Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.177.2.2
      1  1.177.2.2    martin /*	$NetBSD: uvm_swap.c,v 1.177.2.2 2020/04/13 08:05:21 martin Exp $	*/
      2        1.1       mrg 
      3        1.1       mrg /*
      4      1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5        1.1       mrg  * All rights reserved.
      6        1.1       mrg  *
      7        1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8        1.1       mrg  * modification, are permitted provided that the following conditions
      9        1.1       mrg  * are met:
     10        1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11        1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12        1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14        1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15        1.1       mrg  *
     16        1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17        1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18        1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19        1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20        1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21        1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22        1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23        1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24        1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25        1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26        1.1       mrg  * SUCH DAMAGE.
     27        1.3       mrg  *
     28        1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29        1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30        1.1       mrg  */
     31       1.57     lukem 
     32       1.57     lukem #include <sys/cdefs.h>
     33  1.177.2.2    martin __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.177.2.2 2020/04/13 08:05:21 martin Exp $");
     34        1.5       mrg 
     35        1.5       mrg #include "opt_uvmhist.h"
     36       1.16       mrg #include "opt_compat_netbsd.h"
     37       1.41       chs #include "opt_ddb.h"
     38        1.1       mrg 
     39        1.1       mrg #include <sys/param.h>
     40        1.1       mrg #include <sys/systm.h>
     41  1.177.2.2    martin #include <sys/atomic.h>
     42        1.1       mrg #include <sys/buf.h>
     43       1.89      yamt #include <sys/bufq.h>
     44       1.36       mrg #include <sys/conf.h>
     45        1.1       mrg #include <sys/proc.h>
     46        1.1       mrg #include <sys/namei.h>
     47        1.1       mrg #include <sys/disklabel.h>
     48        1.1       mrg #include <sys/errno.h>
     49        1.1       mrg #include <sys/kernel.h>
     50        1.1       mrg #include <sys/vnode.h>
     51        1.1       mrg #include <sys/file.h>
     52      1.110      yamt #include <sys/vmem.h>
     53       1.90      yamt #include <sys/blist.h>
     54        1.1       mrg #include <sys/mount.h>
     55       1.12        pk #include <sys/pool.h>
     56      1.159      para #include <sys/kmem.h>
     57        1.1       mrg #include <sys/syscallargs.h>
     58       1.17       mrg #include <sys/swap.h>
     59      1.100      elad #include <sys/kauth.h>
     60      1.125        ad #include <sys/sysctl.h>
     61      1.130   hannken #include <sys/workqueue.h>
     62        1.1       mrg 
     63        1.1       mrg #include <uvm/uvm.h>
     64        1.1       mrg 
     65        1.1       mrg #include <miscfs/specfs/specdev.h>
     66        1.1       mrg 
     67        1.1       mrg /*
     68        1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     69        1.1       mrg  */
     70        1.1       mrg 
     71        1.1       mrg /*
     72        1.1       mrg  * swap space is managed in the following way:
     73       1.51       chs  *
     74        1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     75        1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     76        1.1       mrg  * information that is passed up to the user (via system calls).
     77        1.1       mrg  *
     78        1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     79        1.1       mrg  * swap parition usage.
     80        1.1       mrg  *
     81        1.1       mrg  * the system maintains a global data structure describing all swap
     82        1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     83        1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     84       1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     85      1.164  christos  * TAILQ of "swapdev" structures at that priority.
     86        1.1       mrg  *
     87        1.1       mrg  * locking:
     88      1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89        1.1       mrg  *    system call and prevents the swap priority list from changing
     90        1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91      1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92        1.1       mrg  *    structures including the priority list, the swapdev structures,
     93      1.110      yamt  *    and the swapmap arena.
     94        1.1       mrg  *
     95        1.1       mrg  * each swap device has the following info:
     96        1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     97        1.1       mrg  *  - swap enabled (allows new allocations on swap)
     98        1.1       mrg  *  - map info in /dev/drum
     99        1.1       mrg  *  - vnode pointer
    100        1.1       mrg  * for swap files only:
    101        1.1       mrg  *  - block size
    102        1.1       mrg  *  - max byte count in buffer
    103        1.1       mrg  *  - buffer
    104        1.1       mrg  *
    105        1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    106        1.1       mrg  * the sys_swapctl performs the following operations:
    107        1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108       1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109        1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110       1.85  junyoung  *	the current swap config into the array. The actual work is done
    111      1.155     rmind  *	in the uvm_swap_stats() function.
    112        1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113        1.1       mrg  *	priority in "misc", start swapping on it.
    114        1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115        1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116        1.1       mrg  *	"misc")
    117        1.1       mrg  */
    118        1.1       mrg 
    119        1.1       mrg /*
    120        1.1       mrg  * swapdev: describes a single swap partition/file
    121        1.1       mrg  *
    122        1.1       mrg  * note the following should be true:
    123        1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124        1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125        1.1       mrg  */
    126        1.1       mrg struct swapdev {
    127      1.144       mrg 	dev_t			swd_dev;	/* device id */
    128      1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    129      1.144       mrg 	int			swd_priority;	/* our priority */
    130      1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    131       1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    132       1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    133       1.16       mrg 	int			swd_npages;	/* #pages we can use */
    134       1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    135       1.32       chs 	int			swd_npgbad;	/* #pages bad */
    136       1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    137       1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    138       1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    139       1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    140      1.165  christos 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    141        1.1       mrg 
    142       1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    143       1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    144       1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    145       1.33   thorpej 	int			swd_active;	/* number of active buffers */
    146        1.1       mrg };
    147        1.1       mrg 
    148        1.1       mrg /*
    149        1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150        1.1       mrg  */
    151        1.1       mrg struct swappri {
    152        1.1       mrg 	int			spi_priority;     /* priority */
    153      1.164  christos 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154      1.165  christos 	/* tailq of swapdevs at this priority */
    155        1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156        1.1       mrg };
    157        1.1       mrg 
    158        1.1       mrg /*
    159        1.1       mrg  * The following two structures are used to keep track of data transfers
    160        1.1       mrg  * on swap devices associated with regular files.
    161        1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162        1.1       mrg  * structure names here to ease porting..
    163        1.1       mrg  */
    164        1.1       mrg struct vndxfer {
    165        1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166        1.1       mrg 	struct swapdev	*vx_sdp;
    167        1.1       mrg 	int		vx_error;
    168        1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    169        1.1       mrg 	int		vx_flags;
    170        1.1       mrg #define VX_BUSY		1
    171        1.1       mrg #define VX_DEAD		2
    172        1.1       mrg };
    173        1.1       mrg 
    174        1.1       mrg struct vndbuf {
    175        1.1       mrg 	struct buf	vb_buf;
    176        1.1       mrg 	struct vndxfer	*vb_xfer;
    177        1.1       mrg };
    178        1.1       mrg 
    179      1.144       mrg /*
    180       1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    181        1.1       mrg  */
    182      1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    183        1.1       mrg 
    184        1.1       mrg /*
    185        1.1       mrg  * local variables
    186        1.1       mrg  */
    187      1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    188        1.1       mrg 
    189        1.1       mrg /* list of all active swap devices [by priority] */
    190        1.1       mrg LIST_HEAD(swap_priority, swappri);
    191        1.1       mrg static struct swap_priority swap_priority;
    192        1.1       mrg 
    193        1.1       mrg /* locks */
    194  1.177.2.2    martin static kmutex_t uvm_swap_data_lock __cacheline_aligned;
    195      1.117        ad static krwlock_t swap_syscall_lock;
    196        1.1       mrg 
    197      1.130   hannken /* workqueue and use counter for swap to regular files */
    198      1.130   hannken static int sw_reg_count = 0;
    199      1.130   hannken static struct workqueue *sw_reg_workqueue;
    200      1.130   hannken 
    201      1.141        ad /* tuneables */
    202      1.141        ad u_int uvm_swapisfull_factor = 99;
    203      1.141        ad 
    204        1.1       mrg /*
    205        1.1       mrg  * prototypes
    206        1.1       mrg  */
    207       1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    208        1.1       mrg 
    209      1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    210       1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    211       1.85  junyoung 					 struct swappri *, int);
    212       1.85  junyoung static void		 swaplist_trim(void);
    213        1.1       mrg 
    214       1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    215       1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    216        1.1       mrg 
    217       1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    218      1.130   hannken static void sw_reg_biodone(struct buf *);
    219      1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    220       1.85  junyoung static void sw_reg_start(struct swapdev *);
    221        1.1       mrg 
    222       1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    223        1.1       mrg 
    224        1.1       mrg /*
    225        1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    226        1.1       mrg  *
    227       1.51       chs  * => called at boot time from init_main.c after the filesystems
    228        1.1       mrg  *	are brought up (which happens after uvm_init())
    229        1.1       mrg  */
    230        1.1       mrg void
    231       1.93   thorpej uvm_swap_init(void)
    232        1.1       mrg {
    233        1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    234        1.1       mrg 
    235        1.1       mrg 	UVMHIST_CALLED(pdhist);
    236        1.1       mrg 	/*
    237        1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    238        1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    239        1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    240        1.1       mrg 	 */
    241        1.1       mrg 
    242        1.1       mrg 	LIST_INIT(&swap_priority);
    243        1.1       mrg 	uvmexp.nswapdev = 0;
    244      1.117        ad 	rw_init(&swap_syscall_lock);
    245      1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    246       1.12        pk 
    247        1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    248      1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    249      1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    250      1.145       mrg 		panic("%s: can't lock swap device", __func__);
    251      1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    252      1.145       mrg 		panic("%s: can't open swap device", __func__);
    253      1.151   hannken 	VOP_UNLOCK(swapdev_vp);
    254        1.1       mrg 
    255        1.1       mrg 	/*
    256        1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    257        1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    258       1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    259        1.1       mrg 	 * failure, or no allocation).
    260        1.1       mrg 	 */
    261      1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    262      1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    263      1.147     rmind 	if (swapmap == 0) {
    264      1.145       mrg 		panic("%s: vmem_create failed", __func__);
    265      1.147     rmind 	}
    266      1.146     pooka 
    267      1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    268      1.146     pooka 	    NULL, IPL_BIO);
    269      1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    270      1.146     pooka 	    NULL, IPL_BIO);
    271      1.147     rmind 
    272      1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    273        1.1       mrg }
    274        1.1       mrg 
    275        1.1       mrg /*
    276        1.1       mrg  * swaplist functions: functions that operate on the list of swap
    277        1.1       mrg  * devices on the system.
    278        1.1       mrg  */
    279        1.1       mrg 
    280        1.1       mrg /*
    281        1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    282        1.1       mrg  *
    283      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    284      1.154     rmind  * => caller must provide a newly allocated swappri structure (we will
    285      1.154     rmind  *	FREE it if we don't need it... this it to prevent allocation
    286      1.154     rmind  *	blocking here while adding swap)
    287        1.1       mrg  */
    288        1.1       mrg static void
    289       1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    290        1.1       mrg {
    291        1.1       mrg 	struct swappri *spp, *pspp;
    292        1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    293        1.1       mrg 
    294        1.1       mrg 	/*
    295        1.1       mrg 	 * find entry at or after which to insert the new device.
    296        1.1       mrg 	 */
    297       1.55       chs 	pspp = NULL;
    298       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    299        1.1       mrg 		if (priority <= spp->spi_priority)
    300        1.1       mrg 			break;
    301        1.1       mrg 		pspp = spp;
    302        1.1       mrg 	}
    303        1.1       mrg 
    304        1.1       mrg 	/*
    305        1.1       mrg 	 * new priority?
    306        1.1       mrg 	 */
    307        1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    308        1.1       mrg 		spp = newspp;  /* use newspp! */
    309      1.175  pgoyette 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    310       1.32       chs 			    priority, 0, 0, 0);
    311        1.1       mrg 
    312        1.1       mrg 		spp->spi_priority = priority;
    313      1.164  christos 		TAILQ_INIT(&spp->spi_swapdev);
    314        1.1       mrg 
    315        1.1       mrg 		if (pspp)
    316        1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    317        1.1       mrg 		else
    318        1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    319        1.1       mrg 	} else {
    320        1.1       mrg 	  	/* we don't need a new priority structure, free it */
    321      1.159      para 		kmem_free(newspp, sizeof(*newspp));
    322        1.1       mrg 	}
    323        1.1       mrg 
    324        1.1       mrg 	/*
    325        1.1       mrg 	 * priority found (or created).   now insert on the priority's
    326      1.165  christos 	 * tailq list and bump the total number of swapdevs.
    327        1.1       mrg 	 */
    328        1.1       mrg 	sdp->swd_priority = priority;
    329      1.164  christos 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    330        1.1       mrg 	uvmexp.nswapdev++;
    331        1.1       mrg }
    332        1.1       mrg 
    333        1.1       mrg /*
    334        1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    335        1.1       mrg  *	global list.
    336        1.1       mrg  *
    337      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    338        1.1       mrg  * => we return the swapdev we found (and removed)
    339        1.1       mrg  */
    340        1.1       mrg static struct swapdev *
    341      1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    342        1.1       mrg {
    343        1.1       mrg 	struct swapdev *sdp;
    344        1.1       mrg 	struct swappri *spp;
    345        1.1       mrg 
    346        1.1       mrg 	/*
    347        1.1       mrg 	 * search the lists for the requested vp
    348        1.1       mrg 	 */
    349       1.55       chs 
    350       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    351      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    352        1.1       mrg 			if (sdp->swd_vp == vp) {
    353        1.1       mrg 				if (remove) {
    354      1.164  christos 					TAILQ_REMOVE(&spp->spi_swapdev,
    355        1.1       mrg 					    sdp, swd_next);
    356        1.1       mrg 					uvmexp.nswapdev--;
    357        1.1       mrg 				}
    358        1.1       mrg 				return(sdp);
    359        1.1       mrg 			}
    360       1.55       chs 		}
    361        1.1       mrg 	}
    362        1.1       mrg 	return (NULL);
    363        1.1       mrg }
    364        1.1       mrg 
    365      1.113      elad /*
    366        1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    367        1.1       mrg  *	them.
    368        1.1       mrg  *
    369      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    370        1.1       mrg  */
    371        1.1       mrg static void
    372       1.93   thorpej swaplist_trim(void)
    373        1.1       mrg {
    374        1.1       mrg 	struct swappri *spp, *nextspp;
    375        1.1       mrg 
    376      1.161     rmind 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    377      1.167   mlelstv 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    378        1.1       mrg 			continue;
    379        1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    380      1.159      para 		kmem_free(spp, sizeof(*spp));
    381        1.1       mrg 	}
    382        1.1       mrg }
    383        1.1       mrg 
    384        1.1       mrg /*
    385        1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    386        1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    387        1.1       mrg  *
    388        1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    389      1.127        ad  * => caller must hold uvm_swap_data_lock
    390        1.1       mrg  */
    391        1.1       mrg static struct swapdev *
    392       1.93   thorpej swapdrum_getsdp(int pgno)
    393        1.1       mrg {
    394        1.1       mrg 	struct swapdev *sdp;
    395        1.1       mrg 	struct swappri *spp;
    396       1.51       chs 
    397       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    398      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    399       1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    400       1.48      fvdl 				continue;
    401        1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    402        1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    403        1.1       mrg 				return sdp;
    404        1.1       mrg 			}
    405       1.48      fvdl 		}
    406       1.55       chs 	}
    407        1.1       mrg 	return NULL;
    408        1.1       mrg }
    409        1.1       mrg 
    410      1.173      maxv void swapsys_lock(krw_t op)
    411      1.173      maxv {
    412      1.173      maxv 	rw_enter(&swap_syscall_lock, op);
    413      1.173      maxv }
    414      1.173      maxv 
    415      1.173      maxv void swapsys_unlock(void)
    416      1.173      maxv {
    417      1.173      maxv 	rw_exit(&swap_syscall_lock);
    418      1.173      maxv }
    419        1.1       mrg 
    420      1.176  christos static void
    421      1.176  christos swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
    422      1.176  christos {
    423      1.176  christos 	se->se_dev = sdp->swd_dev;
    424      1.176  christos 	se->se_flags = sdp->swd_flags;
    425      1.176  christos 	se->se_nblks = sdp->swd_nblks;
    426      1.176  christos 	se->se_inuse = inuse;
    427      1.176  christos 	se->se_priority = sdp->swd_priority;
    428      1.176  christos 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
    429      1.176  christos 	strcpy(se->se_path, sdp->swd_path);
    430      1.176  christos }
    431      1.176  christos 
    432      1.177  christos int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
    433      1.177  christos     (void *)enosys;
    434      1.177  christos int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
    435      1.177  christos     (void *)enosys;
    436      1.176  christos 
    437        1.1       mrg /*
    438        1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    439        1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    440        1.1       mrg  */
    441        1.1       mrg int
    442      1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    443        1.1       mrg {
    444      1.133       dsl 	/* {
    445        1.1       mrg 		syscallarg(int) cmd;
    446        1.1       mrg 		syscallarg(void *) arg;
    447        1.1       mrg 		syscallarg(int) misc;
    448      1.133       dsl 	} */
    449        1.1       mrg 	struct vnode *vp;
    450        1.1       mrg 	struct nameidata nd;
    451        1.1       mrg 	struct swappri *spp;
    452        1.1       mrg 	struct swapdev *sdp;
    453      1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    454      1.101  christos 	char	*userpath;
    455      1.161     rmind 	size_t	len = 0;
    456      1.176  christos 	int	error;
    457        1.1       mrg 	int	priority;
    458        1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    459        1.1       mrg 
    460        1.1       mrg 	/*
    461        1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    462        1.1       mrg 	 *
    463       1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    464        1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    465        1.1       mrg 	 */
    466        1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    467      1.161     rmind 		const int nswapdev = uvmexp.nswapdev;
    468      1.175  pgoyette 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    469      1.175  pgoyette 		    0, 0, 0);
    470      1.161     rmind 		*retval = nswapdev;
    471      1.161     rmind 		return 0;
    472        1.1       mrg 	}
    473        1.1       mrg 
    474      1.161     rmind 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    475      1.161     rmind 
    476      1.161     rmind 	/*
    477      1.161     rmind 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    478      1.161     rmind 	 */
    479      1.161     rmind 	rw_enter(&swap_syscall_lock, RW_WRITER);
    480      1.161     rmind 
    481        1.1       mrg 	/*
    482        1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    483        1.1       mrg 	 *
    484       1.51       chs 	 * note that the swap_priority list can't change as long
    485        1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    486      1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    487        1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    488        1.1       mrg 	 */
    489      1.176  christos 	switch (SCARG(uap, cmd)) {
    490      1.177  christos 	case SWAP_STATS13:
    491      1.177  christos 		error = (*uvm_swap_stats13)(uap, retval);
    492      1.177  christos 		goto out;
    493      1.177  christos 	case SWAP_STATS50:
    494      1.177  christos 		error = (*uvm_swap_stats50)(uap, retval);
    495      1.177  christos 		goto out;
    496      1.176  christos 	case SWAP_STATS:
    497      1.176  christos 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
    498      1.177  christos 		    NULL, sizeof(struct swapent), retval);
    499       1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    500       1.16       mrg 		goto out;
    501      1.176  christos 
    502      1.176  christos 	case SWAP_GETDUMPDEV:
    503      1.176  christos 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
    504       1.55       chs 		goto out;
    505      1.176  christos 	default:
    506      1.176  christos 		break;
    507       1.55       chs 	}
    508        1.1       mrg 
    509        1.1       mrg 	/*
    510        1.1       mrg 	 * all other requests require superuser privs.   verify.
    511        1.1       mrg 	 */
    512      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    513      1.106      elad 	    0, NULL, NULL, NULL)))
    514       1.16       mrg 		goto out;
    515        1.1       mrg 
    516      1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    517      1.104    martin 		/* drop the current dump device */
    518      1.104    martin 		dumpdev = NODEV;
    519      1.138    kardel 		dumpcdev = NODEV;
    520      1.104    martin 		cpu_dumpconf();
    521      1.104    martin 		goto out;
    522      1.104    martin 	}
    523      1.104    martin 
    524        1.1       mrg 	/*
    525        1.1       mrg 	 * at this point we expect a path name in arg.   we will
    526        1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    527        1.1       mrg 	 * the vnode (VOP_LOCK).
    528        1.1       mrg 	 *
    529        1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    530       1.16       mrg 	 * miniroot)
    531        1.1       mrg 	 */
    532        1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    533        1.1       mrg 		vp = rootvp;		/* miniroot */
    534      1.152   hannken 		vref(vp);
    535      1.152   hannken 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    536      1.152   hannken 			vrele(vp);
    537       1.16       mrg 			error = EBUSY;
    538       1.16       mrg 			goto out;
    539        1.1       mrg 		}
    540       1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    541      1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    542       1.16       mrg 			panic("swapctl: miniroot copy failed");
    543        1.1       mrg 	} else {
    544      1.153  dholland 		struct pathbuf *pb;
    545       1.16       mrg 
    546      1.153  dholland 		/*
    547      1.153  dholland 		 * This used to allow copying in one extra byte
    548      1.153  dholland 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    549      1.153  dholland 		 * This was completely pointless because if anyone
    550      1.153  dholland 		 * used that extra byte namei would fail with
    551      1.153  dholland 		 * ENAMETOOLONG anyway, so I've removed the excess
    552      1.153  dholland 		 * logic. - dholland 20100215
    553      1.153  dholland 		 */
    554      1.153  dholland 
    555      1.153  dholland 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    556      1.153  dholland 		if (error) {
    557      1.153  dholland 			goto out;
    558      1.153  dholland 		}
    559       1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    560      1.153  dholland 			/* get a copy of the string */
    561      1.153  dholland 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    562      1.153  dholland 			len = strlen(userpath) + 1;
    563      1.153  dholland 		}
    564      1.153  dholland 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    565      1.153  dholland 		if ((error = namei(&nd))) {
    566      1.153  dholland 			pathbuf_destroy(pb);
    567      1.153  dholland 			goto out;
    568        1.1       mrg 		}
    569        1.1       mrg 		vp = nd.ni_vp;
    570      1.153  dholland 		pathbuf_destroy(pb);
    571        1.1       mrg 	}
    572        1.1       mrg 	/* note: "vp" is referenced and locked */
    573        1.1       mrg 
    574        1.1       mrg 	error = 0;		/* assume no error */
    575        1.1       mrg 	switch(SCARG(uap, cmd)) {
    576       1.40       mrg 
    577       1.24       mrg 	case SWAP_DUMPDEV:
    578       1.24       mrg 		if (vp->v_type != VBLK) {
    579       1.24       mrg 			error = ENOTBLK;
    580       1.45        pk 			break;
    581       1.24       mrg 		}
    582      1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    583      1.109       mrg 			dumpdev = vp->v_rdev;
    584      1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    585      1.138    kardel 		} else
    586      1.109       mrg 			dumpdev = NODEV;
    587       1.68  drochner 		cpu_dumpconf();
    588       1.24       mrg 		break;
    589       1.24       mrg 
    590        1.1       mrg 	case SWAP_CTL:
    591        1.1       mrg 		/*
    592        1.1       mrg 		 * get new priority, remove old entry (if any) and then
    593        1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    594        1.1       mrg 		 * any empty priority structures.
    595        1.1       mrg 		 */
    596        1.1       mrg 		priority = SCARG(uap, misc);
    597      1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    598      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    599      1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    600        1.1       mrg 			error = ENOENT;
    601        1.1       mrg 		} else {
    602        1.1       mrg 			swaplist_insert(sdp, spp, priority);
    603        1.1       mrg 			swaplist_trim();
    604        1.1       mrg 		}
    605      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    606        1.1       mrg 		if (error)
    607      1.159      para 			kmem_free(spp, sizeof(*spp));
    608        1.1       mrg 		break;
    609        1.1       mrg 
    610        1.1       mrg 	case SWAP_ON:
    611       1.32       chs 
    612        1.1       mrg 		/*
    613        1.1       mrg 		 * check for duplicates.   if none found, then insert a
    614        1.1       mrg 		 * dummy entry on the list to prevent someone else from
    615        1.1       mrg 		 * trying to enable this device while we are working on
    616        1.1       mrg 		 * it.
    617        1.1       mrg 		 */
    618       1.32       chs 
    619        1.1       mrg 		priority = SCARG(uap, misc);
    620      1.160     rmind 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    621      1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    622       1.67       chs 		sdp->swd_flags = SWF_FAKE;
    623       1.67       chs 		sdp->swd_vp = vp;
    624       1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    625       1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    626      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    627      1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    628        1.1       mrg 			error = EBUSY;
    629      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    630       1.96      yamt 			bufq_free(sdp->swd_tab);
    631      1.159      para 			kmem_free(sdp, sizeof(*sdp));
    632      1.159      para 			kmem_free(spp, sizeof(*spp));
    633       1.16       mrg 			break;
    634        1.1       mrg 		}
    635        1.1       mrg 		swaplist_insert(sdp, spp, priority);
    636      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    637        1.1       mrg 
    638      1.161     rmind 		KASSERT(len > 0);
    639       1.16       mrg 		sdp->swd_pathlen = len;
    640      1.161     rmind 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    641      1.161     rmind 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    642       1.19        pk 			panic("swapctl: copystr");
    643       1.32       chs 
    644        1.1       mrg 		/*
    645        1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    646        1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    647        1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    648        1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    649        1.1       mrg 		 */
    650       1.32       chs 
    651       1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    652      1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    653      1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    654        1.1       mrg 			swaplist_trim();
    655      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    656       1.96      yamt 			bufq_free(sdp->swd_tab);
    657      1.159      para 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    658      1.159      para 			kmem_free(sdp, sizeof(*sdp));
    659        1.1       mrg 			break;
    660        1.1       mrg 		}
    661        1.1       mrg 		break;
    662        1.1       mrg 
    663        1.1       mrg 	case SWAP_OFF:
    664      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    665      1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    666      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    667        1.1       mrg 			error = ENXIO;
    668        1.1       mrg 			break;
    669        1.1       mrg 		}
    670       1.32       chs 
    671        1.1       mrg 		/*
    672        1.1       mrg 		 * If a device isn't in use or enabled, we
    673        1.1       mrg 		 * can't stop swapping from it (again).
    674        1.1       mrg 		 */
    675        1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    676      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    677        1.1       mrg 			error = EBUSY;
    678       1.16       mrg 			break;
    679        1.1       mrg 		}
    680        1.1       mrg 
    681        1.1       mrg 		/*
    682       1.32       chs 		 * do the real work.
    683        1.1       mrg 		 */
    684       1.97  christos 		error = swap_off(l, sdp);
    685        1.1       mrg 		break;
    686        1.1       mrg 
    687        1.1       mrg 	default:
    688        1.1       mrg 		error = EINVAL;
    689        1.1       mrg 	}
    690        1.1       mrg 
    691        1.1       mrg 	/*
    692       1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    693        1.1       mrg 	 */
    694        1.1       mrg 	vput(vp);
    695       1.16       mrg out:
    696      1.160     rmind 	rw_exit(&swap_syscall_lock);
    697      1.159      para 	kmem_free(userpath, SWAP_PATH_MAX);
    698        1.1       mrg 
    699      1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    700        1.1       mrg 	return (error);
    701       1.61      manu }
    702       1.61      manu 
    703       1.85  junyoung /*
    704      1.155     rmind  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    705       1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    706       1.61      manu  * emulation to use it directly without going through sys_swapctl().
    707       1.61      manu  * The problem with using sys_swapctl() there is that it involves
    708       1.61      manu  * copying the swapent array to the stackgap, and this array's size
    709       1.85  junyoung  * is not known at build time. Hence it would not be possible to
    710       1.61      manu  * ensure it would fit in the stackgap in any case.
    711       1.61      manu  */
    712      1.176  christos int
    713  1.177.2.1  christos uvm_swap_stats(char *ptr, int misc,
    714      1.176  christos     void (*f)(void *, const struct swapent *), size_t len,
    715      1.176  christos     register_t *retval)
    716       1.61      manu {
    717       1.61      manu 	struct swappri *spp;
    718       1.61      manu 	struct swapdev *sdp;
    719      1.176  christos 	struct swapent sep;
    720       1.61      manu 	int count = 0;
    721      1.176  christos 	int error;
    722      1.176  christos 
    723      1.176  christos 	KASSERT(len <= sizeof(sep));
    724      1.176  christos 	if (len == 0)
    725      1.176  christos 		return ENOSYS;
    726      1.176  christos 
    727      1.176  christos 	if (misc < 0)
    728      1.176  christos 		return EINVAL;
    729      1.176  christos 
    730      1.176  christos 	if (misc == 0 || uvmexp.nswapdev == 0)
    731      1.176  christos 		return 0;
    732      1.176  christos 
    733      1.176  christos 	/* Make sure userland cannot exhaust kernel memory */
    734      1.176  christos 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
    735      1.176  christos 		misc = uvmexp.nswapdev;
    736       1.61      manu 
    737      1.173      maxv 	KASSERT(rw_lock_held(&swap_syscall_lock));
    738      1.173      maxv 
    739       1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    740      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    741      1.144       mrg 			int inuse;
    742      1.144       mrg 
    743      1.176  christos 			if (misc-- <= 0)
    744      1.161     rmind 				break;
    745      1.161     rmind 
    746      1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    747       1.61      manu 			    PAGE_SHIFT);
    748       1.85  junyoung 
    749  1.177.2.1  christos 			memset(&sep, 0, sizeof(sep));
    750      1.176  christos 			swapent_cvt(&sep, sdp, inuse);
    751      1.176  christos 			if (f)
    752      1.176  christos 				(*f)(&sep, &sep);
    753      1.176  christos 			if ((error = copyout(&sep, ptr, len)) != 0)
    754      1.176  christos 				return error;
    755      1.176  christos 			ptr += len;
    756       1.61      manu 			count++;
    757       1.61      manu 		}
    758       1.61      manu 	}
    759       1.61      manu 	*retval = count;
    760      1.176  christos 	return 0;
    761        1.1       mrg }
    762        1.1       mrg 
    763        1.1       mrg /*
    764        1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    765        1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    766        1.1       mrg  *	SWF_FAKE).
    767        1.1       mrg  *
    768        1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    769        1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    770      1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    771        1.1       mrg  *	if needed.
    772        1.1       mrg  */
    773        1.1       mrg static int
    774       1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    775        1.1       mrg {
    776        1.1       mrg 	struct vnode *vp;
    777        1.1       mrg 	int error, npages, nblocks, size;
    778        1.1       mrg 	long addr;
    779      1.157    dyoung 	vmem_addr_t result;
    780        1.1       mrg 	struct vattr va;
    781        1.1       mrg 	dev_t dev;
    782        1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    783        1.1       mrg 
    784        1.1       mrg 	/*
    785        1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    786        1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    787        1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    788        1.1       mrg 	 */
    789        1.1       mrg 
    790        1.1       mrg 	vp = sdp->swd_vp;
    791        1.1       mrg 	dev = sdp->swd_dev;
    792        1.1       mrg 
    793        1.1       mrg 	/*
    794        1.1       mrg 	 * open the swap file (mostly useful for block device files to
    795        1.1       mrg 	 * let device driver know what is up).
    796        1.1       mrg 	 *
    797        1.1       mrg 	 * we skip the open/close for root on swap because the root
    798        1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    799        1.1       mrg 	 */
    800        1.1       mrg 	if (vp != rootvp) {
    801      1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    802        1.1       mrg 			return (error);
    803        1.1       mrg 	}
    804        1.1       mrg 
    805        1.1       mrg 	/* XXX this only works for block devices */
    806      1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    807        1.1       mrg 
    808        1.1       mrg 	/*
    809        1.1       mrg 	 * we now need to determine the size of the swap area.   for
    810        1.1       mrg 	 * block specials we can call the d_psize function.
    811        1.1       mrg 	 * for normal files, we must stat [get attrs].
    812        1.1       mrg 	 *
    813        1.1       mrg 	 * we put the result in nblks.
    814        1.1       mrg 	 * for normal files, we also want the filesystem block size
    815        1.1       mrg 	 * (which we get with statfs).
    816        1.1       mrg 	 */
    817        1.1       mrg 	switch (vp->v_type) {
    818        1.1       mrg 	case VBLK:
    819      1.158       mrg 		if ((nblocks = bdev_size(dev)) == -1) {
    820        1.1       mrg 			error = ENXIO;
    821        1.1       mrg 			goto bad;
    822        1.1       mrg 		}
    823        1.1       mrg 		break;
    824        1.1       mrg 
    825        1.1       mrg 	case VREG:
    826      1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    827        1.1       mrg 			goto bad;
    828        1.1       mrg 		nblocks = (int)btodb(va.va_size);
    829      1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    830        1.1       mrg 		/*
    831        1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    832        1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    833        1.1       mrg 		 */
    834      1.150     pooka 		if (vp->v_tag == VT_NFS)
    835        1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    836        1.1       mrg 		else
    837        1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    838        1.1       mrg 		break;
    839        1.1       mrg 
    840        1.1       mrg 	default:
    841        1.1       mrg 		error = ENXIO;
    842        1.1       mrg 		goto bad;
    843        1.1       mrg 	}
    844        1.1       mrg 
    845        1.1       mrg 	/*
    846        1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    847        1.1       mrg 	 */
    848        1.1       mrg 
    849      1.144       mrg 	sdp->swd_nblks = nblocks;
    850       1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    851        1.1       mrg 
    852        1.1       mrg 	/*
    853        1.1       mrg 	 * for block special files, we want to make sure that leave
    854        1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    855       1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    856        1.1       mrg 	 * note that because of this the "size" can be less than the
    857        1.1       mrg 	 * actual number of blocks on the device.
    858        1.1       mrg 	 */
    859        1.1       mrg 	if (vp->v_type == VBLK) {
    860        1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    861        1.1       mrg 		size = npages - 1;
    862        1.1       mrg 		addr = 1;
    863        1.1       mrg 	} else {
    864        1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    865        1.1       mrg 		size = npages;
    866        1.1       mrg 		addr = 0;
    867        1.1       mrg 	}
    868        1.1       mrg 
    869        1.1       mrg 	/*
    870        1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    871        1.1       mrg 	 * area.   we want at least one page.
    872        1.1       mrg 	 */
    873        1.1       mrg 
    874        1.1       mrg 	if (size < 1) {
    875        1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    876        1.1       mrg 		error = EINVAL;
    877        1.1       mrg 		goto bad;
    878        1.1       mrg 	}
    879        1.1       mrg 
    880      1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
    881        1.1       mrg 
    882        1.1       mrg 	/*
    883        1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    884        1.1       mrg 	 */
    885        1.1       mrg 
    886       1.90      yamt 	sdp->swd_blist = blist_create(npages);
    887       1.90      yamt 	/* mark all expect the `saved' region free. */
    888       1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    889        1.1       mrg 
    890        1.1       mrg 	/*
    891       1.51       chs 	 * if the vnode we are swapping to is the root vnode
    892        1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    893       1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    894        1.1       mrg 	 * find its size and skip over it.
    895        1.1       mrg 	 */
    896        1.1       mrg 	if (vp == rootvp) {
    897        1.1       mrg 		struct mount *mp;
    898       1.86  christos 		struct statvfs *sp;
    899        1.1       mrg 		int rootblocks, rootpages;
    900        1.1       mrg 
    901        1.1       mrg 		mp = rootvnode->v_mount;
    902        1.1       mrg 		sp = &mp->mnt_stat;
    903       1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    904       1.64  fredette 		/*
    905       1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    906       1.64  fredette 		 * blocks in the filesystem, it's the number of
    907       1.64  fredette 		 * data blocks.  so, our rootblocks almost
    908       1.85  junyoung 		 * definitely underestimates the total size
    909       1.64  fredette 		 * of the filesystem - how badly depends on the
    910       1.85  junyoung 		 * details of the filesystem type.  there isn't
    911       1.64  fredette 		 * an obvious way to deal with this cleanly
    912       1.85  junyoung 		 * and perfectly, so for now we just pad our
    913       1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    914       1.64  fredette 		 */
    915       1.64  fredette 		rootblocks += (rootblocks >> 5) +
    916       1.64  fredette 			(rootblocks >> 6) +
    917       1.64  fredette 			(rootblocks >> 7);
    918       1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    919       1.32       chs 		if (rootpages > size)
    920        1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    921        1.1       mrg 
    922       1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    923        1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    924       1.90      yamt 		}
    925        1.1       mrg 
    926       1.32       chs 		size -= rootpages;
    927        1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    928       1.32       chs 		printf("leaving %d pages of swap\n", size);
    929        1.1       mrg 	}
    930        1.1       mrg 
    931       1.39       chs 	/*
    932       1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    933       1.39       chs 	 */
    934       1.39       chs 	vref(vp);
    935       1.39       chs 
    936        1.1       mrg 	/*
    937        1.1       mrg 	 * now add the new swapdev to the drum and enable.
    938        1.1       mrg 	 */
    939      1.157    dyoung 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    940      1.157    dyoung 	if (error != 0)
    941       1.48      fvdl 		panic("swapdrum_add");
    942      1.130   hannken 	/*
    943      1.130   hannken 	 * If this is the first regular swap create the workqueue.
    944      1.130   hannken 	 * => Protected by swap_syscall_lock.
    945      1.130   hannken 	 */
    946      1.130   hannken 	if (vp->v_type != VBLK) {
    947      1.130   hannken 		if (sw_reg_count++ == 0) {
    948      1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
    949      1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    950      1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    951      1.145       mrg 				panic("%s: workqueue_create failed", __func__);
    952      1.130   hannken 		}
    953      1.130   hannken 	}
    954       1.48      fvdl 
    955       1.48      fvdl 	sdp->swd_drumoffset = (int)result;
    956       1.48      fvdl 	sdp->swd_drumsize = npages;
    957       1.48      fvdl 	sdp->swd_npages = size;
    958      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
    959        1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    960        1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    961       1.32       chs 	uvmexp.swpages += size;
    962       1.81        pk 	uvmexp.swpgavail += size;
    963      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
    964        1.1       mrg 	return (0);
    965        1.1       mrg 
    966        1.1       mrg 	/*
    967       1.43       chs 	 * failure: clean up and return error.
    968        1.1       mrg 	 */
    969       1.43       chs 
    970       1.43       chs bad:
    971       1.90      yamt 	if (sdp->swd_blist) {
    972       1.90      yamt 		blist_destroy(sdp->swd_blist);
    973       1.43       chs 	}
    974       1.43       chs 	if (vp != rootvp) {
    975      1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
    976       1.43       chs 	}
    977        1.1       mrg 	return (error);
    978        1.1       mrg }
    979        1.1       mrg 
    980        1.1       mrg /*
    981        1.1       mrg  * swap_off: stop swapping on swapdev
    982        1.1       mrg  *
    983       1.32       chs  * => swap data should be locked, we will unlock.
    984        1.1       mrg  */
    985        1.1       mrg static int
    986       1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
    987        1.1       mrg {
    988       1.91      yamt 	int npages = sdp->swd_npages;
    989       1.91      yamt 	int error = 0;
    990       1.81        pk 
    991        1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    992      1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
    993        1.1       mrg 
    994       1.32       chs 	/* disable the swap area being removed */
    995        1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
    996       1.81        pk 	uvmexp.swpgavail -= npages;
    997      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
    998       1.32       chs 
    999       1.32       chs 	/*
   1000       1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1001       1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1002       1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1003       1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1004       1.32       chs 	 */
   1005        1.1       mrg 
   1006       1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1007       1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1008       1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1009       1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1010       1.91      yamt 		error = ENOMEM;
   1011       1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1012       1.91      yamt 		error = EBUSY;
   1013       1.91      yamt 	}
   1014       1.51       chs 
   1015       1.91      yamt 	if (error) {
   1016      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1017       1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1018       1.81        pk 		uvmexp.swpgavail += npages;
   1019      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1020       1.91      yamt 
   1021       1.91      yamt 		return error;
   1022       1.32       chs 	}
   1023        1.1       mrg 
   1024        1.1       mrg 	/*
   1025      1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1026      1.130   hannken 	 * => Protected by swap_syscall_lock.
   1027      1.130   hannken 	 */
   1028      1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1029      1.130   hannken 		KASSERT(sw_reg_count > 0);
   1030      1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1031      1.130   hannken 		if (--sw_reg_count == 0) {
   1032      1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1033      1.130   hannken 			sw_reg_workqueue = NULL;
   1034      1.130   hannken 		}
   1035      1.130   hannken 	}
   1036      1.130   hannken 
   1037      1.130   hannken 	/*
   1038       1.58     enami 	 * done with the vnode.
   1039       1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1040       1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1041        1.1       mrg 	 */
   1042       1.39       chs 	vrele(sdp->swd_vp);
   1043       1.32       chs 	if (sdp->swd_vp != rootvp) {
   1044      1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1045       1.32       chs 	}
   1046       1.32       chs 
   1047      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1048       1.81        pk 	uvmexp.swpages -= npages;
   1049       1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1050        1.1       mrg 
   1051      1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1052      1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1053       1.32       chs 	swaplist_trim();
   1054      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1055        1.1       mrg 
   1056       1.32       chs 	/*
   1057       1.32       chs 	 * free all resources!
   1058       1.32       chs 	 */
   1059      1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1060       1.90      yamt 	blist_destroy(sdp->swd_blist);
   1061       1.96      yamt 	bufq_free(sdp->swd_tab);
   1062      1.159      para 	kmem_free(sdp, sizeof(*sdp));
   1063        1.1       mrg 	return (0);
   1064        1.1       mrg }
   1065        1.1       mrg 
   1066      1.164  christos void
   1067      1.164  christos uvm_swap_shutdown(struct lwp *l)
   1068      1.164  christos {
   1069      1.164  christos 	struct swapdev *sdp;
   1070      1.164  christos 	struct swappri *spp;
   1071      1.164  christos 	struct vnode *vp;
   1072      1.164  christos 	int error;
   1073      1.164  christos 
   1074  1.177.2.2    martin 	printf("turning off swap...");
   1075      1.164  christos 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1076      1.164  christos 	mutex_enter(&uvm_swap_data_lock);
   1077      1.164  christos again:
   1078      1.164  christos 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1079      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1080      1.164  christos 			if (sdp->swd_flags & SWF_FAKE)
   1081      1.164  christos 				continue;
   1082      1.164  christos 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1083      1.164  christos 				continue;
   1084      1.164  christos #ifdef DEBUG
   1085      1.164  christos 			printf("\nturning off swap on %s...",
   1086      1.164  christos 			    sdp->swd_path);
   1087      1.164  christos #endif
   1088      1.164  christos 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1089      1.164  christos 				error = EBUSY;
   1090      1.164  christos 				vp = NULL;
   1091      1.164  christos 			} else
   1092      1.164  christos 				error = 0;
   1093      1.164  christos 			if (!error) {
   1094      1.164  christos 				error = swap_off(l, sdp);
   1095      1.164  christos 				mutex_enter(&uvm_swap_data_lock);
   1096      1.164  christos 			}
   1097      1.164  christos 			if (error) {
   1098      1.164  christos 				printf("stopping swap on %s failed "
   1099      1.164  christos 				    "with error %d\n", sdp->swd_path, error);
   1100      1.164  christos 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1101      1.164  christos 				    swd_next);
   1102      1.164  christos 				uvmexp.nswapdev--;
   1103      1.164  christos 				swaplist_trim();
   1104      1.164  christos 				if (vp)
   1105      1.164  christos 					vput(vp);
   1106      1.164  christos 			}
   1107      1.164  christos 			goto again;
   1108      1.164  christos 		}
   1109      1.164  christos 	printf(" done\n");
   1110      1.164  christos 	mutex_exit(&uvm_swap_data_lock);
   1111      1.164  christos 	rw_exit(&swap_syscall_lock);
   1112      1.164  christos }
   1113      1.164  christos 
   1114      1.164  christos 
   1115        1.1       mrg /*
   1116        1.1       mrg  * /dev/drum interface and i/o functions
   1117        1.1       mrg  */
   1118        1.1       mrg 
   1119        1.1       mrg /*
   1120        1.1       mrg  * swstrategy: perform I/O on the drum
   1121        1.1       mrg  *
   1122        1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1123        1.1       mrg  */
   1124       1.94   thorpej static void
   1125       1.93   thorpej swstrategy(struct buf *bp)
   1126        1.1       mrg {
   1127        1.1       mrg 	struct swapdev *sdp;
   1128        1.1       mrg 	struct vnode *vp;
   1129      1.134        ad 	int pageno, bn;
   1130        1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1131        1.1       mrg 
   1132        1.1       mrg 	/*
   1133        1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1134        1.1       mrg 	 * be yanked out from under us because we are holding resources
   1135        1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1136        1.1       mrg 	 */
   1137       1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1138      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1139        1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1140      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1141        1.1       mrg 	if (sdp == NULL) {
   1142        1.1       mrg 		bp->b_error = EINVAL;
   1143      1.163  riastrad 		bp->b_resid = bp->b_bcount;
   1144        1.1       mrg 		biodone(bp);
   1145        1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1146        1.1       mrg 		return;
   1147        1.1       mrg 	}
   1148        1.1       mrg 
   1149        1.1       mrg 	/*
   1150        1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1151        1.1       mrg 	 */
   1152        1.1       mrg 
   1153       1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1154       1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1155        1.1       mrg 
   1156      1.175  pgoyette 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
   1157      1.175  pgoyette 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1158        1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1159        1.1       mrg 
   1160        1.1       mrg 	/*
   1161        1.1       mrg 	 * for block devices we finish up here.
   1162       1.32       chs 	 * for regular files we have to do more work which we delegate
   1163        1.1       mrg 	 * to sw_reg_strategy().
   1164        1.1       mrg 	 */
   1165        1.1       mrg 
   1166      1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1167      1.134        ad 	switch (vp->v_type) {
   1168        1.1       mrg 	default:
   1169      1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1170       1.32       chs 
   1171        1.1       mrg 	case VBLK:
   1172        1.1       mrg 
   1173        1.1       mrg 		/*
   1174        1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1175        1.1       mrg 		 * on the swapdev (sdp).
   1176        1.1       mrg 		 */
   1177        1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1178        1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1179        1.1       mrg 
   1180        1.1       mrg 		/*
   1181        1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1182        1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1183        1.1       mrg 		 */
   1184        1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1185      1.134        ad 			mutex_enter(bp->b_objlock);
   1186        1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1187      1.134        ad 			mutex_exit(bp->b_objlock);
   1188      1.156     rmind 			mutex_enter(vp->v_interlock);
   1189      1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1190      1.156     rmind 			mutex_exit(vp->v_interlock);
   1191        1.1       mrg 		}
   1192        1.1       mrg 
   1193       1.41       chs 		/*
   1194        1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1195        1.1       mrg 		 */
   1196        1.1       mrg 		bp->b_vp = vp;
   1197      1.156     rmind 		bp->b_objlock = vp->v_interlock;
   1198       1.84   hannken 		VOP_STRATEGY(vp, bp);
   1199        1.1       mrg 		return;
   1200       1.32       chs 
   1201        1.1       mrg 	case VREG:
   1202        1.1       mrg 		/*
   1203       1.32       chs 		 * delegate to sw_reg_strategy function.
   1204        1.1       mrg 		 */
   1205        1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1206        1.1       mrg 		return;
   1207        1.1       mrg 	}
   1208        1.1       mrg 	/* NOTREACHED */
   1209        1.1       mrg }
   1210        1.1       mrg 
   1211        1.1       mrg /*
   1212       1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1213       1.94   thorpej  */
   1214       1.94   thorpej /*ARGSUSED*/
   1215       1.94   thorpej static int
   1216      1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1217       1.94   thorpej {
   1218       1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1219       1.94   thorpej 
   1220      1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1221       1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1222       1.94   thorpej }
   1223       1.94   thorpej 
   1224       1.94   thorpej /*
   1225       1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1226       1.94   thorpej  */
   1227       1.94   thorpej /*ARGSUSED*/
   1228       1.94   thorpej static int
   1229      1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1230       1.94   thorpej {
   1231       1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1232       1.94   thorpej 
   1233      1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1234       1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1235       1.94   thorpej }
   1236       1.94   thorpej 
   1237       1.94   thorpej const struct bdevsw swap_bdevsw = {
   1238      1.168  dholland 	.d_open = nullopen,
   1239      1.168  dholland 	.d_close = nullclose,
   1240      1.168  dholland 	.d_strategy = swstrategy,
   1241      1.168  dholland 	.d_ioctl = noioctl,
   1242      1.168  dholland 	.d_dump = nodump,
   1243      1.168  dholland 	.d_psize = nosize,
   1244      1.171  dholland 	.d_discard = nodiscard,
   1245      1.168  dholland 	.d_flag = D_OTHER
   1246       1.94   thorpej };
   1247       1.94   thorpej 
   1248       1.94   thorpej const struct cdevsw swap_cdevsw = {
   1249      1.168  dholland 	.d_open = nullopen,
   1250      1.168  dholland 	.d_close = nullclose,
   1251      1.168  dholland 	.d_read = swread,
   1252      1.168  dholland 	.d_write = swwrite,
   1253      1.168  dholland 	.d_ioctl = noioctl,
   1254      1.168  dholland 	.d_stop = nostop,
   1255      1.168  dholland 	.d_tty = notty,
   1256      1.168  dholland 	.d_poll = nopoll,
   1257      1.168  dholland 	.d_mmap = nommap,
   1258      1.168  dholland 	.d_kqfilter = nokqfilter,
   1259      1.172  dholland 	.d_discard = nodiscard,
   1260      1.168  dholland 	.d_flag = D_OTHER,
   1261       1.94   thorpej };
   1262       1.94   thorpej 
   1263       1.94   thorpej /*
   1264        1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1265        1.1       mrg  */
   1266        1.1       mrg static void
   1267       1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1268        1.1       mrg {
   1269        1.1       mrg 	struct vnode	*vp;
   1270        1.1       mrg 	struct vndxfer	*vnx;
   1271       1.44     enami 	daddr_t		nbn;
   1272      1.122  christos 	char 		*addr;
   1273       1.44     enami 	off_t		byteoff;
   1274        1.9       mrg 	int		s, off, nra, error, sz, resid;
   1275        1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1276        1.1       mrg 
   1277        1.1       mrg 	/*
   1278        1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1279        1.1       mrg 	 * our buffer.
   1280        1.1       mrg 	 */
   1281      1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1282        1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1283        1.1       mrg 	vnx->vx_error = 0;
   1284        1.1       mrg 	vnx->vx_pending = 0;
   1285        1.1       mrg 	vnx->vx_bp = bp;
   1286        1.1       mrg 	vnx->vx_sdp = sdp;
   1287        1.1       mrg 
   1288        1.1       mrg 	/*
   1289        1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1290        1.1       mrg 	 * our buffer.
   1291        1.1       mrg 	 */
   1292        1.1       mrg 	error = 0;
   1293  1.177.2.2    martin 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
   1294        1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1295       1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1296        1.1       mrg 
   1297        1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1298        1.1       mrg 		struct vndbuf	*nbp;
   1299        1.1       mrg 
   1300        1.1       mrg 		/*
   1301        1.1       mrg 		 * translate byteoffset into block number.  return values:
   1302        1.1       mrg 		 *   vp = vnode of underlying device
   1303        1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1304        1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1305        1.1       mrg 		 *	block)
   1306        1.1       mrg 		 */
   1307        1.1       mrg 		nra = 0;
   1308        1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1309        1.1       mrg 				 	&vp, &nbn, &nra);
   1310        1.1       mrg 
   1311       1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1312       1.51       chs 			/*
   1313       1.23      marc 			 * this used to just set error, but that doesn't
   1314       1.23      marc 			 * do the right thing.  Instead, it causes random
   1315       1.23      marc 			 * memory errors.  The panic() should remain until
   1316       1.23      marc 			 * this condition doesn't destabilize the system.
   1317       1.23      marc 			 */
   1318       1.23      marc #if 1
   1319      1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1320       1.23      marc #else
   1321        1.1       mrg 			error = EIO;	/* failure */
   1322       1.23      marc #endif
   1323       1.23      marc 		}
   1324        1.1       mrg 
   1325        1.1       mrg 		/*
   1326        1.1       mrg 		 * punt if there was an error or a hole in the file.
   1327        1.1       mrg 		 * we must wait for any i/o ops we have already started
   1328        1.1       mrg 		 * to finish before returning.
   1329        1.1       mrg 		 *
   1330        1.1       mrg 		 * XXX we could deal with holes here but it would be
   1331        1.1       mrg 		 * a hassle (in the write case).
   1332        1.1       mrg 		 */
   1333        1.1       mrg 		if (error) {
   1334        1.1       mrg 			s = splbio();
   1335        1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1336        1.1       mrg 			goto out;
   1337        1.1       mrg 		}
   1338        1.1       mrg 
   1339        1.1       mrg 		/*
   1340        1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1341        1.1       mrg 		 */
   1342       1.41       chs 		off = byteoff % sdp->swd_bsize;
   1343       1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1344       1.41       chs 		if (sz > resid)
   1345        1.1       mrg 			sz = resid;
   1346        1.1       mrg 
   1347       1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1348      1.175  pgoyette 		    "vp %#jx/%#jx offset 0x%jx/0x%jx",
   1349      1.175  pgoyette 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1350        1.1       mrg 
   1351        1.1       mrg 		/*
   1352        1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1353        1.1       mrg 		 * at the front of the nbp structure so that you can
   1354        1.1       mrg 		 * cast pointers between the two structure easily.
   1355        1.1       mrg 		 */
   1356      1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1357      1.134        ad 		buf_init(&nbp->vb_buf);
   1358      1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1359      1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1360      1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1361        1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1362       1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1363        1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1364        1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1365       1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1366        1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1367       1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1368      1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1369       1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1370      1.156     rmind 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1371       1.53       chs 		if (vp->v_type == VBLK) {
   1372       1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1373       1.53       chs 		}
   1374        1.1       mrg 
   1375        1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1376        1.1       mrg 
   1377        1.1       mrg 		/*
   1378        1.1       mrg 		 * Just sort by block number
   1379        1.1       mrg 		 */
   1380        1.1       mrg 		s = splbio();
   1381        1.1       mrg 		if (vnx->vx_error != 0) {
   1382      1.134        ad 			buf_destroy(&nbp->vb_buf);
   1383      1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1384        1.1       mrg 			goto out;
   1385        1.1       mrg 		}
   1386        1.1       mrg 		vnx->vx_pending++;
   1387        1.1       mrg 
   1388        1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1389      1.134        ad 		/* XXXAD locking */
   1390      1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1391        1.1       mrg 		sw_reg_start(sdp);
   1392        1.1       mrg 		splx(s);
   1393        1.1       mrg 
   1394        1.1       mrg 		/*
   1395        1.1       mrg 		 * advance to the next I/O
   1396        1.1       mrg 		 */
   1397        1.9       mrg 		byteoff += sz;
   1398        1.1       mrg 		addr += sz;
   1399        1.1       mrg 	}
   1400        1.1       mrg 
   1401        1.1       mrg 	s = splbio();
   1402        1.1       mrg 
   1403        1.1       mrg out: /* Arrive here at splbio */
   1404        1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1405        1.1       mrg 	if (vnx->vx_pending == 0) {
   1406      1.134        ad 		error = vnx->vx_error;
   1407      1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1408      1.134        ad 		bp->b_error = error;
   1409        1.1       mrg 		biodone(bp);
   1410        1.1       mrg 	}
   1411        1.1       mrg 	splx(s);
   1412        1.1       mrg }
   1413        1.1       mrg 
   1414        1.1       mrg /*
   1415        1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1416        1.1       mrg  *
   1417       1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1418        1.1       mrg  */
   1419        1.1       mrg static void
   1420       1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1421        1.1       mrg {
   1422        1.1       mrg 	struct buf	*bp;
   1423      1.134        ad 	struct vnode	*vp;
   1424        1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1425        1.1       mrg 
   1426        1.8       mrg 	/* recursion control */
   1427        1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1428        1.1       mrg 		return;
   1429        1.1       mrg 
   1430        1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1431        1.1       mrg 
   1432       1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1433      1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1434        1.1       mrg 		if (bp == NULL)
   1435        1.1       mrg 			break;
   1436       1.33   thorpej 		sdp->swd_active++;
   1437        1.1       mrg 
   1438        1.1       mrg 		UVMHIST_LOG(pdhist,
   1439      1.175  pgoyette 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %jx",
   1440      1.175  pgoyette 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1441      1.175  pgoyette 		    bp->b_bcount);
   1442      1.134        ad 		vp = bp->b_vp;
   1443      1.156     rmind 		KASSERT(bp->b_objlock == vp->v_interlock);
   1444      1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1445      1.156     rmind 			mutex_enter(vp->v_interlock);
   1446      1.134        ad 			vp->v_numoutput++;
   1447      1.156     rmind 			mutex_exit(vp->v_interlock);
   1448      1.134        ad 		}
   1449      1.134        ad 		VOP_STRATEGY(vp, bp);
   1450        1.1       mrg 	}
   1451        1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1452        1.1       mrg }
   1453        1.1       mrg 
   1454        1.1       mrg /*
   1455      1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1456      1.130   hannken  */
   1457      1.130   hannken static void
   1458      1.130   hannken sw_reg_biodone(struct buf *bp)
   1459      1.130   hannken {
   1460      1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1461      1.130   hannken }
   1462      1.130   hannken 
   1463      1.130   hannken /*
   1464        1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1465        1.1       mrg  *
   1466        1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1467        1.1       mrg  */
   1468        1.1       mrg static void
   1469      1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1470        1.1       mrg {
   1471      1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1472        1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1473        1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1474        1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1475       1.72       chs 	int s, resid, error;
   1476      1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1477        1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1478        1.1       mrg 
   1479      1.175  pgoyette 	UVMHIST_LOG(pdhist, "  vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
   1480      1.175  pgoyette 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1481      1.175  pgoyette 	    (uintptr_t)vbp->vb_buf.b_data);
   1482      1.175  pgoyette 	UVMHIST_LOG(pdhist, "  cnt=%jx resid=%jx",
   1483        1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1484        1.1       mrg 
   1485        1.1       mrg 	/*
   1486        1.1       mrg 	 * protect vbp at splbio and update.
   1487        1.1       mrg 	 */
   1488        1.1       mrg 
   1489        1.1       mrg 	s = splbio();
   1490        1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1491        1.1       mrg 	pbp->b_resid -= resid;
   1492        1.1       mrg 	vnx->vx_pending--;
   1493        1.1       mrg 
   1494      1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1495        1.1       mrg 		/* pass error upward */
   1496      1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1497      1.175  pgoyette 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1498       1.72       chs 		vnx->vx_error = error;
   1499       1.35       chs 	}
   1500       1.35       chs 
   1501       1.35       chs 	/*
   1502        1.1       mrg 	 * kill vbp structure
   1503        1.1       mrg 	 */
   1504      1.134        ad 	buf_destroy(&vbp->vb_buf);
   1505      1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1506        1.1       mrg 
   1507        1.1       mrg 	/*
   1508        1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1509        1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1510        1.1       mrg 	 */
   1511        1.1       mrg 	if (vnx->vx_error != 0) {
   1512        1.1       mrg 		/* pass error upward */
   1513      1.134        ad 		error = vnx->vx_error;
   1514        1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1515      1.134        ad 			pbp->b_error = error;
   1516        1.1       mrg 			biodone(pbp);
   1517      1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1518        1.1       mrg 		}
   1519       1.11        pk 	} else if (pbp->b_resid == 0) {
   1520       1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1521        1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1522      1.175  pgoyette 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1523      1.175  pgoyette 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1524        1.1       mrg 			biodone(pbp);
   1525      1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1526        1.1       mrg 		}
   1527        1.1       mrg 	}
   1528        1.1       mrg 
   1529        1.1       mrg 	/*
   1530        1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1531        1.1       mrg 	 */
   1532       1.33   thorpej 	sdp->swd_active--;
   1533        1.1       mrg 	sw_reg_start(sdp);
   1534        1.1       mrg 	splx(s);
   1535        1.1       mrg }
   1536        1.1       mrg 
   1537        1.1       mrg 
   1538        1.1       mrg /*
   1539        1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1540        1.1       mrg  *
   1541        1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1542        1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1543        1.1       mrg  * => space can be freed with uvm_swap_free
   1544        1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1545      1.127        ad  * => we lock uvm_swap_data_lock
   1546        1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1547        1.1       mrg  */
   1548        1.1       mrg int
   1549      1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1550        1.1       mrg {
   1551        1.1       mrg 	struct swapdev *sdp;
   1552        1.1       mrg 	struct swappri *spp;
   1553        1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1554        1.1       mrg 
   1555        1.1       mrg 	/*
   1556        1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1557        1.1       mrg 	 */
   1558        1.1       mrg 	if (uvmexp.nswapdev < 1)
   1559        1.1       mrg 		return 0;
   1560       1.51       chs 
   1561        1.1       mrg 	/*
   1562      1.162  jakllsch 	 * XXXJAK: BEGIN HACK
   1563      1.162  jakllsch 	 *
   1564      1.162  jakllsch 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1565      1.162  jakllsch 	 * too many slots.
   1566      1.162  jakllsch 	 */
   1567      1.162  jakllsch 	if (*nslots > BLIST_MAX_ALLOC) {
   1568      1.162  jakllsch 		if (__predict_false(lessok == false))
   1569      1.162  jakllsch 			return 0;
   1570      1.162  jakllsch 		*nslots = BLIST_MAX_ALLOC;
   1571      1.162  jakllsch 	}
   1572      1.162  jakllsch 	/* XXXJAK: END HACK */
   1573      1.162  jakllsch 
   1574      1.162  jakllsch 	/*
   1575        1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1576        1.1       mrg 	 */
   1577      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1578        1.1       mrg 
   1579        1.1       mrg ReTry:	/* XXXMRG */
   1580       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1581      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1582       1.90      yamt 			uint64_t result;
   1583       1.90      yamt 
   1584        1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1585        1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1586        1.1       mrg 				continue;
   1587        1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1588        1.1       mrg 				continue;
   1589       1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1590       1.90      yamt 			if (result == BLIST_NONE) {
   1591        1.1       mrg 				continue;
   1592        1.1       mrg 			}
   1593       1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1594        1.1       mrg 
   1595        1.1       mrg 			/*
   1596      1.165  christos 			 * successful allocation!  now rotate the tailq.
   1597        1.1       mrg 			 */
   1598      1.164  christos 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1599      1.164  christos 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1600        1.1       mrg 			sdp->swd_npginuse += *nslots;
   1601        1.1       mrg 			uvmexp.swpginuse += *nslots;
   1602      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1603        1.1       mrg 			/* done!  return drum slot number */
   1604        1.1       mrg 			UVMHIST_LOG(pdhist,
   1605      1.175  pgoyette 			    "success!  returning %jd slots starting at %jd",
   1606        1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1607       1.55       chs 			return (result + sdp->swd_drumoffset);
   1608        1.1       mrg 		}
   1609        1.1       mrg 	}
   1610        1.1       mrg 
   1611        1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1612        1.1       mrg 	if (*nslots > 1 && lessok) {
   1613        1.1       mrg 		*nslots = 1;
   1614       1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1615       1.90      yamt 		goto ReTry;
   1616        1.1       mrg 	}
   1617        1.1       mrg 	/* XXXMRG: END HACK */
   1618        1.1       mrg 
   1619      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1620       1.55       chs 	return 0;
   1621        1.1       mrg }
   1622        1.1       mrg 
   1623      1.141        ad /*
   1624      1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1625      1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1626      1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1627      1.141        ad  * pages are busy.
   1628      1.141        ad  */
   1629      1.119   thorpej bool
   1630       1.81        pk uvm_swapisfull(void)
   1631       1.81        pk {
   1632      1.141        ad 	int swpgonly;
   1633      1.119   thorpej 	bool rv;
   1634       1.81        pk 
   1635      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1636       1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1637      1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1638      1.141        ad 	    uvm_swapisfull_factor);
   1639      1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1640      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1641       1.81        pk 
   1642       1.81        pk 	return (rv);
   1643       1.81        pk }
   1644       1.81        pk 
   1645        1.1       mrg /*
   1646       1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1647       1.32       chs  *
   1648      1.127        ad  * => we lock uvm_swap_data_lock
   1649       1.32       chs  */
   1650       1.32       chs void
   1651       1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1652       1.32       chs {
   1653       1.32       chs 	struct swapdev *sdp;
   1654       1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1655       1.32       chs 
   1656      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1657       1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1658       1.82        pk 	KASSERT(sdp != NULL);
   1659       1.32       chs 
   1660       1.32       chs 	/*
   1661       1.32       chs 	 * we just keep track of how many pages have been marked bad
   1662       1.32       chs 	 * in this device, to make everything add up in swap_off().
   1663       1.32       chs 	 * we assume here that the range of slots will all be within
   1664       1.32       chs 	 * one swap device.
   1665       1.32       chs 	 */
   1666       1.41       chs 
   1667       1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1668  1.177.2.2    martin 	atomic_add_int(&uvmexp.swpgonly, -nslots);
   1669       1.32       chs 	sdp->swd_npgbad += nslots;
   1670      1.175  pgoyette 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1671      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1672       1.32       chs }
   1673       1.32       chs 
   1674       1.32       chs /*
   1675        1.1       mrg  * uvm_swap_free: free swap slots
   1676        1.1       mrg  *
   1677        1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1678      1.127        ad  * => we lock uvm_swap_data_lock
   1679        1.1       mrg  */
   1680        1.1       mrg void
   1681       1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1682        1.1       mrg {
   1683        1.1       mrg 	struct swapdev *sdp;
   1684        1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1685        1.1       mrg 
   1686      1.175  pgoyette 	UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
   1687        1.1       mrg 	    startslot, 0, 0);
   1688       1.32       chs 
   1689       1.32       chs 	/*
   1690       1.32       chs 	 * ignore attempts to free the "bad" slot.
   1691       1.32       chs 	 */
   1692       1.46       chs 
   1693       1.32       chs 	if (startslot == SWSLOT_BAD) {
   1694       1.32       chs 		return;
   1695       1.32       chs 	}
   1696       1.32       chs 
   1697        1.1       mrg 	/*
   1698       1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1699       1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1700        1.1       mrg 	 * lookup and access the extent.
   1701        1.1       mrg 	 */
   1702       1.46       chs 
   1703      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1704        1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1705       1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1706       1.46       chs 	KASSERT(sdp != NULL);
   1707       1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1708       1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1709        1.1       mrg 	sdp->swd_npginuse -= nslots;
   1710        1.1       mrg 	uvmexp.swpginuse -= nslots;
   1711      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1712        1.1       mrg }
   1713        1.1       mrg 
   1714        1.1       mrg /*
   1715        1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1716        1.1       mrg  *
   1717        1.1       mrg  * => can be sync or async
   1718        1.1       mrg  */
   1719       1.54       chs 
   1720        1.1       mrg int
   1721       1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1722        1.1       mrg {
   1723       1.56       chs 	int error;
   1724        1.1       mrg 
   1725       1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1726        1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1727       1.56       chs 	return error;
   1728        1.1       mrg }
   1729        1.1       mrg 
   1730        1.1       mrg /*
   1731        1.1       mrg  * uvm_swap_get: get a single page from swap
   1732        1.1       mrg  *
   1733        1.1       mrg  * => usually a sync op (from fault)
   1734        1.1       mrg  */
   1735       1.54       chs 
   1736        1.1       mrg int
   1737       1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1738        1.1       mrg {
   1739       1.56       chs 	int error;
   1740        1.1       mrg 
   1741  1.177.2.2    martin 	atomic_inc_uint(&uvmexp.nswget);
   1742       1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1743       1.32       chs 	if (swslot == SWSLOT_BAD) {
   1744       1.47       chs 		return EIO;
   1745       1.32       chs 	}
   1746       1.81        pk 
   1747       1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1748        1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1749       1.56       chs 	if (error == 0) {
   1750       1.47       chs 
   1751       1.26       chs 		/*
   1752       1.54       chs 		 * this page is no longer only in swap.
   1753       1.26       chs 		 */
   1754       1.47       chs 
   1755       1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1756  1.177.2.2    martin 		atomic_dec_uint(&uvmexp.swpgonly);
   1757       1.26       chs 	}
   1758       1.56       chs 	return error;
   1759        1.1       mrg }
   1760        1.1       mrg 
   1761        1.1       mrg /*
   1762        1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1763        1.1       mrg  */
   1764        1.1       mrg 
   1765        1.1       mrg static int
   1766       1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1767        1.1       mrg {
   1768        1.1       mrg 	daddr_t startblk;
   1769        1.1       mrg 	struct	buf *bp;
   1770       1.15       eeh 	vaddr_t kva;
   1771      1.134        ad 	int	error, mapinflags;
   1772      1.119   thorpej 	bool write, async;
   1773        1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1774        1.1       mrg 
   1775      1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
   1776        1.1       mrg 	    startslot, npages, flags, 0);
   1777       1.32       chs 
   1778       1.41       chs 	write = (flags & B_READ) == 0;
   1779       1.41       chs 	async = (flags & B_ASYNC) != 0;
   1780       1.41       chs 
   1781        1.1       mrg 	/*
   1782      1.137      yamt 	 * allocate a buf for the i/o.
   1783      1.137      yamt 	 */
   1784      1.137      yamt 
   1785      1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1786      1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1787      1.137      yamt 	if (bp == NULL) {
   1788      1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1789      1.137      yamt 		return ENOMEM;
   1790      1.137      yamt 	}
   1791      1.137      yamt 
   1792      1.137      yamt 	/*
   1793        1.1       mrg 	 * convert starting drum slot to block number
   1794        1.1       mrg 	 */
   1795       1.54       chs 
   1796       1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1797        1.1       mrg 
   1798        1.1       mrg 	/*
   1799       1.54       chs 	 * first, map the pages into the kernel.
   1800       1.41       chs 	 */
   1801       1.41       chs 
   1802       1.54       chs 	mapinflags = !write ?
   1803       1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1804       1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1805       1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1806        1.1       mrg 
   1807       1.51       chs 	/*
   1808        1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1809        1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1810        1.1       mrg 	 */
   1811       1.54       chs 
   1812      1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1813      1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1814        1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1815       1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1816      1.122  christos 	bp->b_data = (void *)kva;
   1817        1.1       mrg 	bp->b_blkno = startblk;
   1818       1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1819        1.1       mrg 
   1820       1.51       chs 	/*
   1821       1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1822        1.1       mrg 	 */
   1823       1.54       chs 
   1824       1.41       chs 	if (write) {
   1825      1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1826      1.134        ad 		swapdev_vp->v_numoutput++;
   1827      1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1828        1.1       mrg 	}
   1829        1.1       mrg 
   1830        1.1       mrg 	/*
   1831       1.41       chs 	 * for async ops we must set up the iodone handler.
   1832        1.1       mrg 	 */
   1833       1.54       chs 
   1834       1.41       chs 	if (async) {
   1835  1.177.2.2    martin 		bp->b_iodone = uvm_aio_aiodone;
   1836        1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1837      1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1838       1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1839       1.83      yamt 		else
   1840       1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1841       1.83      yamt 	} else {
   1842      1.134        ad 		bp->b_iodone = NULL;
   1843       1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1844        1.1       mrg 	}
   1845        1.1       mrg 	UVMHIST_LOG(pdhist,
   1846      1.175  pgoyette 	    "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
   1847      1.175  pgoyette 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1848        1.1       mrg 
   1849        1.1       mrg 	/*
   1850        1.1       mrg 	 * now we start the I/O, and if async, return.
   1851        1.1       mrg 	 */
   1852       1.54       chs 
   1853       1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1854       1.41       chs 	if (async)
   1855       1.47       chs 		return 0;
   1856        1.1       mrg 
   1857        1.1       mrg 	/*
   1858        1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1859        1.1       mrg 	 */
   1860       1.54       chs 
   1861       1.47       chs 	error = biowait(bp);
   1862        1.1       mrg 
   1863        1.1       mrg 	/*
   1864        1.1       mrg 	 * kill the pager mapping
   1865        1.1       mrg 	 */
   1866       1.54       chs 
   1867        1.1       mrg 	uvm_pagermapout(kva, npages);
   1868        1.1       mrg 
   1869        1.1       mrg 	/*
   1870       1.54       chs 	 * now dispose of the buf and we're done.
   1871        1.1       mrg 	 */
   1872       1.54       chs 
   1873      1.134        ad 	if (write) {
   1874      1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1875       1.41       chs 		vwakeup(bp);
   1876      1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1877      1.134        ad 	}
   1878       1.98      yamt 	putiobuf(bp);
   1879      1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   1880      1.134        ad 
   1881       1.47       chs 	return (error);
   1882        1.1       mrg }
   1883