uvm_swap.c revision 1.175 1 1.175 pgoyette /* $NetBSD: uvm_swap.c,v 1.175 2017/10/28 00:37:13 pgoyette Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.144 mrg * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg *
16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 mrg * SUCH DAMAGE.
27 1.3 mrg *
28 1.3 mrg * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 1.3 mrg * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 1.1 mrg */
31 1.57 lukem
32 1.57 lukem #include <sys/cdefs.h>
33 1.175 pgoyette __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.175 2017/10/28 00:37:13 pgoyette Exp $");
34 1.5 mrg
35 1.5 mrg #include "opt_uvmhist.h"
36 1.16 mrg #include "opt_compat_netbsd.h"
37 1.41 chs #include "opt_ddb.h"
38 1.1 mrg
39 1.1 mrg #include <sys/param.h>
40 1.1 mrg #include <sys/systm.h>
41 1.1 mrg #include <sys/buf.h>
42 1.89 yamt #include <sys/bufq.h>
43 1.36 mrg #include <sys/conf.h>
44 1.1 mrg #include <sys/proc.h>
45 1.1 mrg #include <sys/namei.h>
46 1.1 mrg #include <sys/disklabel.h>
47 1.1 mrg #include <sys/errno.h>
48 1.1 mrg #include <sys/kernel.h>
49 1.1 mrg #include <sys/vnode.h>
50 1.1 mrg #include <sys/file.h>
51 1.110 yamt #include <sys/vmem.h>
52 1.90 yamt #include <sys/blist.h>
53 1.1 mrg #include <sys/mount.h>
54 1.12 pk #include <sys/pool.h>
55 1.159 para #include <sys/kmem.h>
56 1.1 mrg #include <sys/syscallargs.h>
57 1.17 mrg #include <sys/swap.h>
58 1.100 elad #include <sys/kauth.h>
59 1.125 ad #include <sys/sysctl.h>
60 1.130 hannken #include <sys/workqueue.h>
61 1.1 mrg
62 1.1 mrg #include <uvm/uvm.h>
63 1.1 mrg
64 1.1 mrg #include <miscfs/specfs/specdev.h>
65 1.1 mrg
66 1.1 mrg /*
67 1.1 mrg * uvm_swap.c: manage configuration and i/o to swap space.
68 1.1 mrg */
69 1.1 mrg
70 1.1 mrg /*
71 1.1 mrg * swap space is managed in the following way:
72 1.51 chs *
73 1.1 mrg * each swap partition or file is described by a "swapdev" structure.
74 1.1 mrg * each "swapdev" structure contains a "swapent" structure which contains
75 1.1 mrg * information that is passed up to the user (via system calls).
76 1.1 mrg *
77 1.1 mrg * each swap partition is assigned a "priority" (int) which controls
78 1.1 mrg * swap parition usage.
79 1.1 mrg *
80 1.1 mrg * the system maintains a global data structure describing all swap
81 1.1 mrg * partitions/files. there is a sorted LIST of "swappri" structures
82 1.1 mrg * which describe "swapdev"'s at that priority. this LIST is headed
83 1.51 chs * by the "swap_priority" global var. each "swappri" contains a
84 1.164 christos * TAILQ of "swapdev" structures at that priority.
85 1.1 mrg *
86 1.1 mrg * locking:
87 1.127 ad * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88 1.1 mrg * system call and prevents the swap priority list from changing
89 1.1 mrg * while we are in the middle of a system call (e.g. SWAP_STATS).
90 1.127 ad * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91 1.1 mrg * structures including the priority list, the swapdev structures,
92 1.110 yamt * and the swapmap arena.
93 1.1 mrg *
94 1.1 mrg * each swap device has the following info:
95 1.1 mrg * - swap device in use (could be disabled, preventing future use)
96 1.1 mrg * - swap enabled (allows new allocations on swap)
97 1.1 mrg * - map info in /dev/drum
98 1.1 mrg * - vnode pointer
99 1.1 mrg * for swap files only:
100 1.1 mrg * - block size
101 1.1 mrg * - max byte count in buffer
102 1.1 mrg * - buffer
103 1.1 mrg *
104 1.1 mrg * userland controls and configures swap with the swapctl(2) system call.
105 1.1 mrg * the sys_swapctl performs the following operations:
106 1.1 mrg * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 1.51 chs * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 1.1 mrg * (passed in via "arg") of a size passed in via "misc" ... we load
109 1.85 junyoung * the current swap config into the array. The actual work is done
110 1.155 rmind * in the uvm_swap_stats() function.
111 1.1 mrg * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 1.1 mrg * priority in "misc", start swapping on it.
113 1.1 mrg * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 1.1 mrg * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 1.1 mrg * "misc")
116 1.1 mrg */
117 1.1 mrg
118 1.1 mrg /*
119 1.1 mrg * swapdev: describes a single swap partition/file
120 1.1 mrg *
121 1.1 mrg * note the following should be true:
122 1.1 mrg * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 1.1 mrg * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 1.1 mrg */
125 1.1 mrg struct swapdev {
126 1.144 mrg dev_t swd_dev; /* device id */
127 1.144 mrg int swd_flags; /* flags:inuse/enable/fake */
128 1.144 mrg int swd_priority; /* our priority */
129 1.144 mrg int swd_nblks; /* blocks in this device */
130 1.16 mrg char *swd_path; /* saved pathname of device */
131 1.16 mrg int swd_pathlen; /* length of pathname */
132 1.16 mrg int swd_npages; /* #pages we can use */
133 1.16 mrg int swd_npginuse; /* #pages in use */
134 1.32 chs int swd_npgbad; /* #pages bad */
135 1.16 mrg int swd_drumoffset; /* page0 offset in drum */
136 1.16 mrg int swd_drumsize; /* #pages in drum */
137 1.90 yamt blist_t swd_blist; /* blist for this swapdev */
138 1.16 mrg struct vnode *swd_vp; /* backing vnode */
139 1.165 christos TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
140 1.1 mrg
141 1.16 mrg int swd_bsize; /* blocksize (bytes) */
142 1.16 mrg int swd_maxactive; /* max active i/o reqs */
143 1.96 yamt struct bufq_state *swd_tab; /* buffer list */
144 1.33 thorpej int swd_active; /* number of active buffers */
145 1.1 mrg };
146 1.1 mrg
147 1.1 mrg /*
148 1.1 mrg * swap device priority entry; the list is kept sorted on `spi_priority'.
149 1.1 mrg */
150 1.1 mrg struct swappri {
151 1.1 mrg int spi_priority; /* priority */
152 1.164 christos TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 1.165 christos /* tailq of swapdevs at this priority */
154 1.1 mrg LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 1.1 mrg };
156 1.1 mrg
157 1.1 mrg /*
158 1.1 mrg * The following two structures are used to keep track of data transfers
159 1.1 mrg * on swap devices associated with regular files.
160 1.1 mrg * NOTE: this code is more or less a copy of vnd.c; we use the same
161 1.1 mrg * structure names here to ease porting..
162 1.1 mrg */
163 1.1 mrg struct vndxfer {
164 1.1 mrg struct buf *vx_bp; /* Pointer to parent buffer */
165 1.1 mrg struct swapdev *vx_sdp;
166 1.1 mrg int vx_error;
167 1.1 mrg int vx_pending; /* # of pending aux buffers */
168 1.1 mrg int vx_flags;
169 1.1 mrg #define VX_BUSY 1
170 1.1 mrg #define VX_DEAD 2
171 1.1 mrg };
172 1.1 mrg
173 1.1 mrg struct vndbuf {
174 1.1 mrg struct buf vb_buf;
175 1.1 mrg struct vndxfer *vb_xfer;
176 1.1 mrg };
177 1.1 mrg
178 1.144 mrg /*
179 1.144 mrg * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180 1.144 mrg * dev_t and has no se_path[] member.
181 1.144 mrg */
182 1.144 mrg struct swapent13 {
183 1.144 mrg int32_t se13_dev; /* device id */
184 1.144 mrg int se13_flags; /* flags */
185 1.144 mrg int se13_nblks; /* total blocks */
186 1.144 mrg int se13_inuse; /* blocks in use */
187 1.144 mrg int se13_priority; /* priority of this device */
188 1.144 mrg };
189 1.144 mrg
190 1.144 mrg /*
191 1.144 mrg * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192 1.144 mrg * dev_t.
193 1.144 mrg */
194 1.144 mrg struct swapent50 {
195 1.144 mrg int32_t se50_dev; /* device id */
196 1.144 mrg int se50_flags; /* flags */
197 1.144 mrg int se50_nblks; /* total blocks */
198 1.144 mrg int se50_inuse; /* blocks in use */
199 1.144 mrg int se50_priority; /* priority of this device */
200 1.144 mrg char se50_path[PATH_MAX+1]; /* path name */
201 1.144 mrg };
202 1.12 pk
203 1.1 mrg /*
204 1.12 pk * We keep a of pool vndbuf's and vndxfer structures.
205 1.1 mrg */
206 1.146 pooka static struct pool vndxfer_pool, vndbuf_pool;
207 1.1 mrg
208 1.1 mrg /*
209 1.1 mrg * local variables
210 1.1 mrg */
211 1.110 yamt static vmem_t *swapmap; /* controls the mapping of /dev/drum */
212 1.1 mrg
213 1.1 mrg /* list of all active swap devices [by priority] */
214 1.1 mrg LIST_HEAD(swap_priority, swappri);
215 1.1 mrg static struct swap_priority swap_priority;
216 1.1 mrg
217 1.1 mrg /* locks */
218 1.117 ad static krwlock_t swap_syscall_lock;
219 1.1 mrg
220 1.130 hannken /* workqueue and use counter for swap to regular files */
221 1.130 hannken static int sw_reg_count = 0;
222 1.130 hannken static struct workqueue *sw_reg_workqueue;
223 1.130 hannken
224 1.141 ad /* tuneables */
225 1.141 ad u_int uvm_swapisfull_factor = 99;
226 1.141 ad
227 1.1 mrg /*
228 1.1 mrg * prototypes
229 1.1 mrg */
230 1.85 junyoung static struct swapdev *swapdrum_getsdp(int);
231 1.1 mrg
232 1.120 matt static struct swapdev *swaplist_find(struct vnode *, bool);
233 1.85 junyoung static void swaplist_insert(struct swapdev *,
234 1.85 junyoung struct swappri *, int);
235 1.85 junyoung static void swaplist_trim(void);
236 1.1 mrg
237 1.97 christos static int swap_on(struct lwp *, struct swapdev *);
238 1.97 christos static int swap_off(struct lwp *, struct swapdev *);
239 1.1 mrg
240 1.85 junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
241 1.130 hannken static void sw_reg_biodone(struct buf *);
242 1.130 hannken static void sw_reg_iodone(struct work *wk, void *dummy);
243 1.85 junyoung static void sw_reg_start(struct swapdev *);
244 1.1 mrg
245 1.85 junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
246 1.1 mrg
247 1.1 mrg /*
248 1.1 mrg * uvm_swap_init: init the swap system data structures and locks
249 1.1 mrg *
250 1.51 chs * => called at boot time from init_main.c after the filesystems
251 1.1 mrg * are brought up (which happens after uvm_init())
252 1.1 mrg */
253 1.1 mrg void
254 1.93 thorpej uvm_swap_init(void)
255 1.1 mrg {
256 1.1 mrg UVMHIST_FUNC("uvm_swap_init");
257 1.1 mrg
258 1.1 mrg UVMHIST_CALLED(pdhist);
259 1.1 mrg /*
260 1.1 mrg * first, init the swap list, its counter, and its lock.
261 1.1 mrg * then get a handle on the vnode for /dev/drum by using
262 1.1 mrg * the its dev_t number ("swapdev", from MD conf.c).
263 1.1 mrg */
264 1.1 mrg
265 1.1 mrg LIST_INIT(&swap_priority);
266 1.1 mrg uvmexp.nswapdev = 0;
267 1.117 ad rw_init(&swap_syscall_lock);
268 1.134 ad mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
269 1.12 pk
270 1.1 mrg if (bdevvp(swapdev, &swapdev_vp))
271 1.145 mrg panic("%s: can't get vnode for swap device", __func__);
272 1.136 hannken if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
273 1.145 mrg panic("%s: can't lock swap device", __func__);
274 1.135 hannken if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
275 1.145 mrg panic("%s: can't open swap device", __func__);
276 1.151 hannken VOP_UNLOCK(swapdev_vp);
277 1.1 mrg
278 1.1 mrg /*
279 1.1 mrg * create swap block resource map to map /dev/drum. the range
280 1.1 mrg * from 1 to INT_MAX allows 2 gigablocks of swap space. note
281 1.51 chs * that block 0 is reserved (used to indicate an allocation
282 1.1 mrg * failure, or no allocation).
283 1.1 mrg */
284 1.110 yamt swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
285 1.126 ad VM_NOSLEEP, IPL_NONE);
286 1.147 rmind if (swapmap == 0) {
287 1.145 mrg panic("%s: vmem_create failed", __func__);
288 1.147 rmind }
289 1.146 pooka
290 1.146 pooka pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
291 1.146 pooka NULL, IPL_BIO);
292 1.146 pooka pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
293 1.146 pooka NULL, IPL_BIO);
294 1.147 rmind
295 1.147 rmind UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
296 1.1 mrg }
297 1.1 mrg
298 1.1 mrg /*
299 1.1 mrg * swaplist functions: functions that operate on the list of swap
300 1.1 mrg * devices on the system.
301 1.1 mrg */
302 1.1 mrg
303 1.1 mrg /*
304 1.1 mrg * swaplist_insert: insert swap device "sdp" into the global list
305 1.1 mrg *
306 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
307 1.154 rmind * => caller must provide a newly allocated swappri structure (we will
308 1.154 rmind * FREE it if we don't need it... this it to prevent allocation
309 1.154 rmind * blocking here while adding swap)
310 1.1 mrg */
311 1.1 mrg static void
312 1.93 thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
313 1.1 mrg {
314 1.1 mrg struct swappri *spp, *pspp;
315 1.1 mrg UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316 1.1 mrg
317 1.1 mrg /*
318 1.1 mrg * find entry at or after which to insert the new device.
319 1.1 mrg */
320 1.55 chs pspp = NULL;
321 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 1.1 mrg if (priority <= spp->spi_priority)
323 1.1 mrg break;
324 1.1 mrg pspp = spp;
325 1.1 mrg }
326 1.1 mrg
327 1.1 mrg /*
328 1.1 mrg * new priority?
329 1.1 mrg */
330 1.1 mrg if (spp == NULL || spp->spi_priority != priority) {
331 1.1 mrg spp = newspp; /* use newspp! */
332 1.175 pgoyette UVMHIST_LOG(pdhist, "created new swappri = %jd",
333 1.32 chs priority, 0, 0, 0);
334 1.1 mrg
335 1.1 mrg spp->spi_priority = priority;
336 1.164 christos TAILQ_INIT(&spp->spi_swapdev);
337 1.1 mrg
338 1.1 mrg if (pspp)
339 1.1 mrg LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 1.1 mrg else
341 1.1 mrg LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 1.1 mrg } else {
343 1.1 mrg /* we don't need a new priority structure, free it */
344 1.159 para kmem_free(newspp, sizeof(*newspp));
345 1.1 mrg }
346 1.1 mrg
347 1.1 mrg /*
348 1.1 mrg * priority found (or created). now insert on the priority's
349 1.165 christos * tailq list and bump the total number of swapdevs.
350 1.1 mrg */
351 1.1 mrg sdp->swd_priority = priority;
352 1.164 christos TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 1.1 mrg uvmexp.nswapdev++;
354 1.1 mrg }
355 1.1 mrg
356 1.1 mrg /*
357 1.1 mrg * swaplist_find: find and optionally remove a swap device from the
358 1.1 mrg * global list.
359 1.1 mrg *
360 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
361 1.1 mrg * => we return the swapdev we found (and removed)
362 1.1 mrg */
363 1.1 mrg static struct swapdev *
364 1.119 thorpej swaplist_find(struct vnode *vp, bool remove)
365 1.1 mrg {
366 1.1 mrg struct swapdev *sdp;
367 1.1 mrg struct swappri *spp;
368 1.1 mrg
369 1.1 mrg /*
370 1.1 mrg * search the lists for the requested vp
371 1.1 mrg */
372 1.55 chs
373 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
374 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
375 1.1 mrg if (sdp->swd_vp == vp) {
376 1.1 mrg if (remove) {
377 1.164 christos TAILQ_REMOVE(&spp->spi_swapdev,
378 1.1 mrg sdp, swd_next);
379 1.1 mrg uvmexp.nswapdev--;
380 1.1 mrg }
381 1.1 mrg return(sdp);
382 1.1 mrg }
383 1.55 chs }
384 1.1 mrg }
385 1.1 mrg return (NULL);
386 1.1 mrg }
387 1.1 mrg
388 1.113 elad /*
389 1.1 mrg * swaplist_trim: scan priority list for empty priority entries and kill
390 1.1 mrg * them.
391 1.1 mrg *
392 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
393 1.1 mrg */
394 1.1 mrg static void
395 1.93 thorpej swaplist_trim(void)
396 1.1 mrg {
397 1.1 mrg struct swappri *spp, *nextspp;
398 1.1 mrg
399 1.161 rmind LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
400 1.167 mlelstv if (!TAILQ_EMPTY(&spp->spi_swapdev))
401 1.1 mrg continue;
402 1.1 mrg LIST_REMOVE(spp, spi_swappri);
403 1.159 para kmem_free(spp, sizeof(*spp));
404 1.1 mrg }
405 1.1 mrg }
406 1.1 mrg
407 1.1 mrg /*
408 1.1 mrg * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
409 1.1 mrg * to the "swapdev" that maps that section of the drum.
410 1.1 mrg *
411 1.1 mrg * => each swapdev takes one big contig chunk of the drum
412 1.127 ad * => caller must hold uvm_swap_data_lock
413 1.1 mrg */
414 1.1 mrg static struct swapdev *
415 1.93 thorpej swapdrum_getsdp(int pgno)
416 1.1 mrg {
417 1.1 mrg struct swapdev *sdp;
418 1.1 mrg struct swappri *spp;
419 1.51 chs
420 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
421 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
422 1.48 fvdl if (sdp->swd_flags & SWF_FAKE)
423 1.48 fvdl continue;
424 1.1 mrg if (pgno >= sdp->swd_drumoffset &&
425 1.1 mrg pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
426 1.1 mrg return sdp;
427 1.1 mrg }
428 1.48 fvdl }
429 1.55 chs }
430 1.1 mrg return NULL;
431 1.1 mrg }
432 1.1 mrg
433 1.173 maxv void swapsys_lock(krw_t op)
434 1.173 maxv {
435 1.173 maxv rw_enter(&swap_syscall_lock, op);
436 1.173 maxv }
437 1.173 maxv
438 1.173 maxv void swapsys_unlock(void)
439 1.173 maxv {
440 1.173 maxv rw_exit(&swap_syscall_lock);
441 1.173 maxv }
442 1.1 mrg
443 1.1 mrg /*
444 1.1 mrg * sys_swapctl: main entry point for swapctl(2) system call
445 1.1 mrg * [with two helper functions: swap_on and swap_off]
446 1.1 mrg */
447 1.1 mrg int
448 1.133 dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
449 1.1 mrg {
450 1.133 dsl /* {
451 1.1 mrg syscallarg(int) cmd;
452 1.1 mrg syscallarg(void *) arg;
453 1.1 mrg syscallarg(int) misc;
454 1.133 dsl } */
455 1.1 mrg struct vnode *vp;
456 1.1 mrg struct nameidata nd;
457 1.1 mrg struct swappri *spp;
458 1.1 mrg struct swapdev *sdp;
459 1.1 mrg struct swapent *sep;
460 1.101 christos #define SWAP_PATH_MAX (PATH_MAX + 1)
461 1.101 christos char *userpath;
462 1.161 rmind size_t len = 0;
463 1.61 manu int error, misc;
464 1.1 mrg int priority;
465 1.1 mrg UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
466 1.1 mrg
467 1.1 mrg /*
468 1.1 mrg * we handle the non-priv NSWAP and STATS request first.
469 1.1 mrg *
470 1.51 chs * SWAP_NSWAP: return number of config'd swap devices
471 1.1 mrg * [can also be obtained with uvmexp sysctl]
472 1.1 mrg */
473 1.1 mrg if (SCARG(uap, cmd) == SWAP_NSWAP) {
474 1.161 rmind const int nswapdev = uvmexp.nswapdev;
475 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
476 1.175 pgoyette 0, 0, 0);
477 1.161 rmind *retval = nswapdev;
478 1.161 rmind return 0;
479 1.1 mrg }
480 1.1 mrg
481 1.161 rmind misc = SCARG(uap, misc);
482 1.161 rmind userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
483 1.161 rmind
484 1.161 rmind /*
485 1.161 rmind * ensure serialized syscall access by grabbing the swap_syscall_lock
486 1.161 rmind */
487 1.161 rmind rw_enter(&swap_syscall_lock, RW_WRITER);
488 1.161 rmind
489 1.1 mrg /*
490 1.1 mrg * SWAP_STATS: get stats on current # of configured swap devs
491 1.1 mrg *
492 1.51 chs * note that the swap_priority list can't change as long
493 1.1 mrg * as we are holding the swap_syscall_lock. we don't want
494 1.127 ad * to grab the uvm_swap_data_lock because we may fault&sleep during
495 1.1 mrg * copyout() and we don't want to be holding that lock then!
496 1.1 mrg */
497 1.16 mrg if (SCARG(uap, cmd) == SWAP_STATS
498 1.144 mrg #if defined(COMPAT_50)
499 1.144 mrg || SCARG(uap, cmd) == SWAP_STATS50
500 1.144 mrg #endif
501 1.16 mrg #if defined(COMPAT_13)
502 1.144 mrg || SCARG(uap, cmd) == SWAP_STATS13
503 1.16 mrg #endif
504 1.16 mrg ) {
505 1.169 maxv if (misc < 0) {
506 1.161 rmind error = EINVAL;
507 1.161 rmind goto out;
508 1.161 rmind }
509 1.169 maxv if (misc == 0 || uvmexp.nswapdev == 0) {
510 1.169 maxv error = 0;
511 1.169 maxv goto out;
512 1.169 maxv }
513 1.169 maxv /* Make sure userland cannot exhaust kernel memory */
514 1.169 maxv if ((size_t)misc > (size_t)uvmexp.nswapdev)
515 1.169 maxv misc = uvmexp.nswapdev;
516 1.161 rmind KASSERT(misc > 0);
517 1.16 mrg #if defined(COMPAT_13)
518 1.144 mrg if (SCARG(uap, cmd) == SWAP_STATS13)
519 1.144 mrg len = sizeof(struct swapent13) * misc;
520 1.144 mrg else
521 1.144 mrg #endif
522 1.144 mrg #if defined(COMPAT_50)
523 1.144 mrg if (SCARG(uap, cmd) == SWAP_STATS50)
524 1.144 mrg len = sizeof(struct swapent50) * misc;
525 1.62 manu else
526 1.16 mrg #endif
527 1.62 manu len = sizeof(struct swapent) * misc;
528 1.159 para sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
529 1.62 manu
530 1.155 rmind uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
531 1.92 christos error = copyout(sep, SCARG(uap, arg), len);
532 1.1 mrg
533 1.159 para kmem_free(sep, len);
534 1.16 mrg UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
535 1.16 mrg goto out;
536 1.51 chs }
537 1.55 chs if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
538 1.55 chs dev_t *devp = (dev_t *)SCARG(uap, arg);
539 1.55 chs
540 1.55 chs error = copyout(&dumpdev, devp, sizeof(dumpdev));
541 1.55 chs goto out;
542 1.55 chs }
543 1.1 mrg
544 1.1 mrg /*
545 1.1 mrg * all other requests require superuser privs. verify.
546 1.1 mrg */
547 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
548 1.106 elad 0, NULL, NULL, NULL)))
549 1.16 mrg goto out;
550 1.1 mrg
551 1.104 martin if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
552 1.104 martin /* drop the current dump device */
553 1.104 martin dumpdev = NODEV;
554 1.138 kardel dumpcdev = NODEV;
555 1.104 martin cpu_dumpconf();
556 1.104 martin goto out;
557 1.104 martin }
558 1.104 martin
559 1.1 mrg /*
560 1.1 mrg * at this point we expect a path name in arg. we will
561 1.1 mrg * use namei() to gain a vnode reference (vref), and lock
562 1.1 mrg * the vnode (VOP_LOCK).
563 1.1 mrg *
564 1.1 mrg * XXX: a NULL arg means use the root vnode pointer (e.g. for
565 1.16 mrg * miniroot)
566 1.1 mrg */
567 1.1 mrg if (SCARG(uap, arg) == NULL) {
568 1.1 mrg vp = rootvp; /* miniroot */
569 1.152 hannken vref(vp);
570 1.152 hannken if (vn_lock(vp, LK_EXCLUSIVE)) {
571 1.152 hannken vrele(vp);
572 1.16 mrg error = EBUSY;
573 1.16 mrg goto out;
574 1.1 mrg }
575 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON &&
576 1.101 christos copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
577 1.16 mrg panic("swapctl: miniroot copy failed");
578 1.1 mrg } else {
579 1.153 dholland struct pathbuf *pb;
580 1.16 mrg
581 1.153 dholland /*
582 1.153 dholland * This used to allow copying in one extra byte
583 1.153 dholland * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
584 1.153 dholland * This was completely pointless because if anyone
585 1.153 dholland * used that extra byte namei would fail with
586 1.153 dholland * ENAMETOOLONG anyway, so I've removed the excess
587 1.153 dholland * logic. - dholland 20100215
588 1.153 dholland */
589 1.153 dholland
590 1.153 dholland error = pathbuf_copyin(SCARG(uap, arg), &pb);
591 1.153 dholland if (error) {
592 1.153 dholland goto out;
593 1.153 dholland }
594 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON) {
595 1.153 dholland /* get a copy of the string */
596 1.153 dholland pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
597 1.153 dholland len = strlen(userpath) + 1;
598 1.153 dholland }
599 1.153 dholland NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
600 1.153 dholland if ((error = namei(&nd))) {
601 1.153 dholland pathbuf_destroy(pb);
602 1.153 dholland goto out;
603 1.1 mrg }
604 1.1 mrg vp = nd.ni_vp;
605 1.153 dholland pathbuf_destroy(pb);
606 1.1 mrg }
607 1.1 mrg /* note: "vp" is referenced and locked */
608 1.1 mrg
609 1.1 mrg error = 0; /* assume no error */
610 1.1 mrg switch(SCARG(uap, cmd)) {
611 1.40 mrg
612 1.24 mrg case SWAP_DUMPDEV:
613 1.24 mrg if (vp->v_type != VBLK) {
614 1.24 mrg error = ENOTBLK;
615 1.45 pk break;
616 1.24 mrg }
617 1.138 kardel if (bdevsw_lookup(vp->v_rdev)) {
618 1.109 mrg dumpdev = vp->v_rdev;
619 1.138 kardel dumpcdev = devsw_blk2chr(dumpdev);
620 1.138 kardel } else
621 1.109 mrg dumpdev = NODEV;
622 1.68 drochner cpu_dumpconf();
623 1.24 mrg break;
624 1.24 mrg
625 1.1 mrg case SWAP_CTL:
626 1.1 mrg /*
627 1.1 mrg * get new priority, remove old entry (if any) and then
628 1.1 mrg * reinsert it in the correct place. finally, prune out
629 1.1 mrg * any empty priority structures.
630 1.1 mrg */
631 1.1 mrg priority = SCARG(uap, misc);
632 1.159 para spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
633 1.127 ad mutex_enter(&uvm_swap_data_lock);
634 1.120 matt if ((sdp = swaplist_find(vp, true)) == NULL) {
635 1.1 mrg error = ENOENT;
636 1.1 mrg } else {
637 1.1 mrg swaplist_insert(sdp, spp, priority);
638 1.1 mrg swaplist_trim();
639 1.1 mrg }
640 1.127 ad mutex_exit(&uvm_swap_data_lock);
641 1.1 mrg if (error)
642 1.159 para kmem_free(spp, sizeof(*spp));
643 1.1 mrg break;
644 1.1 mrg
645 1.1 mrg case SWAP_ON:
646 1.32 chs
647 1.1 mrg /*
648 1.1 mrg * check for duplicates. if none found, then insert a
649 1.1 mrg * dummy entry on the list to prevent someone else from
650 1.1 mrg * trying to enable this device while we are working on
651 1.1 mrg * it.
652 1.1 mrg */
653 1.32 chs
654 1.1 mrg priority = SCARG(uap, misc);
655 1.160 rmind sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
656 1.159 para spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
657 1.67 chs sdp->swd_flags = SWF_FAKE;
658 1.67 chs sdp->swd_vp = vp;
659 1.67 chs sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
660 1.96 yamt bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
661 1.127 ad mutex_enter(&uvm_swap_data_lock);
662 1.120 matt if (swaplist_find(vp, false) != NULL) {
663 1.1 mrg error = EBUSY;
664 1.127 ad mutex_exit(&uvm_swap_data_lock);
665 1.96 yamt bufq_free(sdp->swd_tab);
666 1.159 para kmem_free(sdp, sizeof(*sdp));
667 1.159 para kmem_free(spp, sizeof(*spp));
668 1.16 mrg break;
669 1.1 mrg }
670 1.1 mrg swaplist_insert(sdp, spp, priority);
671 1.127 ad mutex_exit(&uvm_swap_data_lock);
672 1.1 mrg
673 1.161 rmind KASSERT(len > 0);
674 1.16 mrg sdp->swd_pathlen = len;
675 1.161 rmind sdp->swd_path = kmem_alloc(len, KM_SLEEP);
676 1.161 rmind if (copystr(userpath, sdp->swd_path, len, 0) != 0)
677 1.19 pk panic("swapctl: copystr");
678 1.32 chs
679 1.1 mrg /*
680 1.1 mrg * we've now got a FAKE placeholder in the swap list.
681 1.1 mrg * now attempt to enable swap on it. if we fail, undo
682 1.1 mrg * what we've done and kill the fake entry we just inserted.
683 1.1 mrg * if swap_on is a success, it will clear the SWF_FAKE flag
684 1.1 mrg */
685 1.32 chs
686 1.97 christos if ((error = swap_on(l, sdp)) != 0) {
687 1.127 ad mutex_enter(&uvm_swap_data_lock);
688 1.120 matt (void) swaplist_find(vp, true); /* kill fake entry */
689 1.1 mrg swaplist_trim();
690 1.127 ad mutex_exit(&uvm_swap_data_lock);
691 1.96 yamt bufq_free(sdp->swd_tab);
692 1.159 para kmem_free(sdp->swd_path, sdp->swd_pathlen);
693 1.159 para kmem_free(sdp, sizeof(*sdp));
694 1.1 mrg break;
695 1.1 mrg }
696 1.1 mrg break;
697 1.1 mrg
698 1.1 mrg case SWAP_OFF:
699 1.127 ad mutex_enter(&uvm_swap_data_lock);
700 1.120 matt if ((sdp = swaplist_find(vp, false)) == NULL) {
701 1.127 ad mutex_exit(&uvm_swap_data_lock);
702 1.1 mrg error = ENXIO;
703 1.1 mrg break;
704 1.1 mrg }
705 1.32 chs
706 1.1 mrg /*
707 1.1 mrg * If a device isn't in use or enabled, we
708 1.1 mrg * can't stop swapping from it (again).
709 1.1 mrg */
710 1.1 mrg if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
711 1.127 ad mutex_exit(&uvm_swap_data_lock);
712 1.1 mrg error = EBUSY;
713 1.16 mrg break;
714 1.1 mrg }
715 1.1 mrg
716 1.1 mrg /*
717 1.32 chs * do the real work.
718 1.1 mrg */
719 1.97 christos error = swap_off(l, sdp);
720 1.1 mrg break;
721 1.1 mrg
722 1.1 mrg default:
723 1.1 mrg error = EINVAL;
724 1.1 mrg }
725 1.1 mrg
726 1.1 mrg /*
727 1.39 chs * done! release the ref gained by namei() and unlock.
728 1.1 mrg */
729 1.1 mrg vput(vp);
730 1.16 mrg out:
731 1.160 rmind rw_exit(&swap_syscall_lock);
732 1.159 para kmem_free(userpath, SWAP_PATH_MAX);
733 1.1 mrg
734 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0);
735 1.1 mrg return (error);
736 1.61 manu }
737 1.61 manu
738 1.85 junyoung /*
739 1.155 rmind * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
740 1.85 junyoung * away from sys_swapctl() in order to allow COMPAT_* swapctl()
741 1.61 manu * emulation to use it directly without going through sys_swapctl().
742 1.61 manu * The problem with using sys_swapctl() there is that it involves
743 1.61 manu * copying the swapent array to the stackgap, and this array's size
744 1.85 junyoung * is not known at build time. Hence it would not be possible to
745 1.61 manu * ensure it would fit in the stackgap in any case.
746 1.61 manu */
747 1.166 manu void
748 1.93 thorpej uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
749 1.61 manu {
750 1.61 manu struct swappri *spp;
751 1.61 manu struct swapdev *sdp;
752 1.61 manu int count = 0;
753 1.61 manu
754 1.173 maxv KASSERT(rw_lock_held(&swap_syscall_lock));
755 1.173 maxv
756 1.61 manu LIST_FOREACH(spp, &swap_priority, spi_swappri) {
757 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
758 1.144 mrg int inuse;
759 1.144 mrg
760 1.161 rmind if (sec-- <= 0)
761 1.161 rmind break;
762 1.161 rmind
763 1.161 rmind /*
764 1.61 manu * backwards compatibility for system call.
765 1.144 mrg * For NetBSD 1.3 and 5.0, we have to use
766 1.144 mrg * the 32 bit dev_t. For 5.0 and -current
767 1.144 mrg * we have to add the path.
768 1.61 manu */
769 1.144 mrg inuse = btodb((uint64_t)sdp->swd_npginuse <<
770 1.61 manu PAGE_SHIFT);
771 1.85 junyoung
772 1.144 mrg #if defined(COMPAT_13) || defined(COMPAT_50)
773 1.144 mrg if (cmd == SWAP_STATS) {
774 1.108 thorpej #endif
775 1.144 mrg sep->se_dev = sdp->swd_dev;
776 1.144 mrg sep->se_flags = sdp->swd_flags;
777 1.144 mrg sep->se_nblks = sdp->swd_nblks;
778 1.144 mrg sep->se_inuse = inuse;
779 1.144 mrg sep->se_priority = sdp->swd_priority;
780 1.161 rmind KASSERT(sdp->swd_pathlen <
781 1.161 rmind sizeof(sep->se_path));
782 1.161 rmind strcpy(sep->se_path, sdp->swd_path);
783 1.144 mrg sep++;
784 1.61 manu #if defined(COMPAT_13)
785 1.144 mrg } else if (cmd == SWAP_STATS13) {
786 1.144 mrg struct swapent13 *sep13 =
787 1.144 mrg (struct swapent13 *)sep;
788 1.144 mrg
789 1.144 mrg sep13->se13_dev = sdp->swd_dev;
790 1.144 mrg sep13->se13_flags = sdp->swd_flags;
791 1.144 mrg sep13->se13_nblks = sdp->swd_nblks;
792 1.144 mrg sep13->se13_inuse = inuse;
793 1.144 mrg sep13->se13_priority = sdp->swd_priority;
794 1.144 mrg sep = (struct swapent *)(sep13 + 1);
795 1.144 mrg #endif
796 1.144 mrg #if defined(COMPAT_50)
797 1.144 mrg } else if (cmd == SWAP_STATS50) {
798 1.144 mrg struct swapent50 *sep50 =
799 1.144 mrg (struct swapent50 *)sep;
800 1.144 mrg
801 1.144 mrg sep50->se50_dev = sdp->swd_dev;
802 1.144 mrg sep50->se50_flags = sdp->swd_flags;
803 1.144 mrg sep50->se50_nblks = sdp->swd_nblks;
804 1.144 mrg sep50->se50_inuse = inuse;
805 1.144 mrg sep50->se50_priority = sdp->swd_priority;
806 1.161 rmind KASSERT(sdp->swd_pathlen <
807 1.161 rmind sizeof(sep50->se50_path));
808 1.161 rmind strcpy(sep50->se50_path, sdp->swd_path);
809 1.144 mrg sep = (struct swapent *)(sep50 + 1);
810 1.148 wiz #endif
811 1.148 wiz #if defined(COMPAT_13) || defined(COMPAT_50)
812 1.144 mrg }
813 1.61 manu #endif
814 1.61 manu count++;
815 1.61 manu }
816 1.61 manu }
817 1.61 manu *retval = count;
818 1.1 mrg }
819 1.1 mrg
820 1.1 mrg /*
821 1.1 mrg * swap_on: attempt to enable a swapdev for swapping. note that the
822 1.1 mrg * swapdev is already on the global list, but disabled (marked
823 1.1 mrg * SWF_FAKE).
824 1.1 mrg *
825 1.1 mrg * => we avoid the start of the disk (to protect disk labels)
826 1.1 mrg * => we also avoid the miniroot, if we are swapping to root.
827 1.127 ad * => caller should leave uvm_swap_data_lock unlocked, we may lock it
828 1.1 mrg * if needed.
829 1.1 mrg */
830 1.1 mrg static int
831 1.97 christos swap_on(struct lwp *l, struct swapdev *sdp)
832 1.1 mrg {
833 1.1 mrg struct vnode *vp;
834 1.1 mrg int error, npages, nblocks, size;
835 1.1 mrg long addr;
836 1.157 dyoung vmem_addr_t result;
837 1.1 mrg struct vattr va;
838 1.1 mrg dev_t dev;
839 1.1 mrg UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
840 1.1 mrg
841 1.1 mrg /*
842 1.1 mrg * we want to enable swapping on sdp. the swd_vp contains
843 1.1 mrg * the vnode we want (locked and ref'd), and the swd_dev
844 1.1 mrg * contains the dev_t of the file, if it a block device.
845 1.1 mrg */
846 1.1 mrg
847 1.1 mrg vp = sdp->swd_vp;
848 1.1 mrg dev = sdp->swd_dev;
849 1.1 mrg
850 1.1 mrg /*
851 1.1 mrg * open the swap file (mostly useful for block device files to
852 1.1 mrg * let device driver know what is up).
853 1.1 mrg *
854 1.1 mrg * we skip the open/close for root on swap because the root
855 1.1 mrg * has already been opened when root was mounted (mountroot).
856 1.1 mrg */
857 1.1 mrg if (vp != rootvp) {
858 1.131 pooka if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
859 1.1 mrg return (error);
860 1.1 mrg }
861 1.1 mrg
862 1.1 mrg /* XXX this only works for block devices */
863 1.175 pgoyette UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
864 1.1 mrg
865 1.1 mrg /*
866 1.1 mrg * we now need to determine the size of the swap area. for
867 1.1 mrg * block specials we can call the d_psize function.
868 1.1 mrg * for normal files, we must stat [get attrs].
869 1.1 mrg *
870 1.1 mrg * we put the result in nblks.
871 1.1 mrg * for normal files, we also want the filesystem block size
872 1.1 mrg * (which we get with statfs).
873 1.1 mrg */
874 1.1 mrg switch (vp->v_type) {
875 1.1 mrg case VBLK:
876 1.158 mrg if ((nblocks = bdev_size(dev)) == -1) {
877 1.1 mrg error = ENXIO;
878 1.1 mrg goto bad;
879 1.1 mrg }
880 1.1 mrg break;
881 1.1 mrg
882 1.1 mrg case VREG:
883 1.131 pooka if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
884 1.1 mrg goto bad;
885 1.1 mrg nblocks = (int)btodb(va.va_size);
886 1.149 mlelstv sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
887 1.1 mrg /*
888 1.1 mrg * limit the max # of outstanding I/O requests we issue
889 1.1 mrg * at any one time. take it easy on NFS servers.
890 1.1 mrg */
891 1.150 pooka if (vp->v_tag == VT_NFS)
892 1.1 mrg sdp->swd_maxactive = 2; /* XXX */
893 1.1 mrg else
894 1.1 mrg sdp->swd_maxactive = 8; /* XXX */
895 1.1 mrg break;
896 1.1 mrg
897 1.1 mrg default:
898 1.1 mrg error = ENXIO;
899 1.1 mrg goto bad;
900 1.1 mrg }
901 1.1 mrg
902 1.1 mrg /*
903 1.1 mrg * save nblocks in a safe place and convert to pages.
904 1.1 mrg */
905 1.1 mrg
906 1.144 mrg sdp->swd_nblks = nblocks;
907 1.99 matt npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
908 1.1 mrg
909 1.1 mrg /*
910 1.1 mrg * for block special files, we want to make sure that leave
911 1.1 mrg * the disklabel and bootblocks alone, so we arrange to skip
912 1.32 chs * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
913 1.1 mrg * note that because of this the "size" can be less than the
914 1.1 mrg * actual number of blocks on the device.
915 1.1 mrg */
916 1.1 mrg if (vp->v_type == VBLK) {
917 1.1 mrg /* we use pages 1 to (size - 1) [inclusive] */
918 1.1 mrg size = npages - 1;
919 1.1 mrg addr = 1;
920 1.1 mrg } else {
921 1.1 mrg /* we use pages 0 to (size - 1) [inclusive] */
922 1.1 mrg size = npages;
923 1.1 mrg addr = 0;
924 1.1 mrg }
925 1.1 mrg
926 1.1 mrg /*
927 1.1 mrg * make sure we have enough blocks for a reasonable sized swap
928 1.1 mrg * area. we want at least one page.
929 1.1 mrg */
930 1.1 mrg
931 1.1 mrg if (size < 1) {
932 1.1 mrg UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
933 1.1 mrg error = EINVAL;
934 1.1 mrg goto bad;
935 1.1 mrg }
936 1.1 mrg
937 1.175 pgoyette UVMHIST_LOG(pdhist, " dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
938 1.1 mrg
939 1.1 mrg /*
940 1.1 mrg * now we need to allocate an extent to manage this swap device
941 1.1 mrg */
942 1.1 mrg
943 1.90 yamt sdp->swd_blist = blist_create(npages);
944 1.90 yamt /* mark all expect the `saved' region free. */
945 1.90 yamt blist_free(sdp->swd_blist, addr, size);
946 1.1 mrg
947 1.1 mrg /*
948 1.51 chs * if the vnode we are swapping to is the root vnode
949 1.1 mrg * (i.e. we are swapping to the miniroot) then we want
950 1.51 chs * to make sure we don't overwrite it. do a statfs to
951 1.1 mrg * find its size and skip over it.
952 1.1 mrg */
953 1.1 mrg if (vp == rootvp) {
954 1.1 mrg struct mount *mp;
955 1.86 christos struct statvfs *sp;
956 1.1 mrg int rootblocks, rootpages;
957 1.1 mrg
958 1.1 mrg mp = rootvnode->v_mount;
959 1.1 mrg sp = &mp->mnt_stat;
960 1.86 christos rootblocks = sp->f_blocks * btodb(sp->f_frsize);
961 1.64 fredette /*
962 1.64 fredette * XXX: sp->f_blocks isn't the total number of
963 1.64 fredette * blocks in the filesystem, it's the number of
964 1.64 fredette * data blocks. so, our rootblocks almost
965 1.85 junyoung * definitely underestimates the total size
966 1.64 fredette * of the filesystem - how badly depends on the
967 1.85 junyoung * details of the filesystem type. there isn't
968 1.64 fredette * an obvious way to deal with this cleanly
969 1.85 junyoung * and perfectly, so for now we just pad our
970 1.64 fredette * rootblocks estimate with an extra 5 percent.
971 1.64 fredette */
972 1.64 fredette rootblocks += (rootblocks >> 5) +
973 1.64 fredette (rootblocks >> 6) +
974 1.64 fredette (rootblocks >> 7);
975 1.20 chs rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
976 1.32 chs if (rootpages > size)
977 1.1 mrg panic("swap_on: miniroot larger than swap?");
978 1.1 mrg
979 1.90 yamt if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
980 1.1 mrg panic("swap_on: unable to preserve miniroot");
981 1.90 yamt }
982 1.1 mrg
983 1.32 chs size -= rootpages;
984 1.1 mrg printf("Preserved %d pages of miniroot ", rootpages);
985 1.32 chs printf("leaving %d pages of swap\n", size);
986 1.1 mrg }
987 1.1 mrg
988 1.39 chs /*
989 1.39 chs * add a ref to vp to reflect usage as a swap device.
990 1.39 chs */
991 1.39 chs vref(vp);
992 1.39 chs
993 1.1 mrg /*
994 1.1 mrg * now add the new swapdev to the drum and enable.
995 1.1 mrg */
996 1.157 dyoung error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
997 1.157 dyoung if (error != 0)
998 1.48 fvdl panic("swapdrum_add");
999 1.130 hannken /*
1000 1.130 hannken * If this is the first regular swap create the workqueue.
1001 1.130 hannken * => Protected by swap_syscall_lock.
1002 1.130 hannken */
1003 1.130 hannken if (vp->v_type != VBLK) {
1004 1.130 hannken if (sw_reg_count++ == 0) {
1005 1.130 hannken KASSERT(sw_reg_workqueue == NULL);
1006 1.130 hannken if (workqueue_create(&sw_reg_workqueue, "swapiod",
1007 1.130 hannken sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1008 1.145 mrg panic("%s: workqueue_create failed", __func__);
1009 1.130 hannken }
1010 1.130 hannken }
1011 1.48 fvdl
1012 1.48 fvdl sdp->swd_drumoffset = (int)result;
1013 1.48 fvdl sdp->swd_drumsize = npages;
1014 1.48 fvdl sdp->swd_npages = size;
1015 1.127 ad mutex_enter(&uvm_swap_data_lock);
1016 1.1 mrg sdp->swd_flags &= ~SWF_FAKE; /* going live */
1017 1.1 mrg sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1018 1.32 chs uvmexp.swpages += size;
1019 1.81 pk uvmexp.swpgavail += size;
1020 1.127 ad mutex_exit(&uvm_swap_data_lock);
1021 1.1 mrg return (0);
1022 1.1 mrg
1023 1.1 mrg /*
1024 1.43 chs * failure: clean up and return error.
1025 1.1 mrg */
1026 1.43 chs
1027 1.43 chs bad:
1028 1.90 yamt if (sdp->swd_blist) {
1029 1.90 yamt blist_destroy(sdp->swd_blist);
1030 1.43 chs }
1031 1.43 chs if (vp != rootvp) {
1032 1.131 pooka (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1033 1.43 chs }
1034 1.1 mrg return (error);
1035 1.1 mrg }
1036 1.1 mrg
1037 1.1 mrg /*
1038 1.1 mrg * swap_off: stop swapping on swapdev
1039 1.1 mrg *
1040 1.32 chs * => swap data should be locked, we will unlock.
1041 1.1 mrg */
1042 1.1 mrg static int
1043 1.97 christos swap_off(struct lwp *l, struct swapdev *sdp)
1044 1.1 mrg {
1045 1.91 yamt int npages = sdp->swd_npages;
1046 1.91 yamt int error = 0;
1047 1.81 pk
1048 1.1 mrg UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1049 1.175 pgoyette UVMHIST_LOG(pdhist, " dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
1050 1.1 mrg
1051 1.32 chs /* disable the swap area being removed */
1052 1.1 mrg sdp->swd_flags &= ~SWF_ENABLE;
1053 1.81 pk uvmexp.swpgavail -= npages;
1054 1.127 ad mutex_exit(&uvm_swap_data_lock);
1055 1.32 chs
1056 1.32 chs /*
1057 1.32 chs * the idea is to find all the pages that are paged out to this
1058 1.32 chs * device, and page them all in. in uvm, swap-backed pageable
1059 1.32 chs * memory can take two forms: aobjs and anons. call the
1060 1.32 chs * swapoff hook for each subsystem to bring in pages.
1061 1.32 chs */
1062 1.1 mrg
1063 1.32 chs if (uao_swap_off(sdp->swd_drumoffset,
1064 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize) ||
1065 1.91 yamt amap_swap_off(sdp->swd_drumoffset,
1066 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize)) {
1067 1.91 yamt error = ENOMEM;
1068 1.91 yamt } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1069 1.91 yamt error = EBUSY;
1070 1.91 yamt }
1071 1.51 chs
1072 1.91 yamt if (error) {
1073 1.127 ad mutex_enter(&uvm_swap_data_lock);
1074 1.32 chs sdp->swd_flags |= SWF_ENABLE;
1075 1.81 pk uvmexp.swpgavail += npages;
1076 1.127 ad mutex_exit(&uvm_swap_data_lock);
1077 1.91 yamt
1078 1.91 yamt return error;
1079 1.32 chs }
1080 1.1 mrg
1081 1.1 mrg /*
1082 1.130 hannken * If this is the last regular swap destroy the workqueue.
1083 1.130 hannken * => Protected by swap_syscall_lock.
1084 1.130 hannken */
1085 1.130 hannken if (sdp->swd_vp->v_type != VBLK) {
1086 1.130 hannken KASSERT(sw_reg_count > 0);
1087 1.130 hannken KASSERT(sw_reg_workqueue != NULL);
1088 1.130 hannken if (--sw_reg_count == 0) {
1089 1.130 hannken workqueue_destroy(sw_reg_workqueue);
1090 1.130 hannken sw_reg_workqueue = NULL;
1091 1.130 hannken }
1092 1.130 hannken }
1093 1.130 hannken
1094 1.130 hannken /*
1095 1.58 enami * done with the vnode.
1096 1.39 chs * drop our ref on the vnode before calling VOP_CLOSE()
1097 1.39 chs * so that spec_close() can tell if this is the last close.
1098 1.1 mrg */
1099 1.39 chs vrele(sdp->swd_vp);
1100 1.32 chs if (sdp->swd_vp != rootvp) {
1101 1.131 pooka (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1102 1.32 chs }
1103 1.32 chs
1104 1.127 ad mutex_enter(&uvm_swap_data_lock);
1105 1.81 pk uvmexp.swpages -= npages;
1106 1.82 pk uvmexp.swpginuse -= sdp->swd_npgbad;
1107 1.1 mrg
1108 1.120 matt if (swaplist_find(sdp->swd_vp, true) == NULL)
1109 1.145 mrg panic("%s: swapdev not in list", __func__);
1110 1.32 chs swaplist_trim();
1111 1.127 ad mutex_exit(&uvm_swap_data_lock);
1112 1.1 mrg
1113 1.32 chs /*
1114 1.32 chs * free all resources!
1115 1.32 chs */
1116 1.110 yamt vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1117 1.90 yamt blist_destroy(sdp->swd_blist);
1118 1.96 yamt bufq_free(sdp->swd_tab);
1119 1.159 para kmem_free(sdp, sizeof(*sdp));
1120 1.1 mrg return (0);
1121 1.1 mrg }
1122 1.1 mrg
1123 1.164 christos void
1124 1.164 christos uvm_swap_shutdown(struct lwp *l)
1125 1.164 christos {
1126 1.164 christos struct swapdev *sdp;
1127 1.164 christos struct swappri *spp;
1128 1.164 christos struct vnode *vp;
1129 1.164 christos int error;
1130 1.164 christos
1131 1.164 christos printf("turning of swap...");
1132 1.164 christos rw_enter(&swap_syscall_lock, RW_WRITER);
1133 1.164 christos mutex_enter(&uvm_swap_data_lock);
1134 1.164 christos again:
1135 1.164 christos LIST_FOREACH(spp, &swap_priority, spi_swappri)
1136 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1137 1.164 christos if (sdp->swd_flags & SWF_FAKE)
1138 1.164 christos continue;
1139 1.164 christos if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1140 1.164 christos continue;
1141 1.164 christos #ifdef DEBUG
1142 1.164 christos printf("\nturning off swap on %s...",
1143 1.164 christos sdp->swd_path);
1144 1.164 christos #endif
1145 1.164 christos if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1146 1.164 christos error = EBUSY;
1147 1.164 christos vp = NULL;
1148 1.164 christos } else
1149 1.164 christos error = 0;
1150 1.164 christos if (!error) {
1151 1.164 christos error = swap_off(l, sdp);
1152 1.164 christos mutex_enter(&uvm_swap_data_lock);
1153 1.164 christos }
1154 1.164 christos if (error) {
1155 1.164 christos printf("stopping swap on %s failed "
1156 1.164 christos "with error %d\n", sdp->swd_path, error);
1157 1.164 christos TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1158 1.164 christos swd_next);
1159 1.164 christos uvmexp.nswapdev--;
1160 1.164 christos swaplist_trim();
1161 1.164 christos if (vp)
1162 1.164 christos vput(vp);
1163 1.164 christos }
1164 1.164 christos goto again;
1165 1.164 christos }
1166 1.164 christos printf(" done\n");
1167 1.164 christos mutex_exit(&uvm_swap_data_lock);
1168 1.164 christos rw_exit(&swap_syscall_lock);
1169 1.164 christos }
1170 1.164 christos
1171 1.164 christos
1172 1.1 mrg /*
1173 1.1 mrg * /dev/drum interface and i/o functions
1174 1.1 mrg */
1175 1.1 mrg
1176 1.1 mrg /*
1177 1.1 mrg * swstrategy: perform I/O on the drum
1178 1.1 mrg *
1179 1.1 mrg * => we must map the i/o request from the drum to the correct swapdev.
1180 1.1 mrg */
1181 1.94 thorpej static void
1182 1.93 thorpej swstrategy(struct buf *bp)
1183 1.1 mrg {
1184 1.1 mrg struct swapdev *sdp;
1185 1.1 mrg struct vnode *vp;
1186 1.134 ad int pageno, bn;
1187 1.1 mrg UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1188 1.1 mrg
1189 1.1 mrg /*
1190 1.1 mrg * convert block number to swapdev. note that swapdev can't
1191 1.1 mrg * be yanked out from under us because we are holding resources
1192 1.1 mrg * in it (i.e. the blocks we are doing I/O on).
1193 1.1 mrg */
1194 1.41 chs pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1195 1.127 ad mutex_enter(&uvm_swap_data_lock);
1196 1.1 mrg sdp = swapdrum_getsdp(pageno);
1197 1.127 ad mutex_exit(&uvm_swap_data_lock);
1198 1.1 mrg if (sdp == NULL) {
1199 1.1 mrg bp->b_error = EINVAL;
1200 1.163 riastrad bp->b_resid = bp->b_bcount;
1201 1.1 mrg biodone(bp);
1202 1.1 mrg UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1203 1.1 mrg return;
1204 1.1 mrg }
1205 1.1 mrg
1206 1.1 mrg /*
1207 1.1 mrg * convert drum page number to block number on this swapdev.
1208 1.1 mrg */
1209 1.1 mrg
1210 1.32 chs pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1211 1.99 matt bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1212 1.1 mrg
1213 1.175 pgoyette UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
1214 1.175 pgoyette ((bp->b_flags & B_READ) == 0) ? 1 : 0,
1215 1.1 mrg sdp->swd_drumoffset, bn, bp->b_bcount);
1216 1.1 mrg
1217 1.1 mrg /*
1218 1.1 mrg * for block devices we finish up here.
1219 1.32 chs * for regular files we have to do more work which we delegate
1220 1.1 mrg * to sw_reg_strategy().
1221 1.1 mrg */
1222 1.1 mrg
1223 1.134 ad vp = sdp->swd_vp; /* swapdev vnode pointer */
1224 1.134 ad switch (vp->v_type) {
1225 1.1 mrg default:
1226 1.145 mrg panic("%s: vnode type 0x%x", __func__, vp->v_type);
1227 1.32 chs
1228 1.1 mrg case VBLK:
1229 1.1 mrg
1230 1.1 mrg /*
1231 1.1 mrg * must convert "bp" from an I/O on /dev/drum to an I/O
1232 1.1 mrg * on the swapdev (sdp).
1233 1.1 mrg */
1234 1.1 mrg bp->b_blkno = bn; /* swapdev block number */
1235 1.1 mrg bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1236 1.1 mrg
1237 1.1 mrg /*
1238 1.1 mrg * if we are doing a write, we have to redirect the i/o on
1239 1.1 mrg * drum's v_numoutput counter to the swapdevs.
1240 1.1 mrg */
1241 1.1 mrg if ((bp->b_flags & B_READ) == 0) {
1242 1.134 ad mutex_enter(bp->b_objlock);
1243 1.1 mrg vwakeup(bp); /* kills one 'v_numoutput' on drum */
1244 1.134 ad mutex_exit(bp->b_objlock);
1245 1.156 rmind mutex_enter(vp->v_interlock);
1246 1.134 ad vp->v_numoutput++; /* put it on swapdev */
1247 1.156 rmind mutex_exit(vp->v_interlock);
1248 1.1 mrg }
1249 1.1 mrg
1250 1.41 chs /*
1251 1.1 mrg * finally plug in swapdev vnode and start I/O
1252 1.1 mrg */
1253 1.1 mrg bp->b_vp = vp;
1254 1.156 rmind bp->b_objlock = vp->v_interlock;
1255 1.84 hannken VOP_STRATEGY(vp, bp);
1256 1.1 mrg return;
1257 1.32 chs
1258 1.1 mrg case VREG:
1259 1.1 mrg /*
1260 1.32 chs * delegate to sw_reg_strategy function.
1261 1.1 mrg */
1262 1.1 mrg sw_reg_strategy(sdp, bp, bn);
1263 1.1 mrg return;
1264 1.1 mrg }
1265 1.1 mrg /* NOTREACHED */
1266 1.1 mrg }
1267 1.1 mrg
1268 1.1 mrg /*
1269 1.94 thorpej * swread: the read function for the drum (just a call to physio)
1270 1.94 thorpej */
1271 1.94 thorpej /*ARGSUSED*/
1272 1.94 thorpej static int
1273 1.112 yamt swread(dev_t dev, struct uio *uio, int ioflag)
1274 1.94 thorpej {
1275 1.94 thorpej UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1276 1.94 thorpej
1277 1.175 pgoyette UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1278 1.94 thorpej return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1279 1.94 thorpej }
1280 1.94 thorpej
1281 1.94 thorpej /*
1282 1.94 thorpej * swwrite: the write function for the drum (just a call to physio)
1283 1.94 thorpej */
1284 1.94 thorpej /*ARGSUSED*/
1285 1.94 thorpej static int
1286 1.112 yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
1287 1.94 thorpej {
1288 1.94 thorpej UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1289 1.94 thorpej
1290 1.175 pgoyette UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1291 1.94 thorpej return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1292 1.94 thorpej }
1293 1.94 thorpej
1294 1.94 thorpej const struct bdevsw swap_bdevsw = {
1295 1.168 dholland .d_open = nullopen,
1296 1.168 dholland .d_close = nullclose,
1297 1.168 dholland .d_strategy = swstrategy,
1298 1.168 dholland .d_ioctl = noioctl,
1299 1.168 dholland .d_dump = nodump,
1300 1.168 dholland .d_psize = nosize,
1301 1.171 dholland .d_discard = nodiscard,
1302 1.168 dholland .d_flag = D_OTHER
1303 1.94 thorpej };
1304 1.94 thorpej
1305 1.94 thorpej const struct cdevsw swap_cdevsw = {
1306 1.168 dholland .d_open = nullopen,
1307 1.168 dholland .d_close = nullclose,
1308 1.168 dholland .d_read = swread,
1309 1.168 dholland .d_write = swwrite,
1310 1.168 dholland .d_ioctl = noioctl,
1311 1.168 dholland .d_stop = nostop,
1312 1.168 dholland .d_tty = notty,
1313 1.168 dholland .d_poll = nopoll,
1314 1.168 dholland .d_mmap = nommap,
1315 1.168 dholland .d_kqfilter = nokqfilter,
1316 1.172 dholland .d_discard = nodiscard,
1317 1.168 dholland .d_flag = D_OTHER,
1318 1.94 thorpej };
1319 1.94 thorpej
1320 1.94 thorpej /*
1321 1.1 mrg * sw_reg_strategy: handle swap i/o to regular files
1322 1.1 mrg */
1323 1.1 mrg static void
1324 1.93 thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1325 1.1 mrg {
1326 1.1 mrg struct vnode *vp;
1327 1.1 mrg struct vndxfer *vnx;
1328 1.44 enami daddr_t nbn;
1329 1.122 christos char *addr;
1330 1.44 enami off_t byteoff;
1331 1.9 mrg int s, off, nra, error, sz, resid;
1332 1.1 mrg UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1333 1.1 mrg
1334 1.1 mrg /*
1335 1.1 mrg * allocate a vndxfer head for this transfer and point it to
1336 1.1 mrg * our buffer.
1337 1.1 mrg */
1338 1.134 ad vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1339 1.1 mrg vnx->vx_flags = VX_BUSY;
1340 1.1 mrg vnx->vx_error = 0;
1341 1.1 mrg vnx->vx_pending = 0;
1342 1.1 mrg vnx->vx_bp = bp;
1343 1.1 mrg vnx->vx_sdp = sdp;
1344 1.1 mrg
1345 1.1 mrg /*
1346 1.1 mrg * setup for main loop where we read filesystem blocks into
1347 1.1 mrg * our buffer.
1348 1.1 mrg */
1349 1.1 mrg error = 0;
1350 1.1 mrg bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1351 1.1 mrg addr = bp->b_data; /* current position in buffer */
1352 1.99 matt byteoff = dbtob((uint64_t)bn);
1353 1.1 mrg
1354 1.1 mrg for (resid = bp->b_resid; resid; resid -= sz) {
1355 1.1 mrg struct vndbuf *nbp;
1356 1.1 mrg
1357 1.1 mrg /*
1358 1.1 mrg * translate byteoffset into block number. return values:
1359 1.1 mrg * vp = vnode of underlying device
1360 1.1 mrg * nbn = new block number (on underlying vnode dev)
1361 1.1 mrg * nra = num blocks we can read-ahead (excludes requested
1362 1.1 mrg * block)
1363 1.1 mrg */
1364 1.1 mrg nra = 0;
1365 1.1 mrg error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1366 1.1 mrg &vp, &nbn, &nra);
1367 1.1 mrg
1368 1.32 chs if (error == 0 && nbn == (daddr_t)-1) {
1369 1.51 chs /*
1370 1.23 marc * this used to just set error, but that doesn't
1371 1.23 marc * do the right thing. Instead, it causes random
1372 1.23 marc * memory errors. The panic() should remain until
1373 1.23 marc * this condition doesn't destabilize the system.
1374 1.23 marc */
1375 1.23 marc #if 1
1376 1.145 mrg panic("%s: swap to sparse file", __func__);
1377 1.23 marc #else
1378 1.1 mrg error = EIO; /* failure */
1379 1.23 marc #endif
1380 1.23 marc }
1381 1.1 mrg
1382 1.1 mrg /*
1383 1.1 mrg * punt if there was an error or a hole in the file.
1384 1.1 mrg * we must wait for any i/o ops we have already started
1385 1.1 mrg * to finish before returning.
1386 1.1 mrg *
1387 1.1 mrg * XXX we could deal with holes here but it would be
1388 1.1 mrg * a hassle (in the write case).
1389 1.1 mrg */
1390 1.1 mrg if (error) {
1391 1.1 mrg s = splbio();
1392 1.1 mrg vnx->vx_error = error; /* pass error up */
1393 1.1 mrg goto out;
1394 1.1 mrg }
1395 1.1 mrg
1396 1.1 mrg /*
1397 1.1 mrg * compute the size ("sz") of this transfer (in bytes).
1398 1.1 mrg */
1399 1.41 chs off = byteoff % sdp->swd_bsize;
1400 1.41 chs sz = (1 + nra) * sdp->swd_bsize - off;
1401 1.41 chs if (sz > resid)
1402 1.1 mrg sz = resid;
1403 1.1 mrg
1404 1.41 chs UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1405 1.175 pgoyette "vp %#jx/%#jx offset 0x%jx/0x%jx",
1406 1.175 pgoyette (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1407 1.1 mrg
1408 1.1 mrg /*
1409 1.1 mrg * now get a buf structure. note that the vb_buf is
1410 1.1 mrg * at the front of the nbp structure so that you can
1411 1.1 mrg * cast pointers between the two structure easily.
1412 1.1 mrg */
1413 1.134 ad nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1414 1.134 ad buf_init(&nbp->vb_buf);
1415 1.134 ad nbp->vb_buf.b_flags = bp->b_flags;
1416 1.134 ad nbp->vb_buf.b_cflags = bp->b_cflags;
1417 1.134 ad nbp->vb_buf.b_oflags = bp->b_oflags;
1418 1.1 mrg nbp->vb_buf.b_bcount = sz;
1419 1.12 pk nbp->vb_buf.b_bufsize = sz;
1420 1.1 mrg nbp->vb_buf.b_error = 0;
1421 1.1 mrg nbp->vb_buf.b_data = addr;
1422 1.41 chs nbp->vb_buf.b_lblkno = 0;
1423 1.1 mrg nbp->vb_buf.b_blkno = nbn + btodb(off);
1424 1.34 thorpej nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1425 1.130 hannken nbp->vb_buf.b_iodone = sw_reg_biodone;
1426 1.53 chs nbp->vb_buf.b_vp = vp;
1427 1.156 rmind nbp->vb_buf.b_objlock = vp->v_interlock;
1428 1.53 chs if (vp->v_type == VBLK) {
1429 1.53 chs nbp->vb_buf.b_dev = vp->v_rdev;
1430 1.53 chs }
1431 1.1 mrg
1432 1.1 mrg nbp->vb_xfer = vnx; /* patch it back in to vnx */
1433 1.1 mrg
1434 1.1 mrg /*
1435 1.1 mrg * Just sort by block number
1436 1.1 mrg */
1437 1.1 mrg s = splbio();
1438 1.1 mrg if (vnx->vx_error != 0) {
1439 1.134 ad buf_destroy(&nbp->vb_buf);
1440 1.134 ad pool_put(&vndbuf_pool, nbp);
1441 1.1 mrg goto out;
1442 1.1 mrg }
1443 1.1 mrg vnx->vx_pending++;
1444 1.1 mrg
1445 1.1 mrg /* sort it in and start I/O if we are not over our limit */
1446 1.134 ad /* XXXAD locking */
1447 1.143 yamt bufq_put(sdp->swd_tab, &nbp->vb_buf);
1448 1.1 mrg sw_reg_start(sdp);
1449 1.1 mrg splx(s);
1450 1.1 mrg
1451 1.1 mrg /*
1452 1.1 mrg * advance to the next I/O
1453 1.1 mrg */
1454 1.9 mrg byteoff += sz;
1455 1.1 mrg addr += sz;
1456 1.1 mrg }
1457 1.1 mrg
1458 1.1 mrg s = splbio();
1459 1.1 mrg
1460 1.1 mrg out: /* Arrive here at splbio */
1461 1.1 mrg vnx->vx_flags &= ~VX_BUSY;
1462 1.1 mrg if (vnx->vx_pending == 0) {
1463 1.134 ad error = vnx->vx_error;
1464 1.134 ad pool_put(&vndxfer_pool, vnx);
1465 1.134 ad bp->b_error = error;
1466 1.1 mrg biodone(bp);
1467 1.1 mrg }
1468 1.1 mrg splx(s);
1469 1.1 mrg }
1470 1.1 mrg
1471 1.1 mrg /*
1472 1.1 mrg * sw_reg_start: start an I/O request on the requested swapdev
1473 1.1 mrg *
1474 1.65 hannken * => reqs are sorted by b_rawblkno (above)
1475 1.1 mrg */
1476 1.1 mrg static void
1477 1.93 thorpej sw_reg_start(struct swapdev *sdp)
1478 1.1 mrg {
1479 1.1 mrg struct buf *bp;
1480 1.134 ad struct vnode *vp;
1481 1.1 mrg UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1482 1.1 mrg
1483 1.8 mrg /* recursion control */
1484 1.1 mrg if ((sdp->swd_flags & SWF_BUSY) != 0)
1485 1.1 mrg return;
1486 1.1 mrg
1487 1.1 mrg sdp->swd_flags |= SWF_BUSY;
1488 1.1 mrg
1489 1.33 thorpej while (sdp->swd_active < sdp->swd_maxactive) {
1490 1.143 yamt bp = bufq_get(sdp->swd_tab);
1491 1.1 mrg if (bp == NULL)
1492 1.1 mrg break;
1493 1.33 thorpej sdp->swd_active++;
1494 1.1 mrg
1495 1.1 mrg UVMHIST_LOG(pdhist,
1496 1.175 pgoyette "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %jx",
1497 1.175 pgoyette (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1498 1.175 pgoyette bp->b_bcount);
1499 1.134 ad vp = bp->b_vp;
1500 1.156 rmind KASSERT(bp->b_objlock == vp->v_interlock);
1501 1.134 ad if ((bp->b_flags & B_READ) == 0) {
1502 1.156 rmind mutex_enter(vp->v_interlock);
1503 1.134 ad vp->v_numoutput++;
1504 1.156 rmind mutex_exit(vp->v_interlock);
1505 1.134 ad }
1506 1.134 ad VOP_STRATEGY(vp, bp);
1507 1.1 mrg }
1508 1.1 mrg sdp->swd_flags &= ~SWF_BUSY;
1509 1.1 mrg }
1510 1.1 mrg
1511 1.1 mrg /*
1512 1.130 hannken * sw_reg_biodone: one of our i/o's has completed
1513 1.130 hannken */
1514 1.130 hannken static void
1515 1.130 hannken sw_reg_biodone(struct buf *bp)
1516 1.130 hannken {
1517 1.130 hannken workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1518 1.130 hannken }
1519 1.130 hannken
1520 1.130 hannken /*
1521 1.1 mrg * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1522 1.1 mrg *
1523 1.1 mrg * => note that we can recover the vndbuf struct by casting the buf ptr
1524 1.1 mrg */
1525 1.1 mrg static void
1526 1.130 hannken sw_reg_iodone(struct work *wk, void *dummy)
1527 1.1 mrg {
1528 1.130 hannken struct vndbuf *vbp = (void *)wk;
1529 1.1 mrg struct vndxfer *vnx = vbp->vb_xfer;
1530 1.1 mrg struct buf *pbp = vnx->vx_bp; /* parent buffer */
1531 1.1 mrg struct swapdev *sdp = vnx->vx_sdp;
1532 1.72 chs int s, resid, error;
1533 1.130 hannken KASSERT(&vbp->vb_buf.b_work == wk);
1534 1.1 mrg UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1535 1.1 mrg
1536 1.175 pgoyette UVMHIST_LOG(pdhist, " vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
1537 1.175 pgoyette (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1538 1.175 pgoyette (uintptr_t)vbp->vb_buf.b_data);
1539 1.175 pgoyette UVMHIST_LOG(pdhist, " cnt=%jx resid=%jx",
1540 1.1 mrg vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1541 1.1 mrg
1542 1.1 mrg /*
1543 1.1 mrg * protect vbp at splbio and update.
1544 1.1 mrg */
1545 1.1 mrg
1546 1.1 mrg s = splbio();
1547 1.1 mrg resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1548 1.1 mrg pbp->b_resid -= resid;
1549 1.1 mrg vnx->vx_pending--;
1550 1.1 mrg
1551 1.129 ad if (vbp->vb_buf.b_error != 0) {
1552 1.1 mrg /* pass error upward */
1553 1.134 ad error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1554 1.175 pgoyette UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0);
1555 1.72 chs vnx->vx_error = error;
1556 1.35 chs }
1557 1.35 chs
1558 1.35 chs /*
1559 1.1 mrg * kill vbp structure
1560 1.1 mrg */
1561 1.134 ad buf_destroy(&vbp->vb_buf);
1562 1.134 ad pool_put(&vndbuf_pool, vbp);
1563 1.1 mrg
1564 1.1 mrg /*
1565 1.1 mrg * wrap up this transaction if it has run to completion or, in
1566 1.1 mrg * case of an error, when all auxiliary buffers have returned.
1567 1.1 mrg */
1568 1.1 mrg if (vnx->vx_error != 0) {
1569 1.1 mrg /* pass error upward */
1570 1.134 ad error = vnx->vx_error;
1571 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1572 1.134 ad pbp->b_error = error;
1573 1.1 mrg biodone(pbp);
1574 1.134 ad pool_put(&vndxfer_pool, vnx);
1575 1.1 mrg }
1576 1.11 pk } else if (pbp->b_resid == 0) {
1577 1.46 chs KASSERT(vnx->vx_pending == 0);
1578 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0) {
1579 1.175 pgoyette UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !",
1580 1.175 pgoyette (uintptr_t)pbp, vnx->vx_error, 0, 0);
1581 1.1 mrg biodone(pbp);
1582 1.134 ad pool_put(&vndxfer_pool, vnx);
1583 1.1 mrg }
1584 1.1 mrg }
1585 1.1 mrg
1586 1.1 mrg /*
1587 1.1 mrg * done! start next swapdev I/O if one is pending
1588 1.1 mrg */
1589 1.33 thorpej sdp->swd_active--;
1590 1.1 mrg sw_reg_start(sdp);
1591 1.1 mrg splx(s);
1592 1.1 mrg }
1593 1.1 mrg
1594 1.1 mrg
1595 1.1 mrg /*
1596 1.1 mrg * uvm_swap_alloc: allocate space on swap
1597 1.1 mrg *
1598 1.1 mrg * => allocation is done "round robin" down the priority list, as we
1599 1.1 mrg * allocate in a priority we "rotate" the circle queue.
1600 1.1 mrg * => space can be freed with uvm_swap_free
1601 1.1 mrg * => we return the page slot number in /dev/drum (0 == invalid slot)
1602 1.127 ad * => we lock uvm_swap_data_lock
1603 1.1 mrg * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1604 1.1 mrg */
1605 1.1 mrg int
1606 1.119 thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1607 1.1 mrg {
1608 1.1 mrg struct swapdev *sdp;
1609 1.1 mrg struct swappri *spp;
1610 1.1 mrg UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1611 1.1 mrg
1612 1.1 mrg /*
1613 1.1 mrg * no swap devices configured yet? definite failure.
1614 1.1 mrg */
1615 1.1 mrg if (uvmexp.nswapdev < 1)
1616 1.1 mrg return 0;
1617 1.51 chs
1618 1.1 mrg /*
1619 1.162 jakllsch * XXXJAK: BEGIN HACK
1620 1.162 jakllsch *
1621 1.162 jakllsch * blist_alloc() in subr_blist.c will panic if we try to allocate
1622 1.162 jakllsch * too many slots.
1623 1.162 jakllsch */
1624 1.162 jakllsch if (*nslots > BLIST_MAX_ALLOC) {
1625 1.162 jakllsch if (__predict_false(lessok == false))
1626 1.162 jakllsch return 0;
1627 1.162 jakllsch *nslots = BLIST_MAX_ALLOC;
1628 1.162 jakllsch }
1629 1.162 jakllsch /* XXXJAK: END HACK */
1630 1.162 jakllsch
1631 1.162 jakllsch /*
1632 1.1 mrg * lock data lock, convert slots into blocks, and enter loop
1633 1.1 mrg */
1634 1.127 ad mutex_enter(&uvm_swap_data_lock);
1635 1.1 mrg
1636 1.1 mrg ReTry: /* XXXMRG */
1637 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1638 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1639 1.90 yamt uint64_t result;
1640 1.90 yamt
1641 1.1 mrg /* if it's not enabled, then we can't swap from it */
1642 1.1 mrg if ((sdp->swd_flags & SWF_ENABLE) == 0)
1643 1.1 mrg continue;
1644 1.1 mrg if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1645 1.1 mrg continue;
1646 1.90 yamt result = blist_alloc(sdp->swd_blist, *nslots);
1647 1.90 yamt if (result == BLIST_NONE) {
1648 1.1 mrg continue;
1649 1.1 mrg }
1650 1.90 yamt KASSERT(result < sdp->swd_drumsize);
1651 1.1 mrg
1652 1.1 mrg /*
1653 1.165 christos * successful allocation! now rotate the tailq.
1654 1.1 mrg */
1655 1.164 christos TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1656 1.164 christos TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1657 1.1 mrg sdp->swd_npginuse += *nslots;
1658 1.1 mrg uvmexp.swpginuse += *nslots;
1659 1.127 ad mutex_exit(&uvm_swap_data_lock);
1660 1.1 mrg /* done! return drum slot number */
1661 1.1 mrg UVMHIST_LOG(pdhist,
1662 1.175 pgoyette "success! returning %jd slots starting at %jd",
1663 1.1 mrg *nslots, result + sdp->swd_drumoffset, 0, 0);
1664 1.55 chs return (result + sdp->swd_drumoffset);
1665 1.1 mrg }
1666 1.1 mrg }
1667 1.1 mrg
1668 1.1 mrg /* XXXMRG: BEGIN HACK */
1669 1.1 mrg if (*nslots > 1 && lessok) {
1670 1.1 mrg *nslots = 1;
1671 1.90 yamt /* XXXMRG: ugh! blist should support this for us */
1672 1.90 yamt goto ReTry;
1673 1.1 mrg }
1674 1.1 mrg /* XXXMRG: END HACK */
1675 1.1 mrg
1676 1.127 ad mutex_exit(&uvm_swap_data_lock);
1677 1.55 chs return 0;
1678 1.1 mrg }
1679 1.1 mrg
1680 1.141 ad /*
1681 1.141 ad * uvm_swapisfull: return true if most of available swap is allocated
1682 1.141 ad * and in use. we don't count some small portion as it may be inaccessible
1683 1.141 ad * to us at any given moment, for example if there is lock contention or if
1684 1.141 ad * pages are busy.
1685 1.141 ad */
1686 1.119 thorpej bool
1687 1.81 pk uvm_swapisfull(void)
1688 1.81 pk {
1689 1.141 ad int swpgonly;
1690 1.119 thorpej bool rv;
1691 1.81 pk
1692 1.127 ad mutex_enter(&uvm_swap_data_lock);
1693 1.81 pk KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1694 1.141 ad swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1695 1.141 ad uvm_swapisfull_factor);
1696 1.141 ad rv = (swpgonly >= uvmexp.swpgavail);
1697 1.127 ad mutex_exit(&uvm_swap_data_lock);
1698 1.81 pk
1699 1.81 pk return (rv);
1700 1.81 pk }
1701 1.81 pk
1702 1.1 mrg /*
1703 1.32 chs * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1704 1.32 chs *
1705 1.127 ad * => we lock uvm_swap_data_lock
1706 1.32 chs */
1707 1.32 chs void
1708 1.93 thorpej uvm_swap_markbad(int startslot, int nslots)
1709 1.32 chs {
1710 1.32 chs struct swapdev *sdp;
1711 1.32 chs UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1712 1.32 chs
1713 1.127 ad mutex_enter(&uvm_swap_data_lock);
1714 1.32 chs sdp = swapdrum_getsdp(startslot);
1715 1.82 pk KASSERT(sdp != NULL);
1716 1.32 chs
1717 1.32 chs /*
1718 1.32 chs * we just keep track of how many pages have been marked bad
1719 1.32 chs * in this device, to make everything add up in swap_off().
1720 1.32 chs * we assume here that the range of slots will all be within
1721 1.32 chs * one swap device.
1722 1.32 chs */
1723 1.41 chs
1724 1.82 pk KASSERT(uvmexp.swpgonly >= nslots);
1725 1.82 pk uvmexp.swpgonly -= nslots;
1726 1.32 chs sdp->swd_npgbad += nslots;
1727 1.175 pgoyette UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1728 1.127 ad mutex_exit(&uvm_swap_data_lock);
1729 1.32 chs }
1730 1.32 chs
1731 1.32 chs /*
1732 1.1 mrg * uvm_swap_free: free swap slots
1733 1.1 mrg *
1734 1.1 mrg * => this can be all or part of an allocation made by uvm_swap_alloc
1735 1.127 ad * => we lock uvm_swap_data_lock
1736 1.1 mrg */
1737 1.1 mrg void
1738 1.93 thorpej uvm_swap_free(int startslot, int nslots)
1739 1.1 mrg {
1740 1.1 mrg struct swapdev *sdp;
1741 1.1 mrg UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1742 1.1 mrg
1743 1.175 pgoyette UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
1744 1.1 mrg startslot, 0, 0);
1745 1.32 chs
1746 1.32 chs /*
1747 1.32 chs * ignore attempts to free the "bad" slot.
1748 1.32 chs */
1749 1.46 chs
1750 1.32 chs if (startslot == SWSLOT_BAD) {
1751 1.32 chs return;
1752 1.32 chs }
1753 1.32 chs
1754 1.1 mrg /*
1755 1.51 chs * convert drum slot offset back to sdp, free the blocks
1756 1.51 chs * in the extent, and return. must hold pri lock to do
1757 1.1 mrg * lookup and access the extent.
1758 1.1 mrg */
1759 1.46 chs
1760 1.127 ad mutex_enter(&uvm_swap_data_lock);
1761 1.1 mrg sdp = swapdrum_getsdp(startslot);
1762 1.46 chs KASSERT(uvmexp.nswapdev >= 1);
1763 1.46 chs KASSERT(sdp != NULL);
1764 1.46 chs KASSERT(sdp->swd_npginuse >= nslots);
1765 1.90 yamt blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1766 1.1 mrg sdp->swd_npginuse -= nslots;
1767 1.1 mrg uvmexp.swpginuse -= nslots;
1768 1.127 ad mutex_exit(&uvm_swap_data_lock);
1769 1.1 mrg }
1770 1.1 mrg
1771 1.1 mrg /*
1772 1.1 mrg * uvm_swap_put: put any number of pages into a contig place on swap
1773 1.1 mrg *
1774 1.1 mrg * => can be sync or async
1775 1.1 mrg */
1776 1.54 chs
1777 1.1 mrg int
1778 1.93 thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1779 1.1 mrg {
1780 1.56 chs int error;
1781 1.1 mrg
1782 1.56 chs error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1783 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1784 1.56 chs return error;
1785 1.1 mrg }
1786 1.1 mrg
1787 1.1 mrg /*
1788 1.1 mrg * uvm_swap_get: get a single page from swap
1789 1.1 mrg *
1790 1.1 mrg * => usually a sync op (from fault)
1791 1.1 mrg */
1792 1.54 chs
1793 1.1 mrg int
1794 1.93 thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
1795 1.1 mrg {
1796 1.56 chs int error;
1797 1.1 mrg
1798 1.1 mrg uvmexp.nswget++;
1799 1.46 chs KASSERT(flags & PGO_SYNCIO);
1800 1.32 chs if (swslot == SWSLOT_BAD) {
1801 1.47 chs return EIO;
1802 1.32 chs }
1803 1.81 pk
1804 1.56 chs error = uvm_swap_io(&page, swslot, 1, B_READ |
1805 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1806 1.56 chs if (error == 0) {
1807 1.47 chs
1808 1.26 chs /*
1809 1.54 chs * this page is no longer only in swap.
1810 1.26 chs */
1811 1.47 chs
1812 1.127 ad mutex_enter(&uvm_swap_data_lock);
1813 1.56 chs KASSERT(uvmexp.swpgonly > 0);
1814 1.54 chs uvmexp.swpgonly--;
1815 1.127 ad mutex_exit(&uvm_swap_data_lock);
1816 1.26 chs }
1817 1.56 chs return error;
1818 1.1 mrg }
1819 1.1 mrg
1820 1.1 mrg /*
1821 1.1 mrg * uvm_swap_io: do an i/o operation to swap
1822 1.1 mrg */
1823 1.1 mrg
1824 1.1 mrg static int
1825 1.93 thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1826 1.1 mrg {
1827 1.1 mrg daddr_t startblk;
1828 1.1 mrg struct buf *bp;
1829 1.15 eeh vaddr_t kva;
1830 1.134 ad int error, mapinflags;
1831 1.119 thorpej bool write, async;
1832 1.1 mrg UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1833 1.1 mrg
1834 1.175 pgoyette UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
1835 1.1 mrg startslot, npages, flags, 0);
1836 1.32 chs
1837 1.41 chs write = (flags & B_READ) == 0;
1838 1.41 chs async = (flags & B_ASYNC) != 0;
1839 1.41 chs
1840 1.1 mrg /*
1841 1.137 yamt * allocate a buf for the i/o.
1842 1.137 yamt */
1843 1.137 yamt
1844 1.137 yamt KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1845 1.137 yamt bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1846 1.137 yamt if (bp == NULL) {
1847 1.137 yamt uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1848 1.137 yamt return ENOMEM;
1849 1.137 yamt }
1850 1.137 yamt
1851 1.137 yamt /*
1852 1.1 mrg * convert starting drum slot to block number
1853 1.1 mrg */
1854 1.54 chs
1855 1.99 matt startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1856 1.1 mrg
1857 1.1 mrg /*
1858 1.54 chs * first, map the pages into the kernel.
1859 1.41 chs */
1860 1.41 chs
1861 1.54 chs mapinflags = !write ?
1862 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1863 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1864 1.41 chs kva = uvm_pagermapin(pps, npages, mapinflags);
1865 1.1 mrg
1866 1.51 chs /*
1867 1.1 mrg * fill in the bp/sbp. we currently route our i/o through
1868 1.1 mrg * /dev/drum's vnode [swapdev_vp].
1869 1.1 mrg */
1870 1.54 chs
1871 1.134 ad bp->b_cflags = BC_BUSY | BC_NOCACHE;
1872 1.134 ad bp->b_flags = (flags & (B_READ|B_ASYNC));
1873 1.1 mrg bp->b_proc = &proc0; /* XXX */
1874 1.12 pk bp->b_vnbufs.le_next = NOLIST;
1875 1.122 christos bp->b_data = (void *)kva;
1876 1.1 mrg bp->b_blkno = startblk;
1877 1.41 chs bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1878 1.1 mrg
1879 1.51 chs /*
1880 1.41 chs * bump v_numoutput (counter of number of active outputs).
1881 1.1 mrg */
1882 1.54 chs
1883 1.41 chs if (write) {
1884 1.156 rmind mutex_enter(swapdev_vp->v_interlock);
1885 1.134 ad swapdev_vp->v_numoutput++;
1886 1.156 rmind mutex_exit(swapdev_vp->v_interlock);
1887 1.1 mrg }
1888 1.1 mrg
1889 1.1 mrg /*
1890 1.41 chs * for async ops we must set up the iodone handler.
1891 1.1 mrg */
1892 1.54 chs
1893 1.41 chs if (async) {
1894 1.41 chs bp->b_iodone = uvm_aio_biodone;
1895 1.1 mrg UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1896 1.126 ad if (curlwp == uvm.pagedaemon_lwp)
1897 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1898 1.83 yamt else
1899 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1900 1.83 yamt } else {
1901 1.134 ad bp->b_iodone = NULL;
1902 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1903 1.1 mrg }
1904 1.1 mrg UVMHIST_LOG(pdhist,
1905 1.175 pgoyette "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
1906 1.175 pgoyette (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1907 1.1 mrg
1908 1.1 mrg /*
1909 1.1 mrg * now we start the I/O, and if async, return.
1910 1.1 mrg */
1911 1.54 chs
1912 1.84 hannken VOP_STRATEGY(swapdev_vp, bp);
1913 1.41 chs if (async)
1914 1.47 chs return 0;
1915 1.1 mrg
1916 1.1 mrg /*
1917 1.1 mrg * must be sync i/o. wait for it to finish
1918 1.1 mrg */
1919 1.54 chs
1920 1.47 chs error = biowait(bp);
1921 1.1 mrg
1922 1.1 mrg /*
1923 1.1 mrg * kill the pager mapping
1924 1.1 mrg */
1925 1.54 chs
1926 1.1 mrg uvm_pagermapout(kva, npages);
1927 1.1 mrg
1928 1.1 mrg /*
1929 1.54 chs * now dispose of the buf and we're done.
1930 1.1 mrg */
1931 1.54 chs
1932 1.134 ad if (write) {
1933 1.156 rmind mutex_enter(swapdev_vp->v_interlock);
1934 1.41 chs vwakeup(bp);
1935 1.156 rmind mutex_exit(swapdev_vp->v_interlock);
1936 1.134 ad }
1937 1.98 yamt putiobuf(bp);
1938 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0);
1939 1.134 ad
1940 1.47 chs return (error);
1941 1.1 mrg }
1942