrg 
   1407        1.1       mrg 		/*
   1408        1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1409        1.1       mrg 		 * at the front of the nbp structure so that you can
   1410        1.1       mrg 		 * cast pointers between the two structure easily.
   1411        1.1       mrg 		 */
   1412      1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1413      1.134        ad 		buf_init(&nbp->vb_buf);
   1414      1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1415      1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1416      1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1417        1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1418       1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1419        1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1420        1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1421       1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1422        1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1423       1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1424      1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1425       1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1426      1.156     rmind 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1427       1.53       chs 		if (vp->v_type == VBLK) {
   1428       1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1429       1.53       chs 		}
   1430        1.1       mrg 
   1431        1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1432        1.1       mrg 
   1433        1.1       mrg 		/*
   1434        1.1       mrg 		 * Just sort by block number
   1435        1.1       mrg 		 */
   1436        1.1       mrg 		s = splbio();
   1437        1.1       mrg 		if (vnx->vx_error != 0) {
   1438      1.134        ad 			buf_destroy(&nbp->vb_buf);
   1439      1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1440        1.1       mrg 			goto out;
   1441        1.1       mrg 		}
   1442        1.1       mrg 		vnx->vx_pending++;
   1443        1.1       mrg 
   1444        1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1445      1.134        ad 		/* XXXAD locking */
   1446      1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1447        1.1       mrg 		sw_reg_start(sdp);
   1448        1.1       mrg 		splx(s);
   1449        1.1       mrg 
   1450        1.1       mrg 		/*
   1451        1.1       mrg 		 * advance to the next I/O
   1452        1.1       mrg 		 */
   1453        1.9       mrg 		byteoff += sz;
   1454        1.1       mrg 		addr += sz;
   1455        1.1       mrg 	}
   1456        1.1       mrg 
   1457        1.1       mrg 	s = splbio();
   1458        1.1       mrg 
   1459        1.1       mrg out: /* Arrive here at splbio */
   1460        1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1461        1.1       mrg 	if (vnx->vx_pending == 0) {
   1462      1.134        ad 		error = vnx->vx_error;
   1463      1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1464      1.134        ad 		bp->b_error = error;
   1465        1.1       mrg 		biodone(bp);
   1466        1.1       mrg 	}
   1467        1.1       mrg 	splx(s);
   1468        1.1       mrg }
   1469        1.1       mrg 
   1470        1.1       mrg /*
   1471        1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1472        1.1       mrg  *
   1473       1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1474        1.1       mrg  */
   1475        1.1       mrg static void
   1476       1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1477        1.1       mrg {
   1478        1.1       mrg 	struct buf	*bp;
   1479      1.134        ad 	struct vnode	*vp;
   1480        1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1481        1.1       mrg 
   1482        1.8       mrg 	/* recursion control */
   1483        1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1484        1.1       mrg 		return;
   1485        1.1       mrg 
   1486        1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1487        1.1       mrg 
   1488       1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1489      1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1490        1.1       mrg 		if (bp == NULL)
   1491        1.1       mrg 			break;
   1492       1.33   thorpej 		sdp->swd_active++;
   1493        1.1       mrg 
   1494        1.1       mrg 		UVMHIST_LOG(pdhist,
   1495        1.1       mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1496        1.1       mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1497      1.134        ad 		vp = bp->b_vp;
   1498      1.156     rmind 		KASSERT(bp->b_objlock == vp->v_interlock);
   1499      1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1500      1.156     rmind 			mutex_enter(vp->v_interlock);
   1501      1.134        ad 			vp->v_numoutput++;
   1502      1.156     rmind 			mutex_exit(vp->v_interlock);
   1503      1.134        ad 		}
   1504      1.134        ad 		VOP_STRATEGY(vp, bp);
   1505        1.1       mrg 	}
   1506        1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1507        1.1       mrg }
   1508        1.1       mrg 
   1509        1.1       mrg /*
   1510      1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1511      1.130   hannken  */
   1512      1.130   hannken static void
   1513      1.130   hannken sw_reg_biodone(struct buf *bp)
   1514      1.130   hannken {
   1515      1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1516      1.130   hannken }
   1517      1.130   hannken 
   1518      1.130   hannken /*
   1519        1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1520        1.1       mrg  *
   1521        1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1522        1.1       mrg  */
   1523        1.1       mrg static void
   1524      1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1525        1.1       mrg {
   1526      1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1527        1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1528        1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1529        1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1530       1.72       chs 	int s, resid, error;
   1531      1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1532        1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1533        1.1       mrg 
   1534        1.1       mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1535        1.1       mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1536        1.1       mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1537        1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1538        1.1       mrg 
   1539        1.1       mrg 	/*
   1540        1.1       mrg 	 * protect vbp at splbio and update.
   1541        1.1       mrg 	 */
   1542        1.1       mrg 
   1543        1.1       mrg 	s = splbio();
   1544        1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1545        1.1       mrg 	pbp->b_resid -= resid;
   1546        1.1       mrg 	vnx->vx_pending--;
   1547        1.1       mrg 
   1548      1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1549        1.1       mrg 		/* pass error upward */
   1550      1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1551       1.72       chs 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1552       1.72       chs 		vnx->vx_error = error;
   1553       1.35       chs 	}
   1554       1.35       chs 
   1555       1.35       chs 	/*
   1556        1.1       mrg 	 * kill vbp structure
   1557        1.1       mrg 	 */
   1558      1.134        ad 	buf_destroy(&vbp->vb_buf);
   1559      1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1560        1.1       mrg 
   1561        1.1       mrg 	/*
   1562        1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1563        1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1564        1.1       mrg 	 */
   1565        1.1       mrg 	if (vnx->vx_error != 0) {
   1566        1.1       mrg 		/* pass error upward */
   1567      1.134        ad 		error = vnx->vx_error;
   1568        1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1569      1.134        ad 			pbp->b_error = error;
   1570        1.1       mrg 			biodone(pbp);
   1571      1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1572        1.1       mrg 		}
   1573       1.11        pk 	} else if (pbp->b_resid == 0) {
   1574       1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1575        1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1576        1.8       mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1577        1.8       mrg 			    pbp, vnx->vx_error, 0, 0);
   1578        1.1       mrg 			biodone(pbp);
   1579      1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1580        1.1       mrg 		}
   1581        1.1       mrg 	}
   1582        1.1       mrg 
   1583        1.1       mrg 	/*
   1584        1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1585        1.1       mrg 	 */
   1586       1.33   thorpej 	sdp->swd_active--;
   1587        1.1       mrg 	sw_reg_start(sdp);
   1588        1.1       mrg 	splx(s);
   1589        1.1       mrg }
   1590        1.1       mrg 
   1591        1.1       mrg 
   1592        1.1       mrg /*
   1593        1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1594        1.1       mrg  *
   1595        1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1596        1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1597        1.1       mrg  * => space can be freed with uvm_swap_free
   1598        1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1599      1.127        ad  * => we lock uvm_swap_data_lock
   1600        1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1601        1.1       mrg  */
   1602        1.1       mrg int
   1603      1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1604        1.1       mrg {
   1605        1.1       mrg 	struct swapdev *sdp;
   1606        1.1       mrg 	struct swappri *spp;
   1607        1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1608        1.1       mrg 
   1609        1.1       mrg 	/*
   1610        1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1611        1.1       mrg 	 */
   1612        1.1       mrg 	if (uvmexp.nswapdev < 1)
   1613        1.1       mrg 		return 0;
   1614       1.51       chs 
   1615        1.1       mrg 	/*
   1616      1.162  jakllsch 	 * XXXJAK: BEGIN HACK
   1617      1.162  jakllsch 	 *
   1618      1.162  jakllsch 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1619      1.162  jakllsch 	 * too many slots.
   1620      1.162  jakllsch 	 */
   1621      1.162  jakllsch 	if (*nslots > BLIST_MAX_ALLOC) {
   1622      1.162  jakllsch 		if (__predict_false(lessok == false))
   1623      1.162  jakllsch 			return 0;
   1624      1.162  jakllsch 		*nslots = BLIST_MAX_ALLOC;
   1625      1.162  jakllsch 	}
   1626      1.162  jakllsch 	/* XXXJAK: END HACK */
   1627      1.162  jakllsch 
   1628      1.162  jakllsch 	/*
   1629        1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1630        1.1       mrg 	 */
   1631      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1632        1.1       mrg 
   1633        1.1       mrg ReTry:	/* XXXMRG */
   1634       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1635      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1636       1.90      yamt 			uint64_t result;
   1637       1.90      yamt 
   1638        1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1639        1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1640        1.1       mrg 				continue;
   1641        1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1642        1.1       mrg 				continue;
   1643       1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1644       1.90      yamt 			if (result == BLIST_NONE) {
   1645        1.1       mrg 				continue;
   1646        1.1       mrg 			}
   1647       1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1648        1.1       mrg 
   1649        1.1       mrg 			/*
   1650      1.165  christos 			 * successful allocation!  now rotate the tailq.
   1651        1.1       mrg 			 */
   1652      1.164  christos 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1653      1.164  christos 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1654        1.1       mrg 			sdp->swd_npginuse += *nslots;
   1655        1.1       mrg 			uvmexp.swpginuse += *nslots;
   1656      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1657        1.1       mrg 			/* done!  return drum slot number */
   1658        1.1       mrg 			UVMHIST_LOG(pdhist,
   1659        1.1       mrg 			    "success!  returning %d slots starting at %d",
   1660        1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1661       1.55       chs 			return (result + sdp->swd_drumoffset);
   1662        1.1       mrg 		}
   1663        1.1       mrg 	}
   1664        1.1       mrg 
   1665        1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1666        1.1       mrg 	if (*nslots > 1 && lessok) {
   1667        1.1       mrg 		*nslots = 1;
   1668       1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1669       1.90      yamt 		goto ReTry;
   1670        1.1       mrg 	}
   1671        1.1       mrg 	/* XXXMRG: END HACK */
   1672        1.1       mrg 
   1673      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1674       1.55       chs 	return 0;
   1675        1.1       mrg }
   1676        1.1       mrg 
   1677      1.141        ad /*
   1678      1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1679      1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1680      1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1681      1.141        ad  * pages are busy.
   1682      1.141        ad  */
   1683      1.119   thorpej bool
   1684       1.81        pk uvm_swapisfull(void)
   1685       1.81        pk {
   1686      1.141        ad 	int swpgonly;
   1687      1.119   thorpej 	bool rv;
   1688       1.81        pk 
   1689      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1690       1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1691      1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1692      1.141        ad 	    uvm_swapisfull_factor);
   1693      1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1694      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1695       1.81        pk 
   1696       1.81        pk 	return (rv);
   1697       1.81        pk }
   1698       1.81        pk 
   1699        1.1       mrg /*
   1700       1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1701       1.32       chs  *
   1702      1.127        ad  * => we lock uvm_swap_data_lock
   1703       1.32       chs  */
   1704       1.32       chs void
   1705       1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1706       1.32       chs {
   1707       1.32       chs 	struct swapdev *sdp;
   1708       1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1709       1.32       chs 
   1710      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1711       1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1712       1.82        pk 	KASSERT(sdp != NULL);
   1713       1.32       chs 
   1714       1.32       chs 	/*
   1715       1.32       chs 	 * we just keep track of how many pages have been marked bad
   1716       1.32       chs 	 * in this device, to make everything add up in swap_off().
   1717       1.32       chs 	 * we assume here that the range of slots will all be within
   1718       1.32       chs 	 * one swap device.
   1719       1.32       chs 	 */
   1720       1.41       chs 
   1721       1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1722       1.82        pk 	uvmexp.swpgonly -= nslots;
   1723       1.32       chs 	sdp->swd_npgbad += nslots;
   1724       1.41       chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1725      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1726       1.32       chs }
   1727       1.32       chs 
   1728       1.32       chs /*
   1729        1.1       mrg  * uvm_swap_free: free swap slots
   1730        1.1       mrg  *
   1731        1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1732      1.127        ad  * => we lock uvm_swap_data_lock
   1733        1.1       mrg  */
   1734        1.1       mrg void
   1735       1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1736        1.1       mrg {
   1737        1.1       mrg 	struct swapdev *sdp;
   1738        1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1739        1.1       mrg 
   1740        1.1       mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1741        1.1       mrg 	    startslot, 0, 0);
   1742       1.32       chs 
   1743       1.32       chs 	/*
   1744       1.32       chs 	 * ignore attempts to free the "bad" slot.
   1745       1.32       chs 	 */
   1746       1.46       chs 
   1747       1.32       chs 	if (startslot == SWSLOT_BAD) {
   1748       1.32       chs 		return;
   1749       1.32       chs 	}
   1750       1.32       chs 
   1751        1.1       mrg 	/*
   1752       1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1753       1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1754        1.1       mrg 	 * lookup and access the extent.
   1755        1.1       mrg 	 */
   1756       1.46       chs 
   1757      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1758        1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1759       1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1760       1.46       chs 	KASSERT(sdp != NULL);
   1761       1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1762       1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1763        1.1       mrg 	sdp->swd_npginuse -= nslots;
   1764        1.1       mrg 	uvmexp.swpginuse -= nslots;
   1765      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1766        1.1       mrg }
   1767        1.1       mrg 
   1768        1.1       mrg /*
   1769        1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1770        1.1       mrg  *
   1771        1.1       mrg  * => can be sync or async
   1772        1.1       mrg  */
   1773       1.54       chs 
   1774        1.1       mrg int
   1775       1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1776        1.1       mrg {
   1777       1.56       chs 	int error;
   1778        1.1       mrg 
   1779       1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1780        1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1781       1.56       chs 	return error;
   1782        1.1       mrg }
   1783        1.1       mrg 
   1784        1.1       mrg /*
   1785        1.1       mrg  * uvm_swap_get: get a single page from swap
   1786        1.1       mrg  *
   1787        1.1       mrg  * => usually a sync op (from fault)
   1788        1.1       mrg  */
   1789       1.54       chs 
   1790        1.1       mrg int
   1791       1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1792        1.1       mrg {
   1793       1.56       chs 	int error;
   1794        1.1       mrg 
   1795        1.1       mrg 	uvmexp.nswget++;
   1796       1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1797       1.32       chs 	if (swslot == SWSLOT_BAD) {
   1798       1.47       chs 		return EIO;
   1799       1.32       chs 	}
   1800       1.81        pk 
   1801       1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1802        1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1803       1.56       chs 	if (error == 0) {
   1804       1.47       chs 
   1805       1.26       chs 		/*
   1806       1.54       chs 		 * this page is no longer only in swap.
   1807       1.26       chs 		 */
   1808       1.47       chs 
   1809      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1810       1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1811       1.54       chs 		uvmexp.swpgonly--;
   1812      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1813       1.26       chs 	}
   1814       1.56       chs 	return error;
   1815        1.1       mrg }
   1816        1.1       mrg 
   1817        1.1       mrg /*
   1818        1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1819        1.1       mrg  */
   1820        1.1       mrg 
   1821        1.1       mrg static int
   1822       1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1823        1.1       mrg {
   1824        1.1       mrg 	daddr_t startblk;
   1825        1.1       mrg 	struct	buf *bp;
   1826       1.15       eeh 	vaddr_t kva;
   1827      1.134        ad 	int	error, mapinflags;
   1828      1.119   thorpej 	bool write, async;
   1829        1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1830        1.1       mrg 
   1831        1.1       mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1832        1.1       mrg 	    startslot, npages, flags, 0);
   1833       1.32       chs 
   1834       1.41       chs 	write = (flags & B_READ) == 0;
   1835       1.41       chs 	async = (flags & B_ASYNC) != 0;
   1836       1.41       chs 
   1837        1.1       mrg 	/*
   1838      1.137      yamt 	 * allocate a buf for the i/o.
   1839      1.137      yamt 	 */
   1840      1.137      yamt 
   1841      1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1842      1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1843      1.137      yamt 	if (bp == NULL) {
   1844      1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1845      1.137      yamt 		return ENOMEM;
   1846      1.137      yamt 	}
   1847      1.137      yamt 
   1848      1.137      yamt 	/*
   1849        1.1       mrg 	 * convert starting drum slot to block number
   1850        1.1       mrg 	 */
   1851       1.54       chs 
   1852       1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1853        1.1       mrg 
   1854        1.1       mrg 	/*
   1855       1.54       chs 	 * first, map the pages into the kernel.
   1856       1.41       chs 	 */
   1857       1.41       chs 
   1858       1.54       chs 	mapinflags = !write ?
   1859       1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1860       1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1861       1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1862        1.1       mrg 
   1863       1.51       chs 	/*
   1864        1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1865        1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1866        1.1       mrg 	 */
   1867       1.54       chs 
   1868      1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1869      1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1870        1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1871       1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1872      1.122  christos 	bp->b_data = (void *)kva;
   1873        1.1       mrg 	bp->b_blkno = startblk;
   1874       1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1875        1.1       mrg 
   1876       1.51       chs 	/*
   1877       1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1878        1.1       mrg 	 */
   1879       1.54       chs 
   1880       1.41       chs 	if (write) {
   1881      1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1882      1.134        ad 		swapdev_vp->v_numoutput++;
   1883      1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1884        1.1       mrg 	}
   1885        1.1       mrg 
   1886        1.1       mrg 	/*
   1887       1.41       chs 	 * for async ops we must set up the iodone handler.
   1888        1.1       mrg 	 */
   1889       1.54       chs 
   1890       1.41       chs 	if (async) {
   1891       1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1892        1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1893      1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1894       1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1895       1.83      yamt 		else
   1896       1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1897       1.83      yamt 	} else {
   1898      1.134        ad 		bp->b_iodone = NULL;
   1899       1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1900        1.1       mrg 	}
   1901        1.1       mrg 	UVMHIST_LOG(pdhist,
   1902       1.41       chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1903        1.1       mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1904        1.1       mrg 
   1905        1.1       mrg 	/*
   1906        1.1       mrg 	 * now we start the I/O, and if async, return.
   1907        1.1       mrg 	 */
   1908       1.54       chs 
   1909       1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1910       1.41       chs 	if (async)
   1911       1.47       chs 		return 0;
   1912        1.1       mrg 
   1913        1.1       mrg 	/*
   1914        1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1915        1.1       mrg 	 */
   1916       1.54       chs 
   1917       1.47       chs 	error = biowait(bp);
   1918        1.1       mrg 
   1919        1.1       mrg 	/*
   1920        1.1       mrg 	 * kill the pager mapping
   1921        1.1       mrg 	 */
   1922       1.54       chs 
   1923        1.1       mrg 	uvm_pagermapout(kva, npages);
   1924        1.1       mrg 
   1925        1.1       mrg 	/*
   1926       1.54       chs 	 * now dispose of the buf and we're done.
   1927        1.1       mrg 	 */
   1928       1.54       chs 
   1929      1.134        ad 	if (write) {
   1930      1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1931       1.41       chs 		vwakeup(bp);
   1932      1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1933      1.134        ad 	}
   1934       1.98      yamt 	putiobuf(bp);
   1935       1.47       chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1936      1.134        ad 
   1937       1.47       chs 	return (error);
   1938        1.1       mrg }
   1939